Volcanic lithology identification based on parameter-optimized GBDT algorithm: A case study in the Jilin Oilfield, Songliao Basin, NE China

The reservoir rocks in the volcanic strata of the Jilin oil field are characterized by great complexity and diversity in composition and structure of lithology. To enhance the rate of lithology identification in subsurface is very laborious. However, lithology identification is often ignored in quan...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied geophysics Vol. 194; p. 104443
Main Authors Yu, Zhichao, Wang, Zhizhang, Zeng, Fancheng, Song, Peng, Baffour, Bestman Adjei, Wang, Peng, Wang, Weifang, Li, Ling
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The reservoir rocks in the volcanic strata of the Jilin oil field are characterized by great complexity and diversity in composition and structure of lithology. To enhance the rate of lithology identification in subsurface is very laborious. However, lithology identification is often ignored in quantitative studies, though it is the basis for reservoir characterization. In this paper, an ensemble learning algorithm named gradient boosting decision tree (GBDT) was used to establish the classification model for the volcanic lithology identification of the Lower Cretaceous Yingcheng Formation in the Songliao Basin, NE China. At the same time, support vector machine (SVM), logistic regression (LR) and decision tree (DT) classification models were also adopted in contrast with the classification accuracy of GBDT model. Subsequently, the optimal key parameters for each model were determined by employing validation curves and GridSearchCv. These results indicate that the GBDT model is superior to the single classifier and can accurately distinguish the lithologic interface of breccia tuff and rhyolite. Moreover, it also has better recognition ability for thin layer. It was concluded that the ensemble learning algorithm GBDT has significantly enhanced the accuracy of lithology identification and can be used as a lithologic identification technology. •The GBDT model is applied well in volcanic lithology identification.•Parameter optimization is conducted to optimize the classifier.•The GBDT model is superior to the single classifier.•The GBDT model and has better recognition ability for thin layer.
AbstractList The reservoir rocks in the volcanic strata of the Jilin oil field are characterized by great complexity and diversity in composition and structure of lithology. To enhance the rate of lithology identification in subsurface is very laborious. However, lithology identification is often ignored in quantitative studies, though it is the basis for reservoir characterization. In this paper, an ensemble learning algorithm named gradient boosting decision tree (GBDT) was used to establish the classification model for the volcanic lithology identification of the Lower Cretaceous Yingcheng Formation in the Songliao Basin, NE China. At the same time, support vector machine (SVM), logistic regression (LR) and decision tree (DT) classification models were also adopted in contrast with the classification accuracy of GBDT model. Subsequently, the optimal key parameters for each model were determined by employing validation curves and GridSearchCv. These results indicate that the GBDT model is superior to the single classifier and can accurately distinguish the lithologic interface of breccia tuff and rhyolite. Moreover, it also has better recognition ability for thin layer. It was concluded that the ensemble learning algorithm GBDT has significantly enhanced the accuracy of lithology identification and can be used as a lithologic identification technology. •The GBDT model is applied well in volcanic lithology identification.•Parameter optimization is conducted to optimize the classifier.•The GBDT model is superior to the single classifier.•The GBDT model and has better recognition ability for thin layer.
ArticleNumber 104443
Author Wang, Peng
Yu, Zhichao
Li, Ling
Zeng, Fancheng
Baffour, Bestman Adjei
Wang, Weifang
Wang, Zhizhang
Song, Peng
Author_xml – sequence: 1
  givenname: Zhichao
  surname: Yu
  fullname: Yu, Zhichao
  organization: College of Geosciences, China University of Petroleum, Beijing 102249, China
– sequence: 2
  givenname: Zhizhang
