Permeability prediction using logging data from tight reservoirs based on deep neural networks
Permeability is a critical parameter for evaluating reservoir properties, and accurate prediction is an important basis for identifying high-quality reservoirs and geological modeling. However, the strong heterogeneity, complex lithology and diagenesis in the reservoirs of this region pose a major c...
Saved in:
Published in | Journal of applied geophysics Vol. 229; p. 105501 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Permeability is a critical parameter for evaluating reservoir properties, and accurate prediction is an important basis for identifying high-quality reservoirs and geological modeling. However, the strong heterogeneity, complex lithology and diagenesis in the reservoirs of this region pose a major challenge for the accurate assessment of reservoir permeability. In recent years, the use of machine learning (ML) to solve problems in geophysical well logging and related fields has gained much attention thanks to advances in data science and artificial intelligence. ML is any predictive algorithm or combination of algorithms that learns from data and makes predictions without being explicitly coded with a deterministic model. The most immediate example is deep neural networks (DNN) that are trained with data to minimize a cost function and make predictions. The tight reservoirs in the Chang 7 Member of the Ordos Basin host significant oil and gas resources and have recently emerged as the main focus of unconventional oil and gas exploration and development. In this work, we performed DNN-based permeability prediction for the tight reservoirs in the Ordos Basin area. From 19 well logs, we selected effective data points from 17 wells for DNN training after preprocessing and used the remaining two wells for testing. First, we trained the DNN with all collected parameters as inputs, resulting in permeability prediction R2 values of 0.64 and 0.72 for the two wells, indicating a good fit. We then optimized the input parameters by performing a crossplot analysis between these parameters and the permeability. Using the same network structure (with all hyperparameters set the same), we trained the DNN again to obtain a new DNN-based model. The prediction results showed that removing input parameters with poor correlation to permeability improved the prediction accuracy with R2 values of 0.70 and 0.87 for the two wells.
•DNN-based method is developed to predict permeability by using logging data of tight reservoirs.•Optimizing the input parameters by performing a crossplot analysis between input parameters and the permeability to improve prediction accuracy.•The proposed method achieves satisfactory results in the practical applications for tight reservoirs. |
---|---|
AbstractList | Permeability is a critical parameter for evaluating reservoir properties, and accurate prediction is an important basis for identifying high-quality reservoirs and geological modeling. However, the strong heterogeneity, complex lithology and diagenesis in the reservoirs of this region pose a major challenge for the accurate assessment of reservoir permeability. In recent years, the use of machine learning (ML) to solve problems in geophysical well logging and related fields has gained much attention thanks to advances in data science and artificial intelligence. ML is any predictive algorithm or combination of algorithms that learns from data and makes predictions without being explicitly coded with a deterministic model. The most immediate example is deep neural networks (DNN) that are trained with data to minimize a cost function and make predictions. The tight reservoirs in the Chang 7 Member of the Ordos Basin host significant oil and gas resources and have recently emerged as the main focus of unconventional oil and gas exploration and development. In this work, we performed DNN-based permeability prediction for the tight reservoirs in the Ordos Basin area. From 19 well logs, we selected effective data points from 17 wells for DNN training after preprocessing and used the remaining two wells for testing. First, we trained the DNN with all collected parameters as inputs, resulting in permeability prediction R2 values of 0.64 and 0.72 for the two wells, indicating a good fit. We then optimized the input parameters by performing a crossplot analysis between these parameters and the permeability. Using the same network structure (with all hyperparameters set the same), we trained the DNN again to obtain a new DNN-based model. The prediction results showed that removing input parameters with poor correlation to permeability improved the prediction accuracy with R2 values of 0.70 and 0.87 for the two wells.
•DNN-based method is developed to predict permeability by using logging data of tight reservoirs.•Optimizing the input parameters by performing a crossplot analysis between input parameters and the permeability to improve prediction accuracy.•The proposed method achieves satisfactory results in the practical applications for tight reservoirs. |
ArticleNumber | 105501 |
Author | Fang, Zhijian Xiong, Fansheng Carcione, José M. Ba, Jing Gao, Li |
Author_xml | – sequence: 1 givenname: Zhijian surname: Fang fullname: Fang, Zhijian organization: School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China – sequence: 2 givenname: Jing surname: Ba fullname: Ba, Jing email: jba@hhu.edu.cn organization: School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China – sequence: 3 givenname: José M. surname: Carcione fullname: Carcione, José M. organization: School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China – sequence: 4 givenname: Fansheng surname: Xiong fullname: Xiong, Fansheng organization: Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China – sequence: 5 givenname: Li surname: Gao fullname: Gao, Li organization: School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China |
BookMark | eNqFkMtKAzEYhbOoYFt9BCEvMDWXyUyLC5HiDQq60K0hk_wZM04nQ5JW-vbO0K7cdHXgwHfgfDM06XwHCN1QsqCEFrfNolF9X4NfMMLyoROC0AmakhUrstVS0Es0i7EhhFBO8in6eoewBVW51qUD7gMYp5PzHd5F19W49XU9plFJYRv8FidXfyccIELYexcirlQEgwfCAPS4g11Q7RDp14efeIUurGojXJ9yjj6fHj_WL9nm7fl1_bDJFOcsZXlViqKEQi9VqUtbGV4JIUoNluel4cZSK0BpxVg5VJpXFgwDRcxSE2uF5XN0d9zVwccYwErtkhqPpKBcKymRox7ZyJMeOeqRRz0DLf7RfXBbFQ5nufsjB8O1vYMgo3bQ6UFiAJ2k8e7Mwh-q84qE |
CitedBy_id | crossref_primary_10_1016_j_rineng_2024_103421 crossref_primary_10_1016_j_jappgeo_2024_105571 crossref_primary_10_3390_su17052048 crossref_primary_10_3390_en18020391 |
Cites_doi | 10.1190/1.1443970 10.1029/2022WR033091 10.1016/j.pepi.2018.03.004 10.1016/j.jngse.2015.02.026 10.1029/2021JB022665 10.1029/2019JB019042 10.1016/j.mechrescom.2018.11.001 10.1029/2019JB018857 10.1007/s00603-022-03213-y 10.1144/petgeo2018-091 10.1190/INT-2016-0080.1 10.1016/j.jngse.2017.01.003 10.1007/s00024-019-02117-3 10.1093/gji/ggad355 10.1177/0144598720903394 10.1046/j.1365-2478.2001.00271.x 10.1093/gji/ggad252 10.2118/942054-G 10.1016/j.jngse.2020.103743 10.1029/92JB02118 10.1016/j.geoen.2023.212070 10.1016/j.jngse.2022.104499 10.1007/s00603-019-01911-8 10.1029/2019JB017595 10.1126/science.aau0323 10.1111/1365-2478.12922 10.1016/j.marpetgeo.2022.105941 10.1016/S1876-3804(20)60107-0 10.1093/gji/ggad149 10.1016/j.petrol.2022.110517 10.1016/j.petsci.2023.09.003 10.1186/s40537-014-0007-7 10.1093/gji/ggaa199 10.1046/j.1365-2478.2000.00198.x 10.1029/2022JB024745 10.1016/j.geoen.2024.213028 10.2118/19604-PA 10.1016/j.petsci.2022.06.009 10.3390/en13030551 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jappgeo.2024.105501 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_jappgeo_2024_105501 S0926985124002179 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSZ T5K VH1 WUQ XPP ZMT ~02 ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-a332t-4b7567e6c8a7c7fbd3b5557cef347d3df1f5eaca227ef3c3bfed2ea0d8c0ff5f3 |
IEDL.DBID | .~1 |
ISSN | 0926-9851 |
IngestDate | Tue Jul 01 02:17:27 EDT 2025 Thu Apr 24 23:08:41 EDT 2025 Sat Sep 14 18:12:41 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ordos Basin Deep neural networks Permeability prediction Tight reservoirs Well-log data Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a332t-4b7567e6c8a7c7fbd3b5557cef347d3df1f5eaca227ef3c3bfed2ea0d8c0ff5f3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jappgeo_2024_105501 crossref_primary_10_1016_j_jappgeo_2024_105501 elsevier_sciencedirect_doi_10_1016_j_jappgeo_2024_105501 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2024 2024-10-00 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of applied geophysics |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Carcione, Gei, Yu, Ba (bb0060) 2019; 176 Xiong, Ba, Gei, Carcione (bb0205) 2021; 126 Srisutthiyakorn, Mavko (bb0190) 2017; 5 Timur (bb0195) 1968; 9 Fu, Li, Niu, Deng, Zhou (bb0090) 2020; 47 Carcione, Poletto, Farina, Bellezza (bb0055) 2018; 279 Guo, Liu, Abousleiman (bb0100) 2019; 95 Archie (bb0020) 1942; 146 Guo, Gurevich (bb0095) 2020; 125 Madadi, Müller (bb0160) 2019; 69 Zhang, Zhang, Li, Cai (bb0215) 2021; 86 Xie, Zhang, Fang, Cao, Deng (bib228) 2023; 56 You, Li, Cheng (bb0210) 2020; 125 Ba, Zhu, Zhang, Carcione (bb0030) 2023; 128 Nkurlu, Shen, Asante-Okyere, Mulashani, Chungu, Wang (bb0170) 2020; 13 Huang, Shimeld, Williamson, Katsube (bb0140) 1996; 61 Guo, Nie, Liu (bb0115) 2022; 146 Jamshidian, Hadian, Zadeh, Kazempoor, Bazargan, Salehi (bb0145) 2015; 24 Lu, Han, Wang, Fu (bb0155) 2023; 234 Guo, Gurevich, Chen (bb0110) 2022; 127 Bai, Ma (bb0035) 2020; 26 Carcione, Qadrouh, Alajmi, Alqahtani, Ba (bb0065) 2023; 234 Guo, Qin, Liu (bb0125) 2023; 20 Botterill, McMillan (bb0045) 2023; 59 Zhao, Chen, Huang, Lan, Wang, Yao (bb0225) 2022; 214 He, Xie, Zhao, Ren, Zhang (bb0130) 2020; 53 Paszke, Gross, Chintala, Chanan, Yang, DeVito, Lin, Desmaison, Antiga, Lerer (bb0175) 2017 Fang, Ba, Carcione, Liu, Wang (bb0080) 2022; 31 Ahmed, Crary, Coates (bb0005) 1991; 43 Guo, Chen, Liuzhuang, Yang, Zheng, Chen, Mi (bb0105) 2020; 38 Bergen, Johnson, De Hoop, Beroza (bb0040) 2019; 363 Xiong, Sun, Ba, Carcione (bb0200) 2020; 125 Najafabadi, Villanustre, Khoshgoftaar, Seliya, Wald, Muharemagic (bb0165) 2015; 2 Pilz, Cotton, Kotha (bb0180) 2020; 222 Xie, Zhang, Xiang, Fang, Xue, Cao, Tian (bib229) 2022; 19 Kingma, Ba (bb0150) 2014 Anemangely, Ramezanzadeh, Tokhmechi (bb0015) 2017; 38 Helle, Bhatt, Ursin (bb0135) 2001; 49 Qadrouh, Carcione, Alajmi, Alyousif (bb0185) 2019; 60 Ba, Fang, Fu, Xu, Zhang (bb0025) 2023; 235 Carman (bb0070) 1961 Carcione, Gurevich, Cavallini (bb0050) 2000; 48 An, Yue, Zou, Zhang, Yan (bb0010) 2023; 229 Fang, Ba, Guo, Xiong (bb0085) 2024; 240 Zhang, Gao, Ba, Zhang, Carcione, Liu (bb0220) 2024; 21 Xie, Cao, Schmitt, Di, Xiao, Wang, Wang, Chen (bib227) 2019; 124 Cheng (bb0075) 1993; 98 Guo, Zhao, Liu (bb0120) 2022; 101 Timur (10.1016/j.jappgeo.2024.105501_bb0195) 1968; 9 Archie (10.1016/j.jappgeo.2024.105501_bb0020) 1942; 146 Bergen (10.1016/j.jappgeo.2024.105501_bb0040) 2019; 363 Xiong (10.1016/j.jappgeo.2024.105501_bb0205) 2021; 126 Anemangely (10.1016/j.jappgeo.2024.105501_bb0015) 2017; 38 Jamshidian (10.1016/j.jappgeo.2024.105501_bb0145) 2015; 24 Guo (10.1016/j.jappgeo.2024.105501_bb0100) 2019; 95 Srisutthiyakorn (10.1016/j.jappgeo.2024.105501_bb0190) 2017; 5 Guo (10.1016/j.jappgeo.2024.105501_bb0095) 2020; 125 You (10.1016/j.jappgeo.2024.105501_bb0210) 2020; 125 Zhang (10.1016/j.jappgeo.2024.105501_bb0220) 2024; 21 Zhang (10.1016/j.jappgeo.2024.105501_bb0215) 2021; 86 Ba (10.1016/j.jappgeo.2024.105501_bb0030) 2023; 128 Fang (10.1016/j.jappgeo.2024.105501_bb0080) 2022; 31 Guo (10.1016/j.jappgeo.2024.105501_bb0115) 2022; 146 Najafabadi (10.1016/j.jappgeo.2024.105501_bb0165) 2015; 2 Carcione (10.1016/j.jappgeo.2024.105501_bb0065) 2023; 234 Huang (10.1016/j.jappgeo.2024.105501_bb0140) 1996; 61 Helle (10.1016/j.jappgeo.2024.105501_bb0135) 2001; 49 Guo (10.1016/j.jappgeo.2024.105501_bb0105) 2020; 38 Kingma (10.1016/j.jappgeo.2024.105501_bb0150) 2014 Xie (10.1016/j.jappgeo.2024.105501_bib229) 2022; 19 Botterill (10.1016/j.jappgeo.2024.105501_bb0045) 2023; 59 Fu (10.1016/j.jappgeo.2024.105501_bb0090) 2020; 47 Xie (10.1016/j.jappgeo.2024.105501_bib227) 2019; 124 Madadi (10.1016/j.jappgeo.2024.105501_bb0160) 2019; 69 Pilz (10.1016/j.jappgeo.2024.105501_bb0180) 2020; 222 Carcione (10.1016/j.jappgeo.2024.105501_bb0055) 2018; 279 Carcione (10.1016/j.jappgeo.2024.105501_bb0060) 2019; 176 Carman (10.1016/j.jappgeo.2024.105501_bb0070) 1961 Zhao (10.1016/j.jappgeo.2024.105501_bb0225) 2022; 214 Ba (10.1016/j.jappgeo.2024.105501_bb0025) 2023; 235 Cheng (10.1016/j.jappgeo.2024.105501_bb0075) 1993; 98 Guo (10.1016/j.jappgeo.2024.105501_bb0125) 2023; 20 Lu (10.1016/j.jappgeo.2024.105501_bb0155) 2023; 234 Qadrouh (10.1016/j.jappgeo.2024.105501_bb0185) 2019; 60 An (10.1016/j.jappgeo.2024.105501_bb0010) 2023; 229 Paszke (10.1016/j.jappgeo.2024.105501_bb0175) 2017 Fang (10.1016/j.jappgeo.2024.105501_bb0085) 2024; 240 Guo (10.1016/j.jappgeo.2024.105501_bb0110) 2022; 127 Guo (10.1016/j.jappgeo.2024.105501_bb0120) 2022; 101 Bai (10.1016/j.jappgeo.2024.105501_bb0035) 2020; 26 Ahmed (10.1016/j.jappgeo.2024.105501_bb0005) 1991; 43 Xiong (10.1016/j.jappgeo.2024.105501_bb0200) 2020; 125 Xie (10.1016/j.jappgeo.2024.105501_bib228) 2023; 56 Carcione (10.1016/j.jappgeo.2024.105501_bb0050) 2000; 48 He (10.1016/j.jappgeo.2024.105501_bb0130) 2020; 53 Nkurlu (10.1016/j.jappgeo.2024.105501_bb0170) 2020; 13 |
References_xml | – year: 1961 ident: bb0070 article-title: L’ écoulement des gaz á Travers les milieux poreux, Bibliothéque des Sciences et Techniques Nucléaires – volume: 47 start-page: 931 year: 2020 end-page: 945 ident: bb0090 article-title: Geological characteristics and exploration of shale oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China publication-title: Pet. Explor. Dev. – volume: 59 year: 2023 ident: bb0045 article-title: Using machine learning to identify hydrologic signatures with an encoder–decoder framework publication-title: Water Resour. Res. – year: 2014 ident: bb0150 article-title: Adam: A method for stochastic optimization publication-title: International Conference on Learning Representations (ICLR), San Diego, CA, USA – volume: 124 start-page: 12660 year: 2019 end-page: 12678 ident: bib227 article-title: Effects of kerogen content on elastic properties-based on artificial organic-rich shale (AORS) publication-title: J. Geophys. Res. Solid Earth – volume: 363 year: 2019 ident: bb0040 article-title: Machine learning for data-driven discovery in solid earth geoscience publication-title: Science – volume: 69 start-page: 542 year: 2019 end-page: 551 ident: bb0160 article-title: Effect of porosity gradient on the permeability tensor publication-title: Geophys. Prospect. – volume: 98 start-page: 675 year: 1993 end-page: 684 ident: bb0075 article-title: Crack models for a transversely isotropic medium publication-title: J. Geophys. Res. Solid Earth – volume: 31 start-page: 81 year: 2022 end-page: 104 ident: bb0080 article-title: Estimation of the shear-wave velocity of shale-oil reservoirs: a case study of the Chang 7 Member in the Ordos Basin publication-title: J. Seism. Explor. – volume: 19 start-page: 2683 year: 2022 end-page: 2694 ident: bib229 article-title: Effect of microscopic pore structures on ultrasonic velocity in tight sandstone with different fluid saturation publication-title: Pet. Sci. – volume: 56 start-page: 3003 year: 2023 end-page: 3021 ident: bib228 article-title: Quantitative evaluation of shale brittleness based on brittle-sensitive index and energy evolution-based fuzzy analytic hierarchy process publication-title: Rock Mech. Rock Eng. – volume: 43 start-page: 578 year: 1991 end-page: 587 ident: bb0005 article-title: Permeability estimation: the various sources and their interrelationships publication-title: J. Pet. Technol. – volume: 86 year: 2021 ident: bb0215 article-title: Permeability and porosity prediction using logging data in a heterogeneous dolomite reservoir: An integrated approach publication-title: J. Nat. Gas Sci. Eng. – volume: 240 year: 2024 ident: bb0085 article-title: Shear-wave velocity prediction of tight reservoirs based on poroelasticity theory: a comparative study of deep neural network and rock physics model publication-title: Geoenergy Sci. Eng. – volume: 234 start-page: 2429 year: 2023 end-page: 2435 ident: bb0065 article-title: Rock acoustics of CO publication-title: Geophys. J. Int. – volume: 49 start-page: 431 year: 2001 end-page: 444 ident: bb0135 article-title: Porosity and permeability prediction from wireline logs using artificial neural networks: a North Sea case study publication-title: Geophys. Prospect. – volume: 128 year: 2023 ident: bb0030 article-title: Effect of multiscale cracks on seismic wave propagation in tight sandstones publication-title: J. Geophys. Res. Solid Earth – volume: 53 start-page: 291 year: 2020 end-page: 303 ident: bb0130 article-title: Highly efficient and simplified method for measuring the permeability of ultra-low permeability rocks based on the pulse-decay technique publication-title: Rock Mech. Rock. Eng. – volume: 146 start-page: 54 year: 1942 end-page: 62 ident: bb0020 article-title: The electrical resistivity log as an aid in determining some reservoir characteristics publication-title: Trans. AIME – volume: 20 start-page: 3428 year: 2023 end-page: 3440 ident: bb0125 article-title: Quantitative characterization of tight gas sandstone reservoirs using seismic data via an integrated rock-physics-based framework publication-title: Pet. Sci. – volume: 38 start-page: 373 year: 2017 end-page: 387 ident: bb0015 article-title: Shear wave travel time estimation from petrophysical logs using ANFIS-PSO algorithm: a case study from Ab-Teymour Oilfield publication-title: J. Nat. Gas Sci. Eng. – volume: 95 start-page: 1 year: 2019 end-page: 7 ident: bb0100 article-title: Transversely isotropic poroviscoelastic bending beam solutions for low-permeability porous medium publication-title: Mech. Res. Commun. – volume: 13 start-page: 551 year: 2020 ident: bb0170 article-title: Prediction of permeability using group method of data handling (GMDH) neural network from well log data publication-title: Energies – volume: 24 start-page: 89 year: 2015 end-page: 98 ident: bb0145 article-title: Prediction of free flowing porosity and permeability based on conventional well logging data using artificial neural networks optimized by imperialist competitive algorithm-a case study in the South Pars Gas field publication-title: J. Nat. Gas Sci. Eng. – volume: 126 year: 2021 ident: bb0205 article-title: Data-driven design of wave-propagation models for shale-oil reservoirs based on machine learning publication-title: J. Geophys. Res. Solid Earth – volume: 60 start-page: 375 year: 2019 end-page: 402 ident: bb0185 article-title: A tutorial on machine learning with geophysical applications publication-title: Boll. Geofis. Teor. Appl. – year: 2017 ident: bb0175 article-title: Automatic differentiation in pytorch publication-title: 31st Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA – volume: 2 start-page: 1 year: 2015 ident: bb0165 article-title: Deep learning applications and challenges in big data analytics publication-title: J. Big Data – volume: 48 start-page: 539 year: 2000 end-page: 557 ident: bb0050 article-title: A generalized Biot-Gassmann model for the acoustic properties of shaley sandstones publication-title: Geophys. Prospect. – volume: 176 start-page: 2581 year: 2019 end-page: 2594 ident: bb0060 article-title: Effect of clay and mineralogy on permeability publication-title: Pure Appl. Geophys. – volume: 146 year: 2022 ident: bb0115 article-title: Fracture characterization based on improved seismic amplitude variation with azimuth inversion in tight gas sandstones, Ordos Basin, China publication-title: Mar. Pet. Geol. – volume: 125 year: 2020 ident: bb0200 article-title: Effects of fluid rheology and pore connectivity on rock permeability based on a network model publication-title: J. Geophys. Res. Solid Earth – volume: 279 start-page: 67 year: 2018 end-page: 78 ident: bb0055 article-title: 3D seismic modeling in geothermal reservoirs with a distribution of steam patch sizes, permeabilities and saturations, including ductility of the rock frame publication-title: Phys. Earth Planet. Inter. – volume: 9 start-page: 3 year: 1968 end-page: 5 ident: bb0195 article-title: An investigation of permeability, porosity, & residual water saturation relationships for sandstone reservoirs publication-title: Log. Anal. – volume: 125 year: 2020 ident: bb0210 article-title: Shale anisotropy model building based on deep neural networks publication-title: J. Geophys. Res. Solid Earth – volume: 125 year: 2020 ident: bb0095 article-title: Frequency-dependent P wave anisotropy due to wave-induced fluid flow and elastic scattering in a fluid-saturated porous medium with aligned fractures publication-title: J. Geophys. Res. Solid Earth – volume: 222 start-page: 861 year: 2020 end-page: 873 ident: bb0180 article-title: Data-driven and machine learning identification of seismic reference stations in Europe publication-title: Geophys. J. Int. – volume: 229 year: 2023 ident: bb0010 article-title: Measuring gas permeability in tight cores at high pressure: Insights into supercritical carbon dioxide seepage characteristics publication-title: Geoenergy Sci. Eng. – volume: 127 year: 2022 ident: bb0110 article-title: Dynamic SV-wave signatures of fluid-saturated porous rocks containing intersecting fractures publication-title: J. Geophys. Res. Solid Earth – volume: 26 start-page: 355 year: 2020 end-page: 371 ident: bb0035 article-title: Geology of the Chang 7 Member oil shale of Yanchang Formation of the Ordos Basin in central North China publication-title: Pet. Geosci. – volume: 21 start-page: 1 year: 2024 end-page: 16 ident: bb0220 article-title: Permeability estimation of shale oil reservoir with laboratory-derived data: a case study of the Chang 7 Member in Ordos Basin publication-title: Appl. Geophys. – volume: 101 year: 2022 ident: bb0120 article-title: Gas prediction using an improved seismic dispersion attribute inversion for tight sandstone gas reservoirs in the Ordos Basin, China publication-title: J. Nat. Gas. Sci. Eng. – volume: 235 start-page: 2056 year: 2023 end-page: 2077 ident: bb0025 article-title: Acoustic wave propagation in a porous medium saturated with a Kelvin–Voigt non-Newtonian fluid publication-title: Geophys. J. Int. – volume: 38 start-page: 841 year: 2020 end-page: 866 ident: bb0105 article-title: Evaluation method for resource potential of shale oil in the Triassic Yanchang Formation of the Ordos Basin, China publication-title: Energy Explor. Exploit. – volume: 61 start-page: 422 year: 1996 end-page: 436 ident: bb0140 article-title: Permeability prediction with artificial neural network modeling in the Venture gas field, offshore eastern Canada publication-title: Geophysics – volume: 5 year: 2017 ident: bb0190 article-title: What is the role of tortuosity in the Kozeny-Carman equation? publication-title: Interpretation – volume: 214 year: 2022 ident: bb0225 article-title: Logging-data-driven permeability prediction in low-permeable sandstones based on machine learning with pattern visualization: a case study in Wenchang a Sag, Pearl River Mouth Basin publication-title: J. Pet. Sci. Eng. – volume: 234 start-page: 1422 year: 2023 end-page: 1429 ident: bb0155 article-title: Permeability of artificial sandstones identified by their dual-pore structure publication-title: Geophys. J. Int. – volume: 128 year: 2023 ident: 10.1016/j.jappgeo.2024.105501_bb0030 article-title: Effect of multiscale cracks on seismic wave propagation in tight sandstones publication-title: J. Geophys. Res. Solid Earth – volume: 61 start-page: 422 issue: 2 year: 1996 ident: 10.1016/j.jappgeo.2024.105501_bb0140 article-title: Permeability prediction with artificial neural network modeling in the Venture gas field, offshore eastern Canada publication-title: Geophysics doi: 10.1190/1.1443970 – volume: 59 year: 2023 ident: 10.1016/j.jappgeo.2024.105501_bb0045 article-title: Using machine learning to identify hydrologic signatures with an encoder–decoder framework publication-title: Water Resour. Res. doi: 10.1029/2022WR033091 – volume: 279 start-page: 67 year: 2018 ident: 10.1016/j.jappgeo.2024.105501_bb0055 article-title: 3D seismic modeling in geothermal reservoirs with a distribution of steam patch sizes, permeabilities and saturations, including ductility of the rock frame publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2018.03.004 – volume: 60 start-page: 375 issue: 3 year: 2019 ident: 10.1016/j.jappgeo.2024.105501_bb0185 article-title: A tutorial on machine learning with geophysical applications publication-title: Boll. Geofis. Teor. Appl. – volume: 24 start-page: 89 year: 2015 ident: 10.1016/j.jappgeo.2024.105501_bb0145 article-title: Prediction of free flowing porosity and permeability based on conventional well logging data using artificial neural networks optimized by imperialist competitive algorithm-a case study in the South Pars Gas field publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2015.02.026 – volume: 126 year: 2021 ident: 10.1016/j.jappgeo.2024.105501_bb0205 article-title: Data-driven design of wave-propagation models for shale-oil reservoirs based on machine learning publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2021JB022665 – volume: 125 year: 2020 ident: 10.1016/j.jappgeo.2024.105501_bb0210 article-title: Shale anisotropy model building based on deep neural networks publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2019JB019042 – volume: 95 start-page: 1 year: 2019 ident: 10.1016/j.jappgeo.2024.105501_bb0100 article-title: Transversely isotropic poroviscoelastic bending beam solutions for low-permeability porous medium publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2018.11.001 – volume: 125 issue: 3 year: 2020 ident: 10.1016/j.jappgeo.2024.105501_bb0200 article-title: Effects of fluid rheology and pore connectivity on rock permeability based on a network model publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2019JB018857 – volume: 56 start-page: 3003 issue: 4 year: 2023 ident: 10.1016/j.jappgeo.2024.105501_bib228 article-title: Quantitative evaluation of shale brittleness based on brittle-sensitive index and energy evolution-based fuzzy analytic hierarchy process publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-022-03213-y – volume: 26 start-page: 355 issue: 2 year: 2020 ident: 10.1016/j.jappgeo.2024.105501_bb0035 article-title: Geology of the Chang 7 Member oil shale of Yanchang Formation of the Ordos Basin in central North China publication-title: Pet. Geosci. doi: 10.1144/petgeo2018-091 – volume: 5 issue: 1 year: 2017 ident: 10.1016/j.jappgeo.2024.105501_bb0190 article-title: What is the role of tortuosity in the Kozeny-Carman equation? publication-title: Interpretation doi: 10.1190/INT-2016-0080.1 – volume: 38 start-page: 373 year: 2017 ident: 10.1016/j.jappgeo.2024.105501_bb0015 article-title: Shear wave travel time estimation from petrophysical logs using ANFIS-PSO algorithm: a case study from Ab-Teymour Oilfield publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2017.01.003 – volume: 176 start-page: 2581 year: 2019 ident: 10.1016/j.jappgeo.2024.105501_bb0060 article-title: Effect of clay and mineralogy on permeability publication-title: Pure Appl. Geophys. doi: 10.1007/s00024-019-02117-3 – volume: 125 year: 2020 ident: 10.1016/j.jappgeo.2024.105501_bb0095 article-title: Frequency-dependent P wave anisotropy due to wave-induced fluid flow and elastic scattering in a fluid-saturated porous medium with aligned fractures publication-title: J. Geophys. Res. Solid Earth – volume: 235 start-page: 2056 year: 2023 ident: 10.1016/j.jappgeo.2024.105501_bb0025 article-title: Acoustic wave propagation in a porous medium saturated with a Kelvin–Voigt non-Newtonian fluid publication-title: Geophys. J. Int. doi: 10.1093/gji/ggad355 – volume: 38 start-page: 841 issue: 4 year: 2020 ident: 10.1016/j.jappgeo.2024.105501_bb0105 article-title: Evaluation method for resource potential of shale oil in the Triassic Yanchang Formation of the Ordos Basin, China publication-title: Energy Explor. Exploit. doi: 10.1177/0144598720903394 – volume: 49 start-page: 431 issue: 4 year: 2001 ident: 10.1016/j.jappgeo.2024.105501_bb0135 article-title: Porosity and permeability prediction from wireline logs using artificial neural networks: a North Sea case study publication-title: Geophys. Prospect. doi: 10.1046/j.1365-2478.2001.00271.x – volume: 234 start-page: 2429 issue: 3 year: 2023 ident: 10.1016/j.jappgeo.2024.105501_bb0065 article-title: Rock acoustics of CO2 storage in basalt publication-title: Geophys. J. Int. doi: 10.1093/gji/ggad252 – year: 2017 ident: 10.1016/j.jappgeo.2024.105501_bb0175 article-title: Automatic differentiation in pytorch – volume: 146 start-page: 54 issue: 1 year: 1942 ident: 10.1016/j.jappgeo.2024.105501_bb0020 article-title: The electrical resistivity log as an aid in determining some reservoir characteristics publication-title: Trans. AIME doi: 10.2118/942054-G – volume: 86 year: 2021 ident: 10.1016/j.jappgeo.2024.105501_bb0215 article-title: Permeability and porosity prediction using logging data in a heterogeneous dolomite reservoir: An integrated approach publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2020.103743 – year: 1961 ident: 10.1016/j.jappgeo.2024.105501_bb0070 – volume: 98 start-page: 675 issue: B1 year: 1993 ident: 10.1016/j.jappgeo.2024.105501_bb0075 article-title: Crack models for a transversely isotropic medium publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/92JB02118 – volume: 229 year: 2023 ident: 10.1016/j.jappgeo.2024.105501_bb0010 article-title: Measuring gas permeability in tight cores at high pressure: Insights into supercritical carbon dioxide seepage characteristics publication-title: Geoenergy Sci. Eng. doi: 10.1016/j.geoen.2023.212070 – volume: 101 year: 2022 ident: 10.1016/j.jappgeo.2024.105501_bb0120 article-title: Gas prediction using an improved seismic dispersion attribute inversion for tight sandstone gas reservoirs in the Ordos Basin, China publication-title: J. Nat. Gas. Sci. Eng. doi: 10.1016/j.jngse.2022.104499 – volume: 53 start-page: 291 issue: 1 year: 2020 ident: 10.1016/j.jappgeo.2024.105501_bb0130 article-title: Highly efficient and simplified method for measuring the permeability of ultra-low permeability rocks based on the pulse-decay technique publication-title: Rock Mech. Rock. Eng. doi: 10.1007/s00603-019-01911-8 – volume: 124 start-page: 12660 issue: 12 year: 2019 ident: 10.1016/j.jappgeo.2024.105501_bib227 article-title: Effects of kerogen content on elastic properties-based on artificial organic-rich shale (AORS) publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2019JB017595 – volume: 363 issue: 6433 year: 2019 ident: 10.1016/j.jappgeo.2024.105501_bb0040 article-title: Machine learning for data-driven discovery in solid earth geoscience publication-title: Science doi: 10.1126/science.aau0323 – volume: 9 start-page: 3 issue: 4 year: 1968 ident: 10.1016/j.jappgeo.2024.105501_bb0195 article-title: An investigation of permeability, porosity, & residual water saturation relationships for sandstone reservoirs publication-title: Log. Anal. – volume: 31 start-page: 81 year: 2022 ident: 10.1016/j.jappgeo.2024.105501_bb0080 article-title: Estimation of the shear-wave velocity of shale-oil reservoirs: a case study of the Chang 7 Member in the Ordos Basin publication-title: J. Seism. Explor. – volume: 69 start-page: 542 issue: 3 year: 2019 ident: 10.1016/j.jappgeo.2024.105501_bb0160 article-title: Effect of porosity gradient on the permeability tensor publication-title: Geophys. Prospect. doi: 10.1111/1365-2478.12922 – volume: 146 year: 2022 ident: 10.1016/j.jappgeo.2024.105501_bb0115 article-title: Fracture characterization based on improved seismic amplitude variation with azimuth inversion in tight gas sandstones, Ordos Basin, China publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2022.105941 – volume: 47 start-page: 931 issue: 5 year: 2020 ident: 10.1016/j.jappgeo.2024.105501_bb0090 article-title: Geological characteristics and exploration of shale oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(20)60107-0 – volume: 234 start-page: 1422 year: 2023 ident: 10.1016/j.jappgeo.2024.105501_bb0155 article-title: Permeability of artificial sandstones identified by their dual-pore structure publication-title: Geophys. J. Int. doi: 10.1093/gji/ggad149 – volume: 214 year: 2022 ident: 10.1016/j.jappgeo.2024.105501_bb0225 article-title: Logging-data-driven permeability prediction in low-permeable sandstones based on machine learning with pattern visualization: a case study in Wenchang a Sag, Pearl River Mouth Basin publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2022.110517 – volume: 20 start-page: 3428 issue: 6 year: 2023 ident: 10.1016/j.jappgeo.2024.105501_bb0125 article-title: Quantitative characterization of tight gas sandstone reservoirs using seismic data via an integrated rock-physics-based framework publication-title: Pet. Sci. doi: 10.1016/j.petsci.2023.09.003 – volume: 2 start-page: 1 year: 2015 ident: 10.1016/j.jappgeo.2024.105501_bb0165 article-title: Deep learning applications and challenges in big data analytics publication-title: J. Big Data doi: 10.1186/s40537-014-0007-7 – volume: 222 start-page: 861 issue: 2 year: 2020 ident: 10.1016/j.jappgeo.2024.105501_bb0180 article-title: Data-driven and machine learning identification of seismic reference stations in Europe publication-title: Geophys. J. Int. doi: 10.1093/gji/ggaa199 – volume: 48 start-page: 539 year: 2000 ident: 10.1016/j.jappgeo.2024.105501_bb0050 article-title: A generalized Biot-Gassmann model for the acoustic properties of shaley sandstones publication-title: Geophys. Prospect. doi: 10.1046/j.1365-2478.2000.00198.x – volume: 127 year: 2022 ident: 10.1016/j.jappgeo.2024.105501_bb0110 article-title: Dynamic SV-wave signatures of fluid-saturated porous rocks containing intersecting fractures publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2022JB024745 – volume: 21 start-page: 1 issue: 1 year: 2024 ident: 10.1016/j.jappgeo.2024.105501_bb0220 article-title: Permeability estimation of shale oil reservoir with laboratory-derived data: a case study of the Chang 7 Member in Ordos Basin publication-title: Appl. Geophys. – volume: 240 year: 2024 ident: 10.1016/j.jappgeo.2024.105501_bb0085 article-title: Shear-wave velocity prediction of tight reservoirs based on poroelasticity theory: a comparative study of deep neural network and rock physics model publication-title: Geoenergy Sci. Eng. doi: 10.1016/j.geoen.2024.213028 – volume: 43 start-page: 578 issue: 5 year: 1991 ident: 10.1016/j.jappgeo.2024.105501_bb0005 article-title: Permeability estimation: the various sources and their interrelationships publication-title: J. Pet. Technol. doi: 10.2118/19604-PA – year: 2014 ident: 10.1016/j.jappgeo.2024.105501_bb0150 article-title: Adam: A method for stochastic optimization – volume: 19 start-page: 2683 issue: 6 year: 2022 ident: 10.1016/j.jappgeo.2024.105501_bib229 article-title: Effect of microscopic pore structures on ultrasonic velocity in tight sandstone with different fluid saturation publication-title: Pet. Sci. doi: 10.1016/j.petsci.2022.06.009 – volume: 13 start-page: 551 issue: 3 year: 2020 ident: 10.1016/j.jappgeo.2024.105501_bb0170 article-title: Prediction of permeability using group method of data handling (GMDH) neural network from well log data publication-title: Energies doi: 10.3390/en13030551 |
SSID | ssj0001304 |
Score | 2.419438 |
Snippet | Permeability is a critical parameter for evaluating reservoir properties, and accurate prediction is an important basis for identifying high-quality reservoirs... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105501 |
SubjectTerms | Deep neural networks Machine learning Ordos Basin Permeability prediction Tight reservoirs Well-log data |
Title | Permeability prediction using logging data from tight reservoirs based on deep neural networks |
URI | https://dx.doi.org/10.1016/j.jappgeo.2024.105501 |
Volume | 229 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KvehB_MT6UfbgNU1MdrPJsRRLVSyCFnoyJJvd0iJpSKPgxd_uTLKxFUHBY5YdEmYnb17ImxlCLnkYQJxI11JScIvJGF4pzrUlWQh8NEl47GOh8P3YH03Y7ZRPW2TQ1MKgrNJgf43pFVqbFdt4087nc_vRCV0_BMKAKkgg1ljEx5jAKO99rGUegNFVCynYbOHudRWPvegt4jyfVTWALsOJt9zMhvmRnzZyznCP7BqySPv18-yTlsoOyM5GC8FD8vwA0KrqZtvvNC_wvwv6mqKgfUYB2XAKEUUhKMVSElri1zjFoqPibTkvVhTzWErBIlUqp9jfEm6Z1erw1RGZDK-fBiPLzEywYs9zS4slgvtC-TKIhRQ6Sb2Ecy6k0h4TqZfqK80Ba2PXFbAkvUSr1FWxkwbS0Zpr75i0s2WmTghNIbWrQLMEWAETEqik62nI5wFyGBE4HcIaT0XSNBTHuRYvUaMcW0TGwRE6OKod3CG9L7O87qjxl0HQHEP0LTQiQP3fTU__b3pGtvGq1u2dk3ZZvKoL4B9l0q0CrEu2-jd3o_EnBnzcew |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1qPagH8RO_3YPXmJrsZpNjKZbUahFswZMh2eyWFklDrYL_3plmWxVBwesmQ8Jk8-aFvHkDcCGiEPeJ8hytpHC4SvGVEsI4ikfIR7NMpAE1Ct_1gnjAbx7FYw1ai14YklVa7K8wfY7WdsW12XTL0ch9aEReECFhIBUkEutoBVbJnUrUYbXZ6ca9JSAjTM9dpPB8hwI-G3nc8eU4LcvhvA3Q4zT0VtjxMD9K1Jey096CTcsXWbO6pW2o6WIHNr64CO7C0z2iq678tt9ZOaVfL5RuRpr2IUNwo0FEjLSgjLpJ2Iw-yBn1HU3fJqPpC6NSljOMyLUuGVlc4iWLSiD-sgeD9nW_FTt2bIKT-r43c3gmRSB1oMJUKmmy3M-EEFJp43OZ-7m5MgLhNvU8iUvKz4zOPZ028lA1jBHG34d6MSn0AbAcq7sODc-QGHCpkE16vsGSHhKNkWHjEPgiU4mynuI02uI5WYjHxolNcEIJTqoEH8LlMqysTDX-CggXjyH5tjsSBP7fQ4_-H3oOa3H_7ja57fS6x7BORyoZ3wnUZ9NXfYp0ZJad2e32AZp_3yw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Permeability+prediction+using+logging+data+from+tight+reservoirs+based+on+deep+neural+networks&rft.jtitle=Journal+of+applied+geophysics&rft.au=Fang%2C+Zhijian&rft.au=Ba%2C+Jing&rft.au=Carcione%2C+Jos%C3%A9+M.&rft.au=Xiong%2C+Fansheng&rft.date=2024-10-01&rft.pub=Elsevier+B.V&rft.issn=0926-9851&rft.volume=229&rft_id=info:doi/10.1016%2Fj.jappgeo.2024.105501&rft.externalDocID=S0926985124002179 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9851&client=summon |