Volcanic lithology identification based on parameter-optimized GBDT algorithm: A case study in the Jilin Oilfield, Songliao Basin, NE China
The reservoir rocks in the volcanic strata of the Jilin oil field are characterized by great complexity and diversity in composition and structure of lithology. To enhance the rate of lithology identification in subsurface is very laborious. However, lithology identification is often ignored in quan...
Saved in:
Published in | Journal of applied geophysics Vol. 194; p. 104443 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The reservoir rocks in the volcanic strata of the Jilin oil field are characterized by great complexity and diversity in composition and structure of lithology. To enhance the rate of lithology identification in subsurface is very laborious. However, lithology identification is often ignored in quantitative studies, though it is the basis for reservoir characterization. In this paper, an ensemble learning algorithm named gradient boosting decision tree (GBDT) was used to establish the classification model for the volcanic lithology identification of the Lower Cretaceous Yingcheng Formation in the Songliao Basin, NE China. At the same time, support vector machine (SVM), logistic regression (LR) and decision tree (DT) classification models were also adopted in contrast with the classification accuracy of GBDT model. Subsequently, the optimal key parameters for each model were determined by employing validation curves and GridSearchCv. These results indicate that the GBDT model is superior to the single classifier and can accurately distinguish the lithologic interface of breccia tuff and rhyolite. Moreover, it also has better recognition ability for thin layer. It was concluded that the ensemble learning algorithm GBDT has significantly enhanced the accuracy of lithology identification and can be used as a lithologic identification technology.
•The GBDT model is applied well in volcanic lithology identification.•Parameter optimization is conducted to optimize the classifier.•The GBDT model is superior to the single classifier.•The GBDT model and has better recognition ability for thin layer. |
---|---|
AbstractList | The reservoir rocks in the volcanic strata of the Jilin oil field are characterized by great complexity and diversity in composition and structure of lithology. To enhance the rate of lithology identification in subsurface is very laborious. However, lithology identification is often ignored in quantitative studies, though it is the basis for reservoir characterization. In this paper, an ensemble learning algorithm named gradient boosting decision tree (GBDT) was used to establish the classification model for the volcanic lithology identification of the Lower Cretaceous Yingcheng Formation in the Songliao Basin, NE China. At the same time, support vector machine (SVM), logistic regression (LR) and decision tree (DT) classification models were also adopted in contrast with the classification accuracy of GBDT model. Subsequently, the optimal key parameters for each model were determined by employing validation curves and GridSearchCv. These results indicate that the GBDT model is superior to the single classifier and can accurately distinguish the lithologic interface of breccia tuff and rhyolite. Moreover, it also has better recognition ability for thin layer. It was concluded that the ensemble learning algorithm GBDT has significantly enhanced the accuracy of lithology identification and can be used as a lithologic identification technology.
•The GBDT model is applied well in volcanic lithology identification.•Parameter optimization is conducted to optimize the classifier.•The GBDT model is superior to the single classifier.•The GBDT model and has better recognition ability for thin layer. |
ArticleNumber | 104443 |
Author | Wang, Peng Yu, Zhichao Li, Ling Zeng, Fancheng Baffour, Bestman Adjei Wang, Weifang Wang, Zhizhang Song, Peng |
