Constraining the ensemble Kalman filter for improved streamflow forecasting

•Unconstrained, mass constrained and mass + flux constrained EnKF runs are compared.•Mass constraints alone add little, but mass + flux constraints improve forecasts.•Such flux constraints are rarely applied. We argue they should be standard.•Further consideration of observation and model error spec...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 560; pp. 127 - 140
Main Authors Maxwell, Deborah H., Jackson, Bethanna M., McGregor, James
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Unconstrained, mass constrained and mass + flux constrained EnKF runs are compared.•Mass constraints alone add little, but mass + flux constraints improve forecasts.•Such flux constraints are rarely applied. We argue they should be standard.•Further consideration of observation and model error specifications is needed. Data assimilation techniques such as the Ensemble Kalman Filter (EnKF) are often applied to hydrological models with minimal state volume/capacity constraints enforced during ensemble generation. Flux constraints are rarely, if ever, applied. Consequently, model states can be adjusted beyond physically reasonable limits, compromising the integrity of model output. In this paper, we investigate the effect of constraining the EnKF on forecast performance. A “free run” in which no assimilation is applied is compared to a completely unconstrained EnKF implementation, a ‘typical’ hydrological implementation (in which mass constraints are enforced to ensure non-negativity and capacity thresholds of model states are not exceeded), and then to a more tightly constrained implementation where flux as well as mass constraints are imposed to force the rate of water movement to/from ensemble states to be within physically consistent boundaries. A three year period (2008–2010) was selected from the available data record (1976–2010). This was specifically chosen as it had no significant data gaps and represented well the range of flows observed in the longer dataset. Over this period, the standard implementation of the EnKF (no constraints) contained eight hydrological events where (multiple) physically inconsistent state adjustments were made. All were selected for analysis. Mass constraints alone did little to improve forecast performance; in fact, several were significantly degraded compared to the free run. In contrast, the combined use of mass and flux constraints significantly improved forecast performance in six events relative to all other implementations, while the remaining two events showed no significant difference in performance. Placing flux as well as mass constraints on the data assimilation framework encourages physically consistent state estimation and results in more accurate and reliable forward predictions of streamflow for robust decision-making. We also experiment with the observation error, which has a profound effect on filter performance. We note an interesting tension exists between specifying an error which reflects known uncertainties and errors in the measurement versus an error that allows “optimal” filter updating.
AbstractList •Unconstrained, mass constrained and mass + flux constrained EnKF runs are compared.•Mass constraints alone add little, but mass + flux constraints improve forecasts.•Such flux constraints are rarely applied. We argue they should be standard.•Further consideration of observation and model error specifications is needed. Data assimilation techniques such as the Ensemble Kalman Filter (EnKF) are often applied to hydrological models with minimal state volume/capacity constraints enforced during ensemble generation. Flux constraints are rarely, if ever, applied. Consequently, model states can be adjusted beyond physically reasonable limits, compromising the integrity of model output. In this paper, we investigate the effect of constraining the EnKF on forecast performance. A “free run” in which no assimilation is applied is compared to a completely unconstrained EnKF implementation, a ‘typical’ hydrological implementation (in which mass constraints are enforced to ensure non-negativity and capacity thresholds of model states are not exceeded), and then to a more tightly constrained implementation where flux as well as mass constraints are imposed to force the rate of water movement to/from ensemble states to be within physically consistent boundaries. A three year period (2008–2010) was selected from the available data record (1976–2010). This was specifically chosen as it had no significant data gaps and represented well the range of flows observed in the longer dataset. Over this period, the standard implementation of the EnKF (no constraints) contained eight hydrological events where (multiple) physically inconsistent state adjustments were made. All were selected for analysis. Mass constraints alone did little to improve forecast performance; in fact, several were significantly degraded compared to the free run. In contrast, the combined use of mass and flux constraints significantly improved forecast performance in six events relative to all other implementations, while the remaining two events showed no significant difference in performance. Placing flux as well as mass constraints on the data assimilation framework encourages physically consistent state estimation and results in more accurate and reliable forward predictions of streamflow for robust decision-making. We also experiment with the observation error, which has a profound effect on filter performance. We note an interesting tension exists between specifying an error which reflects known uncertainties and errors in the measurement versus an error that allows “optimal” filter updating.
Author Maxwell, Deborah H.
Jackson, Bethanna M.
