Partial collapse mechanism of a horseshoe-shaped tunnel face in layered soils

Layered soils are becoming increasingly common in tunnel construction. In order to investigate the stability of horseshoe-shaped tunnel face in layered soils, a rotational partial failure mechanism is presented, considering the conditions for the occurrence of partial failure. A series of numerical...

Full description

Saved in:
Bibliographic Details
Published inComputers and geotechnics Vol. 167; p. 106114
Main Authors Wang, Saixu, Zhang, Chengping, Li, Wei, Tu, Shiqin, Wang, Libin, Jin, Zixian
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Layered soils are becoming increasingly common in tunnel construction. In order to investigate the stability of horseshoe-shaped tunnel face in layered soils, a rotational partial failure mechanism is presented, considering the conditions for the occurrence of partial failure. A series of numerical simulation models provide essential data required to predict the shape of the mechanism. The upper-bound limit analysis method and the spatial discretization technique is adopted so that collapse pressure and the estimated collapse zone can be got. Subsequently, the obtained results from the proposed mechanism with those derived from numerical models and existing approaches is contrasted, verifying the accuracy the superiority of the mechanism in analyzing the stability of horseshoe-shaped tunnel face. Finally, size effect is analyzed to provide reference for large-diameter shield engineering.
AbstractList Layered soils are becoming increasingly common in tunnel construction. In order to investigate the stability of horseshoe-shaped tunnel face in layered soils, a rotational partial failure mechanism is presented, considering the conditions for the occurrence of partial failure. A series of numerical simulation models provide essential data required to predict the shape of the mechanism. The upper-bound limit analysis method and the spatial discretization technique is adopted so that collapse pressure and the estimated collapse zone can be got. Subsequently, the obtained results from the proposed mechanism with those derived from numerical models and existing approaches is contrasted, verifying the accuracy the superiority of the mechanism in analyzing the stability of horseshoe-shaped tunnel face. Finally, size effect is analyzed to provide reference for large-diameter shield engineering.
ArticleNumber 106114
Author Wang, Saixu
Li, Wei
Jin, Zixian
Wang, Libin
Zhang, Chengping
Tu, Shiqin
Author_xml – sequence: 1
  givenname: Saixu
  surname: Wang
  fullname: Wang, Saixu
  organization: Key Laboratory of Urban Underground Engineering of the Education Ministry, Beijing Jiaotong University, Beijing 100044, China
– sequence: 2
  givenname: Chengping
  surname: Zhang
  fullname: Zhang, Chengping
  organization: Key Laboratory of Urban Underground Engineering of the Education Ministry, Beijing Jiaotong University, Beijing 100044, China
– sequence: 3
  givenname: Wei
  surname: Li
  fullname: Li, Wei
  email: weili1@bjtu.edu.cn
  organization: Key Laboratory of Urban Underground Engineering of the Education Ministry, Beijing Jiaotong University, Beijing 100044, China
– sequence: 4
  givenname: Shiqin
  surname: Tu
  fullname: Tu, Shiqin
  organization: Key Laboratory of Urban Underground Engineering of the Education Ministry, Beijing Jiaotong University, Beijing 100044, China
– sequence: 5
  givenname: Libin
  surname: Wang
  fullname: Wang, Libin
  organization: Key Laboratory of Urban Underground Engineering of the Education Ministry, Beijing Jiaotong University, Beijing 100044, China
– sequence: 6
  givenname: Zixian
  surname: Jin
  fullname: Jin, Zixian
  organization: Key Laboratory of Urban Underground Engineering of the Education Ministry, Beijing Jiaotong University, Beijing 100044, China
BookMark eNqFkMtKw0AYhQepYFt9BGFeIHVuSRpciBRvUNFFF-6GvzN_zJRkJsxEoW9vSrty09WBA9-B883IxAePhNxytuCMF3e7hQld_41hIZhQY1dwri7IlC9LmZWFlBMyZaIoMpmLrysyS2nHRq5aVlPy_glxcNBSE9oW-oS0Q9OAd6mjoaZAmxATpiZglhro0dLhx3tsaQ0GqfO0hT3GsU7BtemaXNbQJrw55Zxsnp82q9ds_fHytnpcZyClGLKy2ubbnC2twtwwbmUhtxy5lBUqYBUoZYTKrZWKWwNlYaxAbmpR2AogN3JO7o-zJoaUItbauAEGF_wQwbWaM30Qo3f6JEYfxOijmJHO_9F9dB3E_Vnu4cjh-OzXYdTJOPQGrYtoBm2DO7PwBzKWg6Q
CitedBy_id crossref_primary_10_1016_j_compgeo_2024_106456
crossref_primary_10_1016_j_tust_2025_106515
crossref_primary_10_1002_nag_3793
crossref_primary_10_1016_j_aej_2024_09_079
crossref_primary_10_1016_j_aej_2024_10_046
crossref_primary_10_1016_j_compgeo_2024_106769
crossref_primary_10_1016_j_engfailanal_2024_108821
Cites_doi 10.1016/j.compgeo.2023.105592
10.1016/j.tust.2015.08.007
10.1016/j.compgeo.2019.103136
10.1016/j.tust.2020.103785
10.1016/j.jrmge.2021.10.006
10.1016/j.tust.2014.03.001
10.1016/j.tust.2020.103291
10.1016/j.tust.2015.04.001
10.1016/j.undsp.2023.03.007
10.1016/j.compgeo.2023.106009
10.1002/nag.962
10.1016/j.compgeo.2023.105764
10.1016/j.compgeo.2017.03.013
10.1016/0886-7798(96)00017-X
10.1016/j.tust.2012.01.005
10.1016/j.compgeo.2018.11.025
10.1080/02533839.2018.1534615
10.1080/02533839.2004.9670957
10.1002/gete.201200014
10.1016/j.tust.2018.11.002
10.1007/s11440-013-0256-1
10.1016/j.tust.2018.09.007
10.1016/j.tust.2014.12.014
10.1680/geot.1990.40.4.581
10.1016/j.tust.2019.05.019
10.1002/gete.201100024
10.1061/(ASCE)GM.1943-5622.0001199
10.1061/(ASCE)0733-9410(1994)120:7(1148)
10.1016/S1631-0721(02)01491-2
10.1002/nag.2121
10.1016/j.tust.2016.11.010
10.1016/j.tust.2022.104773
10.1002/nag.2528
10.1016/j.tust.2014.10.007
10.1016/j.tust.2008.10.007
10.1061/(ASCE)GM.1943-5622.0001208
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compgeo.2024.106114
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7633
ExternalDocumentID 10_1016_j_compgeo_2024_106114
S0266352X24000508
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSV
SSZ
T5K
TN5
WH7
WUQ
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-a332t-79b5b508d4e5c01d363b1e1339e4a09a44c245dd341dca76cd2e1cf26d9aa5c3
IEDL.DBID .~1
ISSN 0266-352X
IngestDate Tue Jul 01 01:23:48 EDT 2025
Thu Apr 24 22:58:49 EDT 2025
Sat Apr 13 16:38:33 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Partial collapse
Tunnel face stability
Limit analysis
Layered soils
3D failure mechanism
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a332t-79b5b508d4e5c01d363b1e1339e4a09a44c245dd341dca76cd2e1cf26d9aa5c3
ParticipantIDs crossref_citationtrail_10_1016_j_compgeo_2024_106114
crossref_primary_10_1016_j_compgeo_2024_106114
elsevier_sciencedirect_doi_10_1016_j_compgeo_2024_106114
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Computers and geotechnics
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pan, Dias (b0140) 2016; 40
Anagnostou, Perazzelli (b0020) 2015; 47
Takano, Otani, Nagatani, Mukunoki (b0165) 2006
Zou, Chen, Qian (b0215) 2019; 106
Li, Zhang, Zhang (b0105) 2018; 41
Hu, Zhang, Kieffer (b0060) 2012; 6
Zhang, Li, Zhu, Tan (b0210) 2020; 97
Li, Zhang (b0115) 2020
Berthoz, Branque, Subrin, Wong, Humbert (b0025) 2012; 30
Zou, Qian (b0220) 2018; 18
Chambon, Corté (b0035) 1994; 120
Zou, Qian, Xiang, Chen (b0225) 2019; 83
Perazzelli, Leone, Anagnostou (b0150) 2014; 43
Hou, Yang, Liu, Chen, Wu, Long (b0055) 2023; 163
Ibrahim, Soubra, Mollon, Raphael, Dias, Reda (b0065) 2015; 49
Tu, Li, Zhang, Wang, Jin, Wang (b0185) 2024; 166
Pan, Dias (b0145) 2017; 62
Anagnostou, Kovári (b0010) 1996; 11
Ding, Liu, Shi, Li, Hou (b0045) 2019; 107
Tu, Li, Zhang, Chen (b0175) 2023; 131
Vermeer, Ruse, Marcher (b0200) 2002; 20
Ukritchon, Keawsawasvong (b0190) 2019; 84
Broere, W., 1998. Face stability calculation for a slurry shield in heterogeneous soft soils. In: Proceedings of the World Tunnel Congress 98 on Tunnels and Metropolises, Balkema, Rotterdam, pp.215-218.
Li, Zhang, Zhang, Ye, Tan (b0120) 2022; 14
Mollon, Dias, Soubra (b0135) 2013; 37
Li, Gong, Yang (b0100) 2021; 109
Anagnostou, Perazzelli (b0015) 2013; 36
Jin, Zhang, Li, Tu, Wang, Wang (b0075) 2023; 165
Li, Emeriault, Kastner, Zhang (b0095) 2009; 24
Anagnostou (b0005) 2012; 35
Horn, N., 1961. Horizontal earth pressure on the vertical surfaces of the tunnel tubes. In: National Conference of the Hungarian Civil Engineering Industry, Budapest, pp.7-16(in German).
Ukritchon, Yingchaloenkitkhajorn, Keawsawasvong (b0195) 2017; 88
Zhang, Han, Zhang (b0205) 2015; 50
Leca, Dormieux (b0080) 1990; 40
Ding, Li, Liu, Zhu, Li, Shi (b0040) 2018; 18
Jia, Fan, Feng (b0070) 2018; 39
Tu, Li, Zhang, Wang, Wang, Zhao, Wu (b0180) 2023; 161
Subrin, Wong (b0160) 2002; 330
Lee, Chiang, Kuo (b0085) 2004; 27
Li, Zhang, Zhu, Zhang (b0110) 2019; 114
Senent, Jimenez (b0155) 2015; 47
Tang, Liu, Albers, Savidis (b0170) 2014; 9
Li, Zhang, Tu, Chen, Ma (b0125) 2023; 13
Mollon, Dias, Soubra (b0130) 2010; 35
Li, Chen, Wang, Li (b0090) 2019; 91
Hou (10.1016/j.compgeo.2024.106114_b0055) 2023; 163
Ukritchon (10.1016/j.compgeo.2024.106114_b0190) 2019; 84
Li (10.1016/j.compgeo.2024.106114_b0120) 2022; 14
Vermeer (10.1016/j.compgeo.2024.106114_b0200) 2002; 20
Zou (10.1016/j.compgeo.2024.106114_b0215) 2019; 106
Jia (10.1016/j.compgeo.2024.106114_b0070) 2018; 39
Leca (10.1016/j.compgeo.2024.106114_b0080) 1990; 40
Mollon (10.1016/j.compgeo.2024.106114_b0130) 2010; 35
Ibrahim (10.1016/j.compgeo.2024.106114_b0065) 2015; 49
Anagnostou (10.1016/j.compgeo.2024.106114_b0010) 1996; 11
Tu (10.1016/j.compgeo.2024.106114_b0180) 2023; 161
Zhang (10.1016/j.compgeo.2024.106114_b0210) 2020; 97
Ding (10.1016/j.compgeo.2024.106114_b0045) 2019; 107
Lee (10.1016/j.compgeo.2024.106114_b0085) 2004; 27
Anagnostou (10.1016/j.compgeo.2024.106114_b0005) 2012; 35
Tu (10.1016/j.compgeo.2024.106114_b0175) 2023; 131
Hu (10.1016/j.compgeo.2024.106114_b0060) 2012; 6
Zhang (10.1016/j.compgeo.2024.106114_b0205) 2015; 50
Senent (10.1016/j.compgeo.2024.106114_b0155) 2015; 47
10.1016/j.compgeo.2024.106114_b0030
Tu (10.1016/j.compgeo.2024.106114_b0185) 2024; 166
10.1016/j.compgeo.2024.106114_b0050
Mollon (10.1016/j.compgeo.2024.106114_b0135) 2013; 37
Zou (10.1016/j.compgeo.2024.106114_b0225) 2019; 83
Takano (10.1016/j.compgeo.2024.106114_b0165) 2006
Anagnostou (10.1016/j.compgeo.2024.106114_b0020) 2015; 47
Perazzelli (10.1016/j.compgeo.2024.106114_b0150) 2014; 43
Berthoz (10.1016/j.compgeo.2024.106114_b0025) 2012; 30
Li (10.1016/j.compgeo.2024.106114_b0090) 2019; 91
Ukritchon (10.1016/j.compgeo.2024.106114_b0195) 2017; 88
Jin (10.1016/j.compgeo.2024.106114_b0075) 2023; 165
Li (10.1016/j.compgeo.2024.106114_b0100) 2021; 109
Tang (10.1016/j.compgeo.2024.106114_b0170) 2014; 9
Li (10.1016/j.compgeo.2024.106114_b0105) 2018; 41
Chambon (10.1016/j.compgeo.2024.106114_b0035) 1994; 120
Li (10.1016/j.compgeo.2024.106114_b0115) 2020
Pan (10.1016/j.compgeo.2024.106114_b0145) 2017; 62
Li (10.1016/j.compgeo.2024.106114_b0095) 2009; 24
Zou (10.1016/j.compgeo.2024.106114_b0220) 2018; 18
Ding (10.1016/j.compgeo.2024.106114_b0040) 2018; 18
Li (10.1016/j.compgeo.2024.106114_b0110) 2019; 114
Li (10.1016/j.compgeo.2024.106114_b0125) 2023; 13
Subrin (10.1016/j.compgeo.2024.106114_b0160) 2002; 330
Pan (10.1016/j.compgeo.2024.106114_b0140) 2016; 40
Anagnostou (10.1016/j.compgeo.2024.106114_b0015) 2013; 36
References_xml – reference: Broere, W., 1998. Face stability calculation for a slurry shield in heterogeneous soft soils. In: Proceedings of the World Tunnel Congress 98 on Tunnels and Metropolises, Balkema, Rotterdam, pp.215-218.
– volume: 11
  start-page: 165
  year: 1996
  end-page: 173
  ident: b0010
  article-title: Face stability conditions with earth-pressure-balanced shields
  publication-title: Tunn. Undergr. Space Technol.
– volume: 14
  start-page: 505
  year: 2022
  end-page: 526
  ident: b0120
  article-title: Face stability of shield tunnels considering a kinematically admissible velocity field of soil arching
  publication-title: J. Rock Mech. Geotech. Eng.
– volume: 120
  start-page: 1148
  year: 1994
  end-page: 1165
  ident: b0035
  article-title: Shallow Tunnels in Cohesionless Soil: Stability of Tunnel Face
  publication-title: J. Geotech. Engrg.
– volume: 107
  start-page: 110
  year: 2019
  end-page: 127
  ident: b0045
  article-title: Face stability analysis of shallow circular tunnels driven by a pressurized shield in purely cohesive soils under undrained conditions
  publication-title: Comput. Geotech.
– volume: 109
  year: 2021
  ident: b0100
  article-title: Stability analysis of a non-circular tunnel face in soils characterized by modified Mohr-Coulomb yield criterion
  publication-title: Tunn. Undergr. Space Technol.
– volume: 20
  start-page: 8
  year: 2002
  end-page: 18
  ident: b0200
  article-title: Tunnel heading stability in drained ground
  publication-title: Felsbau.
– volume: 18
  start-page: 04018100
  year: 2018
  ident: b0040
  article-title: Using a Pressurized Shield to Increase Face Stability of Circular Tunnels in Purely Cohesive Soil
  publication-title: Int. J. Geomech.
– volume: 50
  start-page: 345
  year: 2015
  end-page: 357
  ident: b0205
  article-title: Face stability analysis of shallow circular tunnels in cohesive-frictional soils
  publication-title: Tunn. Undergr. Space Technol.
– volume: 62
  start-page: 96
  year: 2017
  end-page: 102
  ident: b0145
  article-title: Upper-bound analysis on the face stability of a non-circular tunnel
  publication-title: Tunn. Undergr. Space Technol.
– volume: 131
  year: 2023
  ident: b0175
  article-title: Effect of inclined layered soils on face stability in shield tunneling based on limit analysis
  publication-title: Tunn. Undergr. Space Technol
– volume: 13
  start-page: 183
  year: 2023
  end-page: 204
  ident: b0125
  article-title: Face stability analysis of a shield tunnel excavated along inclined strata
  publication-title: Underground Space
– volume: 39
  start-page: 61
  year: 2018
  end-page: 70
  ident: b0070
  article-title: Key technologies and engineering applications for the development of horseshoe shield tunneling machines
  publication-title: China Railway Science
– volume: 40
  start-page: 581
  year: 1990
  end-page: 606
  ident: b0080
  article-title: Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material
  publication-title: Geotechnique
– volume: 83
  start-page: 1
  year: 2019
  end-page: 17
  ident: b0225
  article-title: Face stability of a tunnel excavated in saturated nonhomogeneous soils
  publication-title: Tunn. Undergr. Space Technol.
– volume: 165
  year: 2023
  ident: b0075
  article-title: Stability analysis for excavation in frictional soils based on upper bound method
  publication-title: Comput. Geotech.
– volume: 37
  start-page: 2061
  year: 2013
  end-page: 2083
  ident: b0135
  article-title: Continuous velocity fields for collapse and blowout of a pressurized tunnel face in purely cohesive soil
  publication-title: Int. J. Numer. Anal. Methods Geomech.
– volume: 163
  year: 2023
  ident: b0055
  article-title: Stability assessment of a non-circular tunnel face with tensile strength cut-off subject to seepage flows: A comparison analysis
  publication-title: Comput. Geotech.
– volume: 43
  start-page: 459
  year: 2014
  end-page: 469
  ident: b0150
  article-title: Tunnel face stability under seepage flow conditions
  publication-title: Tunn. Undergr. Space Technol.
– volume: 47
  start-page: 162
  year: 2015
  end-page: 181
  ident: b0020
  article-title: Analysis method and design charts for bolt reinforcement of the tunnel face in cohesive-frictional soil
  publication-title: Tunn. Undergr. Space Technol.
– volume: 9
  start-page: 661
  year: 2014
  end-page: 671
  ident: b0170
  article-title: Upper bound analysis of tunnel face stability in layered soils
  publication-title: Acta Geotech.
– volume: 88
  start-page: 146
  year: 2017
  end-page: 151
  ident: b0195
  article-title: Three-dimensional undrained tunnel face stability in clay with a linearly increasing shear strength with depth
  publication-title: Comput. Geotech.
– volume: 49
  start-page: 18
  year: 2015
  end-page: 34
  ident: b0065
  article-title: Three-dimensional face stability analysis of pressurized tunnels driven in a multilayered purely frictional medium
  publication-title: Tunn. Undergr. Space Technol.
– volume: 6
  start-page: 176
  year: 2012
  end-page: 187
  ident: b0060
  article-title: A real-life stability model for a large shield-driven tunnel in heterogeneous soft soils
  publication-title: Front. Struct. Civil Eng.
– year: 2020
  ident: b0115
  article-title: Face Stability Analysis for a Shield Tunnel in Anisotropic Sands
  publication-title: Int. J. Geomech.
– volume: 166
  year: 2024
  ident: b0185
  article-title: Seepage effect on progressive failure of shield tunnel face in granular soils by coupled continuum-discrete method
  publication-title: Comput. Geotech.
– volume: 161
  year: 2023
  ident: b0180
  article-title: Face stability analysis of tunnels in saturated soil considering soil-fluid coupling effect via material point method
  publication-title: Comput. Geotech.
– volume: 106
  year: 2019
  ident: b0215
  article-title: Tunnel face stability in cohesion-frictional soils considering the soil arching effect by improved failure models
  publication-title: Comput. Geotech.
– volume: 114
  year: 2019
  ident: b0110
  article-title: Upper-bound solutions for the face stability of a non-circular NATM tunnel in clays with a linearly increasing undrained shear strength with depth
  publication-title: Comput. Geotech.
– volume: 91
  year: 2019
  ident: b0090
  article-title: An upper-bound analytical model of blow-out for a shallow tunnel in sand considering the partial failure within the face
  publication-title: Tunn. Undergr. Space Technol.
– volume: 47
  start-page: 182
  year: 2015
  end-page: 192
  ident: b0155
  article-title: A tunnel face failure mechanism for layered ground, considering the possibility of partial collapse
  publication-title: Tunn. Undergr. Space Technol.
– volume: 36
  start-page: 40
  year: 2013
  end-page: 50
  ident: b0015
  article-title: The stability of a tunnel face with a free span and a non-uniform support
  publication-title: geotechnik
– volume: 24
  start-page: 472
  year: 2009
  end-page: 481
  ident: b0095
  article-title: Stability analysis of large slurry shield-driven tunnel in soft clay
  publication-title: Tunn. Undergr. Space Technol.
– start-page: 1
  year: 2006
  end-page: 6
  ident: b0165
  article-title: Application of X-Ray CT on boundary value problems in geotechnical engineering: Research on tunnel face failure
  publication-title: Proc., GeoCongress
– volume: 18
  start-page: 04018089
  year: 2018
  ident: b0220
  article-title: Face-stability analysis of tunnel excavated below groundwater considering coupled flow deformation
  publication-title: Int. J. Geomech.
– volume: 41
  start-page: 697
  year: 2018
  end-page: 709
  ident: b0105
  article-title: Stability analysis of the tunnel face in the cohesive- frictional soils considering the arch effect and rotational mechanism
  publication-title: J. Chin. Inst. Eng.
– volume: 330
  start-page: 513
  year: 2002
  end-page: 519
  ident: b0160
  article-title: Tunnel face stability in frictional material: a new 3D failure mechanism
  publication-title: C. R Mecanique.
– volume: 30
  start-page: 25
  year: 2012
  end-page: 37
  ident: b0025
  article-title: Face failure in homogeneous and stratified soft ground: Theoretical and experimental approaches on 1g EPBS reduced scale model
  publication-title: Tunn. Undergr. Space Technol.
– volume: 40
  start-page: 2123
  year: 2016
  end-page: 2136
  ident: b0140
  article-title: The effect of pore water pressure on tunnel face stability
  publication-title: Int. J. Numer. Anal. Methods Geomech.
– volume: 27
  start-page: 1021
  year: 2004
  end-page: 1032
  ident: b0085
  article-title: Ground movement and tunnel stability when tunneling in sandy ground
  publication-title: Journal of the Chinese Institute of Engineers
– reference: Horn, N., 1961. Horizontal earth pressure on the vertical surfaces of the tunnel tubes. In: National Conference of the Hungarian Civil Engineering Industry, Budapest, pp.7-16(in German).
– volume: 84
  start-page: 99
  year: 2019
  end-page: 112
  ident: b0190
  article-title: Lower bound stability analysis of plane strain headings in Hoek-Brown rock masses
  publication-title: Tunn. Undergr. Space Technol.
– volume: 35
  start-page: 34
  year: 2012
  end-page: 44
  ident: b0005
  article-title: The contribution of horizontal arching to tunnel face stability
  publication-title: Geotechnik
– volume: 35
  start-page: 1363
  year: 2010
  end-page: 1388
  ident: b0130
  article-title: Rotational failure mechanisms for the face stability analysis of tunnels driven by a pressurized shield
  publication-title: Int. J. Numer. Anal. Methods Geomech.
– volume: 97
  year: 2020
  ident: b0210
  article-title: Face stability analysis of a shallow horseshoe-shaped shield tunnel in clay with a linearly increasing shear strength with depth
  publication-title: Tunn. Undergr. Space Technol.
– volume: 161
  year: 2023
  ident: 10.1016/j.compgeo.2024.106114_b0180
  article-title: Face stability analysis of tunnels in saturated soil considering soil-fluid coupling effect via material point method
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2023.105592
– volume: 50
  start-page: 345
  year: 2015
  ident: 10.1016/j.compgeo.2024.106114_b0205
  article-title: Face stability analysis of shallow circular tunnels in cohesive-frictional soils
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2015.08.007
– volume: 165
  year: 2023
  ident: 10.1016/j.compgeo.2024.106114_b0075
  article-title: Stability analysis for excavation in frictional soils based on upper bound method
  publication-title: Comput. Geotech.
– volume: 114
  year: 2019
  ident: 10.1016/j.compgeo.2024.106114_b0110
  article-title: Upper-bound solutions for the face stability of a non-circular NATM tunnel in clays with a linearly increasing undrained shear strength with depth
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2019.103136
– volume: 109
  year: 2021
  ident: 10.1016/j.compgeo.2024.106114_b0100
  article-title: Stability analysis of a non-circular tunnel face in soils characterized by modified Mohr-Coulomb yield criterion
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2020.103785
– volume: 14
  start-page: 505
  year: 2022
  ident: 10.1016/j.compgeo.2024.106114_b0120
  article-title: Face stability of shield tunnels considering a kinematically admissible velocity field of soil arching
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2021.10.006
– volume: 43
  start-page: 459
  year: 2014
  ident: 10.1016/j.compgeo.2024.106114_b0150
  article-title: Tunnel face stability under seepage flow conditions
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2014.03.001
– volume: 97
  year: 2020
  ident: 10.1016/j.compgeo.2024.106114_b0210
  article-title: Face stability analysis of a shallow horseshoe-shaped shield tunnel in clay with a linearly increasing shear strength with depth
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2020.103291
– volume: 106
  issue: 1–17
  year: 2019
  ident: 10.1016/j.compgeo.2024.106114_b0215
  article-title: Tunnel face stability in cohesion-frictional soils considering the soil arching effect by improved failure models
  publication-title: Comput. Geotech.
– ident: 10.1016/j.compgeo.2024.106114_b0030
– volume: 49
  start-page: 18
  year: 2015
  ident: 10.1016/j.compgeo.2024.106114_b0065
  article-title: Three-dimensional face stability analysis of pressurized tunnels driven in a multilayered purely frictional medium
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2015.04.001
– volume: 39
  start-page: 61
  issue: 6
  year: 2018
  ident: 10.1016/j.compgeo.2024.106114_b0070
  article-title: Key technologies and engineering applications for the development of horseshoe shield tunneling machines
  publication-title: China Railway Science
– volume: 13
  start-page: 183
  year: 2023
  ident: 10.1016/j.compgeo.2024.106114_b0125
  article-title: Face stability analysis of a shield tunnel excavated along inclined strata
  publication-title: Underground Space
  doi: 10.1016/j.undsp.2023.03.007
– volume: 166
  year: 2024
  ident: 10.1016/j.compgeo.2024.106114_b0185
  article-title: Seepage effect on progressive failure of shield tunnel face in granular soils by coupled continuum-discrete method
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2023.106009
– volume: 35
  start-page: 1363
  year: 2010
  ident: 10.1016/j.compgeo.2024.106114_b0130
  article-title: Rotational failure mechanisms for the face stability analysis of tunnels driven by a pressurized shield
  publication-title: Int. J. Numer. Anal. Methods Geomech.
  doi: 10.1002/nag.962
– volume: 163
  year: 2023
  ident: 10.1016/j.compgeo.2024.106114_b0055
  article-title: Stability assessment of a non-circular tunnel face with tensile strength cut-off subject to seepage flows: A comparison analysis
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2023.105764
– volume: 88
  start-page: 146
  year: 2017
  ident: 10.1016/j.compgeo.2024.106114_b0195
  article-title: Three-dimensional undrained tunnel face stability in clay with a linearly increasing shear strength with depth
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2017.03.013
– start-page: 1
  year: 2006
  ident: 10.1016/j.compgeo.2024.106114_b0165
  article-title: Application of X-Ray CT on boundary value problems in geotechnical engineering: Research on tunnel face failure
– volume: 11
  start-page: 165
  year: 1996
  ident: 10.1016/j.compgeo.2024.106114_b0010
  article-title: Face stability conditions with earth-pressure-balanced shields
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/0886-7798(96)00017-X
– volume: 30
  start-page: 25
  year: 2012
  ident: 10.1016/j.compgeo.2024.106114_b0025
  article-title: Face failure in homogeneous and stratified soft ground: Theoretical and experimental approaches on 1g EPBS reduced scale model
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2012.01.005
– volume: 107
  start-page: 110
  year: 2019
  ident: 10.1016/j.compgeo.2024.106114_b0045
  article-title: Face stability analysis of shallow circular tunnels driven by a pressurized shield in purely cohesive soils under undrained conditions
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2018.11.025
– volume: 41
  start-page: 697
  issue: 8
  year: 2018
  ident: 10.1016/j.compgeo.2024.106114_b0105
  article-title: Stability analysis of the tunnel face in the cohesive- frictional soils considering the arch effect and rotational mechanism
  publication-title: J. Chin. Inst. Eng.
  doi: 10.1080/02533839.2018.1534615
– volume: 27
  start-page: 1021
  year: 2004
  ident: 10.1016/j.compgeo.2024.106114_b0085
  article-title: Ground movement and tunnel stability when tunneling in sandy ground
  publication-title: Journal of the Chinese Institute of Engineers
  doi: 10.1080/02533839.2004.9670957
– volume: 36
  start-page: 40
  year: 2013
  ident: 10.1016/j.compgeo.2024.106114_b0015
  article-title: The stability of a tunnel face with a free span and a non-uniform support
  publication-title: geotechnik
  doi: 10.1002/gete.201200014
– volume: 84
  start-page: 99
  year: 2019
  ident: 10.1016/j.compgeo.2024.106114_b0190
  article-title: Lower bound stability analysis of plane strain headings in Hoek-Brown rock masses
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2018.11.002
– ident: 10.1016/j.compgeo.2024.106114_b0050
– volume: 20
  start-page: 8
  issue: 6
  year: 2002
  ident: 10.1016/j.compgeo.2024.106114_b0200
  article-title: Tunnel heading stability in drained ground
  publication-title: Felsbau.
– volume: 9
  start-page: 661
  year: 2014
  ident: 10.1016/j.compgeo.2024.106114_b0170
  article-title: Upper bound analysis of tunnel face stability in layered soils
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-013-0256-1
– volume: 83
  start-page: 1
  year: 2019
  ident: 10.1016/j.compgeo.2024.106114_b0225
  article-title: Face stability of a tunnel excavated in saturated nonhomogeneous soils
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2018.09.007
– volume: 47
  start-page: 182
  year: 2015
  ident: 10.1016/j.compgeo.2024.106114_b0155
  article-title: A tunnel face failure mechanism for layered ground, considering the possibility of partial collapse
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2014.12.014
– volume: 40
  start-page: 581
  year: 1990
  ident: 10.1016/j.compgeo.2024.106114_b0080
  article-title: Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material
  publication-title: Geotechnique
  doi: 10.1680/geot.1990.40.4.581
– volume: 91
  year: 2019
  ident: 10.1016/j.compgeo.2024.106114_b0090
  article-title: An upper-bound analytical model of blow-out for a shallow tunnel in sand considering the partial failure within the face
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2019.05.019
– volume: 35
  start-page: 34
  issue: 1
  year: 2012
  ident: 10.1016/j.compgeo.2024.106114_b0005
  article-title: The contribution of horizontal arching to tunnel face stability
  publication-title: Geotechnik
  doi: 10.1002/gete.201100024
– year: 2020
  ident: 10.1016/j.compgeo.2024.106114_b0115
  article-title: Face Stability Analysis for a Shield Tunnel in Anisotropic Sands
  publication-title: Int. J. Geomech.
– volume: 18
  start-page: 04018089
  issue: 8
  year: 2018
  ident: 10.1016/j.compgeo.2024.106114_b0220
  article-title: Face-stability analysis of tunnel excavated below groundwater considering coupled flow deformation
  publication-title: Int. J. Geomech.
  doi: 10.1061/(ASCE)GM.1943-5622.0001199
– volume: 120
  start-page: 1148
  year: 1994
  ident: 10.1016/j.compgeo.2024.106114_b0035
  article-title: Shallow Tunnels in Cohesionless Soil: Stability of Tunnel Face
  publication-title: J. Geotech. Engrg.
  doi: 10.1061/(ASCE)0733-9410(1994)120:7(1148)
– volume: 330
  start-page: 513
  year: 2002
  ident: 10.1016/j.compgeo.2024.106114_b0160
  article-title: Tunnel face stability in frictional material: a new 3D failure mechanism
  publication-title: C. R Mecanique.
  doi: 10.1016/S1631-0721(02)01491-2
– volume: 6
  start-page: 176
  year: 2012
  ident: 10.1016/j.compgeo.2024.106114_b0060
  article-title: A real-life stability model for a large shield-driven tunnel in heterogeneous soft soils
  publication-title: Front. Struct. Civil Eng.
– volume: 37
  start-page: 2061
  year: 2013
  ident: 10.1016/j.compgeo.2024.106114_b0135
  article-title: Continuous velocity fields for collapse and blowout of a pressurized tunnel face in purely cohesive soil
  publication-title: Int. J. Numer. Anal. Methods Geomech.
  doi: 10.1002/nag.2121
– volume: 62
  start-page: 96
  year: 2017
  ident: 10.1016/j.compgeo.2024.106114_b0145
  article-title: Upper-bound analysis on the face stability of a non-circular tunnel
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2016.11.010
– volume: 131
  year: 2023
  ident: 10.1016/j.compgeo.2024.106114_b0175
  article-title: Effect of inclined layered soils on face stability in shield tunneling based on limit analysis
  publication-title: Tunn. Undergr. Space Technol
  doi: 10.1016/j.tust.2022.104773
– volume: 40
  start-page: 2123
  year: 2016
  ident: 10.1016/j.compgeo.2024.106114_b0140
  article-title: The effect of pore water pressure on tunnel face stability
  publication-title: Int. J. Numer. Anal. Methods Geomech.
  doi: 10.1002/nag.2528
– volume: 47
  start-page: 162
  year: 2015
  ident: 10.1016/j.compgeo.2024.106114_b0020
  article-title: Analysis method and design charts for bolt reinforcement of the tunnel face in cohesive-frictional soil
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2014.10.007
– volume: 24
  start-page: 472
  issue: 4
  year: 2009
  ident: 10.1016/j.compgeo.2024.106114_b0095
  article-title: Stability analysis of large slurry shield-driven tunnel in soft clay
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2008.10.007
– volume: 18
  start-page: 04018100
  year: 2018
  ident: 10.1016/j.compgeo.2024.106114_b0040
  article-title: Using a Pressurized Shield to Increase Face Stability of Circular Tunnels in Purely Cohesive Soil
  publication-title: Int. J. Geomech.
  doi: 10.1061/(ASCE)GM.1943-5622.0001208
SSID ssj0016989
Score 2.4320288
Snippet Layered soils are becoming increasingly common in tunnel construction. In order to investigate the stability of horseshoe-shaped tunnel face in layered soils,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106114
SubjectTerms 3D failure mechanism
Layered soils
Limit analysis
Partial collapse
Tunnel face stability
Title Partial collapse mechanism of a horseshoe-shaped tunnel face in layered soils
URI https://dx.doi.org/10.1016/j.compgeo.2024.106114
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14TZN9Jc1RRKmKIliht7CPqY3UJJj24MXf7m4eWkEUPGaZCZsvw8zO8s0MQqcxBExJqqzxRuBxYog3VEJ4QAVThmkD1azD27tw9MivJ2LSQedtLYyjVTa-v_bplbduVvwGTb9IU__BZg82WtKJY0EGoir45TxyVj54_6R5EDcgsb5nCT0n_VXF4z-7dxdPVQ0g5QOXHBH-c3xaiTmXW2izOSzis3o_26gD2Q7aWGkhuItu791urVD1Q4sS8Au4Yt60fMH5FEs8yx1LY5aDV85kAQYvlo7agqdSA04zPJdvblwnLvN0Xu6h8eXF-HzkNSMSPMkYXXhRrISy3244CB0Qw0KmCNi8MwYug1hyrikXxthYZbSMQm0oED2loYmlFJrto26WZ3CAMCVhoLkJrcCQAzeKRkRb5xMyM6UgZA_xFpdEN-3D3RSLedLyxJ6TBs7EwZnUcPbQ4FOtqPtn_KUwbEFPvhlCYn3876qH_1c9QuvuqSaXHaPu4nUJJ_a0sVD9ypz6aO3s6mZ09wHNiNUe
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5ED-pBfOLbPXhNk32lzVGKpT4qghV6C_uY2pQ2CSYevPjb3U1SHyAKXpOZsJlMZnaWb-ZD6DyCgClJlXXeNnicGOJ1lBAeUMGUYdpAxXU4uAv7j_x6JEZLqLvohXGwyib21zG9itbNFb-xpp8nif9gqwebLenIoSAD4Rp-V7j9fR2NQevtA-dBHENifdASek78s43Hn7qH509VEyDlLVcdEf5zgvqSdHqbaKPZLeKLekFbaAnSbbT-ZYbgDhrcu-VaoeqL5gXgObhu3qSY42yMJZ5kDqYxycArJjIHg8sXh23BY6kBJymeyVfH14mLLJkVu2jYuxx2-17DkeBJxmjptSMllH15w0HogBgWMkXAFp4RcBlEknNNuTDGJiujZTvUhgLRYxqaSEqh2R5aTrMU9hGmJAw0N6EV6HDgRtE20Tb6hMyMKQh5gPjCLrFu5oc7GotZvACKTePGnLEzZ1yb8wC1PtTyeoDGXwqdhdHjb54Q2yD_u-rh_1XP0Gp_OLiNb6_ubo7QmrtTI82O0XL5_AIndutRqtPKtd4B0yjWrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partial+collapse+mechanism+of+a+horseshoe-shaped+tunnel+face+in+layered+soils&rft.jtitle=Computers+and+geotechnics&rft.au=Wang%2C+Saixu&rft.au=Zhang%2C+Chengping&rft.au=Li%2C+Wei&rft.au=Tu%2C+Shiqin&rft.date=2024-03-01&rft.pub=Elsevier+Ltd&rft.issn=0266-352X&rft.eissn=1873-7633&rft.volume=167&rft_id=info:doi/10.1016%2Fj.compgeo.2024.106114&rft.externalDocID=S0266352X24000508
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-352X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-352X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-352X&client=summon