  surname: Wang
  fullname: Wang, Zhizhang
  email: wang_zhizhang@126.com
  organization: College of Geosciences, China University of Petroleum, Beijing 102249, China
– sequence: 3
  givenname: Fancheng
  surname: Zeng
  fullname: Zeng, Fancheng
  organization: PetroChina Jilin Oil Field E&P Research Institute, Songyuan, Jilin 138000, China
– sequence: 4
  givenname: Peng
  surname: Song
  fullname: Song, Peng
  organization: PetroChina Jilin Oil Field E&P Research Institute, Songyuan, Jilin 138000, China
– sequence: 5
  givenname: Bestman Adjei
  surname: Baffour
  fullname: Baffour, Bestman Adjei
  organization: College of Geosciences, China University of Petroleum, Beijing 102249, China
– sequence: 6
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  organization: Sinopec Petroleum Exploration and Production Research Institute, Beijing 10083, China
– sequence: 7
  givenname: Weifang
  surname: Wang
  fullname: Wang, Weifang
  organization: College of Geosciences, China University of Petroleum, Beijing 102249, China
– sequence: 8
  givenname: Ling
  surname: Li
  fullname: Li, Ling
  organization: College of Geosciences, China University of Petroleum, Beijing 102249, China
BookMark eNqFkE1uVDEQhC0UJCaBIyD5AHmD_fx-YYGSIQRQRBYEtpZ_2jM98thPtkEKV-DSOExWbLLqUqm_kqpOyUmIAQh5zdmaMz682a_3alm2ENcta3n1uq4Tz8iKT-Pc8KmfT8iKze3QzFPPX5DTnPeMMS5YtyJ_fkRvVEBDPZZd9HF7T9FCKOjQqIIxUK0yWFrFopI6QIHUxKXgAX9X-_rywx1VfhtTxQ9v6QU19Z3m8tPWoEDLDugX9FXdoncI3p7TbzFsPapIL1XGcE6_XtHNDoN6SZ475TO8erxn5PvHq7vNp-bm9vrz5uKmUUK0pTEw93oYjR2UMkJrM4zT2E0DE7rVxnbMggMDzjoQGnQ7zGoUrHW9bseOuVGckXfHXJNizgmcNFj-dS1JoZecyYdd5V4-7iofdpXHXSvd_0cvCQ8q3T_JvT9yUKv9QkgyG4RgwGICU6SN-ETCX4cAmmY
CitedBy_id crossref_primary_10_1016_j_petrol_2022_111082
crossref_primary_10_3390_rs15153764
crossref_primary_10_1007_s10999_023_09679_0
crossref_primary_10_1016_j_conbuildmat_2022_128972
crossref_primary_10_1109_ACCESS_2023_3239688
crossref_primary_10_1007_s11004_022_10039_5
crossref_primary_10_3390_electronics12102207
crossref_primary_10_1007_s12145_023_00986_w
crossref_primary_10_1111_1755_6724_15144
crossref_primary_10_1016_j_petrol_2022_110517
crossref_primary_10_1016_j_aej_2024_12_038
crossref_primary_10_3390_plants11172294
crossref_primary_10_1016_j_geoen_2023_212224
crossref_primary_10_1029_2023EA003101
crossref_primary_10_1142_S0218001422590145
crossref_primary_10_1016_j_advengsoft_2024_103648
crossref_primary_10_1080_10095020_2024_2405635
crossref_primary_10_1016_j_ergon_2024_103610
crossref_primary_10_1016_j_marpetgeo_2023_106168
crossref_primary_10_1016_j_marpetgeo_2022_105730
crossref_primary_10_1016_j_oregeorev_2024_105959
crossref_primary_10_3390_pr12020285
crossref_primary_10_1007_s11053_023_10252_x
crossref_primary_10_1016_j_measen_2024_101093
crossref_primary_10_1002_ese3_2073
crossref_primary_10_1007_s40948_024_00787_5
crossref_primary_10_3390_app122110918
crossref_primary_10_3390_met13010169
crossref_primary_10_1021_acsomega_2c02546
crossref_primary_10_3390_rs16111948
crossref_primary_10_2118_225443_PA
crossref_primary_10_1190_geo2023_0080_1
crossref_primary_10_1016_j_marpetgeo_2024_106933
crossref_primary_10_3390_pr12102306
crossref_primary_10_3390_su15043280
crossref_primary_10_1007_s13201_025_02424_2
Cites_doi 10.1155/2016/6453803
10.1007/s10994-013-5337-8
10.1016/j.jseaes.2007.10.021
10.1038/nature14539
10.1016/j.jappgeo.2018.09.011
10.1016/j.petrol.2020.107723
10.1016/j.petrol.2017.12.006
10.1016/j.neucom.2015.09.116
10.1016/j.marpetgeo.2016.05.002
10.1016/j.csda.2010.11.018
10.1016/j.marpetgeo.2008.01.008
10.1143/JPSJ.75.084007
10.1007/s12182-014-0013-6
10.1162/089976699300016737
10.1190/INT-2016-0227.1
10.1016/S1876-3804(08)60071-3
10.1016/j.jappgeo.2018.06.012
10.1177/0144598718812546
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jappgeo.2021.104443
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1859
ExternalDocumentID 10_1016_j_jappgeo_2021_104443
S0926985121001919
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSZ
T5K
VH1
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-a332t-ce95b67cd6aac3bbc678748603b2bcd40defecefdfe3beb269a7302f5b2740f73
IEDL.DBID .~1
ISSN 0926-9851
IngestDate Tue Jul 01 03:15:08 EDT 2025
Thu Apr 24 22:56:50 EDT 2025
Fri Feb 23 02:43:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ensemble learning algorithm
Volcanic
GBDT
Lithology identification
Songliao Basin
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a332t-ce95b67cd6aac3bbc678748603b2bcd40defecefdfe3beb269a7302f5b2740f73
ParticipantIDs crossref_citationtrail_10_1016_j_jappgeo_2021_104443
crossref_primary_10_1016_j_jappgeo_2021_104443
elsevier_sciencedirect_doi_10_1016_j_jappgeo_2021_104443
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Journal of applied geophysics
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Huiguang, Haitao, Wenbiao (bb0070) 2011; 11
Elghazel, Aussem (bb0025) 2015; 98
Zhang, Qin, Zhang (bb0190) 2008; 33
Krogh, Vedelsby (bb0095) 1995; 7
Sakhnovich (bb0140) 2007
Miyoshi, Uezu, Okada (bb0130) 2006; 75
Guo, Liu (bb0050) 2016; 187
Shuangfang, Hui, Weiming (bb0150) 2010; 34
Feng, Ren, Xu (bb0035) 2018; 162
Guoyin, Zhizhang, Huaji, Yanan, Wei (bb0055) 2018; 159
Xin, Hao Jue, Qing (bb0165) 2019; 36
Mao, Zhu, Luo, Wang, Du, Su, Zhang (bb0120) 2015; 12
Schutter (bb0145) 2003; 214
Jia, Ji, Wang (bb0080) 2016; 76
LeCun, Bengio, Hinton (bb0100) 2015; 521
Avnimelech, Intrator (bb0015) 1999; 11
Ye, Wei, Deng (bb0175) 2017; 32
Jin Yuan, Yong, Tao (bb0085) 2018; 48
Han, Yuan, Fan (bb0060) 2018; 39
Zishu, Wu (bb0205) 1994; 16
He, Li, Liu, Kong, Jiang, Chang (bb0065) 2020; 195
Li, Yu, Bai (bb0105) 2018; 6
Gong, Gao, Fu, Chen, Lyu, Yao (bb0040) 2017; 5
Libin, Zhilong, Ma (bb0115) 2006; 17
Wang, Jianghai, Yongmin (bb0160) 2015; 42
Ji, Shuli, Chuanning (bb0075) 2008; 4
Mitchell (bb0125) 2003
Sun, Zhong, Zhan (bb0155) 2019; 37
Zhang, Zhang, Qi (bb0200) 2017; 38
Airola, Pahikkala, Waegeman (bb0005) 2011; 55
Zhang, Zou, Jiang (bb0195) 2015; 27
Petford, Mccaffrey (bb0135) 2003
Liao, Huang, Yue (bb0110) 2016; 2016
Jing, Liande (bb0090) 2016; 23
Feng (bb0030) 2008; 25
Yang, Wang, Zhou (bb0170) 2019; 40
Alpaydin (bb0010) 2014
Zou, Zhao, Jia (bb0210) 2008; 35
Camila, Leonardo, Egberto, Leonardo Costa (bb0020) 2018; 155
Jin Yuan (10.1016/j.jappgeo.2021.104443_bb0085) 2018; 48
Airola (10.1016/j.jappgeo.2021.104443_bb0005) 2011; 55
LeCun (10.1016/j.jappgeo.2021.104443_bb0100) 2015; 521
Petford (10.1016/j.jappgeo.2021.104443_bb0135) 2003
Guoyin (10.1016/j.jappgeo.2021.104443_bb0055) 2018; 159
Wang (10.1016/j.jappgeo.2021.104443_bb0160) 2015; 42
Elghazel (10.1016/j.jappgeo.2021.104443_bb0025) 2015; 98
Liao (10.1016/j.jappgeo.2021.104443_bb0110) 2016; 2016
Zhang (10.1016/j.jappgeo.2021.104443_bb0195) 2015; 27
Feng (10.1016/j.jappgeo.2021.104443_bb0035) 2018; 162
Zou (10.1016/j.jappgeo.2021.104443_bb0210) 2008; 35
Han (10.1016/j.jappgeo.2021.104443_bb0060) 2018; 39
Zishu (10.1016/j.jappgeo.2021.104443_bb0205) 1994; 16
Zhang (10.1016/j.jappgeo.2021.104443_bb0190) 2008; 33
Libin (10.1016/j.jappgeo.2021.104443_bb0115) 2006; 17
Schutter (10.1016/j.jappgeo.2021.104443_bb0145) 2003; 214
Huiguang (10.1016/j.jappgeo.2021.104443_bb0070) 2011; 11
Feng (10.1016/j.jappgeo.2021.104443_bb0030) 2008; 25
Shuangfang (10.1016/j.jappgeo.2021.104443_bb0150) 2010; 34
Jing (10.1016/j.jappgeo.2021.104443_bb0090) 2016; 23
Mitchell (10.1016/j.jappgeo.2021.104443_bb0125) 2003
Ye (10.1016/j.jappgeo.2021.104443_bb0175) 2017; 32
Zhang (10.1016/j.jappgeo.2021.104443_bb0200) 2017; 38
Avnimelech (10.1016/j.jappgeo.2021.104443_bb0015) 1999; 11
Alpaydin (10.1016/j.jappgeo.2021.104443_bb0010) 2014
Li (10.1016/j.jappgeo.2021.104443_bb0105) 2018; 6
Mao (10.1016/j.jappgeo.2021.104443_bb0120) 2015; 12
Camila (10.1016/j.jappgeo.2021.104443_bb0020) 2018; 155
Jia (10.1016/j.jappgeo.2021.104443_bb0080) 2016; 76
Xin (10.1016/j.jappgeo.2021.104443_bb0165) 2019; 36
He (10.1016/j.jappgeo.2021.104443_bb0065) 2020; 195
Guo (10.1016/j.jappgeo.2021.104443_bb0050) 2016; 187
Ji (10.1016/j.jappgeo.2021.104443_bb0075) 2008; 4
Sun (10.1016/j.jappgeo.2021.104443_bb0155) 2019; 37
Gong (10.1016/j.jappgeo.2021.104443_bb0040) 2017; 5
Miyoshi (10.1016/j.jappgeo.2021.104443_bb0130) 2006; 75
Krogh (10.1016/j.jappgeo.2021.104443_bb0095) 1995; 7
Sakhnovich (10.1016/j.jappgeo.2021.104443_bb0140) 2007
Yang (10.1016/j.jappgeo.2021.104443_bb0170) 2019; 40
References_xml – volume: 76
  start-page: 262
  year: 2016
  end-page: 278
  ident: bb0080
  article-title: Tectono-sedimentary and hydrocarbon potential analysis of rift-related successions in the Dehui Depression, Songliao Basin, Northeastern China[J]
  publication-title: Mar. Pet. Geol.
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 12
  ident: bb0110
  article-title: In silico prediction of gamma-aminobutyric acid type-a receptors using novel machine-learning-based SVM and GBDT Approaches[J]
  publication-title: Biomed. Res. Int.
– volume: 32
  start-page: 1842
  year: 2017
  end-page: 1848
  ident: bb0175
  article-title: Study on volcanic lithology identification methods based on the data of conventional well logging data: a case from Mesozoic volcanic rocks in Bohai bay area
  publication-title: Prog. Geophys.
– volume: 33
  start-page: 42
  year: 2008
  end-page: 60
  ident: bb0190
  article-title: Depositional fades, diagenesis and their impact on the reservoir quality of Silurian sandstones from Tazhong area in Central Tarim Basin, western China[J]
  publication-title: J. Asian Earth Sci.
– year: 2014
  ident: bb0010
  article-title: Introduction to Machine Learning
– volume: 214
  start-page: 35
  year: 2003
  end-page: 68
  ident: bb0145
  article-title: Occurrences of hydrocarbons in and around igneous rocks[J]
  publication-title: Hydrocarb. Crystalline Rocks
– volume: 42
  start-page: 1610
  year: 2015
  end-page: 1620
  ident: bb0160
  article-title: Review and prospect of global volcanic reservoirs[J]
  publication-title: Geol. China
– start-page: 41(15)
  year: 2007
  ident: bb0140
  article-title: Nonisospectral integrable nonlinear equations with external potentials and their GBDT solutions[J]
  publication-title: J. Phys. A Math. Theor.
– volume: 39
  start-page: 759
  year: 2018
  end-page: 765
  ident: bb0060
  article-title: Identification of igneous reservoir lithology based on empirical mode decomposition and energy entropy classification: a case study of Carboniferous igneous reservoir in Chunfeng oilfield
  publication-title: Oil Gas Geol.
– volume: 48
  start-page: 1
  year: 2018
  end-page: 7
  ident: bb0085
  article-title: Classification of Flight Delay Based-on GBDT[J]
  publication-title: Mathemat. Pract. Theory
– volume: 195
  start-page: 107723
  year: 2020
  ident: bb0065
  article-title: Characteristics and quantitative evaluation of volcanic effective reservoirs:A case study from Junggar Basin, China
  publication-title: J. Pet. Sci. Eng.
– volume: 11
  start-page: 6578
  year: 2011
  end-page: 6582
  ident: bb0070
  article-title: Hydrocarbon source rock exploration potential of deep layer in Dehui fault depression[J]
  publication-title: Sci. Technol. Eng.
– volume: 162
  start-page: 22
  year: 2018
  end-page: 34
  ident: bb0035
  article-title: Quantitative prediction of fracture distribution using geomechanical method within Kuqa Depression, Tarim Basin, NW China
  publication-title: J. Petrol.Sci. Eng.
– volume: 23
  start-page: 52
  year: 2016
  end-page: 56
  ident: bb0090
  article-title: Main controlling factors of high-quality volcanic reservoir in southern Songliao basin[J]
  publication-title: Special Oil Gas Reser.
– volume: 27
  start-page: 108
  year: 2015
  end-page: 114
  ident: bb0195
  article-title: Logging identification method of volcanic rock lithology: a case study from volcanic rock in Junggar Basin
  publication-title: Lithologic Reserv
– volume: 35
  start-page: 257
  year: 2008
  end-page: 271
  ident: bb0210
  article-title: Formation and distribution of volcanic hydrocarbon reservoirs in sedimentary basins of China[J]
  publication-title: Pet. Explor. Dev.
– volume: 4
  start-page: 4
  year: 2008
  ident: bb0075
  article-title: Meta-prediction of phosphorylation sites with weighted voting and restricted grid search parameter selection[J]
  publication-title: Nucleic Acids Res.
– volume: 17
  start-page: 176
  year: 2006
  end-page: 182
  ident: bb0115
  article-title: A study on geochemical character and origin of deep natural gas in Dehui fault depression of the southern Songliao basin
  publication-title: Nat. Gas Geosci.
– year: 2003
  ident: bb0135
  article-title: Hydrocarbons in Crystalline Rocks [M]
– volume: 16
  start-page: 1
  year: 1994
  end-page: 26
  ident: bb0205
  article-title: Investigation of the research status and exploration technology at home and abroad about volcanic reservoir[J]
  publication-title: Natural Gas Explorat. Develop.
– volume: 159
  start-page: 605
  year: 2018
  end-page: 615
  ident: bb0055
  article-title: Permeability prediction of isolated channel sands using machine learning
  publication-title: J. Appl. Geophys.
– volume: 40
  start-page: 457
  year: 2019
  end-page: 467
  ident: bb0170
  article-title: Lithology classification of acidic volcanic rocks based on parameter-optimized AdaBoost algorithm[J]
  publication-title: Acta Pet. Sin.
– volume: 37
  start-page: 607
  year: 2019
  end-page: 625
  ident: bb0155
  article-title: Reservoir characteristics in the cretaceous volcanic rocks of Songliao Basin, China: a case of dynamics and evolution of the volcano-porosity and diagenesis
  publication-title: Energy Explor. Exploit.
– volume: 36
  start-page: 1
  year: 2019
  end-page: 10
  ident: bb0165
  article-title: Prediction of Temperature of Asphalt Pavement Surface Based on APRIORI-GBDT Algorithm[J]
  publication-title: J. Highway Transpor. Res. Develop.
– volume: 55
  start-page: 1828
  year: 2011
  end-page: 1844
  ident: bb0005
  article-title: An experimental comparison of cross-validation techniques for estimating the area under the ROC curve[J]
  publication-title: Computat. Stat. Data Analysis
– volume: 11
  start-page: 483
  year: 1999
  end-page: 498
  ident: bb0015
  article-title: Boosted mixture of experts: an ensemble learning scheme[J]
  publication-title: Neural Comput.
– volume: 6
  start-page: 1
  year: 2018
  end-page: 9
  ident: bb0105
  article-title: Towards effective network intrusion detection: a hybrid model index and GBDT with PSO [J]
  publication-title: J. Sens.
– volume: 38
  start-page: 427
  year: 2017
  end-page: 431
  ident: bb0200
  article-title: Lithology identification of carboniferous volcanic rock with logging data in Xiquan Area
  publication-title: Junggar Basin. Xinjiang Petrol. Geol
– volume: 25
  start-page: 416
  year: 2008
  end-page: 432
  ident: bb0030
  article-title: Volcanic rocks as prolific gas reservoir: a case study from the Qingshen gas field in the Songliao Basin, NE China[J]
  publication-title: Mar. Pet. Geol.
– volume: 521
  start-page: 436
  year: 2015
  ident: bb0100
  article-title: Deep learning
  publication-title: Nature
– volume: 75
  start-page: 2652
  year: 2006
  end-page: 2674
  ident: bb0130
  article-title: Statistical mechanics of time domain ensemble learning[J]
  publication-title: J. Phys. Soc. Jpn.
– year: 2003
  ident: bb0125
  article-title: Machine learning[M]
– volume: 34
  start-page: 42
  year: 2010
  end-page: 47
  ident: bb0150
  article-title: Key factors controlling the accumulation of volcanic gas reservoirs in the deep part of southern Songliao Basin[J]
  publication-title: J. Daqing Petrol. Instit.
– volume: 7
  start-page: 231
  year: 1995
  end-page: 238
  ident: bb0095
  article-title: Neural network ensembles, cross validation, and active Learning[J]
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 155
  start-page: 217
  year: 2018
  end-page: 225
  ident: bb0020
  article-title: Machine learning approaches for petrographic classification of carbonate-siliciclastic rocks using well logs and textural information
  publication-title: J. Appl. Geophys.
– volume: 5
  start-page: 57
  year: 2017
  end-page: 70
  ident: bb0040
  article-title: Fracture characteristics and their effects on hydrocarbon migration and accumulation in tight volcanic reservoirs: a case study of the Xujiaweizi fault depression, Songliao Basin, China
  publication-title: Interpretation
– volume: 98
  start-page: 157
  year: 2015
  end-page: 180
  ident: bb0025
  article-title: Unsupervised feature selection with ensemble learning[J]
  publication-title: Mach. Learn.
– volume: 12
  start-page: 54
  year: 2015
  end-page: 66
  ident: bb0120
  article-title: Reservoir characteristics, formation mechanisms and petroleum exploration potential of volcanic rocks in China
  publication-title: Pet. Sci.
– volume: 187
  start-page: 27
  year: 2016
  end-page: 48
  ident: bb0050
  article-title: Deep learning for visual understanding: a review
  publication-title: Neurocomputing
– volume: 2016
  start-page: 1
  issue: 6
  year: 2016
  ident: 10.1016/j.jappgeo.2021.104443_bb0110
  article-title: In silico prediction of gamma-aminobutyric acid type-a receptors using novel machine-learning-based SVM and GBDT Approaches[J]
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2016/6453803
– volume: 98
  start-page: 157
  issue: 1–2
  year: 2015
  ident: 10.1016/j.jappgeo.2021.104443_bb0025
  article-title: Unsupervised feature selection with ensemble learning[J]
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-013-5337-8
– volume: 33
  start-page: 42
  issue: 1–2
  year: 2008
  ident: 10.1016/j.jappgeo.2021.104443_bb0190
  article-title: Depositional fades, diagenesis and their impact on the reservoir quality of Silurian sandstones from Tazhong area in Central Tarim Basin, western China[J]
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2007.10.021
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.jappgeo.2021.104443_bb0100
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 38
  start-page: 427
  issue: 04
  year: 2017
  ident: 10.1016/j.jappgeo.2021.104443_bb0200
  article-title: Lithology identification of carboniferous volcanic rock with logging data in Xiquan Area
  publication-title: Junggar Basin. Xinjiang Petrol. Geol
– volume: 159
  start-page: 605
  year: 2018
  ident: 10.1016/j.jappgeo.2021.104443_bb0055
  article-title: Permeability prediction of isolated channel sands using machine learning
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2018.09.011
– volume: 214
  start-page: 35
  issue: 1
  year: 2003
  ident: 10.1016/j.jappgeo.2021.104443_bb0145
  article-title: Occurrences of hydrocarbons in and around igneous rocks[J]
  publication-title: Hydrocarb. Crystalline Rocks
– volume: 27
  start-page: 108
  issue: 1
  year: 2015
  ident: 10.1016/j.jappgeo.2021.104443_bb0195
  article-title: Logging identification method of volcanic rock lithology: a case study from volcanic rock in Junggar Basin
  publication-title: Lithologic Reserv
– volume: 195
  start-page: 107723
  year: 2020
  ident: 10.1016/j.jappgeo.2021.104443_bb0065
  article-title: Characteristics and quantitative evaluation of volcanic effective reservoirs:A case study from Junggar Basin, China
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.107723
– year: 2003
  ident: 10.1016/j.jappgeo.2021.104443_bb0125
– volume: 162
  start-page: 22
  year: 2018
  ident: 10.1016/j.jappgeo.2021.104443_bb0035
  article-title: Quantitative prediction of fracture distribution using geomechanical method within Kuqa Depression, Tarim Basin, NW China
  publication-title: J. Petrol.Sci. Eng.
  doi: 10.1016/j.petrol.2017.12.006
– volume: 42
  start-page: 1610
  issue: 5
  year: 2015
  ident: 10.1016/j.jappgeo.2021.104443_bb0160
  article-title: Review and prospect of global volcanic reservoirs[J]
  publication-title: Geol. China
– volume: 48
  start-page: 1
  issue: 4
  year: 2018
  ident: 10.1016/j.jappgeo.2021.104443_bb0085
  article-title: Classification of Flight Delay Based-on GBDT[J]
  publication-title: Mathemat. Pract. Theory
– volume: 4
  start-page: 4
  year: 2008
  ident: 10.1016/j.jappgeo.2021.104443_bb0075
  article-title: Meta-prediction of phosphorylation sites with weighted voting and restricted grid search parameter selection[J]
  publication-title: Nucleic Acids Res.
– volume: 187
  start-page: 27
  issue: C
  year: 2016
  ident: 10.1016/j.jappgeo.2021.104443_bb0050
  article-title: Deep learning for visual understanding: a review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.116
– volume: 76
  start-page: 262
  year: 2016
  ident: 10.1016/j.jappgeo.2021.104443_bb0080
  article-title: Tectono-sedimentary and hydrocarbon potential analysis of rift-related successions in the Dehui Depression, Songliao Basin, Northeastern China[J]
  publication-title: Mar. Pet. Geol.
  doi: 10.1016/j.marpetgeo.2016.05.002
– volume: 55
  start-page: 1828
  issue: 4
  year: 2011
  ident: 10.1016/j.jappgeo.2021.104443_bb0005
  article-title: An experimental comparison of cross-validation techniques for estimating the area under the ROC curve[J]
  publication-title: Computat. Stat. Data Analysis
  doi: 10.1016/j.csda.2010.11.018
– volume: 6
  start-page: 1
  year: 2018
  ident: 10.1016/j.jappgeo.2021.104443_bb0105
  article-title: Towards effective network intrusion detection: a hybrid model index and GBDT with PSO [J]
  publication-title: J. Sens.
– volume: 16
  start-page: 1
  issue: 1
  year: 1994
  ident: 10.1016/j.jappgeo.2021.104443_bb0205
  article-title: Investigation of the research status and exploration technology at home and abroad about volcanic reservoir[J]
  publication-title: Natural Gas Explorat. Develop.
– volume: 17
  start-page: 176
  issue: 2
  year: 2006
  ident: 10.1016/j.jappgeo.2021.104443_bb0115
  article-title: A study on geochemical character and origin of deep natural gas in Dehui fault depression of the southern Songliao basin
  publication-title: Nat. Gas Geosci.
– volume: 11
  start-page: 6578
  issue: 27
  year: 2011
  ident: 10.1016/j.jappgeo.2021.104443_bb0070
  article-title: Hydrocarbon source rock exploration potential of deep layer in Dehui fault depression[J]
  publication-title: Sci. Technol. Eng.
– volume: 25
  start-page: 416
  issue: 2008
  year: 2008
  ident: 10.1016/j.jappgeo.2021.104443_bb0030
  article-title: Volcanic rocks as prolific gas reservoir: a case study from the Qingshen gas field in the Songliao Basin, NE China[J]
  publication-title: Mar. Pet. Geol.
  doi: 10.1016/j.marpetgeo.2008.01.008
– volume: 39
  start-page: 759
  issue: 4
  year: 2018
  ident: 10.1016/j.jappgeo.2021.104443_bb0060
  article-title: Identification of igneous reservoir lithology based on empirical mode decomposition and energy entropy classification: a case study of Carboniferous igneous reservoir in Chunfeng oilfield
  publication-title: Oil Gas Geol.
– year: 2014
  ident: 10.1016/j.jappgeo.2021.104443_bb0010
– start-page: 41(15)
  year: 2007
  ident: 10.1016/j.jappgeo.2021.104443_bb0140
  article-title: Nonisospectral integrable nonlinear equations with external potentials and their GBDT solutions[J]
  publication-title: J. Phys. A Math. Theor.
– volume: 75
  start-page: 2652
  issue: 8
  year: 2006
  ident: 10.1016/j.jappgeo.2021.104443_bb0130
  article-title: Statistical mechanics of time domain ensemble learning[J]
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.75.084007
– volume: 32
  start-page: 1842
  issue: 4
  year: 2017
  ident: 10.1016/j.jappgeo.2021.104443_bb0175
  article-title: Study on volcanic lithology identification methods based on the data of conventional well logging data: a case from Mesozoic volcanic rocks in Bohai bay area
  publication-title: Prog. Geophys.
– volume: 12
  start-page: 54
  year: 2015
  ident: 10.1016/j.jappgeo.2021.104443_bb0120
  article-title: Reservoir characteristics, formation mechanisms and petroleum exploration potential of volcanic rocks in China
  publication-title: Pet. Sci.
  doi: 10.1007/s12182-014-0013-6
– volume: 36
  start-page: 1
  issue: 5
  year: 2019
  ident: 10.1016/j.jappgeo.2021.104443_bb0165
  article-title: Prediction of Temperature of Asphalt Pavement Surface Based on APRIORI-GBDT Algorithm[J]
  publication-title: J. Highway Transpor. Res. Develop.
– year: 2003
  ident: 10.1016/j.jappgeo.2021.104443_bb0135
– volume: 23
  start-page: 52
  issue: 3
  year: 2016
  ident: 10.1016/j.jappgeo.2021.104443_bb0090
  article-title: Main controlling factors of high-quality volcanic reservoir in southern Songliao basin[J]
  publication-title: Special Oil Gas Reser.
– volume: 7
  start-page: 231
  issue: 10
  year: 1995
  ident: 10.1016/j.jappgeo.2021.104443_bb0095
  article-title: Neural network ensembles, cross validation, and active Learning[J]
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 40
  start-page: 457
  issue: 4
  year: 2019
  ident: 10.1016/j.jappgeo.2021.104443_bb0170
  article-title: Lithology classification of acidic volcanic rocks based on parameter-optimized AdaBoost algorithm[J]
  publication-title: Acta Pet. Sin.
– volume: 11
  start-page: 483
  issue: 2
  year: 1999
  ident: 10.1016/j.jappgeo.2021.104443_bb0015
  article-title: Boosted mixture of experts: an ensemble learning scheme[J]
  publication-title: Neural Comput.
  doi: 10.1162/089976699300016737
– volume: 5
  start-page: 57
  issue: 4
  year: 2017
  ident: 10.1016/j.jappgeo.2021.104443_bb0040
  article-title: Fracture characteristics and their effects on hydrocarbon migration and accumulation in tight volcanic reservoirs: a case study of the Xujiaweizi fault depression, Songliao Basin, China
  publication-title: Interpretation
  doi: 10.1190/INT-2016-0227.1
– volume: 35
  start-page: 257
  issue: 3
  year: 2008
  ident: 10.1016/j.jappgeo.2021.104443_bb0210
  article-title: Formation and distribution of volcanic hydrocarbon reservoirs in sedimentary basins of China[J]
  publication-title: Pet. Explor. Dev.
  doi: 10.1016/S1876-3804(08)60071-3
– volume: 155
  start-page: 217
  year: 2018
  ident: 10.1016/j.jappgeo.2021.104443_bb0020
  article-title: Machine learning approaches for petrographic classification of carbonate-siliciclastic rocks using well logs and textural information
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2018.06.012
– volume: 37
  start-page: 607
  issue: 2
  year: 2019
  ident: 10.1016/j.jappgeo.2021.104443_bb0155
  article-title: Reservoir characteristics in the cretaceous volcanic rocks of Songliao Basin, China: a case of dynamics and evolution of the volcano-porosity and diagenesis
  publication-title: Energy Explor. Exploit.
  doi: 10.1177/0144598718812546
– volume: 34
  start-page: 42
  issue: 5
  year: 2010
  ident: 10.1016/j.jappgeo.2021.104443_bb0150
  article-title: Key factors controlling the accumulation of volcanic gas reservoirs in the deep part of southern Songliao Basin[J]
  publication-title: J. Daqing Petrol. Instit.
SSID ssj0001304
Score 2.4772696
Snippet The reservoir rocks in the volcanic strata of the Jilin oil field are characterized by great complexity and diversity in composition and structure of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104443
SubjectTerms Ensemble learning algorithm
GBDT
Lithology identification
Songliao Basin
Volcanic
Title Volcanic lithology identification based on parameter-optimized GBDT algorithm: A case study in the Jilin Oilfield, Songliao Basin, NE China
URI https://dx.doi.org/10.1016/j.jappgeo.2021.104443
Volume 194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9xADB4huJRDxaOoQEE-cCS7YWYySXpbnlsqtgce4hbNK2hWu8mKbg9w4A_wp_FMsjwkRCVuyciWItv67FHsz4TsZEYKKnUaCT_izmlsoywpRSS4xOzGqJFhN-DZQPQv-el1cj1HDmazML6tssX-BtMDWrcn3daa3Ylz3fM4pyLHgoF6GqE8UH9ynvoo7zy8tHkgRgcKKRSOvPTLFE932BnKyeQmzADSPf-3k3P2fn56lXOOl8jXtliEXvM9y2TOVitk8RWF4Cp5vKpHaB2nAevpgGR34EzbAhSsDj5RGcAHT_M99u0vUY1AMXb3eHyyf3gBcnRT36L6-Cf0QKM4BNZZcBVgfQinDmtR-ONGod1tF85rP_sra9iXf121C4MjCGu4v5HL46OLg37ULliIJGN0GmmbJ0qk2ggpNVNKY-ZK_VYqpqjShsfGllbb0pSWKbyCi1wiINAyUXiXjcuUrZH5qq7sdwKeBV5mKGCF5okuVVrupcrEVCnJMknXCZ-ZtdAt-7hfgjEqZm1mw6L1RuG9UTTeWCedZ7VJQ7_xP4Vs5rPiTRwVmCI-Vt34vOom-eLfmhnFH2R-evvPbmGxMlXbIRq3yULv1-_-4Alsvuts
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6h5ND2UJW2qNAW5tAjJmbXXtvcEl7hFQ4ExM3al9FGiR3R9ED_Qv90Z9cboBJqpd6s9Y5kzay-mZXn-4aQb7kWnAqVRdxR3BMamyhPKx7xRGB2Y1QLPxvwYsSH18npbXq7QvaXXBjXVhmwv8V0j9ZhpRe82Ztb27uKC8oLLBiokxEqnPRn16lTpR3S7Z-cDUePgIww7VWkcH_kDJ6IPL3JzkTM53eeBkh33Q_PJGEvp6hnaefoHXkb6kXot5-0SlZM_Z68eaYi-IH8ummm6CCrAEtqD2YPYHXoAvKOB5erNOCDU_qeuQ6YqEGsmNmfuHw8OBiDmN4192g-24M-KNwOXngWbA1YIsKpxXIULu3Ud7xtw1Xj6L-igYH4buttGB2Cn8T9kVwfHY73h1GYsRAJxugiUqZIJc-U5kIoJqXC5JW5wVRMUql0EmtTGWUqXRkm8RbOC4GYQKtU4nU2rjK2Rjp1U5tPBJwQvMhxg-EqSVUls2o3kzqmUgqWC7pOkqVbSxUEyN0cjGm57DSblCEapYtG2UZjnew8ms1bBY5_GeTLmJV_HKUSs8TfTTf-33SLvBqOL87L85PR2Wfy2r1pKYtfSGdx_8N8xdplITfD2fwNe-XuHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Volcanic+lithology+identification+based+on+parameter-optimized+GBDT+algorithm%3A+A+case+study+in+the+Jilin+Oilfield%2C+Songliao+Basin%2C+NE+China&rft.jtitle=Journal+of+applied+geophysics&rft.au=Yu%2C+Zhichao&rft.au=Wang%2C+Zhizhang&rft.au=Zeng%2C+Fancheng&rft.au=Song%2C+Peng&rft.date=2021-11-01&rft.pub=Elsevier+B.V&rft.issn=0926-9851&rft.eissn=1879-1859&rft.volume=194&rft_id=info:doi/10.1016%2Fj.jappgeo.2021.104443&rft.externalDocID=S0926985121001919
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9851&client=summon