Author_xml | – sequence: 1 givenname: Zhichao surname: Yu fullname: Yu, Zhichao organization: College of Geosciences, China University of Petroleum, Beijing 102249, China – sequence: 2 givenname: Zhizhang surname: Wang fullname: Wang, Zhizhang email: wang_zhizhang@126.com organization: College of Geosciences, China University of Petroleum, Beijing 102249, China – sequence: 3 givenname: Fancheng surname: Zeng fullname: Zeng, Fancheng organization: PetroChina Jilin Oil Field E&P Research Institute, Songyuan, Jilin 138000, China – sequence: 4 givenname: Peng surname: Song fullname: Song, Peng organization: PetroChina Jilin Oil Field E&P Research Institute, Songyuan, Jilin 138000, China – sequence: 5 givenname: Bestman Adjei surname: Baffour fullname: Baffour, Bestman Adjei organization: College of Geosciences, China University of Petroleum, Beijing 102249, China – sequence: 6 givenname: Peng surname: Wang fullname: Wang, Peng organization: Sinopec Petroleum Exploration and Production Research Institute, Beijing 10083, China – sequence: 7 givenname: Weifang surname: Wang fullname: Wang, Weifang organization: College of Geosciences, China University of Petroleum, Beijing 102249, China – sequence: 8 givenname: Ling surname: Li fullname: Li, Ling organization: College of Geosciences, China University of Petroleum, Beijing 102249, China |
BookMark | eNqFkE1uVDEQhC0UJCaBIyD5AHmD_fx-YYGSIQRQRBYEtpZ_2jM98thPtkEKV-DSOExWbLLqUqm_kqpOyUmIAQh5zdmaMz682a_3alm2ENcta3n1uq4Tz8iKT-Pc8KmfT8iKze3QzFPPX5DTnPeMMS5YtyJ_fkRvVEBDPZZd9HF7T9FCKOjQqIIxUK0yWFrFopI6QIHUxKXgAX9X-_rywx1VfhtTxQ9v6QU19Z3m8tPWoEDLDugX9FXdoncI3p7TbzFsPapIL1XGcE6_XtHNDoN6SZ475TO8erxn5PvHq7vNp-bm9vrz5uKmUUK0pTEw93oYjR2UMkJrM4zT2E0DE7rVxnbMggMDzjoQGnQ7zGoUrHW9bseOuVGckXfHXJNizgmcNFj-dS1JoZecyYdd5V4-7iofdpXHXSvd_0cvCQ8q3T_JvT9yUKv9QkgyG4RgwGICU6SN-ETCX4cAmmY |
CitedBy_id | crossref_primary_10_1016_j_petrol_2022_111082 crossref_primary_10_3390_rs15153764 crossref_primary_10_1007_s10999_023_09679_0 crossref_primary_10_1016_j_conbuildmat_2022_128972 crossref_primary_10_1109_ACCESS_2023_3239688 crossref_primary_10_1007_s11004_022_10039_5 crossref_primary_10_3390_electronics12102207 crossref_primary_10_1007_s12145_023_00986_w crossref_primary_10_1111_1755_6724_15144 crossref_primary_10_1016_j_petrol_2022_110517 crossref_primary_10_1016_j_aej_2024_12_038 crossref_primary_10_3390_plants11172294 crossref_primary_10_1016_j_geoen_2023_212224 crossref_primary_10_1029_2023EA003101 crossref_primary_10_1142_S0218001422590145 crossref_primary_10_1016_j_advengsoft_2024_103648 crossref_primary_10_1080_10095020_2024_2405635 crossref_primary_10_1016_j_ergon_2024_103610 crossref_primary_10_1016_j_marpetgeo_2023_106168 crossref_primary_10_1016_j_marpetgeo_2022_105730 crossref_primary_10_1016_j_oregeorev_2024_105959 crossref_primary_10_3390_pr12020285 crossref_primary_10_1007_s11053_023_10252_x crossref_primary_10_1016_j_measen_2024_101093 crossref_primary_10_1002_ese3_2073 crossref_primary_10_1007_s40948_024_00787_5 crossref_primary_10_3390_app122110918 crossref_primary_10_3390_met13010169 crossref_primary_10_1021_acsomega_2c02546 crossref_primary_10_3390_rs16111948 crossref_primary_10_2118_225443_PA crossref_primary_10_1190_geo2023_0080_1 crossref_primary_10_1016_j_marpetgeo_2024_106933 crossref_primary_10_3390_pr12102306 crossref_primary_10_3390_su15043280 crossref_primary_10_1007_s13201_025_02424_2 |
Cites_doi | 10.1155/2016/6453803 10.1007/s10994-013-5337-8 10.1016/j.jseaes.2007.10.021 10.1038/nature14539 10.1016/j.jappgeo.2018.09.011 10.1016/j.petrol.2020.107723 10.1016/j.petrol.2017.12.006 10.1016/j.neucom.2015.09.116 10.1016/j.marpetgeo.2016.05.002 10.1016/j.csda.2010.11.018 10.1016/j.marpetgeo.2008.01.008 10.1143/JPSJ.75.084007 10.1007/s12182-014-0013-6 10.1162/089976699300016737 10.1190/INT-2016-0227.1 10.1016/S1876-3804(08)60071-3 10.1016/j.jappgeo.2018.06.012 10.1177/0144598718812546 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jappgeo.2021.104443 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-1859 |
ExternalDocumentID | 10_1016_j_jappgeo_2021_104443 S0926985121001919 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSZ T5K VH1 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-a332t-ce95b67cd6aac3bbc678748603b2bcd40defecefdfe3beb269a7302f5b2740f73 |
IEDL.DBID | .~1 |
ISSN | 0926-9851 |
IngestDate | Tue Jul 01 03:15:08 EDT 2025 Thu Apr 24 22:56:50 EDT 2025 Fri Feb 23 02:43:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ensemble learning algorithm Volcanic GBDT Lithology identification Songliao Basin |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a332t-ce95b67cd6aac3bbc678748603b2bcd40defecefdfe3beb269a7302f5b2740f73 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jappgeo_2021_104443 crossref_primary_10_1016_j_jappgeo_2021_104443 elsevier_sciencedirect_doi_10_1016_j_jappgeo_2021_104443 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationTitle | Journal of applied geophysics |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Huiguang, Haitao, Wenbiao (bb0070) 2011; 11 Elghazel, Aussem (bb0025) 2015; 98 Zhang, Qin, Zhang (bb0190) 2008; 33 Krogh, Vedelsby (bb0095) 1995; 7 Sakhnovich (bb0140) 2007 Miyoshi, Uezu, Okada (bb0130) 2006; 75 Guo, Liu (bb0050) 2016; 187 Shuangfang, Hui, Weiming (bb0150) 2010; 34 Feng, Ren, Xu (bb0035) 2018; 162 Guoyin, Zhizhang, Huaji, Yanan, Wei (bb0055) 2018; 159 Xin, Hao Jue, Qing (bb0165) 2019; 36 Mao, Zhu, Luo, Wang, Du, Su, Zhang (bb0120) 2015; 12 Schutter (bb0145) 2003; 214 Jia, Ji, Wang (bb0080) 2016; 76 LeCun, Bengio, Hinton (bb0100) 2015; 521 Avnimelech, Intrator (bb0015) 1999; 11 Ye, Wei, Deng (bb0175) 2017; 32 Jin Yuan, Yong, Tao (bb0085) 2018; 48 Han, Yuan, Fan (bb0060) 2018; 39 Zishu, Wu (bb0205) 1994; 16 He, Li, Liu, Kong, Jiang, Chang (bb0065) 2020; 195 Li, Yu, Bai (bb0105) 2018; 6 Gong, Gao, Fu, Chen, Lyu, Yao (bb0040) 2017; 5 Libin, Zhilong, Ma (bb0115) 2006; 17 Wang, Jianghai, Yongmin (bb0160) 2015; 42 Ji, Shuli, Chuanning (bb0075) 2008; 4 Mitchell (bb0125) 2003 Sun, Zhong, Zhan (bb0155) 2019; 37 Zhang, Zhang, Qi (bb0200) 2017; 38 Airola, Pahikkala, Waegeman (bb0005) 2011; 55 Zhang, Zou, Jiang (bb0195) 2015; 27 Petford, Mccaffrey (bb0135) 2003 Liao, Huang, Yue (bb0110) 2016; 2016 Jing, Liande (bb0090) 2016; 23 Feng (bb0030) 2008; 25 Yang, Wang, Zhou (bb0170) 2019; 40 Alpaydin (bb0010) 2014 Zou, Zhao, Jia (bb0210) 2008; 35 Camila, Leonardo, Egberto, Leonardo Costa (bb0020) 2018; 155 Jin Yuan (10.1016/j.jappgeo.2021.104443_bb0085) 2018; 48 Airola (10.1016/j.jappgeo.2021.104443_bb0005) 2011; 55 LeCun (10.1016/j.jappgeo.2021.104443_bb0100) 2015; 521 Petford (10.1016/j.jappgeo.2021.104443_bb0135) 2003 Guoyin (10.1016/j.jappgeo.2021.104443_bb0055) 2018; 159 Wang (10.1016/j.jappgeo.2021.104443_bb0160) 2015; 42 Elghazel (10.1016/j.jappgeo.2021.104443_bb0025) 2015; 98 Liao (10.1016/j.jappgeo.2021.104443_bb0110) 2016; 2016 Zhang (10.1016/j.jappgeo.2021.104443_bb0195) 2015; 27 Feng (10.1016/j.jappgeo.2021.104443_bb0035) 2018; 162 Zou (10.1016/j.jappgeo.2021.104443_bb0210) 2008; 35 Han (10.1016/j.jappgeo.2021.104443_bb0060) 2018; 39 Zishu (10.1016/j.jappgeo.2021.104443_bb0205) 1994; 16 Zhang (10.1016/j.jappgeo.2021.104443_bb0190) 2008; 33 Libin (10.1016/j.jappgeo.2021.104443_bb0115) 2006; 17 Schutter (10.1016/j.jappgeo.2021.104443_bb0145) 2003; 214 Huiguang (10.1016/j.jappgeo.2021.104443_bb0070) 2011; 11 Feng (10.1016/j.jappgeo.2021.104443_bb0030) 2008; 25 Shuangfang (10.1016/j.jappgeo.2021.104443_bb0150) 2010; 34 Jing (10.1016/j.jappgeo.2021.104443_bb0090) 2016; 23 Mitchell (10.1016/j.jappgeo.2021.104443_bb0125) 2003 Ye (10.1016/j.jappgeo.2021.104443_bb0175) 2017; 32 Zhang (10.1016/j.jappgeo.2021.104443_bb0200) 2017; 38 Avnimelech (10.1016/j.jappgeo.2021.104443_bb0015) 1999; 11 Alpaydin (10.1016/j.jappgeo.2021.104443_bb0010) 2014 Li (10.1016/j.jappgeo.2021.104443_bb0105) 2018; 6 Mao (10.1016/j.jappgeo.2021.104443_bb0120) 2015; 12 Camila (10.1016/j.jappgeo.2021.104443_bb0020) 2018; 155 Jia (10.1016/j.jappgeo.2021.104443_bb0080) 2016; 76 Xin (10.1016/j.jappgeo.2021.104443_bb0165) 2019; 36 He (10.1016/j.jappgeo.2021.104443_bb0065) 2020; 195 Guo (10.1016/j.jappgeo.2021.104443_bb0050) 2016; 187 Ji (10.1016/j.jappgeo.2021.104443_bb0075) 2008; 4 Sun (10.1016/j.jappgeo.2021.104443_bb0155) 2019; 37 Gong (10.1016/j.jappgeo.2021.104443_bb0040) 2017; 5 Miyoshi (10.1016/j.jappgeo.2021.104443_bb0130) 2006; 75 Krogh (10.1016/j.jappgeo.2021.104443_bb0095) 1995; 7 Sakhnovich (10.1016/j.jappgeo.2021.104443_bb0140) 2007 Yang (10.1016/j.jappgeo.2021.104443_bb0170) 2019; 40 |
References_xml | – volume: 76 start-page: 262 year: 2016 end-page: 278 ident: bb0080 article-title: Tectono-sedimentary and hydrocarbon potential analysis of rift-related successions in the Dehui Depression, Songliao Basin, Northeastern China[J] publication-title: Mar. Pet. Geol. – volume: 2016 start-page: 1 year: 2016 end-page: 12 ident: bb0110 article-title: In silico prediction of gamma-aminobutyric acid type-a receptors using novel machine-learning-based SVM and GBDT Approaches[J] publication-title: Biomed. Res. Int. – volume: 32 start-page: 1842 year: 2017 end-page: 1848 ident: bb0175 article-title: Study on volcanic lithology identification methods based on the data of conventional well logging data: a case from Mesozoic volcanic rocks in Bohai bay area publication-title: Prog. Geophys. – volume: 33 start-page: 42 year: 2008 end-page: 60 ident: bb0190 article-title: Depositional fades, diagenesis and their impact on the reservoir quality of Silurian sandstones from Tazhong area in Central Tarim Basin, western China[J] publication-title: J. Asian Earth Sci. – year: 2014 ident: bb0010 article-title: Introduction to Machine Learning – volume: 214 start-page: 35 year: 2003 end-page: 68 ident: bb0145 article-title: Occurrences of hydrocarbons in and around igneous rocks[J] publication-title: Hydrocarb. Crystalline Rocks – volume: 42 start-page: 1610 year: 2015 end-page: 1620 ident: bb0160 article-title: Review and prospect of global volcanic reservoirs[J] publication-title: Geol. China – start-page: 41(15) year: 2007 ident: bb0140 article-title: Nonisospectral integrable nonlinear equations with external potentials and their GBDT solutions[J] publication-title: J. Phys. A Math. Theor. – volume: 39 start-page: 759 year: 2018 end-page: 765 ident: bb0060 article-title: Identification of igneous reservoir lithology based on empirical mode decomposition and energy entropy classification: a case study of Carboniferous igneous reservoir in Chunfeng oilfield publication-title: Oil Gas Geol. – volume: 48 start-page: 1 year: 2018 end-page: 7 ident: bb0085 article-title: Classification of Flight Delay Based-on GBDT[J] publication-title: Mathemat. Pract. Theory – volume: 195 start-page: 107723 year: 2020 ident: bb0065 article-title: Characteristics and quantitative evaluation of volcanic effective reservoirs:A case study from Junggar Basin, China publication-title: J. Pet. Sci. Eng. – volume: 11 start-page: 6578 year: 2011 end-page: 6582 ident: bb0070 article-title: Hydrocarbon source rock exploration potential of deep layer in Dehui fault depression[J] publication-title: Sci. Technol. Eng. – volume: 162 start-page: 22 year: 2018 end-page: 34 ident: bb0035 article-title: Quantitative prediction of fracture distribution using geomechanical method within Kuqa Depression, Tarim Basin, NW China publication-title: J. Petrol.Sci. Eng. – volume: 23 start-page: 52 year: 2016 end-page: 56 ident: bb0090 article-title: Main controlling factors of high-quality volcanic reservoir in southern Songliao basin[J] publication-title: Special Oil Gas Reser. – volume: 27 start-page: 108 year: 2015 end-page: 114 ident: bb0195 article-title: Logging identification method of volcanic rock lithology: a case study from volcanic rock in Junggar Basin publication-title: Lithologic Reserv – volume: 35 start-page: 257 year: 2008 end-page: 271 ident: bb0210 article-title: Formation and distribution of volcanic hydrocarbon reservoirs in sedimentary basins of China[J] publication-title: Pet. Explor. Dev. – volume: 4 start-page: 4 year: 2008 ident: bb0075 article-title: Meta-prediction of phosphorylation sites with weighted voting and restricted grid search parameter selection[J] publication-title: Nucleic Acids Res. – volume: 17 start-page: 176 year: 2006 end-page: 182 ident: bb0115 article-title: A study on geochemical character and origin of deep natural gas in Dehui fault depression of the southern Songliao basin publication-title: Nat. Gas Geosci. – year: 2003 ident: bb0135 article-title: Hydrocarbons in Crystalline Rocks [M] – volume: 16 start-page: 1 year: 1994 end-page: 26 ident: bb0205 article-title: Investigation of the research status and exploration technology at home and abroad about volcanic reservoir[J] publication-title: Natural Gas Explorat. Develop. – volume: 159 start-page: 605 year: 2018 end-page: 615 ident: bb0055 article-title: Permeability prediction of isolated channel sands using machine learning publication-title: J. Appl. Geophys. – volume: 40 start-page: 457 year: 2019 end-page: 467 ident: bb0170 article-title: Lithology classification of acidic volcanic rocks based on parameter-optimized AdaBoost algorithm[J] publication-title: Acta Pet. Sin. – volume: 37 start-page: 607 year: 2019 end-page: 625 ident: bb0155 article-title: Reservoir characteristics in the cretaceous volcanic rocks of Songliao Basin, China: a case of dynamics and evolution of the volcano-porosity and diagenesis publication-title: Energy Explor. Exploit. – volume: 36 start-page: 1 year: 2019 end-page: 10 ident: bb0165 article-title: Prediction of Temperature of Asphalt Pavement Surface Based on APRIORI-GBDT Algorithm[J] publication-title: J. Highway Transpor. Res. Develop. – volume: 55 start-page: 1828 year: 2011 end-page: 1844 ident: bb0005 article-title: An experimental comparison of cross-validation techniques for estimating the area under the ROC curve[J] publication-title: Computat. Stat. Data Analysis – volume: 11 start-page: 483 year: 1999 end-page: 498 ident: bb0015 article-title: Boosted mixture of experts: an ensemble learning scheme[J] publication-title: Neural Comput. – volume: 6 start-page: 1 year: 2018 end-page: 9 ident: bb0105 article-title: Towards effective network intrusion detection: a hybrid model index and GBDT with PSO [J] publication-title: J. Sens. – volume: 38 start-page: 427 year: 2017 end-page: 431 ident: bb0200 article-title: Lithology identification of carboniferous volcanic rock with logging data in Xiquan Area publication-title: Junggar Basin. Xinjiang Petrol. Geol – volume: 25 start-page: 416 year: 2008 end-page: 432 ident: bb0030 article-title: Volcanic rocks as prolific gas reservoir: a case study from the Qingshen gas field in the Songliao Basin, NE China[J] publication-title: Mar. Pet. Geol. – volume: 521 start-page: 436 year: 2015 ident: bb0100 article-title: Deep learning publication-title: Nature – volume: 75 start-page: 2652 year: 2006 end-page: 2674 ident: bb0130 article-title: Statistical mechanics of time domain ensemble learning[J] publication-title: J. Phys. Soc. Jpn. – year: 2003 ident: bb0125 article-title: Machine learning[M] – volume: 34 start-page: 42 year: 2010 end-page: 47 ident: bb0150 article-title: Key factors controlling the accumulation of volcanic gas reservoirs in the deep part of southern Songliao Basin[J] publication-title: J. Daqing Petrol. Instit. – volume: 7 start-page: 231 year: 1995 end-page: 238 ident: bb0095 article-title: Neural network ensembles, cross validation, and active Learning[J] publication-title: Adv. Neural Inf. Proces. Syst. – volume: 155 start-page: 217 year: 2018 end-page: 225 ident: bb0020 article-title: Machine learning approaches for petrographic classification of carbonate-siliciclastic rocks using well logs and textural information publication-title: J. Appl. Geophys. – volume: 5 start-page: 57 year: 2017 end-page: 70 ident: bb0040 article-title: Fracture characteristics and their effects on hydrocarbon migration and accumulation in tight volcanic reservoirs: a case study of the Xujiaweizi fault depression, Songliao Basin, China publication-title: Interpretation – volume: 98 start-page: 157 year: 2015 end-page: 180 ident: bb0025 article-title: Unsupervised feature selection with ensemble learning[J] publication-title: Mach. Learn. – volume: 12 start-page: 54 year: 2015 end-page: 66 ident: bb0120 article-title: Reservoir characteristics, formation mechanisms and petroleum exploration potential of volcanic rocks in China publication-title: Pet. Sci. – volume: 187 start-page: 27 year: 2016 end-page: 48 ident: bb0050 article-title: Deep learning for visual understanding: a review publication-title: Neurocomputing – volume: 2016 start-page: 1 issue: 6 year: 2016 ident: 10.1016/j.jappgeo.2021.104443_bb0110 article-title: In silico prediction of gamma-aminobutyric acid type-a receptors using novel machine-learning-based SVM and GBDT Approaches[J] publication-title: Biomed. Res. Int. doi: 10.1155/2016/6453803 – volume: 98 start-page: 157 issue: 1–2 year: 2015 ident: 10.1016/j.jappgeo.2021.104443_bb0025 article-title: Unsupervised feature selection with ensemble learning[J] publication-title: Mach. Learn. doi: 10.1007/s10994-013-5337-8 – volume: 33 start-page: 42 issue: 1–2 year: 2008 ident: 10.1016/j.jappgeo.2021.104443_bb0190 article-title: Depositional fades, diagenesis and their impact on the reservoir quality of Silurian sandstones from Tazhong area in Central Tarim Basin, western China[J] publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2007.10.021 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.jappgeo.2021.104443_bb0100 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 38 start-page: 427 issue: 04 year: 2017 ident: 10.1016/j.jappgeo.2021.104443_bb0200 article-title: Lithology identification of carboniferous volcanic rock with logging data in Xiquan Area publication-title: Junggar Basin. Xinjiang Petrol. Geol – volume: 159 start-page: 605 year: 2018 ident: 10.1016/j.jappgeo.2021.104443_bb0055 article-title: Permeability prediction of isolated channel sands using machine learning publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2018.09.011 – volume: 214 start-page: 35 issue: 1 year: 2003 ident: 10.1016/j.jappgeo.2021.104443_bb0145 article-title: Occurrences of hydrocarbons in and around igneous rocks[J] publication-title: Hydrocarb. Crystalline Rocks – volume: 27 start-page: 108 issue: 1 year: 2015 ident: 10.1016/j.jappgeo.2021.104443_bb0195 article-title: Logging identification method of volcanic rock lithology: a case study from volcanic rock in Junggar Basin publication-title: Lithologic Reserv – volume: 195 start-page: 107723 year: 2020 ident: 10.1016/j.jappgeo.2021.104443_bb0065 article-title: Characteristics and quantitative evaluation of volcanic effective reservoirs:A case study from Junggar Basin, China publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.107723 – year: 2003 ident: 10.1016/j.jappgeo.2021.104443_bb0125 – volume: 162 start-page: 22 year: 2018 ident: 10.1016/j.jappgeo.2021.104443_bb0035 article-title: Quantitative prediction of fracture distribution using geomechanical method within Kuqa Depression, Tarim Basin, NW China publication-title: J. Petrol.Sci. Eng. doi: 10.1016/j.petrol.2017.12.006 – volume: 42 start-page: 1610 issue: 5 year: 2015 ident: 10.1016/j.jappgeo.2021.104443_bb0160 article-title: Review and prospect of global volcanic reservoirs[J] publication-title: Geol. China – volume: 48 start-page: 1 issue: 4 year: 2018 ident: 10.1016/j.jappgeo.2021.104443_bb0085 article-title: Classification of Flight Delay Based-on GBDT[J] publication-title: Mathemat. Pract. Theory – volume: 4 start-page: 4 year: 2008 ident: 10.1016/j.jappgeo.2021.104443_bb0075 article-title: Meta-prediction of phosphorylation sites with weighted voting and restricted grid search parameter selection[J] publication-title: Nucleic Acids Res. – volume: 187 start-page: 27 issue: C year: 2016 ident: 10.1016/j.jappgeo.2021.104443_bb0050 article-title: Deep learning for visual understanding: a review publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.116 – volume: 76 start-page: 262 year: 2016 ident: 10.1016/j.jappgeo.2021.104443_bb0080 article-title: Tectono-sedimentary and hydrocarbon potential analysis of rift-related successions in the Dehui Depression, Songliao Basin, Northeastern China[J] publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2016.05.002 – volume: 55 start-page: 1828 issue: 4 year: 2011 ident: 10.1016/j.jappgeo.2021.104443_bb0005 article-title: An experimental comparison of cross-validation techniques for estimating the area under the ROC curve[J] publication-title: Computat. Stat. Data Analysis doi: 10.1016/j.csda.2010.11.018 – volume: 6 start-page: 1 year: 2018 ident: 10.1016/j.jappgeo.2021.104443_bb0105 article-title: Towards effective network intrusion detection: a hybrid model index and GBDT with PSO [J] publication-title: J. Sens. – volume: 16 start-page: 1 issue: 1 year: 1994 ident: 10.1016/j.jappgeo.2021.104443_bb0205 article-title: Investigation of the research status and exploration technology at home and abroad about volcanic reservoir[J] publication-title: Natural Gas Explorat. Develop. – volume: 17 start-page: 176 issue: 2 year: 2006 ident: 10.1016/j.jappgeo.2021.104443_bb0115 article-title: A study on geochemical character and origin of deep natural gas in Dehui fault depression of the southern Songliao basin publication-title: Nat. Gas Geosci. – volume: 11 start-page: 6578 issue: 27 year: 2011 ident: 10.1016/j.jappgeo.2021.104443_bb0070 article-title: Hydrocarbon source rock exploration potential of deep layer in Dehui fault depression[J] publication-title: Sci. Technol. Eng. – volume: 25 start-page: 416 issue: 2008 year: 2008 ident: 10.1016/j.jappgeo.2021.104443_bb0030 article-title: Volcanic rocks as prolific gas reservoir: a case study from the Qingshen gas field in the Songliao Basin, NE China[J] publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2008.01.008 – volume: 39 start-page: 759 issue: 4 year: 2018 ident: 10.1016/j.jappgeo.2021.104443_bb0060 article-title: Identification of igneous reservoir lithology based on empirical mode decomposition and energy entropy classification: a case study of Carboniferous igneous reservoir in Chunfeng oilfield publication-title: Oil Gas Geol. – year: 2014 ident: 10.1016/j.jappgeo.2021.104443_bb0010 – start-page: 41(15) year: 2007 ident: 10.1016/j.jappgeo.2021.104443_bb0140 article-title: Nonisospectral integrable nonlinear equations with external potentials and their GBDT solutions[J] publication-title: J. Phys. A Math. Theor. – volume: 75 start-page: 2652 issue: 8 year: 2006 ident: 10.1016/j.jappgeo.2021.104443_bb0130 article-title: Statistical mechanics of time domain ensemble learning[J] publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.75.084007 – volume: 32 start-page: 1842 issue: 4 year: 2017 ident: 10.1016/j.jappgeo.2021.104443_bb0175 article-title: Study on volcanic lithology identification methods based on the data of conventional well logging data: a case from Mesozoic volcanic rocks in Bohai bay area publication-title: Prog. Geophys. – volume: 12 start-page: 54 year: 2015 ident: 10.1016/j.jappgeo.2021.104443_bb0120 article-title: Reservoir characteristics, formation mechanisms and petroleum exploration potential of volcanic rocks in China publication-title: Pet. Sci. doi: 10.1007/s12182-014-0013-6 – volume: 36 start-page: 1 issue: 5 year: 2019 ident: 10.1016/j.jappgeo.2021.104443_bb0165 article-title: Prediction of Temperature of Asphalt Pavement Surface Based on APRIORI-GBDT Algorithm[J] publication-title: J. Highway Transpor. Res. Develop. – year: 2003 ident: 10.1016/j.jappgeo.2021.104443_bb0135 – volume: 23 start-page: 52 issue: 3 year: 2016 ident: 10.1016/j.jappgeo.2021.104443_bb0090 article-title: Main controlling factors of high-quality volcanic reservoir in southern Songliao basin[J] publication-title: Special Oil Gas Reser. – volume: 7 start-page: 231 issue: 10 year: 1995 ident: 10.1016/j.jappgeo.2021.104443_bb0095 article-title: Neural network ensembles, cross validation, and active Learning[J] publication-title: Adv. Neural Inf. Proces. Syst. – volume: 40 start-page: 457 issue: 4 year: 2019 ident: 10.1016/j.jappgeo.2021.104443_bb0170 article-title: Lithology classification of acidic volcanic rocks based on parameter-optimized AdaBoost algorithm[J] publication-title: Acta Pet. Sin. – volume: 11 start-page: 483 issue: 2 year: 1999 ident: 10.1016/j.jappgeo.2021.104443_bb0015 article-title: Boosted mixture of experts: an ensemble learning scheme[J] publication-title: Neural Comput. doi: 10.1162/089976699300016737 – volume: 5 start-page: 57 issue: 4 year: 2017 ident: 10.1016/j.jappgeo.2021.104443_bb0040 article-title: Fracture characteristics and their effects on hydrocarbon migration and accumulation in tight volcanic reservoirs: a case study of the Xujiaweizi fault depression, Songliao Basin, China publication-title: Interpretation doi: 10.1190/INT-2016-0227.1 – volume: 35 start-page: 257 issue: 3 year: 2008 ident: 10.1016/j.jappgeo.2021.104443_bb0210 article-title: Formation and distribution of volcanic hydrocarbon reservoirs in sedimentary basins of China[J] publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(08)60071-3 – volume: 155 start-page: 217 year: 2018 ident: 10.1016/j.jappgeo.2021.104443_bb0020 article-title: Machine learning approaches for petrographic classification of carbonate-siliciclastic rocks using well logs and textural information publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2018.06.012 – volume: 37 start-page: 607 issue: 2 year: 2019 ident: 10.1016/j.jappgeo.2021.104443_bb0155 article-title: Reservoir characteristics in the cretaceous volcanic rocks of Songliao Basin, China: a case of dynamics and evolution of the volcano-porosity and diagenesis publication-title: Energy Explor. Exploit. doi: 10.1177/0144598718812546 – volume: 34 start-page: 42 issue: 5 year: 2010 ident: 10.1016/j.jappgeo.2021.104443_bb0150 article-title: Key factors controlling the accumulation of volcanic gas reservoirs in the deep part of southern Songliao Basin[J] publication-title: J. Daqing Petrol. Instit. |
SSID | ssj0001304 |
Score | 2.4772696 |
Snippet | The reservoir rocks in the volcanic strata of the Jilin oil field are characterized by great complexity and diversity in composition and structure of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104443 |
SubjectTerms | Ensemble learning algorithm GBDT Lithology identification Songliao Basin Volcanic |
Title | Volcanic lithology identification based on parameter-optimized GBDT algorithm: A case study in the Jilin Oilfield, Songliao Basin, NE China |
URI | https://dx.doi.org/10.1016/j.jappgeo.2021.104443 |
Volume | 194 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9xADB4huJRDxaOoQEE-cCS7YWYySXpbnlsqtgce4hbNK2hWu8mKbg9w4A_wp_FMsjwkRCVuyciWItv67FHsz4TsZEYKKnUaCT_izmlsoywpRSS4xOzGqJFhN-DZQPQv-el1cj1HDmazML6tssX-BtMDWrcn3daa3Ylz3fM4pyLHgoF6GqE8UH9ynvoo7zy8tHkgRgcKKRSOvPTLFE932BnKyeQmzADSPf-3k3P2fn56lXOOl8jXtliEXvM9y2TOVitk8RWF4Cp5vKpHaB2nAevpgGR34EzbAhSsDj5RGcAHT_M99u0vUY1AMXb3eHyyf3gBcnRT36L6-Cf0QKM4BNZZcBVgfQinDmtR-ONGod1tF85rP_sra9iXf121C4MjCGu4v5HL46OLg37ULliIJGN0GmmbJ0qk2ggpNVNKY-ZK_VYqpqjShsfGllbb0pSWKbyCi1wiINAyUXiXjcuUrZH5qq7sdwKeBV5mKGCF5okuVVrupcrEVCnJMknXCZ-ZtdAt-7hfgjEqZm1mw6L1RuG9UTTeWCedZ7VJQ7_xP4Vs5rPiTRwVmCI-Vt34vOom-eLfmhnFH2R-evvPbmGxMlXbIRq3yULv1-_-4Alsvuts |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6h5ND2UJW2qNAW5tAjJmbXXtvcEl7hFQ4ExM3al9FGiR3R9ED_Qv90Z9cboBJqpd6s9Y5kzay-mZXn-4aQb7kWnAqVRdxR3BMamyhPKx7xRGB2Y1QLPxvwYsSH18npbXq7QvaXXBjXVhmwv8V0j9ZhpRe82Ztb27uKC8oLLBiokxEqnPRn16lTpR3S7Z-cDUePgIww7VWkcH_kDJ6IPL3JzkTM53eeBkh33Q_PJGEvp6hnaefoHXkb6kXot5-0SlZM_Z68eaYi-IH8ummm6CCrAEtqD2YPYHXoAvKOB5erNOCDU_qeuQ6YqEGsmNmfuHw8OBiDmN4192g-24M-KNwOXngWbA1YIsKpxXIULu3Ud7xtw1Xj6L-igYH4buttGB2Cn8T9kVwfHY73h1GYsRAJxugiUqZIJc-U5kIoJqXC5JW5wVRMUql0EmtTGWUqXRkm8RbOC4GYQKtU4nU2rjK2Rjp1U5tPBJwQvMhxg-EqSVUls2o3kzqmUgqWC7pOkqVbSxUEyN0cjGm57DSblCEapYtG2UZjnew8ms1bBY5_GeTLmJV_HKUSs8TfTTf-33SLvBqOL87L85PR2Wfy2r1pKYtfSGdx_8N8xdplITfD2fwNe-XuHQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Volcanic+lithology+identification+based+on+parameter-optimized+GBDT+algorithm%3A+A+case+study+in+the+Jilin+Oilfield%2C+Songliao+Basin%2C+NE+China&rft.jtitle=Journal+of+applied+geophysics&rft.au=Yu%2C+Zhichao&rft.au=Wang%2C+Zhizhang&rft.au=Zeng%2C+Fancheng&rft.au=Song%2C+Peng&rft.date=2021-11-01&rft.pub=Elsevier+B.V&rft.issn=0926-9851&rft.eissn=1879-1859&rft.volume=194&rft_id=info:doi/10.1016%2Fj.jappgeo.2021.104443&rft.externalDocID=S0926985121001919 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9851&client=summon |