McGregor, James
Author_xml – sequence: 1
  givenname: Deborah H.
  surname: Maxwell
  fullname: Maxwell, Deborah H.
  email: Deborah.maxwell@vuw.ac.nz
– sequence: 2
  givenname: Bethanna M.
  surname: Jackson
  fullname: Jackson, Bethanna M.
  email: Bethanna.jackson@vuw.ac.nz
– sequence: 3
  givenname: James
  orcidid: 0000-0001-8088-5950
  surname: McGregor
  fullname: McGregor, James
  email: Jim.mcgregor@vuw.ac.nz
BookMark eNqFkMtqwzAQRUVJoUnaTyj4B-yOJD-kVSmhLxLopl0L2Ro1CrYUJJOSv6_TZN_ZDAycy52zIDMfPBJyT6GgQOuHXbHbHk0MfcGAigJ4AbS6InMqGpmzBpoZmQMwltNaljdkkdIOpuG8nJP1Kvg0Ru2889_ZuMUMfcKh7TFb637QPrOuHzFmNsTMDfsYDmiyiUA92D78nO7Y6TRO-C25trpPeHfZS_L18vy5ess3H6_vq6dNrjlnY14Dk2Lq04qW1RVyq6mU2Jay45KKGkTTUM5E1TLLjBSyEnXZGgbGcGsFrfiSVOfcLoaUIlq1j27Q8agoqJMRtVMXI-pkRAFX8Mc9njmcyh0cRpU6h75D46YfRmWC-yfhF6nebsQ
CitedBy_id crossref_primary_10_1016_j_jhydrol_2022_127651
crossref_primary_10_1029_2020WR027794
crossref_primary_10_1016_j_jclepro_2020_122576
crossref_primary_10_1016_j_jhydrol_2019_124511
crossref_primary_10_1016_j_jlp_2018_08_012
crossref_primary_10_1016_j_advwatres_2024_104676
crossref_primary_10_15446_ing_investig_90023
crossref_primary_10_3390_w11081615
crossref_primary_10_3390_rs12071107
crossref_primary_10_1029_2020WR028390
crossref_primary_10_1029_2020WR028392
crossref_primary_10_1016_j_rse_2024_114266
crossref_primary_10_1016_j_jhydrol_2021_126537
crossref_primary_10_1061__ASCE_HE_1943_5584_0002027
Cites_doi 10.1109/7.993234
10.1016/j.advwatres.2011.08.012
10.1016/j.jhydrol.2015.09.036
10.1016/j.jhydrol.2011.01.026
10.1016/j.advwatres.2008.06.005
10.1016/j.jhydrol.2009.08.003
10.1175/MWR-D-13-00056.1
10.1029/WR006i005p01296
10.1002/2014WR016667
10.5194/hessd-9-3415-2012
10.1175/JHM499.1
10.5194/hess-16-105-2012
10.1016/j.advwatres.2004.09.002
10.1016/j.jhydrol.2014.03.048
10.1016/j.jhydrol.2014.08.038
10.5194/hess-18-3923-2014
10.1016/j.jhydrol.2014.07.049
10.1029/2008WR007401
10.1016/j.jhydrol.2009.07.051
10.1175/JHM495.1
10.1016/j.ocemod.2006.11.001
10.1016/j.advwatres.2008.01.001
10.1016/j.jhydrol.2007.06.025
10.1007/s10236-003-0036-9
10.1016/j.jhydrol.2009.01.019
10.1049/ip-cta:20050074
10.5194/hessd-9-3087-2012
10.1002/2013WR014070
10.1029/2011WR011011
10.5194/hess-17-21-2013
10.1016/j.advwatres.2010.03.012
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jhydrol.2018.03.015
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
EndPage 140
ExternalDocumentID 10_1016_j_jhydrol_2018_03_015
S0022169418301781
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AAHBH
AAXKI
AAYXX
ADVLN
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-a332t-60298002b8b265e3fa199eb49c39186087713285b2f2d9895864bd20dd3ff8153
IEDL.DBID .~1
ISSN 0022-1694
IngestDate Thu Sep 26 15:53:30 EDT 2024
Fri Feb 23 02:27:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hydrology
Constrained Ensemble Kalman Filter
Observation error
Data assimilation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a332t-60298002b8b265e3fa199eb49c39186087713285b2f2d9895864bd20dd3ff8153
ORCID 0000-0001-8088-5950
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_jhydrol_2018_03_015
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2018_03_015
PublicationCentury 2000
PublicationDate May 2018
2018-05-00
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May 2018
PublicationDecade 2010
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Abaza, Anctil, Fortin, Turcotte (b0005) 2014; 519
Evensen (b0035) 2003; 53
Reichle (b0110) 2008; 31
Weerts, El Serafy (b0170) 2006
Clark, Rupp, Woods, Zheng, Ibbitt, Slater, Schmidt, Uddstrom (b0010) 2008; 31
Wang, Chen, Cai (b0165) 2009; 45
DeChant, Moradkhani (b0025) 2012; 48
Simon, Tien Li (b0140) 2002; 38
Seo, Cajina, Corby, Howieson (b0125) 2009; 367
Simon, Simon (b0135) 2006; 153
McMillan, Jackson, Clark, Kavetski, Woods (b0075) 2011; 400
Rakovec, Hazenberg, Torfs, Weerts, Uijlenhoet (b0105) 2012; 9
Gupta, Kling, Yilmaz, Martinez (b9000) 2009; 377
Janjic, McLaughlin, Cohn, Verlaan (b0045) 2014; 142
Crow, Van Loon (b0020) 2006; 7
Dunne, Black (b0030) 1970; 6
Li, Ryu, Western, Wang (b0060) 2015; 51
Moradkhani, Sorooshian, Gupta, Houser (b0090) 2005; 28
McMillan, Hreinsson, Clark, Singh, Zammit, Uddstrom (b0080) 2013; 17
Liu, Weerts, Clark, Hendricks Franssen, Kumar, Moradkhani, Seo, Schwanenberg, Smith, van Dijk, van Velzen, He, Lee, Rakovec, Restrepo (b0065) 2012; 9
Xie, Zhang (b0180) 2010; 33
Vrugt, Diks, Gupta, Bouten, Verstraten (b0160) 2005
Xie, Meng, Liang, Yao (b0175) 2014; 18
Pan, Wood (b0100) 2006; 7
Salamon, Feyen (b0115) 2009; 376
Steenhuis, Winchell, Rossing, Zollweg, Walter (b0145) 1995
Thiboult, Anctil (b0155) 2015; 529
Shi, Davis, Zhang, Duffy, Yu (b0130) 2014; 50
Li, Toll, Zhan, Cosgrove (b0055) 2012; 16
Lee, Seo, Koren (b0050) 2011; 34
Maxwell (b0070) 2013
Collischonn, Tucci, Clarke, Chou, Guilhon, Cataldi, Allasia (b0015) 2007; 344
Thacker (b0150) 2007; 16
Noh, Rakovec, Weerts, Tachikawa (b0095) 2014; 519
Samuel, Coulibaly, Dumedah, Moradkhani (b0120) 2014; 513
Molloy (b0085) 1998
Hewlett, Hibbert (b0040) 1967
Li (10.1016/j.jhydrol.2018.03.015_b0060) 2015; 51
Molloy (10.1016/j.jhydrol.2018.03.015_b0085) 1998
Steenhuis (10.1016/j.jhydrol.2018.03.015_b0145) 1995
McMillan (10.1016/j.jhydrol.2018.03.015_b0080) 2013; 17
Samuel (10.1016/j.jhydrol.2018.03.015_b0120) 2014; 513
Abaza (10.1016/j.jhydrol.2018.03.015_b0005) 2014; 519
Thiboult (10.1016/j.jhydrol.2018.03.015_b0155) 2015; 529
Moradkhani (10.1016/j.jhydrol.2018.03.015_b0090) 2005; 28
Seo (10.1016/j.jhydrol.2018.03.015_b0125) 2009; 367
Simon (10.1016/j.jhydrol.2018.03.015_b0140) 2002; 38
Thacker (10.1016/j.jhydrol.2018.03.015_b0150) 2007; 16
Hewlett (10.1016/j.jhydrol.2018.03.015_b0040) 1967
Dunne (10.1016/j.jhydrol.2018.03.015_b0030) 1970; 6
Maxwell (10.1016/j.jhydrol.2018.03.015_b0070) 2013
Collischonn (10.1016/j.jhydrol.2018.03.015_b0015) 2007; 344
Clark (10.1016/j.jhydrol.2018.03.015_b0010) 2008; 31
McMillan (10.1016/j.jhydrol.2018.03.015_b0075) 2011; 400
Gupta (10.1016/j.jhydrol.2018.03.015_b9000) 2009; 377
Lee (10.1016/j.jhydrol.2018.03.015_b0050) 2011; 34
Simon (10.1016/j.jhydrol.2018.03.015_b0135) 2006; 153
Xie (10.1016/j.jhydrol.2018.03.015_b0180) 2010; 33
Noh (10.1016/j.jhydrol.2018.03.015_b0095) 2014; 519
Vrugt (10.1016/j.jhydrol.2018.03.015_b0160) 2005
Xie (10.1016/j.jhydrol.2018.03.015_b0175) 2014; 18
Rakovec (10.1016/j.jhydrol.2018.03.015_b0105) 2012; 9
Shi (10.1016/j.jhydrol.2018.03.015_b0130) 2014; 50
Crow (10.1016/j.jhydrol.2018.03.015_b0020) 2006; 7
DeChant (10.1016/j.jhydrol.2018.03.015_b0025) 2012; 48
Liu (10.1016/j.jhydrol.2018.03.015_b0065) 2012; 9
Pan (10.1016/j.jhydrol.2018.03.015_b0100) 2006; 7
Salamon (10.1016/j.jhydrol.2018.03.015_b0115) 2009; 376
Reichle (10.1016/j.jhydrol.2018.03.015_b0110) 2008; 31
Evensen (10.1016/j.jhydrol.2018.03.015_b0035) 2003; 53
Wang (10.1016/j.jhydrol.2018.03.015_b0165) 2009; 45
Weerts (10.1016/j.jhydrol.2018.03.015_b0170) 2006
Janjic (10.1016/j.jhydrol.2018.03.015_b0045) 2014; 142
Li (10.1016/j.jhydrol.2018.03.015_b0055) 2012; 16
References_xml – volume: 9
  start-page: 3415
  year: 2012
  end-page: 3472
  ident: b0065
  article-title: Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities
  publication-title: Hydrol. Earth Syst. Sci. Discussion
  contributor:
    fullname: Restrepo
– year: 2013
  ident: b0070
  article-title: A rainfall-runoff model for the highly regulated Lake Taupo catchment, using a constrained Ensemble Kalman Filter to improve the accuracy and reliability of model output
  contributor:
    fullname: Maxwell
– volume: 45
  start-page: W11416
  year: 2009
  ident: b0165
  article-title: State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter
  publication-title: Water Resour. Res.
  contributor:
    fullname: Cai
– volume: 344
  start-page: 112
  year: 2007
  end-page: 122
  ident: b0015
  article-title: Medium-range reservoir inflow predictions based on quantitative precipitation forecasts
  publication-title: J. Hydrol.
  contributor:
    fullname: Allasia
– volume: 6
  start-page: 1296
  year: 1970
  end-page: 1311
  ident: b0030
  article-title: Partial area contribution to storm runoff in a small New England watershed
  publication-title: Water Resour. Res.
  contributor:
    fullname: Black
– volume: 7
  start-page: 534
  year: 2006
  end-page: 547
  ident: b0100
  article-title: Data assimilation for estimating the terrestrial water budget using a constrained ensemble Kalman Filter
  publication-title: J. Hydrometeorol.
  contributor:
    fullname: Wood
– volume: 34
  start-page: 1597
  year: 2011
  end-page: 1615
  ident: b0050
  article-title: Assimilation of streamflow and in situ soil moisture data into operational distributed hydrologic models: effects of uncertainties in the data and initial model soil moisture states
  publication-title: Adv. Water Resour.
  contributor:
    fullname: Koren
– volume: 28
  start-page: 135
  year: 2005
  end-page: 147
  ident: b0090
  article-title: Dual state-parameter estimation of hydrological models using ensemble Kalman filter
  publication-title: Adv. Water Resour.
  contributor:
    fullname: Houser
– volume: 31
  start-page: 1411
  year: 2008
  end-page: 1418
  ident: b0110
  article-title: Data assimilation methods in the Earth sciences
  publication-title: Adv.Water Resour.
  contributor:
    fullname: Reichle
– volume: 31
  start-page: 1309
  year: 2008
  end-page: 1324
  ident: b0010
  article-title: Hydrological data assimilation with the Ensemble Kalman filter: use of streamflow observations to update states in a distributed hydrological model
  publication-title: Adv. Water Resour.
  contributor:
    fullname: Uddstrom
– volume: 513
  start-page: 127
  year: 2014
  end-page: 141
  ident: b0120
  article-title: Assessing model state and forecasts variation in hydrologic data assimilation
  publication-title: J. Hydrol.
  contributor:
    fullname: Moradkhani
– volume: 400
  start-page: 83
  year: 2011
  end-page: 94
  ident: b0075
  article-title: Rainfall uncertainty in hydrological modelling: an evaluation of multiplicative error models
  publication-title: J. Hydrol.
  contributor:
    fullname: Woods
– start-page: 42
  year: 2006
  ident: b0170
  article-title: Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models
  publication-title: Water Resour. Res.
  contributor:
    fullname: El Serafy
– volume: 9
  start-page: 3087
  year: 2012
  end-page: 3127
  ident: b0105
  article-title: Generating spatial precipitation ensembles: impact of temporal correlation structures
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
  contributor:
    fullname: Uijlenhoet
– volume: 153
  start-page: 371
  year: 2006
  end-page: 378
  ident: b0135
  article-title: Kalman filtering with inequality constraints for turbofan engine health estimation
  publication-title: IEE Proceed. Contr. Theor. Appl.
  contributor:
    fullname: Simon
– volume: 53
  start-page: 343
  year: 2003
  end-page: 367
  ident: b0035
  article-title: The Ensemble Kalman Filter: theoretical formulation and practical implementation
  publication-title: Ocean Dynam.
  contributor:
    fullname: Evensen
– volume: 529
  start-page: 1147
  year: 2015
  end-page: 1160
  ident: b0155
  article-title: On the difficulty to optimally implement the Ensemble Kalman filter: an experiment based on many hydrological models and catchments
  publication-title: J. Hydrol.
  contributor:
    fullname: Anctil
– volume: 18
  start-page: 3923
  year: 2014
  end-page: 3936
  ident: b0175
  article-title: Improving streamflow predictions at ungauged locations with real-time updating: application of an EnKF-based state-parameter estimation strategy
  publication-title: Hydrol. Earth Syst. Sci.
  contributor:
    fullname: Yao
– volume: 38
  start-page: 128
  year: 2002
  end-page: 136
  ident: b0140
  article-title: Kalman filtering with state equality constraints
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  contributor:
    fullname: Tien Li
– volume: 519
  start-page: 2692
  year: 2014
  end-page: 2706
  ident: b0005
  article-title: Sequential streamflow assimilation for short-term hydrological ensemble forecasting
  publication-title: J. Hydrol.
  contributor:
    fullname: Turcotte
– volume: 48
  start-page: W04518
  year: 2012
  ident: b0025
  article-title: Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting
  publication-title: Water Resour. Res.
  contributor:
    fullname: Moradkhani
– volume: 33
  start-page: 678
  year: 2010
  end-page: 690
  ident: b0180
  article-title: Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter
  publication-title: Adv. Water Resour.
  contributor:
    fullname: Zhang
– start-page: 272
  year: 1967
  end-page: 290
  ident: b0040
  article-title: Factors affecting the response of small watersheds to precipitation in humid areas
  publication-title: Forest Hydrology
  contributor:
    fullname: Hibbert
– volume: 16
  start-page: 105
  year: 2012
  end-page: 119
  ident: b0055
  article-title: Improving estimated soil moisture fields through assimilation of AMSR-E soil moisture retrievals with an ensemble Kalman filter and a mass conservation constraint
  publication-title: Hydrol. Earth Syst. Sci.
  contributor:
    fullname: Cosgrove
– start-page: 41
  year: 2005
  ident: b0160
  article-title: Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation
  publication-title: Water Resour. Res.
  contributor:
    fullname: Verstraten
– volume: 519
  start-page: 2707
  year: 2014
  end-page: 2721
  ident: b0095
  article-title: On noise specification in data assimilation schemes for improved flood forecasting using distributed hydrological models
  publication-title: J. Hydrol.
  contributor:
    fullname: Tachikawa
– volume: 377
  start-page: 80
  year: 2009
  end-page: 91
  ident: b9000
  article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling
  publication-title: Journal of Hydrology
  contributor:
    fullname: Martinez
– volume: 376
  start-page: 428
  year: 2009
  end-page: 442
  ident: b0115
  article-title: Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using sequential data assimilation with the particle filter
  publication-title: J. Hydrol.
  contributor:
    fullname: Feyen
– volume: 50
  start-page: 706
  year: 2014
  end-page: 724
  ident: b0130
  article-title: Parameter estimation of a physically based land surface hydrologic model using the ensemble Kalman filter: A synthetic experiment
  publication-title: Water Resour. Res.
  contributor:
    fullname: Yu
– volume: 367
  start-page: 255
  year: 2009
  end-page: 275
  ident: b0125
  article-title: Automatic state updating for operational streamflow forecasting via variational data assimilation
  publication-title: J. Hydrol.
  contributor:
    fullname: Howieson
– volume: 16
  start-page: 264
  year: 2007
  end-page: 276
  ident: b0150
  article-title: Data assimilation with inequality constraints
  publication-title: Ocean Model.
  contributor:
    fullname: Thacker
– volume: 7
  start-page: 421
  year: 2006
  end-page: 432
  ident: b0020
  article-title: Impact of incorrect model error assumptions on the sequential assimilation of remotely sensed surface soil moisture
  publication-title: J. Hydrometeorol.
  contributor:
    fullname: Van Loon
– volume: 142
  start-page: 755
  year: 2014
  end-page: 773
  ident: b0045
  article-title: Conservation of mass and preservation of positivity with ensemble-type Kalman filter algorithms
  publication-title: Month Weather Rev.
  contributor:
    fullname: Verlaan
– year: 1995
  ident: b0145
  article-title: SCS runoff equation revisited for variable-source runoff areas Journal of Irrigation & Drainage Engineering
  contributor:
    fullname: Walter
– year: 1998
  ident: b0085
  article-title: Soils in the New Zealand landscape
  publication-title: a living mantle
  contributor:
    fullname: Molloy
– volume: 51
  start-page: 3238
  year: 2015
  end-page: 3258
  ident: b0060
  article-title: Assimilation of stream discharge for flood forecasting: Updating a semidistributed model with an integrated data assimilation scheme
  publication-title: Water Resour. Res.
  contributor:
    fullname: Wang
– volume: 17
  start-page: 21
  year: 2013
  end-page: 38
  ident: b0080
  article-title: Operational hydrological data assimilation with the recursive ensemble Kalman filter
  publication-title: Hydrol. Earth Syst. Sci.
  contributor:
    fullname: Uddstrom
– volume: 38
  start-page: 128
  issue: 1
  year: 2002
  ident: 10.1016/j.jhydrol.2018.03.015_b0140
  article-title: Kalman filtering with state equality constraints
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/7.993234
  contributor:
    fullname: Simon
– volume: 34
  start-page: 1597
  issue: 12
  year: 2011
  ident: 10.1016/j.jhydrol.2018.03.015_b0050
  article-title: Assimilation of streamflow and in situ soil moisture data into operational distributed hydrologic models: effects of uncertainties in the data and initial model soil moisture states
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2011.08.012
  contributor:
    fullname: Lee
– volume: 529
  start-page: 1147
  issue: Part 3
  year: 2015
  ident: 10.1016/j.jhydrol.2018.03.015_b0155
  article-title: On the difficulty to optimally implement the Ensemble Kalman filter: an experiment based on many hydrological models and catchments
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.09.036
  contributor:
    fullname: Thiboult
– start-page: 42
  year: 2006
  ident: 10.1016/j.jhydrol.2018.03.015_b0170
  article-title: Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models
  publication-title: Water Resour. Res.
  contributor:
    fullname: Weerts
– volume: 400
  start-page: 83
  issue: 1
  year: 2011
  ident: 10.1016/j.jhydrol.2018.03.015_b0075
  article-title: Rainfall uncertainty in hydrological modelling: an evaluation of multiplicative error models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.01.026
  contributor:
    fullname: McMillan
– year: 1998
  ident: 10.1016/j.jhydrol.2018.03.015_b0085
  article-title: Soils in the New Zealand landscape
  contributor:
    fullname: Molloy
– volume: 31
  start-page: 1309
  issue: 10
  year: 2008
  ident: 10.1016/j.jhydrol.2018.03.015_b0010
  article-title: Hydrological data assimilation with the Ensemble Kalman filter: use of streamflow observations to update states in a distributed hydrological model
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2008.06.005
  contributor:
    fullname: Clark
– start-page: 41
  year: 2005
  ident: 10.1016/j.jhydrol.2018.03.015_b0160
  article-title: Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation
  publication-title: Water Resour. Res.
  contributor:
    fullname: Vrugt
– volume: 377
  start-page: 80
  year: 2009
  ident: 10.1016/j.jhydrol.2018.03.015_b9000
  article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2009.08.003
  contributor:
    fullname: Gupta
– volume: 142
  start-page: 755
  issue: 2
  year: 2014
  ident: 10.1016/j.jhydrol.2018.03.015_b0045
  article-title: Conservation of mass and preservation of positivity with ensemble-type Kalman filter algorithms
  publication-title: Month Weather Rev.
  doi: 10.1175/MWR-D-13-00056.1
  contributor:
    fullname: Janjic
– year: 2013
  ident: 10.1016/j.jhydrol.2018.03.015_b0070
  contributor:
    fullname: Maxwell
– start-page: 272
  year: 1967
  ident: 10.1016/j.jhydrol.2018.03.015_b0040
  article-title: Factors affecting the response of small watersheds to precipitation in humid areas
  contributor:
    fullname: Hewlett
– volume: 6
  start-page: 1296
  issue: 5
  year: 1970
  ident: 10.1016/j.jhydrol.2018.03.015_b0030
  article-title: Partial area contribution to storm runoff in a small New England watershed
  publication-title: Water Resour. Res.
  doi: 10.1029/WR006i005p01296
  contributor:
    fullname: Dunne
– volume: 51
  start-page: 3238
  issue: 5
  year: 2015
  ident: 10.1016/j.jhydrol.2018.03.015_b0060
  article-title: Assimilation of stream discharge for flood forecasting: Updating a semidistributed model with an integrated data assimilation scheme
  publication-title: Water Resour. Res.
  doi: 10.1002/2014WR016667
  contributor:
    fullname: Li
– volume: 9
  start-page: 3415
  year: 2012
  ident: 10.1016/j.jhydrol.2018.03.015_b0065
  article-title: Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities
  publication-title: Hydrol. Earth Syst. Sci. Discussion
  doi: 10.5194/hessd-9-3415-2012
  contributor:
    fullname: Liu
– volume: 7
  start-page: 421
  year: 2006
  ident: 10.1016/j.jhydrol.2018.03.015_b0020
  article-title: Impact of incorrect model error assumptions on the sequential assimilation of remotely sensed surface soil moisture
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM499.1
  contributor:
    fullname: Crow
– volume: 16
  start-page: 105
  year: 2012
  ident: 10.1016/j.jhydrol.2018.03.015_b0055
  article-title: Improving estimated soil moisture fields through assimilation of AMSR-E soil moisture retrievals with an ensemble Kalman filter and a mass conservation constraint
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-16-105-2012
  contributor:
    fullname: Li
– volume: 28
  start-page: 135
  issue: 2
  year: 2005
  ident: 10.1016/j.jhydrol.2018.03.015_b0090
  article-title: Dual state-parameter estimation of hydrological models using ensemble Kalman filter
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2004.09.002
  contributor:
    fullname: Moradkhani
– volume: 513
  start-page: 127
  year: 2014
  ident: 10.1016/j.jhydrol.2018.03.015_b0120
  article-title: Assessing model state and forecasts variation in hydrologic data assimilation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.03.048
  contributor:
    fullname: Samuel
– volume: 519
  start-page: 2692
  issue: Part D
  year: 2014
  ident: 10.1016/j.jhydrol.2018.03.015_b0005
  article-title: Sequential streamflow assimilation for short-term hydrological ensemble forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.08.038
  contributor:
    fullname: Abaza
– volume: 18
  start-page: 3923
  year: 2014
  ident: 10.1016/j.jhydrol.2018.03.015_b0175
  article-title: Improving streamflow predictions at ungauged locations with real-time updating: application of an EnKF-based state-parameter estimation strategy
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-18-3923-2014
  contributor:
    fullname: Xie
– volume: 519
  start-page: 2707
  year: 2014
  ident: 10.1016/j.jhydrol.2018.03.015_b0095
  article-title: On noise specification in data assimilation schemes for improved flood forecasting using distributed hydrological models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.07.049
  contributor:
    fullname: Noh
– volume: 45
  start-page: W11416
  issue: 11
  year: 2009
  ident: 10.1016/j.jhydrol.2018.03.015_b0165
  article-title: State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter
  publication-title: Water Resour. Res.
  doi: 10.1029/2008WR007401
  contributor:
    fullname: Wang
– volume: 376
  start-page: 428
  issue: 3–4
  year: 2009
  ident: 10.1016/j.jhydrol.2018.03.015_b0115
  article-title: Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using sequential data assimilation with the particle filter
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.07.051
  contributor:
    fullname: Salamon
– volume: 7
  start-page: 534
  issue: 3
  year: 2006
  ident: 10.1016/j.jhydrol.2018.03.015_b0100
  article-title: Data assimilation for estimating the terrestrial water budget using a constrained ensemble Kalman Filter
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM495.1
  contributor:
    fullname: Pan
– volume: 16
  start-page: 264
  issue: 3–4
  year: 2007
  ident: 10.1016/j.jhydrol.2018.03.015_b0150
  article-title: Data assimilation with inequality constraints
  publication-title: Ocean Model.
  doi: 10.1016/j.ocemod.2006.11.001
  contributor:
    fullname: Thacker
– year: 1995
  ident: 10.1016/j.jhydrol.2018.03.015_b0145
  contributor:
    fullname: Steenhuis
– volume: 31
  start-page: 1411
  issue: 11
  year: 2008
  ident: 10.1016/j.jhydrol.2018.03.015_b0110
  article-title: Data assimilation methods in the Earth sciences
  publication-title: Adv.Water Resour.
  doi: 10.1016/j.advwatres.2008.01.001
  contributor:
    fullname: Reichle
– volume: 344
  start-page: 112
  year: 2007
  ident: 10.1016/j.jhydrol.2018.03.015_b0015
  article-title: Medium-range reservoir inflow predictions based on quantitative precipitation forecasts
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2007.06.025
  contributor:
    fullname: Collischonn
– volume: 53
  start-page: 343
  year: 2003
  ident: 10.1016/j.jhydrol.2018.03.015_b0035
  article-title: The Ensemble Kalman Filter: theoretical formulation and practical implementation
  publication-title: Ocean Dynam.
  doi: 10.1007/s10236-003-0036-9
  contributor:
    fullname: Evensen
– volume: 367
  start-page: 255
  issue: 3–4
  year: 2009
  ident: 10.1016/j.jhydrol.2018.03.015_b0125
  article-title: Automatic state updating for operational streamflow forecasting via variational data assimilation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.01.019
  contributor:
    fullname: Seo
– volume: 153
  start-page: 371
  issue: 3
  year: 2006
  ident: 10.1016/j.jhydrol.2018.03.015_b0135
  article-title: Kalman filtering with inequality constraints for turbofan engine health estimation
  publication-title: IEE Proceed. Contr. Theor. Appl.
  doi: 10.1049/ip-cta:20050074
  contributor:
    fullname: Simon
– volume: 9
  start-page: 3087
  issue: 3
  year: 2012
  ident: 10.1016/j.jhydrol.2018.03.015_b0105
  article-title: Generating spatial precipitation ensembles: impact of temporal correlation structures
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
  doi: 10.5194/hessd-9-3087-2012
  contributor:
    fullname: Rakovec
– volume: 50
  start-page: 706
  issue: 1
  year: 2014
  ident: 10.1016/j.jhydrol.2018.03.015_b0130
  article-title: Parameter estimation of a physically based land surface hydrologic model using the ensemble Kalman filter: A synthetic experiment
  publication-title: Water Resour. Res.
  doi: 10.1002/2013WR014070
  contributor:
    fullname: Shi
– volume: 48
  start-page: W04518
  issue: 4
  year: 2012
  ident: 10.1016/j.jhydrol.2018.03.015_b0025
  article-title: Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR011011
  contributor:
    fullname: DeChant
– volume: 17
  start-page: 21
  year: 2013
  ident: 10.1016/j.jhydrol.2018.03.015_b0080
  article-title: Operational hydrological data assimilation with the recursive ensemble Kalman filter
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-17-21-2013
  contributor:
    fullname: McMillan
– volume: 33
  start-page: 678
  issue: 6
  year: 2010
  ident: 10.1016/j.jhydrol.2018.03.015_b0180
  article-title: Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2010.03.012
  contributor:
    fullname: Xie
SSID ssj0000334
Score 2.3857248
Snippet •Unconstrained, mass constrained and mass + flux constrained EnKF runs are compared.•Mass constraints alone add little, but mass + flux constraints improve...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 127
SubjectTerms Constrained Ensemble Kalman Filter
Data assimilation
Hydrology
Observation error
Title Constraining the ensemble Kalman filter for improved streamflow forecasting
URI https://dx.doi.org/10.1016/j.jhydrol.2018.03.015
Volume 560
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na8IwGA7iDttl7JO5D8lh12qbpFlyFJm4yTxN8FaSJsGKVnGO4WW_fXn7gRuMHXZsaCB9Et6P5n3eB6F7pViUWsIC5oxPUGikA0mM8huS8lCkWtniBv9lzIcT9jyNpw3Ur7kwUFZZ2f7SphfWuhrpVmh211kGHF9CIuBhCgoa8wWD3bs_f6Y7n_syj5BSVncMh7f3LJ7uvDOf7cxmBTcQkSh6nYI67m_-6ZvPGZyg4ypYxL1yPaeoYfMzdFjpls9252gEepu1ygP2sRz2Wald6oXFI7VYqhy7DK7DsQ9NcVb8P7AGAz9ELd1i9QHjNlVvUPt8gSaDx9f-MKjkEQJFKdkGHLqn--_SQhMeW-pUJKXVTKZURoJDpz-faopYE0eMFDIWnGlDQmOoc8JbukvUzFe5vUKYKgYUVBNK7VhsrVCcai6Jj22oeFBpC3VqUJJ12QUjqcvD5kmFYgIoJiFNPIotJGrokh_bmXhL_ffU6_9PvUFH8FTWI96i5nbzbu98zLDV7eJQtNFB72k0HH8B6WfBHw
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05b8IwFLYQHehS9VTp6aFrILGd1B4rVETLMYHEZtmxI4IgIEpVsfS31y-HaKWqQ1cnlpzP1vP38o4PoQelWBBbwjyWGOeg0EB7ghjlNiSOfB5rZfMI_nAU9SbsdRpOa6hT1cJAWmVp-wubnlvrcqRdotlepynU-BISQB0mp6Ax71ygAwb82B3q1uc-z8OnlFUtw-H1fRlPe96az3Zms4IQRMDzZqcgj_vbBfXt0ukeo6OSLeKnYkEnqGazU9QohctnuzPUB8HNSuYBOzKHnVtql3phcV8tlirDSQrxcOy4KU7zHwjWYCgQUctksfqAcRurN0h-PkeT7vO40_NKfQRPUUq2XgTt0913aa5JFFqaqEAIq5mIqQh4BK3-nK_JQ00SYgQXIY-YNsQ3hiYJd6buAtWzVWYvEaaKQQ2q8YVOWGgtVxHVkSCO3FD-qOImalWgyHXRBkNW-WFzWaIoAUXpU-lQbCJeQSd_7Kd0pvrvqVf_n3qPGr3xcCAHL6P-NTqEJ0Vy4g2qbzfv9tYRiK2-yw_IF6s-wrg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraining+the+ensemble+Kalman+filter+for+improved+streamflow+forecasting&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Maxwell%2C+Deborah+H.&rft.au=Jackson%2C+Bethanna+M.&rft.au=McGregor%2C+James&rft.date=2018-05-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=560&rft.spage=127&rft.epage=140&rft_id=info:doi/10.1016%2Fj.jhydrol.2018.03.015&rft.externalDocID=S0022169418301781
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon