Constraining the ensemble Kalman filter for improved streamflow forecasting
•Unconstrained, mass constrained and mass + flux constrained EnKF runs are compared.•Mass constraints alone add little, but mass + flux constraints improve forecasts.•Such flux constraints are rarely applied. We argue they should be standard.•Further consideration of observation and model error spec...
Saved in:
Published in | Journal of hydrology (Amsterdam) Vol. 560; pp. 127 - 140 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Unconstrained, mass constrained and mass + flux constrained EnKF runs are compared.•Mass constraints alone add little, but mass + flux constraints improve forecasts.•Such flux constraints are rarely applied. We argue they should be standard.•Further consideration of observation and model error specifications is needed.
Data assimilation techniques such as the Ensemble Kalman Filter (EnKF) are often applied to hydrological models with minimal state volume/capacity constraints enforced during ensemble generation. Flux constraints are rarely, if ever, applied. Consequently, model states can be adjusted beyond physically reasonable limits, compromising the integrity of model output. In this paper, we investigate the effect of constraining the EnKF on forecast performance. A “free run” in which no assimilation is applied is compared to a completely unconstrained EnKF implementation, a ‘typical’ hydrological implementation (in which mass constraints are enforced to ensure non-negativity and capacity thresholds of model states are not exceeded), and then to a more tightly constrained implementation where flux as well as mass constraints are imposed to force the rate of water movement to/from ensemble states to be within physically consistent boundaries. A three year period (2008–2010) was selected from the available data record (1976–2010). This was specifically chosen as it had no significant data gaps and represented well the range of flows observed in the longer dataset. Over this period, the standard implementation of the EnKF (no constraints) contained eight hydrological events where (multiple) physically inconsistent state adjustments were made. All were selected for analysis. Mass constraints alone did little to improve forecast performance; in fact, several were significantly degraded compared to the free run. In contrast, the combined use of mass and flux constraints significantly improved forecast performance in six events relative to all other implementations, while the remaining two events showed no significant difference in performance. Placing flux as well as mass constraints on the data assimilation framework encourages physically consistent state estimation and results in more accurate and reliable forward predictions of streamflow for robust decision-making. We also experiment with the observation error, which has a profound effect on filter performance. We note an interesting tension exists between specifying an error which reflects known uncertainties and errors in the measurement versus an error that allows “optimal” filter updating. |
---|---|
AbstractList | •Unconstrained, mass constrained and mass + flux constrained EnKF runs are compared.•Mass constraints alone add little, but mass + flux constraints improve forecasts.•Such flux constraints are rarely applied. We argue they should be standard.•Further consideration of observation and model error specifications is needed.
Data assimilation techniques such as the Ensemble Kalman Filter (EnKF) are often applied to hydrological models with minimal state volume/capacity constraints enforced during ensemble generation. Flux constraints are rarely, if ever, applied. Consequently, model states can be adjusted beyond physically reasonable limits, compromising the integrity of model output. In this paper, we investigate the effect of constraining the EnKF on forecast performance. A “free run” in which no assimilation is applied is compared to a completely unconstrained EnKF implementation, a ‘typical’ hydrological implementation (in which mass constraints are enforced to ensure non-negativity and capacity thresholds of model states are not exceeded), and then to a more tightly constrained implementation where flux as well as mass constraints are imposed to force the rate of water movement to/from ensemble states to be within physically consistent boundaries. A three year period (2008–2010) was selected from the available data record (1976–2010). This was specifically chosen as it had no significant data gaps and represented well the range of flows observed in the longer dataset. Over this period, the standard implementation of the EnKF (no constraints) contained eight hydrological events where (multiple) physically inconsistent state adjustments were made. All were selected for analysis. Mass constraints alone did little to improve forecast performance; in fact, several were significantly degraded compared to the free run. In contrast, the combined use of mass and flux constraints significantly improved forecast performance in six events relative to all other implementations, while the remaining two events showed no significant difference in performance. Placing flux as well as mass constraints on the data assimilation framework encourages physically consistent state estimation and results in more accurate and reliable forward predictions of streamflow for robust decision-making. We also experiment with the observation error, which has a profound effect on filter performance. We note an interesting tension exists between specifying an error which reflects known uncertainties and errors in the measurement versus an error that allows “optimal” filter updating. |
Author | Maxwell, Deborah H. Jackson, Bethanna M. McGregor, James |
Author_xml | – sequence: 1 givenname: Deborah H. surname: Maxwell fullname: Maxwell, Deborah H. email: Deborah.maxwell@vuw.ac.nz – sequence: 2 givenname: Bethanna M. surname: Jackson fullname: Jackson, Bethanna M. email: Bethanna.jackson@vuw.ac.nz – sequence: 3 givenname: James orcidid: 0000-0001-8088-5950 surname: McGregor fullname: McGregor, James email: Jim.mcgregor@vuw.ac.nz |
BookMark | eNqFkMtqwzAQRUVJoUnaTyj4B-yOJD-kVSmhLxLopl0L2Ro1CrYUJJOSv6_TZN_ZDAycy52zIDMfPBJyT6GgQOuHXbHbHk0MfcGAigJ4AbS6InMqGpmzBpoZmQMwltNaljdkkdIOpuG8nJP1Kvg0Ru2889_ZuMUMfcKh7TFb637QPrOuHzFmNsTMDfsYDmiyiUA92D78nO7Y6TRO-C25trpPeHfZS_L18vy5ess3H6_vq6dNrjlnY14Dk2Lq04qW1RVyq6mU2Jay45KKGkTTUM5E1TLLjBSyEnXZGgbGcGsFrfiSVOfcLoaUIlq1j27Q8agoqJMRtVMXI-pkRAFX8Mc9njmcyh0cRpU6h75D46YfRmWC-yfhF6nebsQ |
CitedBy_id | crossref_primary_10_1016_j_jhydrol_2022_127651 crossref_primary_10_1029_2020WR027794 crossref_primary_10_1016_j_jclepro_2020_122576 crossref_primary_10_1016_j_jhydrol_2019_124511 crossref_primary_10_1016_j_jlp_2018_08_012 crossref_primary_10_1016_j_advwatres_2024_104676 crossref_primary_10_15446_ing_investig_90023 crossref_primary_10_3390_w11081615 crossref_primary_10_3390_rs12071107 crossref_primary_10_1029_2020WR028390 crossref_primary_10_1029_2020WR028392 crossref_primary_10_1016_j_rse_2024_114266 crossref_primary_10_1016_j_jhydrol_2021_126537 crossref_primary_10_1061__ASCE_HE_1943_5584_0002027 |
Cites_doi | 10.1109/7.993234 10.1016/j.advwatres.2011.08.012 10.1016/j.jhydrol.2015.09.036 10.1016/j.jhydrol.2011.01.026 10.1016/j.advwatres.2008.06.005 10.1016/j.jhydrol.2009.08.003 10.1175/MWR-D-13-00056.1 10.1029/WR006i005p01296 10.1002/2014WR016667 10.5194/hessd-9-3415-2012 10.1175/JHM499.1 10.5194/hess-16-105-2012 10.1016/j.advwatres.2004.09.002 10.1016/j.jhydrol.2014.03.048 10.1016/j.jhydrol.2014.08.038 10.5194/hess-18-3923-2014 10.1016/j.jhydrol.2014.07.049 10.1029/2008WR007401 10.1016/j.jhydrol.2009.07.051 10.1175/JHM495.1 10.1016/j.ocemod.2006.11.001 10.1016/j.advwatres.2008.01.001 10.1016/j.jhydrol.2007.06.025 10.1007/s10236-003-0036-9 10.1016/j.jhydrol.2009.01.019 10.1049/ip-cta:20050074 10.5194/hessd-9-3087-2012 10.1002/2013WR014070 10.1029/2011WR011011 10.5194/hess-17-21-2013 10.1016/j.advwatres.2010.03.012 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jhydrol.2018.03.015 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1879-2707 |
EndPage | 140 |
ExternalDocumentID | 10_1016_j_jhydrol_2018_03_015 S0022169418301781 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AAHBH AAXKI AAYXX ADVLN AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-a332t-60298002b8b265e3fa199eb49c39186087713285b2f2d9895864bd20dd3ff8153 |
IEDL.DBID | .~1 |
ISSN | 0022-1694 |
IngestDate | Thu Sep 26 15:53:30 EDT 2024 Fri Feb 23 02:27:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hydrology Constrained Ensemble Kalman Filter Observation error Data assimilation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a332t-60298002b8b265e3fa199eb49c39186087713285b2f2d9895864bd20dd3ff8153 |
ORCID | 0000-0001-8088-5950 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1016_j_jhydrol_2018_03_015 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2018_03_015 |
PublicationCentury | 2000 |
PublicationDate | May 2018 2018-05-00 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: May 2018 |
PublicationDecade | 2010 |
PublicationTitle | Journal of hydrology (Amsterdam) |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Abaza, Anctil, Fortin, Turcotte (b0005) 2014; 519 Evensen (b0035) 2003; 53 Reichle (b0110) 2008; 31 Weerts, El Serafy (b0170) 2006 Clark, Rupp, Woods, Zheng, Ibbitt, Slater, Schmidt, Uddstrom (b0010) 2008; 31 Wang, Chen, Cai (b0165) 2009; 45 DeChant, Moradkhani (b0025) 2012; 48 Simon, Tien Li (b0140) 2002; 38 Seo, Cajina, Corby, Howieson (b0125) 2009; 367 Simon, Simon (b0135) 2006; 153 McMillan, Jackson, Clark, Kavetski, Woods (b0075) 2011; 400 Rakovec, Hazenberg, Torfs, Weerts, Uijlenhoet (b0105) 2012; 9 Gupta, Kling, Yilmaz, Martinez (b9000) 2009; 377 Janjic, McLaughlin, Cohn, Verlaan (b0045) 2014; 142 Crow, Van Loon (b0020) 2006; 7 Dunne, Black (b0030) 1970; 6 Li, Ryu, Western, Wang (b0060) 2015; 51 Moradkhani, Sorooshian, Gupta, Houser (b0090) 2005; 28 McMillan, Hreinsson, Clark, Singh, Zammit, Uddstrom (b0080) 2013; 17 Liu, Weerts, Clark, Hendricks Franssen, Kumar, Moradkhani, Seo, Schwanenberg, Smith, van Dijk, van Velzen, He, Lee, Rakovec, Restrepo (b0065) 2012; 9 Xie, Zhang (b0180) 2010; 33 Vrugt, Diks, Gupta, Bouten, Verstraten (b0160) 2005 Xie, Meng, Liang, Yao (b0175) 2014; 18 Pan, Wood (b0100) 2006; 7 Salamon, Feyen (b0115) 2009; 376 Steenhuis, Winchell, Rossing, Zollweg, Walter (b0145) 1995 Thiboult, Anctil (b0155) 2015; 529 Shi, Davis, Zhang, Duffy, Yu (b0130) 2014; 50 Li, Toll, Zhan, Cosgrove (b0055) 2012; 16 Lee, Seo, Koren (b0050) 2011; 34 Maxwell (b0070) 2013 Collischonn, Tucci, Clarke, Chou, Guilhon, Cataldi, Allasia (b0015) 2007; 344 Thacker (b0150) 2007; 16 Noh, Rakovec, Weerts, Tachikawa (b0095) 2014; 519 Samuel, Coulibaly, Dumedah, Moradkhani (b0120) 2014; 513 Molloy (b0085) 1998 Hewlett, Hibbert (b0040) 1967 Li (10.1016/j.jhydrol.2018.03.015_b0060) 2015; 51 Molloy (10.1016/j.jhydrol.2018.03.015_b0085) 1998 Steenhuis (10.1016/j.jhydrol.2018.03.015_b0145) 1995 McMillan (10.1016/j.jhydrol.2018.03.015_b0080) 2013; 17 Samuel (10.1016/j.jhydrol.2018.03.015_b0120) 2014; 513 Abaza (10.1016/j.jhydrol.2018.03.015_b0005) 2014; 519 Thiboult (10.1016/j.jhydrol.2018.03.015_b0155) 2015; 529 Moradkhani (10.1016/j.jhydrol.2018.03.015_b0090) 2005; 28 Seo (10.1016/j.jhydrol.2018.03.015_b0125) 2009; 367 Simon (10.1016/j.jhydrol.2018.03.015_b0140) 2002; 38 Thacker (10.1016/j.jhydrol.2018.03.015_b0150) 2007; 16 Hewlett (10.1016/j.jhydrol.2018.03.015_b0040) 1967 Dunne (10.1016/j.jhydrol.2018.03.015_b0030) 1970; 6 Maxwell (10.1016/j.jhydrol.2018.03.015_b0070) 2013 Collischonn (10.1016/j.jhydrol.2018.03.015_b0015) 2007; 344 Clark (10.1016/j.jhydrol.2018.03.015_b0010) 2008; 31 McMillan (10.1016/j.jhydrol.2018.03.015_b0075) 2011; 400 Gupta (10.1016/j.jhydrol.2018.03.015_b9000) 2009; 377 Lee (10.1016/j.jhydrol.2018.03.015_b0050) 2011; 34 Simon (10.1016/j.jhydrol.2018.03.015_b0135) 2006; 153 Xie (10.1016/j.jhydrol.2018.03.015_b0180) 2010; 33 Noh (10.1016/j.jhydrol.2018.03.015_b0095) 2014; 519 Vrugt (10.1016/j.jhydrol.2018.03.015_b0160) 2005 Xie (10.1016/j.jhydrol.2018.03.015_b0175) 2014; 18 Rakovec (10.1016/j.jhydrol.2018.03.015_b0105) 2012; 9 Shi (10.1016/j.jhydrol.2018.03.015_b0130) 2014; 50 Crow (10.1016/j.jhydrol.2018.03.015_b0020) 2006; 7 DeChant (10.1016/j.jhydrol.2018.03.015_b0025) 2012; 48 Liu (10.1016/j.jhydrol.2018.03.015_b0065) 2012; 9 Pan (10.1016/j.jhydrol.2018.03.015_b0100) 2006; 7 Salamon (10.1016/j.jhydrol.2018.03.015_b0115) 2009; 376 Reichle (10.1016/j.jhydrol.2018.03.015_b0110) 2008; 31 Evensen (10.1016/j.jhydrol.2018.03.015_b0035) 2003; 53 Wang (10.1016/j.jhydrol.2018.03.015_b0165) 2009; 45 Weerts (10.1016/j.jhydrol.2018.03.015_b0170) 2006 Janjic (10.1016/j.jhydrol.2018.03.015_b0045) 2014; 142 Li (10.1016/j.jhydrol.2018.03.015_b0055) 2012; 16 |
References_xml | – volume: 9 start-page: 3415 year: 2012 end-page: 3472 ident: b0065 article-title: Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities publication-title: Hydrol. Earth Syst. Sci. Discussion contributor: fullname: Restrepo – year: 2013 ident: b0070 article-title: A rainfall-runoff model for the highly regulated Lake Taupo catchment, using a constrained Ensemble Kalman Filter to improve the accuracy and reliability of model output contributor: fullname: Maxwell – volume: 45 start-page: W11416 year: 2009 ident: b0165 article-title: State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter publication-title: Water Resour. Res. contributor: fullname: Cai – volume: 344 start-page: 112 year: 2007 end-page: 122 ident: b0015 article-title: Medium-range reservoir inflow predictions based on quantitative precipitation forecasts publication-title: J. Hydrol. contributor: fullname: Allasia – volume: 6 start-page: 1296 year: 1970 end-page: 1311 ident: b0030 article-title: Partial area contribution to storm runoff in a small New England watershed publication-title: Water Resour. Res. contributor: fullname: Black – volume: 7 start-page: 534 year: 2006 end-page: 547 ident: b0100 article-title: Data assimilation for estimating the terrestrial water budget using a constrained ensemble Kalman Filter publication-title: J. Hydrometeorol. contributor: fullname: Wood – volume: 34 start-page: 1597 year: 2011 end-page: 1615 ident: b0050 article-title: Assimilation of streamflow and in situ soil moisture data into operational distributed hydrologic models: effects of uncertainties in the data and initial model soil moisture states publication-title: Adv. Water Resour. contributor: fullname: Koren – volume: 28 start-page: 135 year: 2005 end-page: 147 ident: b0090 article-title: Dual state-parameter estimation of hydrological models using ensemble Kalman filter publication-title: Adv. Water Resour. contributor: fullname: Houser – volume: 31 start-page: 1411 year: 2008 end-page: 1418 ident: b0110 article-title: Data assimilation methods in the Earth sciences publication-title: Adv.Water Resour. contributor: fullname: Reichle – volume: 31 start-page: 1309 year: 2008 end-page: 1324 ident: b0010 article-title: Hydrological data assimilation with the Ensemble Kalman filter: use of streamflow observations to update states in a distributed hydrological model publication-title: Adv. Water Resour. contributor: fullname: Uddstrom – volume: 513 start-page: 127 year: 2014 end-page: 141 ident: b0120 article-title: Assessing model state and forecasts variation in hydrologic data assimilation publication-title: J. Hydrol. contributor: fullname: Moradkhani – volume: 400 start-page: 83 year: 2011 end-page: 94 ident: b0075 article-title: Rainfall uncertainty in hydrological modelling: an evaluation of multiplicative error models publication-title: J. Hydrol. contributor: fullname: Woods – start-page: 42 year: 2006 ident: b0170 article-title: Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models publication-title: Water Resour. Res. contributor: fullname: El Serafy – volume: 9 start-page: 3087 year: 2012 end-page: 3127 ident: b0105 article-title: Generating spatial precipitation ensembles: impact of temporal correlation structures publication-title: Hydrol. Earth Syst. Sci. Discuss. contributor: fullname: Uijlenhoet – volume: 153 start-page: 371 year: 2006 end-page: 378 ident: b0135 article-title: Kalman filtering with inequality constraints for turbofan engine health estimation publication-title: IEE Proceed. Contr. Theor. Appl. contributor: fullname: Simon – volume: 53 start-page: 343 year: 2003 end-page: 367 ident: b0035 article-title: The Ensemble Kalman Filter: theoretical formulation and practical implementation publication-title: Ocean Dynam. contributor: fullname: Evensen – volume: 529 start-page: 1147 year: 2015 end-page: 1160 ident: b0155 article-title: On the difficulty to optimally implement the Ensemble Kalman filter: an experiment based on many hydrological models and catchments publication-title: J. Hydrol. contributor: fullname: Anctil – volume: 18 start-page: 3923 year: 2014 end-page: 3936 ident: b0175 article-title: Improving streamflow predictions at ungauged locations with real-time updating: application of an EnKF-based state-parameter estimation strategy publication-title: Hydrol. Earth Syst. Sci. contributor: fullname: Yao – volume: 38 start-page: 128 year: 2002 end-page: 136 ident: b0140 article-title: Kalman filtering with state equality constraints publication-title: IEEE Trans. Aerosp. Electron. Syst. contributor: fullname: Tien Li – volume: 519 start-page: 2692 year: 2014 end-page: 2706 ident: b0005 article-title: Sequential streamflow assimilation for short-term hydrological ensemble forecasting publication-title: J. Hydrol. contributor: fullname: Turcotte – volume: 48 start-page: W04518 year: 2012 ident: b0025 article-title: Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting publication-title: Water Resour. Res. contributor: fullname: Moradkhani – volume: 33 start-page: 678 year: 2010 end-page: 690 ident: b0180 article-title: Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter publication-title: Adv. Water Resour. contributor: fullname: Zhang – start-page: 272 year: 1967 end-page: 290 ident: b0040 article-title: Factors affecting the response of small watersheds to precipitation in humid areas publication-title: Forest Hydrology contributor: fullname: Hibbert – volume: 16 start-page: 105 year: 2012 end-page: 119 ident: b0055 article-title: Improving estimated soil moisture fields through assimilation of AMSR-E soil moisture retrievals with an ensemble Kalman filter and a mass conservation constraint publication-title: Hydrol. Earth Syst. Sci. contributor: fullname: Cosgrove – start-page: 41 year: 2005 ident: b0160 article-title: Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation publication-title: Water Resour. Res. contributor: fullname: Verstraten – volume: 519 start-page: 2707 year: 2014 end-page: 2721 ident: b0095 article-title: On noise specification in data assimilation schemes for improved flood forecasting using distributed hydrological models publication-title: J. Hydrol. contributor: fullname: Tachikawa – volume: 377 start-page: 80 year: 2009 end-page: 91 ident: b9000 article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling publication-title: Journal of Hydrology contributor: fullname: Martinez – volume: 376 start-page: 428 year: 2009 end-page: 442 ident: b0115 article-title: Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using sequential data assimilation with the particle filter publication-title: J. Hydrol. contributor: fullname: Feyen – volume: 50 start-page: 706 year: 2014 end-page: 724 ident: b0130 article-title: Parameter estimation of a physically based land surface hydrologic model using the ensemble Kalman filter: A synthetic experiment publication-title: Water Resour. Res. contributor: fullname: Yu – volume: 367 start-page: 255 year: 2009 end-page: 275 ident: b0125 article-title: Automatic state updating for operational streamflow forecasting via variational data assimilation publication-title: J. Hydrol. contributor: fullname: Howieson – volume: 16 start-page: 264 year: 2007 end-page: 276 ident: b0150 article-title: Data assimilation with inequality constraints publication-title: Ocean Model. contributor: fullname: Thacker – volume: 7 start-page: 421 year: 2006 end-page: 432 ident: b0020 article-title: Impact of incorrect model error assumptions on the sequential assimilation of remotely sensed surface soil moisture publication-title: J. Hydrometeorol. contributor: fullname: Van Loon – volume: 142 start-page: 755 year: 2014 end-page: 773 ident: b0045 article-title: Conservation of mass and preservation of positivity with ensemble-type Kalman filter algorithms publication-title: Month Weather Rev. contributor: fullname: Verlaan – year: 1995 ident: b0145 article-title: SCS runoff equation revisited for variable-source runoff areas Journal of Irrigation & Drainage Engineering contributor: fullname: Walter – year: 1998 ident: b0085 article-title: Soils in the New Zealand landscape publication-title: a living mantle contributor: fullname: Molloy – volume: 51 start-page: 3238 year: 2015 end-page: 3258 ident: b0060 article-title: Assimilation of stream discharge for flood forecasting: Updating a semidistributed model with an integrated data assimilation scheme publication-title: Water Resour. Res. contributor: fullname: Wang – volume: 17 start-page: 21 year: 2013 end-page: 38 ident: b0080 article-title: Operational hydrological data assimilation with the recursive ensemble Kalman filter publication-title: Hydrol. Earth Syst. Sci. contributor: fullname: Uddstrom – volume: 38 start-page: 128 issue: 1 year: 2002 ident: 10.1016/j.jhydrol.2018.03.015_b0140 article-title: Kalman filtering with state equality constraints publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/7.993234 contributor: fullname: Simon – volume: 34 start-page: 1597 issue: 12 year: 2011 ident: 10.1016/j.jhydrol.2018.03.015_b0050 article-title: Assimilation of streamflow and in situ soil moisture data into operational distributed hydrologic models: effects of uncertainties in the data and initial model soil moisture states publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2011.08.012 contributor: fullname: Lee – volume: 529 start-page: 1147 issue: Part 3 year: 2015 ident: 10.1016/j.jhydrol.2018.03.015_b0155 article-title: On the difficulty to optimally implement the Ensemble Kalman filter: an experiment based on many hydrological models and catchments publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.09.036 contributor: fullname: Thiboult – start-page: 42 year: 2006 ident: 10.1016/j.jhydrol.2018.03.015_b0170 article-title: Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models publication-title: Water Resour. Res. contributor: fullname: Weerts – volume: 400 start-page: 83 issue: 1 year: 2011 ident: 10.1016/j.jhydrol.2018.03.015_b0075 article-title: Rainfall uncertainty in hydrological modelling: an evaluation of multiplicative error models publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.01.026 contributor: fullname: McMillan – year: 1998 ident: 10.1016/j.jhydrol.2018.03.015_b0085 article-title: Soils in the New Zealand landscape contributor: fullname: Molloy – volume: 31 start-page: 1309 issue: 10 year: 2008 ident: 10.1016/j.jhydrol.2018.03.015_b0010 article-title: Hydrological data assimilation with the Ensemble Kalman filter: use of streamflow observations to update states in a distributed hydrological model publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2008.06.005 contributor: fullname: Clark – start-page: 41 year: 2005 ident: 10.1016/j.jhydrol.2018.03.015_b0160 article-title: Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation publication-title: Water Resour. Res. contributor: fullname: Vrugt – volume: 377 start-page: 80 year: 2009 ident: 10.1016/j.jhydrol.2018.03.015_b9000 article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2009.08.003 contributor: fullname: Gupta – volume: 142 start-page: 755 issue: 2 year: 2014 ident: 10.1016/j.jhydrol.2018.03.015_b0045 article-title: Conservation of mass and preservation of positivity with ensemble-type Kalman filter algorithms publication-title: Month Weather Rev. doi: 10.1175/MWR-D-13-00056.1 contributor: fullname: Janjic – year: 2013 ident: 10.1016/j.jhydrol.2018.03.015_b0070 contributor: fullname: Maxwell – start-page: 272 year: 1967 ident: 10.1016/j.jhydrol.2018.03.015_b0040 article-title: Factors affecting the response of small watersheds to precipitation in humid areas contributor: fullname: Hewlett – volume: 6 start-page: 1296 issue: 5 year: 1970 ident: 10.1016/j.jhydrol.2018.03.015_b0030 article-title: Partial area contribution to storm runoff in a small New England watershed publication-title: Water Resour. Res. doi: 10.1029/WR006i005p01296 contributor: fullname: Dunne – volume: 51 start-page: 3238 issue: 5 year: 2015 ident: 10.1016/j.jhydrol.2018.03.015_b0060 article-title: Assimilation of stream discharge for flood forecasting: Updating a semidistributed model with an integrated data assimilation scheme publication-title: Water Resour. Res. doi: 10.1002/2014WR016667 contributor: fullname: Li – volume: 9 start-page: 3415 year: 2012 ident: 10.1016/j.jhydrol.2018.03.015_b0065 article-title: Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities publication-title: Hydrol. Earth Syst. Sci. Discussion doi: 10.5194/hessd-9-3415-2012 contributor: fullname: Liu – volume: 7 start-page: 421 year: 2006 ident: 10.1016/j.jhydrol.2018.03.015_b0020 article-title: Impact of incorrect model error assumptions on the sequential assimilation of remotely sensed surface soil moisture publication-title: J. Hydrometeorol. doi: 10.1175/JHM499.1 contributor: fullname: Crow – volume: 16 start-page: 105 year: 2012 ident: 10.1016/j.jhydrol.2018.03.015_b0055 article-title: Improving estimated soil moisture fields through assimilation of AMSR-E soil moisture retrievals with an ensemble Kalman filter and a mass conservation constraint publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-16-105-2012 contributor: fullname: Li – volume: 28 start-page: 135 issue: 2 year: 2005 ident: 10.1016/j.jhydrol.2018.03.015_b0090 article-title: Dual state-parameter estimation of hydrological models using ensemble Kalman filter publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2004.09.002 contributor: fullname: Moradkhani – volume: 513 start-page: 127 year: 2014 ident: 10.1016/j.jhydrol.2018.03.015_b0120 article-title: Assessing model state and forecasts variation in hydrologic data assimilation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.03.048 contributor: fullname: Samuel – volume: 519 start-page: 2692 issue: Part D year: 2014 ident: 10.1016/j.jhydrol.2018.03.015_b0005 article-title: Sequential streamflow assimilation for short-term hydrological ensemble forecasting publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.08.038 contributor: fullname: Abaza – volume: 18 start-page: 3923 year: 2014 ident: 10.1016/j.jhydrol.2018.03.015_b0175 article-title: Improving streamflow predictions at ungauged locations with real-time updating: application of an EnKF-based state-parameter estimation strategy publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-18-3923-2014 contributor: fullname: Xie – volume: 519 start-page: 2707 year: 2014 ident: 10.1016/j.jhydrol.2018.03.015_b0095 article-title: On noise specification in data assimilation schemes for improved flood forecasting using distributed hydrological models publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.07.049 contributor: fullname: Noh – volume: 45 start-page: W11416 issue: 11 year: 2009 ident: 10.1016/j.jhydrol.2018.03.015_b0165 article-title: State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter publication-title: Water Resour. Res. doi: 10.1029/2008WR007401 contributor: fullname: Wang – volume: 376 start-page: 428 issue: 3–4 year: 2009 ident: 10.1016/j.jhydrol.2018.03.015_b0115 article-title: Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using sequential data assimilation with the particle filter publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.07.051 contributor: fullname: Salamon – volume: 7 start-page: 534 issue: 3 year: 2006 ident: 10.1016/j.jhydrol.2018.03.015_b0100 article-title: Data assimilation for estimating the terrestrial water budget using a constrained ensemble Kalman Filter publication-title: J. Hydrometeorol. doi: 10.1175/JHM495.1 contributor: fullname: Pan – volume: 16 start-page: 264 issue: 3–4 year: 2007 ident: 10.1016/j.jhydrol.2018.03.015_b0150 article-title: Data assimilation with inequality constraints publication-title: Ocean Model. doi: 10.1016/j.ocemod.2006.11.001 contributor: fullname: Thacker – year: 1995 ident: 10.1016/j.jhydrol.2018.03.015_b0145 contributor: fullname: Steenhuis – volume: 31 start-page: 1411 issue: 11 year: 2008 ident: 10.1016/j.jhydrol.2018.03.015_b0110 article-title: Data assimilation methods in the Earth sciences publication-title: Adv.Water Resour. doi: 10.1016/j.advwatres.2008.01.001 contributor: fullname: Reichle – volume: 344 start-page: 112 year: 2007 ident: 10.1016/j.jhydrol.2018.03.015_b0015 article-title: Medium-range reservoir inflow predictions based on quantitative precipitation forecasts publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2007.06.025 contributor: fullname: Collischonn – volume: 53 start-page: 343 year: 2003 ident: 10.1016/j.jhydrol.2018.03.015_b0035 article-title: The Ensemble Kalman Filter: theoretical formulation and practical implementation publication-title: Ocean Dynam. doi: 10.1007/s10236-003-0036-9 contributor: fullname: Evensen – volume: 367 start-page: 255 issue: 3–4 year: 2009 ident: 10.1016/j.jhydrol.2018.03.015_b0125 article-title: Automatic state updating for operational streamflow forecasting via variational data assimilation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.01.019 contributor: fullname: Seo – volume: 153 start-page: 371 issue: 3 year: 2006 ident: 10.1016/j.jhydrol.2018.03.015_b0135 article-title: Kalman filtering with inequality constraints for turbofan engine health estimation publication-title: IEE Proceed. Contr. Theor. Appl. doi: 10.1049/ip-cta:20050074 contributor: fullname: Simon – volume: 9 start-page: 3087 issue: 3 year: 2012 ident: 10.1016/j.jhydrol.2018.03.015_b0105 article-title: Generating spatial precipitation ensembles: impact of temporal correlation structures publication-title: Hydrol. Earth Syst. Sci. Discuss. doi: 10.5194/hessd-9-3087-2012 contributor: fullname: Rakovec – volume: 50 start-page: 706 issue: 1 year: 2014 ident: 10.1016/j.jhydrol.2018.03.015_b0130 article-title: Parameter estimation of a physically based land surface hydrologic model using the ensemble Kalman filter: A synthetic experiment publication-title: Water Resour. Res. doi: 10.1002/2013WR014070 contributor: fullname: Shi – volume: 48 start-page: W04518 issue: 4 year: 2012 ident: 10.1016/j.jhydrol.2018.03.015_b0025 article-title: Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting publication-title: Water Resour. Res. doi: 10.1029/2011WR011011 contributor: fullname: DeChant – volume: 17 start-page: 21 year: 2013 ident: 10.1016/j.jhydrol.2018.03.015_b0080 article-title: Operational hydrological data assimilation with the recursive ensemble Kalman filter publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-17-21-2013 contributor: fullname: McMillan – volume: 33 start-page: 678 issue: 6 year: 2010 ident: 10.1016/j.jhydrol.2018.03.015_b0180 article-title: Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2010.03.012 contributor: fullname: Xie |
SSID | ssj0000334 |
Score | 2.3857248 |
Snippet | •Unconstrained, mass constrained and mass + flux constrained EnKF runs are compared.•Mass constraints alone add little, but mass + flux constraints improve... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 127 |
SubjectTerms | Constrained Ensemble Kalman Filter Data assimilation Hydrology Observation error |
Title | Constraining the ensemble Kalman filter for improved streamflow forecasting |
URI | https://dx.doi.org/10.1016/j.jhydrol.2018.03.015 |
Volume | 560 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na8IwGA7iDttl7JO5D8lh12qbpFlyFJm4yTxN8FaSJsGKVnGO4WW_fXn7gRuMHXZsaCB9Et6P5n3eB6F7pViUWsIC5oxPUGikA0mM8huS8lCkWtniBv9lzIcT9jyNpw3Ur7kwUFZZ2f7SphfWuhrpVmh211kGHF9CIuBhCgoa8wWD3bs_f6Y7n_syj5BSVncMh7f3LJ7uvDOf7cxmBTcQkSh6nYI67m_-6ZvPGZyg4ypYxL1yPaeoYfMzdFjpls9252gEepu1ygP2sRz2Wald6oXFI7VYqhy7DK7DsQ9NcVb8P7AGAz9ELd1i9QHjNlVvUPt8gSaDx9f-MKjkEQJFKdkGHLqn--_SQhMeW-pUJKXVTKZURoJDpz-faopYE0eMFDIWnGlDQmOoc8JbukvUzFe5vUKYKgYUVBNK7VhsrVCcai6Jj22oeFBpC3VqUJJ12QUjqcvD5kmFYgIoJiFNPIotJGrokh_bmXhL_ffU6_9PvUFH8FTWI96i5nbzbu98zLDV7eJQtNFB72k0HH8B6WfBHw |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05b8IwFLYQHehS9VTp6aFrILGd1B4rVETLMYHEZtmxI4IgIEpVsfS31y-HaKWqQ1cnlpzP1vP38o4PoQelWBBbwjyWGOeg0EB7ghjlNiSOfB5rZfMI_nAU9SbsdRpOa6hT1cJAWmVp-wubnlvrcqRdotlepynU-BISQB0mp6Ax71ygAwb82B3q1uc-z8OnlFUtw-H1fRlPe96az3Zms4IQRMDzZqcgj_vbBfXt0ukeo6OSLeKnYkEnqGazU9QohctnuzPUB8HNSuYBOzKHnVtql3phcV8tlirDSQrxcOy4KU7zHwjWYCgQUctksfqAcRurN0h-PkeT7vO40_NKfQRPUUq2XgTt0913aa5JFFqaqEAIq5mIqQh4BK3-nK_JQ00SYgQXIY-YNsQ3hiYJd6buAtWzVWYvEaaKQQ2q8YVOWGgtVxHVkSCO3FD-qOImalWgyHXRBkNW-WFzWaIoAUXpU-lQbCJeQSd_7Kd0pvrvqVf_n3qPGr3xcCAHL6P-NTqEJ0Vy4g2qbzfv9tYRiK2-yw_IF6s-wrg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraining+the+ensemble+Kalman+filter+for+improved+streamflow+forecasting&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Maxwell%2C+Deborah+H.&rft.au=Jackson%2C+Bethanna+M.&rft.au=McGregor%2C+James&rft.date=2018-05-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=560&rft.spage=127&rft.epage=140&rft_id=info:doi/10.1016%2Fj.jhydrol.2018.03.015&rft.externalDocID=S0022169418301781 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |