Permeability prediction using logging data from tight reservoirs based on deep neural networks

Permeability is a critical parameter for evaluating reservoir properties, and accurate prediction is an important basis for identifying high-quality reservoirs and geological modeling. However, the strong heterogeneity, complex lithology and diagenesis in the reservoirs of this region pose a major c...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied geophysics Vol. 229; p. 105501
Main Authors Fang, Zhijian, Ba, Jing, Carcione, José M., Xiong, Fansheng, Gao, Li
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Permeability is a critical parameter for evaluating reservoir properties, and accurate prediction is an important basis for identifying high-quality reservoirs and geological modeling. However, the strong heterogeneity, complex lithology and diagenesis in the reservoirs of this region pose a major challenge for the accurate assessment of reservoir permeability. In recent years, the use of machine learning (ML) to solve problems in geophysical well logging and related fields has gained much attention thanks to advances in data science and artificial intelligence. ML is any predictive algorithm or combination of algorithms that learns from data and makes predictions without being explicitly coded with a deterministic model. The most immediate example is deep neural networks (DNN) that are trained with data to minimize a cost function and make predictions. The tight reservoirs in the Chang 7 Member of the Ordos Basin host significant oil and gas resources and have recently emerged as the main focus of unconventional oil and gas exploration and development. In this work, we performed DNN-based permeability prediction for the tight reservoirs in the Ordos Basin area. From 19 well logs, we selected effective data points from 17 wells for DNN training after preprocessing and used the remaining two wells for testing. First, we trained the DNN with all collected parameters as inputs, resulting in permeability prediction R2 values of 0.64 and 0.72 for the two wells, indicating a good fit. We then optimized the input parameters by performing a crossplot analysis between these parameters and the permeability. Using the same network structure (with all hyperparameters set the same), we trained the DNN again to obtain a new DNN-based model. The prediction results showed that removing input parameters with poor correlation to permeability improved the prediction accuracy with R2 values of 0.70 and 0.87 for the two wells. •DNN-based method is developed to predict permeability by using logging data of tight reservoirs.•Optimizing the input parameters by performing a crossplot analysis between input parameters and the permeability to improve prediction accuracy.•The proposed method achieves satisfactory results in the practical applications for tight reservoirs.
AbstractList Permeability is a critical parameter for evaluating reservoir properties, and accurate prediction is an important basis for identifying high-quality reservoirs and geological modeling. However, the strong heterogeneity, complex lithology and diagenesis in the reservoirs of this region pose a major challenge for the accurate assessment of reservoir permeability. In recent years, the use of machine learning (ML) to solve problems in geophysical well logging and related fields has gained much attention thanks to advances in data science and artificial intelligence. ML is any predictive algorithm or combination of algorithms that learns from data and makes predictions without being explicitly coded with a deterministic model. The most immediate example is deep neural networks (DNN) that are trained with data to minimize a cost function and make predictions. The tight reservoirs in the Chang 7 Member of the Ordos Basin host significant oil and gas resources and have recently emerged as the main focus of unconventional oil and gas exploration and development. In this work, we performed DNN-based permeability prediction for the tight reservoirs in the Ordos Basin area. From 19 well logs, we selected effective data points from 17 wells for DNN training after preprocessing and used the remaining two wells for testing. First, we trained the DNN with all collected parameters as inputs, resulting in permeability prediction R2 values of 0.64 and 0.72 for the two wells, indicating a good fit. We then optimized the input parameters by performing a crossplot analysis between these parameters and the permeability. Using the same network structure (with all hyperparameters set the same), we trained the DNN again to obtain a new DNN-based model. The prediction results showed that removing input parameters with poor correlation to permeability improved the prediction accuracy with R2 values of 0.70 and 0.87 for the two wells. •DNN-based method is developed to predict permeability by using logging data of tight reservoirs.•Optimizing the input parameters by performing a crossplot analysis between input parameters and the permeability to improve prediction accuracy.•The proposed method achieves satisfactory results in the practical applications for tight reservoirs.
ArticleNumber 105501
Author Fang, Zhijian
Xiong, Fansheng
Carcione, José M.
Ba, Jing
Gao, Li
Author_xml – sequence: 1
  givenname: Zhijian
  surname: Fang
  fullname: Fang, Zhijian
  organization: School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
– sequence: 2
  givenname: Jing
  surname: Ba
  fullname: Ba, Jing
  email: jba@hhu.edu.cn
  organization: School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
– sequence: 3
  givenname: José M.
  surname: Carcione
  fullname: Carcione, José M.
  organization: School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
– sequence: 4
  givenname: Fansheng
  surname: Xiong
  fullname: Xiong, Fansheng
  organization: Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China
– sequence: 5
  givenname: Li
  surname: Gao
  fullname: Gao, Li
  organization: School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
BookMark eNqFkMtKAzEYhbOoYFt9BCEvMDWXyUyLC5HiDQq60K0hk_wZM04nQ5JW-vbO0K7cdHXgwHfgfDM06XwHCN1QsqCEFrfNolF9X4NfMMLyoROC0AmakhUrstVS0Es0i7EhhFBO8in6eoewBVW51qUD7gMYp5PzHd5F19W49XU9plFJYRv8FidXfyccIELYexcirlQEgwfCAPS4g11Q7RDp14efeIUurGojXJ9yjj6fHj_WL9nm7fl1_bDJFOcsZXlViqKEQi9VqUtbGV4JIUoNluel4cZSK0BpxVg5VJpXFgwDRcxSE2uF5XN0d9zVwccYwErtkhqPpKBcKymRox7ZyJMeOeqRRz0DLf7RfXBbFQ5nufsjB8O1vYMgo3bQ6UFiAJ2k8e7Mwh-q84qE
CitedBy_id crossref_primary_10_1016_j_rineng_2024_103421
crossref_primary_10_1016_j_jappgeo_2024_105571
crossref_primary_10_3390_su17052048
crossref_primary_10_3390_en18020391
Cites_doi 10.1190/1.1443970
10.1029/2022WR033091
10.1016/j.pepi.2018.03.004
10.1016/j.jngse.2015.02.026
10.1029/2021JB022665
10.1029/2019JB019042
10.1016/j.mechrescom.2018.11.001
10.1029/2019JB018857
10.1007/s00603-022-03213-y
10.1144/petgeo2018-091
10.1190/INT-2016-0080.1
10.1016/j.jngse.2017.01.003
10.1007/s00024-019-02117-3
10.1093/gji/ggad355
10.1177/0144598720903394
10.1046/j.1365-2478.2001.00271.x
10.1093/gji/ggad252
10.2118/942054-G
10.1016/j.jngse.2020.103743
10.1029/92JB02118
10.1016/j.geoen.2023.212070
10.1016/j.jngse.2022.104499
10.1007/s00603-019-01911-8
10.1029/2019JB017595
10.1126/science.aau0323
10.1111/1365-2478.12922
10.1016/j.marpetgeo.2022.105941
10.1016/S1876-3804(20)60107-0
10.1093/gji/ggad149
10.1016/j.petrol.2022.110517
10.1016/j.petsci.2023.09.003
10.1186/s40537-014-0007-7
10.1093/gji/ggaa199
10.1046/j.1365-2478.2000.00198.x
10.1029/2022JB024745
10.1016/j.geoen.2024.213028
10.2118/19604-PA
10.1016/j.petsci.2022.06.009
10.3390/en13030551
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jappgeo.2024.105501
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_jappgeo_2024_105501
S0926985124002179
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSZ
T5K
VH1
WUQ
XPP
ZMT
~02
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-a332t-4b7567e6c8a7c7fbd3b5557cef347d3df1f5eaca227ef3c3bfed2ea0d8c0ff5f3
IEDL.DBID .~1
ISSN 0926-9851
IngestDate Tue Jul 01 02:17:27 EDT 2025
Thu Apr 24 23:08:41 EDT 2025
Sat Sep 14 18:12:41 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Ordos Basin
Deep neural networks
Permeability prediction
Tight reservoirs
Well-log data
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a332t-4b7567e6c8a7c7fbd3b5557cef347d3df1f5eaca227ef3c3bfed2ea0d8c0ff5f3
ParticipantIDs crossref_citationtrail_10_1016_j_jappgeo_2024_105501
crossref_primary_10_1016_j_jappgeo_2024_105501
elsevier_sciencedirect_doi_10_1016_j_jappgeo_2024_105501
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Journal of applied geophysics
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Carcione, Gei, Yu, Ba (bb0060) 2019; 176
Xiong, Ba, Gei, Carcione (bb0205) 2021; 126
Srisutthiyakorn, Mavko (bb0190) 2017; 5
Timur (bb0195) 1968; 9
Fu, Li, Niu, Deng, Zhou (bb0090) 2020; 47
Carcione, Poletto, Farina, Bellezza (bb0055) 2018; 279
Guo, Liu, Abousleiman (bb0100) 2019; 95
Archie (bb0020) 1942; 146
Guo, Gurevich (bb0095) 2020; 125
Madadi, Müller (bb0160) 2019; 69
Zhang, Zhang, Li, Cai (bb0215) 2021; 86
Xie, Zhang, Fang, Cao, Deng (bib228) 2023; 56
You, Li, Cheng (bb0210) 2020; 125
Ba, Zhu, Zhang, Carcione (bb0030) 2023; 128
Nkurlu, Shen, Asante-Okyere, Mulashani, Chungu, Wang (bb0170) 2020; 13
Huang, Shimeld, Williamson, Katsube (bb0140) 1996; 61
Guo, Nie, Liu (bb0115) 2022; 146
Jamshidian, Hadian, Zadeh, Kazempoor, Bazargan, Salehi (bb0145) 2015; 24
Lu, Han, Wang, Fu (bb0155) 2023; 234
Guo, Gurevich, Chen (bb0110) 2022; 127
Bai, Ma (bb0035) 2020; 26
Carcione, Qadrouh, Alajmi, Alqahtani, Ba (bb0065) 2023; 234
Guo, Qin, Liu (bb0125) 2023; 20
Botterill, McMillan (bb0045) 2023; 59
Zhao, Chen, Huang, Lan, Wang, Yao (bb0225) 2022; 214
He, Xie, Zhao, Ren, Zhang (bb0130) 2020; 53
Paszke, Gross, Chintala, Chanan, Yang, DeVito, Lin, Desmaison, Antiga, Lerer (bb0175) 2017
Fang, Ba, Carcione, Liu, Wang (bb0080) 2022; 31
Ahmed, Crary, Coates (bb0005) 1991; 43
Guo, Chen, Liuzhuang, Yang, Zheng, Chen, Mi (bb0105) 2020; 38
Bergen, Johnson, De Hoop, Beroza (bb0040) 2019; 363
Xiong, Sun, Ba, Carcione (bb0200) 2020; 125
Najafabadi, Villanustre, Khoshgoftaar, Seliya, Wald, Muharemagic (bb0165) 2015; 2
Pilz, Cotton, Kotha (bb0180) 2020; 222
Xie, Zhang, Xiang, Fang, Xue, Cao, Tian (bib229) 2022; 19
Kingma, Ba (bb0150) 2014
Anemangely, Ramezanzadeh, Tokhmechi (bb0015) 2017; 38
Helle, Bhatt, Ursin (bb0135) 2001; 49
Qadrouh, Carcione, Alajmi, Alyousif (bb0185) 2019; 60
Ba, Fang, Fu, Xu, Zhang (bb0025) 2023; 235
Carman (bb0070) 1961
Carcione, Gurevich, Cavallini (bb0050) 2000; 48
An, Yue, Zou, Zhang, Yan (bb0010) 2023; 229
Fang, Ba, Guo, Xiong (bb0085) 2024; 240
Zhang, Gao, Ba, Zhang, Carcione, Liu (bb0220) 2024; 21
Xie, Cao, Schmitt, Di, Xiao, Wang, Wang, Chen (bib227) 2019; 124
Cheng (bb0075) 1993; 98
Guo, Zhao, Liu (bb0120) 2022; 101
Timur (10.1016/j.jappgeo.2024.105501_bb0195) 1968; 9
Archie (10.1016/j.jappgeo.2024.105501_bb0020) 1942; 146
Bergen (10.1016/j.jappgeo.2024.105501_bb0040) 2019; 363
Xiong (10.1016/j.jappgeo.2024.105501_bb0205) 2021; 126
Anemangely (10.1016/j.jappgeo.2024.105501_bb0015) 2017; 38
Jamshidian (10.1016/j.jappgeo.2024.105501_bb0145) 2015; 24
Guo (10.1016/j.jappgeo.2024.105501_bb0100) 2019; 95
Srisutthiyakorn (10.1016/j.jappgeo.2024.105501_bb0190) 2017; 5
Guo (10.1016/j.jappgeo.2024.105501_bb0095) 2020; 125
You (10.1016/j.jappgeo.2024.105501_bb0210) 2020; 125
Zhang (10.1016/j.jappgeo.2024.105501_bb0220) 2024; 21
Zhang (10.1016/j.jappgeo.2024.105501_bb0215) 2021; 86
Ba (10.1016/j.jappgeo.2024.105501_bb0030) 2023; 128
Fang (10.1016/j.jappgeo.2024.105501_bb0080) 2022; 31
Guo (10.1016/j.jappgeo.2024.105501_bb0115) 2022; 146
Najafabadi (10.1016/j.jappgeo.2024.105501_bb0165) 2015; 2
Carcione (10.1016/j.jappgeo.2024.105501_bb0065) 2023; 234
Huang (10.1016/j.jappgeo.2024.105501_bb0140) 1996; 61
Helle (10.1016/j.jappgeo.2024.105501_bb0135) 2001; 49
Guo (10.1016/j.jappgeo.2024.105501_bb0105) 2020; 38
Kingma (10.1016/j.jappgeo.2024.105501_bb0150) 2014
Xie (10.1016/j.jappgeo.2024.105501_bib229) 2022; 19
Botterill (10.1016/j.jappgeo.2024.105501_bb0045) 2023; 59
Fu (10.1016/j.jappgeo.2024.105501_bb0090) 2020; 47
Xie (10.1016/j.jappgeo.2024.105501_bib227) 2019; 124
Madadi (10.1016/j.jappgeo.2024.105501_bb0160) 2019; 69
Pilz (10.1016/j.jappgeo.2024.105501_bb0180) 2020; 222
Carcione (10.1016/j.jappgeo.2024.105501_bb0055) 2018; 279
Carcione (10.1016/j.jappgeo.2024.105501_bb0060) 2019; 176
Carman (10.1016/j.jappgeo.2024.105501_bb0070) 1961
Zhao (10.1016/j.jappgeo.2024.105501_bb0225) 2022; 214
Ba (10.1016/j.jappgeo.2024.105501_bb0025) 2023; 235
Cheng (10.1016/j.jappgeo.2024.105501_bb0075) 1993; 98
Guo (10.1016/j.jappgeo.2024.105501_bb0125) 2023; 20
Lu (10.1016/j.jappgeo.2024.105501_bb0155) 2023; 234
Qadrouh (10.1016/j.jappgeo.2024.105501_bb0185) 2019; 60
An (10.1016/j.jappgeo.2024.105501_bb0010) 2023; 229
Paszke (10.1016/j.jappgeo.2024.105501_bb0175) 2017
Fang (10.1016/j.jappgeo.2024.105501_bb0085) 2024; 240
Guo (10.1016/j.jappgeo.2024.105501_bb0110) 2022; 127
Guo (10.1016/j.jappgeo.2024.105501_bb0120) 2022; 101
Bai (10.1016/j.jappgeo.2024.105501_bb0035) 2020; 26
Ahmed (10.1016/j.jappgeo.2024.105501_bb0005) 1991; 43
Xiong (10.1016/j.jappgeo.2024.105501_bb0200) 2020; 125
Xie (10.1016/j.jappgeo.2024.105501_bib228) 2023; 56
Carcione (10.1016/j.jappgeo.2024.105501_bb0050) 2000; 48
He (10.1016/j.jappgeo.2024.105501_bb0130) 2020; 53
Nkurlu (10.1016/j.jappgeo.2024.105501_bb0170) 2020; 13
References_xml – year: 1961
  ident: bb0070
  article-title: L’ écoulement des gaz á Travers les milieux poreux, Bibliothéque des Sciences et Techniques Nucléaires
– volume: 47
  start-page: 931
  year: 2020
  end-page: 945
  ident: bb0090
  article-title: Geological characteristics and exploration of shale oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China
  publication-title: Pet. Explor. Dev.
– volume: 59
  year: 2023
  ident: bb0045
  article-title: Using machine learning to identify hydrologic signatures with an encoder–decoder framework
  publication-title: Water Resour. Res.
– year: 2014
  ident: bb0150
  article-title: Adam: A method for stochastic optimization
  publication-title: International Conference on Learning Representations (ICLR), San Diego, CA, USA
– volume: 124
  start-page: 12660
  year: 2019
  end-page: 12678
  ident: bib227
  article-title: Effects of kerogen content on elastic properties-based on artificial organic-rich shale (AORS)
  publication-title: J. Geophys. Res. Solid Earth
– volume: 363
  year: 2019
  ident: bb0040
  article-title: Machine learning for data-driven discovery in solid earth geoscience
  publication-title: Science
– volume: 69
  start-page: 542
  year: 2019
  end-page: 551
  ident: bb0160
  article-title: Effect of porosity gradient on the permeability tensor
  publication-title: Geophys. Prospect.
– volume: 98
  start-page: 675
  year: 1993
  end-page: 684
  ident: bb0075
  article-title: Crack models for a transversely isotropic medium
  publication-title: J. Geophys. Res. Solid Earth
– volume: 31
  start-page: 81
  year: 2022
  end-page: 104
  ident: bb0080
  article-title: Estimation of the shear-wave velocity of shale-oil reservoirs: a case study of the Chang 7 Member in the Ordos Basin
  publication-title: J. Seism. Explor.
– volume: 19
  start-page: 2683
  year: 2022
  end-page: 2694
  ident: bib229
  article-title: Effect of microscopic pore structures on ultrasonic velocity in tight sandstone with different fluid saturation
  publication-title: Pet. Sci.
– volume: 56
  start-page: 3003
  year: 2023
  end-page: 3021
  ident: bib228
  article-title: Quantitative evaluation of shale brittleness based on brittle-sensitive index and energy evolution-based fuzzy analytic hierarchy process
  publication-title: Rock Mech. Rock Eng.
– volume: 43
  start-page: 578
  year: 1991
  end-page: 587
  ident: bb0005
  article-title: Permeability estimation: the various sources and their interrelationships
  publication-title: J. Pet. Technol.
– volume: 86
  year: 2021
  ident: bb0215
  article-title: Permeability and porosity prediction using logging data in a heterogeneous dolomite reservoir: An integrated approach
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 240
  year: 2024
  ident: bb0085
  article-title: Shear-wave velocity prediction of tight reservoirs based on poroelasticity theory: a comparative study of deep neural network and rock physics model
  publication-title: Geoenergy Sci. Eng.
– volume: 234
  start-page: 2429
  year: 2023
  end-page: 2435
  ident: bb0065
  article-title: Rock acoustics of CO
  publication-title: Geophys. J. Int.
– volume: 49
  start-page: 431
  year: 2001
  end-page: 444
  ident: bb0135
  article-title: Porosity and permeability prediction from wireline logs using artificial neural networks: a North Sea case study
  publication-title: Geophys. Prospect.
– volume: 128
  year: 2023
  ident: bb0030
  article-title: Effect of multiscale cracks on seismic wave propagation in tight sandstones
  publication-title: J. Geophys. Res. Solid Earth
– volume: 53
  start-page: 291
  year: 2020
  end-page: 303
  ident: bb0130
  article-title: Highly efficient and simplified method for measuring the permeability of ultra-low permeability rocks based on the pulse-decay technique
  publication-title: Rock Mech. Rock. Eng.
– volume: 146
  start-page: 54
  year: 1942
  end-page: 62
  ident: bb0020
  article-title: The electrical resistivity log as an aid in determining some reservoir characteristics
  publication-title: Trans. AIME
– volume: 20
  start-page: 3428
  year: 2023
  end-page: 3440
  ident: bb0125
  article-title: Quantitative characterization of tight gas sandstone reservoirs using seismic data via an integrated rock-physics-based framework
  publication-title: Pet. Sci.
– volume: 38
  start-page: 373
  year: 2017
  end-page: 387
  ident: bb0015
  article-title: Shear wave travel time estimation from petrophysical logs using ANFIS-PSO algorithm: a case study from Ab-Teymour Oilfield
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 95
  start-page: 1
  year: 2019
  end-page: 7
  ident: bb0100
  article-title: Transversely isotropic poroviscoelastic bending beam solutions for low-permeability porous medium
  publication-title: Mech. Res. Commun.
– volume: 13
  start-page: 551
  year: 2020
  ident: bb0170
  article-title: Prediction of permeability using group method of data handling (GMDH) neural network from well log data
  publication-title: Energies
– volume: 24
  start-page: 89
  year: 2015
  end-page: 98
  ident: bb0145
  article-title: Prediction of free flowing porosity and permeability based on conventional well logging data using artificial neural networks optimized by imperialist competitive algorithm-a case study in the South Pars Gas field
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 126
  year: 2021
  ident: bb0205
  article-title: Data-driven design of wave-propagation models for shale-oil reservoirs based on machine learning
  publication-title: J. Geophys. Res. Solid Earth
– volume: 60
  start-page: 375
  year: 2019
  end-page: 402
  ident: bb0185
  article-title: A tutorial on machine learning with geophysical applications
  publication-title: Boll. Geofis. Teor. Appl.
– year: 2017
  ident: bb0175
  article-title: Automatic differentiation in pytorch
  publication-title: 31st Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA
– volume: 2
  start-page: 1
  year: 2015
  ident: bb0165
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: J. Big Data
– volume: 48
  start-page: 539
  year: 2000
  end-page: 557
  ident: bb0050
  article-title: A generalized Biot-Gassmann model for the acoustic properties of shaley sandstones
  publication-title: Geophys. Prospect.
– volume: 176
  start-page: 2581
  year: 2019
  end-page: 2594
  ident: bb0060
  article-title: Effect of clay and mineralogy on permeability
  publication-title: Pure Appl. Geophys.
– volume: 146
  year: 2022
  ident: bb0115
  article-title: Fracture characterization based on improved seismic amplitude variation with azimuth inversion in tight gas sandstones, Ordos Basin, China
  publication-title: Mar. Pet. Geol.
– volume: 125
  year: 2020
  ident: bb0200
  article-title: Effects of fluid rheology and pore connectivity on rock permeability based on a network model
  publication-title: J. Geophys. Res. Solid Earth
– volume: 279
  start-page: 67
  year: 2018
  end-page: 78
  ident: bb0055
  article-title: 3D seismic modeling in geothermal reservoirs with a distribution of steam patch sizes, permeabilities and saturations, including ductility of the rock frame
  publication-title: Phys. Earth Planet. Inter.
– volume: 9
  start-page: 3
  year: 1968
  end-page: 5
  ident: bb0195
  article-title: An investigation of permeability, porosity, & residual water saturation relationships for sandstone reservoirs
  publication-title: Log. Anal.
– volume: 125
  year: 2020
  ident: bb0210
  article-title: Shale anisotropy model building based on deep neural networks
  publication-title: J. Geophys. Res. Solid Earth
– volume: 125
  year: 2020
  ident: bb0095
  article-title: Frequency-dependent P wave anisotropy due to wave-induced fluid flow and elastic scattering in a fluid-saturated porous medium with aligned fractures
  publication-title: J. Geophys. Res. Solid Earth
– volume: 222
  start-page: 861
  year: 2020
  end-page: 873
  ident: bb0180
  article-title: Data-driven and machine learning identification of seismic reference stations in Europe
  publication-title: Geophys. J. Int.
– volume: 229
  year: 2023
  ident: bb0010
  article-title: Measuring gas permeability in tight cores at high pressure: Insights into supercritical carbon dioxide seepage characteristics
  publication-title: Geoenergy Sci. Eng.
– volume: 127
  year: 2022
  ident: bb0110
  article-title: Dynamic SV-wave signatures of fluid-saturated porous rocks containing intersecting fractures
  publication-title: J. Geophys. Res. Solid Earth
– volume: 26
  start-page: 355
  year: 2020
  end-page: 371
  ident: bb0035
  article-title: Geology of the Chang 7 Member oil shale of Yanchang Formation of the Ordos Basin in central North China
  publication-title: Pet. Geosci.
– volume: 21
  start-page: 1
  year: 2024
  end-page: 16
  ident: bb0220
  article-title: Permeability estimation of shale oil reservoir with laboratory-derived data: a case study of the Chang 7 Member in Ordos Basin
  publication-title: Appl. Geophys.
– volume: 101
  year: 2022
  ident: bb0120
  article-title: Gas prediction using an improved seismic dispersion attribute inversion for tight sandstone gas reservoirs in the Ordos Basin, China
  publication-title: J. Nat. Gas. Sci. Eng.
– volume: 235
  start-page: 2056
  year: 2023
  end-page: 2077
  ident: bb0025
  article-title: Acoustic wave propagation in a porous medium saturated with a Kelvin–Voigt non-Newtonian fluid
  publication-title: Geophys. J. Int.
– volume: 38
  start-page: 841
  year: 2020
  end-page: 866
  ident: bb0105
  article-title: Evaluation method for resource potential of shale oil in the Triassic Yanchang Formation of the Ordos Basin, China
  publication-title: Energy Explor. Exploit.
– volume: 61
  start-page: 422
  year: 1996
  end-page: 436
  ident: bb0140
  article-title: Permeability prediction with artificial neural network modeling in the Venture gas field, offshore eastern Canada
  publication-title: Geophysics
– volume: 5
  year: 2017
  ident: bb0190
  article-title: What is the role of tortuosity in the Kozeny-Carman equation?
  publication-title: Interpretation
– volume: 214
  year: 2022
  ident: bb0225
  article-title: Logging-data-driven permeability prediction in low-permeable sandstones based on machine learning with pattern visualization: a case study in Wenchang a Sag, Pearl River Mouth Basin
  publication-title: J. Pet. Sci. Eng.
– volume: 234
  start-page: 1422
  year: 2023
  end-page: 1429
  ident: bb0155
  article-title: Permeability of artificial sandstones identified by their dual-pore structure
  publication-title: Geophys. J. Int.
– volume: 128
  year: 2023
  ident: 10.1016/j.jappgeo.2024.105501_bb0030
  article-title: Effect of multiscale cracks on seismic wave propagation in tight sandstones
  publication-title: J. Geophys. Res. Solid Earth
– volume: 61
  start-page: 422
  issue: 2
  year: 1996
  ident: 10.1016/j.jappgeo.2024.105501_bb0140
  article-title: Permeability prediction with artificial neural network modeling in the Venture gas field, offshore eastern Canada
  publication-title: Geophysics
  doi: 10.1190/1.1443970
– volume: 59
  year: 2023
  ident: 10.1016/j.jappgeo.2024.105501_bb0045
  article-title: Using machine learning to identify hydrologic signatures with an encoder–decoder framework
  publication-title: Water Resour. Res.
  doi: 10.1029/2022WR033091
– volume: 279
  start-page: 67
  year: 2018
  ident: 10.1016/j.jappgeo.2024.105501_bb0055
  article-title: 3D seismic modeling in geothermal reservoirs with a distribution of steam patch sizes, permeabilities and saturations, including ductility of the rock frame
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/j.pepi.2018.03.004
– volume: 60
  start-page: 375
  issue: 3
  year: 2019
  ident: 10.1016/j.jappgeo.2024.105501_bb0185
  article-title: A tutorial on machine learning with geophysical applications
  publication-title: Boll. Geofis. Teor. Appl.
– volume: 24
  start-page: 89
  year: 2015
  ident: 10.1016/j.jappgeo.2024.105501_bb0145
  article-title: Prediction of free flowing porosity and permeability based on conventional well logging data using artificial neural networks optimized by imperialist competitive algorithm-a case study in the South Pars Gas field
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2015.02.026
– volume: 126
  year: 2021
  ident: 10.1016/j.jappgeo.2024.105501_bb0205
  article-title: Data-driven design of wave-propagation models for shale-oil reservoirs based on machine learning
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/2021JB022665
– volume: 125
  year: 2020
  ident: 10.1016/j.jappgeo.2024.105501_bb0210
  article-title: Shale anisotropy model building based on deep neural networks
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/2019JB019042
– volume: 95
  start-page: 1
  year: 2019
  ident: 10.1016/j.jappgeo.2024.105501_bb0100
  article-title: Transversely isotropic poroviscoelastic bending beam solutions for low-permeability porous medium
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2018.11.001
– volume: 125
  issue: 3
  year: 2020
  ident: 10.1016/j.jappgeo.2024.105501_bb0200
  article-title: Effects of fluid rheology and pore connectivity on rock permeability based on a network model
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/2019JB018857
– volume: 56
  start-page: 3003
  issue: 4
  year: 2023
  ident: 10.1016/j.jappgeo.2024.105501_bib228
  article-title: Quantitative evaluation of shale brittleness based on brittle-sensitive index and energy evolution-based fuzzy analytic hierarchy process
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-022-03213-y
– volume: 26
  start-page: 355
  issue: 2
  year: 2020
  ident: 10.1016/j.jappgeo.2024.105501_bb0035
  article-title: Geology of the Chang 7 Member oil shale of Yanchang Formation of the Ordos Basin in central North China
  publication-title: Pet. Geosci.
  doi: 10.1144/petgeo2018-091
– volume: 5
  issue: 1
  year: 2017
  ident: 10.1016/j.jappgeo.2024.105501_bb0190
  article-title: What is the role of tortuosity in the Kozeny-Carman equation?
  publication-title: Interpretation
  doi: 10.1190/INT-2016-0080.1
– volume: 38
  start-page: 373
  year: 2017
  ident: 10.1016/j.jappgeo.2024.105501_bb0015
  article-title: Shear wave travel time estimation from petrophysical logs using ANFIS-PSO algorithm: a case study from Ab-Teymour Oilfield
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2017.01.003
– volume: 176
  start-page: 2581
  year: 2019
  ident: 10.1016/j.jappgeo.2024.105501_bb0060
  article-title: Effect of clay and mineralogy on permeability
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s00024-019-02117-3
– volume: 125
  year: 2020
  ident: 10.1016/j.jappgeo.2024.105501_bb0095
  article-title: Frequency-dependent P wave anisotropy due to wave-induced fluid flow and elastic scattering in a fluid-saturated porous medium with aligned fractures
  publication-title: J. Geophys. Res. Solid Earth
– volume: 235
  start-page: 2056
  year: 2023
  ident: 10.1016/j.jappgeo.2024.105501_bb0025
  article-title: Acoustic wave propagation in a porous medium saturated with a Kelvin–Voigt non-Newtonian fluid
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggad355
– volume: 38
  start-page: 841
  issue: 4
  year: 2020
  ident: 10.1016/j.jappgeo.2024.105501_bb0105
  article-title: Evaluation method for resource potential of shale oil in the Triassic Yanchang Formation of the Ordos Basin, China
  publication-title: Energy Explor. Exploit.
  doi: 10.1177/0144598720903394
– volume: 49
  start-page: 431
  issue: 4
  year: 2001
  ident: 10.1016/j.jappgeo.2024.105501_bb0135
  article-title: Porosity and permeability prediction from wireline logs using artificial neural networks: a North Sea case study
  publication-title: Geophys. Prospect.
  doi: 10.1046/j.1365-2478.2001.00271.x
– volume: 234
  start-page: 2429
  issue: 3
  year: 2023
  ident: 10.1016/j.jappgeo.2024.105501_bb0065
  article-title: Rock acoustics of CO2 storage in basalt
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggad252
– year: 2017
  ident: 10.1016/j.jappgeo.2024.105501_bb0175
  article-title: Automatic differentiation in pytorch
– volume: 146
  start-page: 54
  issue: 1
  year: 1942
  ident: 10.1016/j.jappgeo.2024.105501_bb0020
  article-title: The electrical resistivity log as an aid in determining some reservoir characteristics
  publication-title: Trans. AIME
  doi: 10.2118/942054-G
– volume: 86
  year: 2021
  ident: 10.1016/j.jappgeo.2024.105501_bb0215
  article-title: Permeability and porosity prediction using logging data in a heterogeneous dolomite reservoir: An integrated approach
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2020.103743
– year: 1961
  ident: 10.1016/j.jappgeo.2024.105501_bb0070
– volume: 98
  start-page: 675
  issue: B1
  year: 1993
  ident: 10.1016/j.jappgeo.2024.105501_bb0075
  article-title: Crack models for a transversely isotropic medium
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/92JB02118
– volume: 229
  year: 2023
  ident: 10.1016/j.jappgeo.2024.105501_bb0010
  article-title: Measuring gas permeability in tight cores at high pressure: Insights into supercritical carbon dioxide seepage characteristics
  publication-title: Geoenergy Sci. Eng.
  doi: 10.1016/j.geoen.2023.212070
– volume: 101
  year: 2022
  ident: 10.1016/j.jappgeo.2024.105501_bb0120
  article-title: Gas prediction using an improved seismic dispersion attribute inversion for tight sandstone gas reservoirs in the Ordos Basin, China
  publication-title: J. Nat. Gas. Sci. Eng.
  doi: 10.1016/j.jngse.2022.104499
– volume: 53
  start-page: 291
  issue: 1
  year: 2020
  ident: 10.1016/j.jappgeo.2024.105501_bb0130
  article-title: Highly efficient and simplified method for measuring the permeability of ultra-low permeability rocks based on the pulse-decay technique
  publication-title: Rock Mech. Rock. Eng.
  doi: 10.1007/s00603-019-01911-8
– volume: 124
  start-page: 12660
  issue: 12
  year: 2019
  ident: 10.1016/j.jappgeo.2024.105501_bib227
  article-title: Effects of kerogen content on elastic properties-based on artificial organic-rich shale (AORS)
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/2019JB017595
– volume: 363
  issue: 6433
  year: 2019
  ident: 10.1016/j.jappgeo.2024.105501_bb0040
  article-title: Machine learning for data-driven discovery in solid earth geoscience
  publication-title: Science
  doi: 10.1126/science.aau0323
– volume: 9
  start-page: 3
  issue: 4
  year: 1968
  ident: 10.1016/j.jappgeo.2024.105501_bb0195
  article-title: An investigation of permeability, porosity, & residual water saturation relationships for sandstone reservoirs
  publication-title: Log. Anal.
– volume: 31
  start-page: 81
  year: 2022
  ident: 10.1016/j.jappgeo.2024.105501_bb0080
  article-title: Estimation of the shear-wave velocity of shale-oil reservoirs: a case study of the Chang 7 Member in the Ordos Basin
  publication-title: J. Seism. Explor.
– volume: 69
  start-page: 542
  issue: 3
  year: 2019
  ident: 10.1016/j.jappgeo.2024.105501_bb0160
  article-title: Effect of porosity gradient on the permeability tensor
  publication-title: Geophys. Prospect.
  doi: 10.1111/1365-2478.12922
– volume: 146
  year: 2022
  ident: 10.1016/j.jappgeo.2024.105501_bb0115
  article-title: Fracture characterization based on improved seismic amplitude variation with azimuth inversion in tight gas sandstones, Ordos Basin, China
  publication-title: Mar. Pet. Geol.
  doi: 10.1016/j.marpetgeo.2022.105941
– volume: 47
  start-page: 931
  issue: 5
  year: 2020
  ident: 10.1016/j.jappgeo.2024.105501_bb0090
  article-title: Geological characteristics and exploration of shale oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China
  publication-title: Pet. Explor. Dev.
  doi: 10.1016/S1876-3804(20)60107-0
– volume: 234
  start-page: 1422
  year: 2023
  ident: 10.1016/j.jappgeo.2024.105501_bb0155
  article-title: Permeability of artificial sandstones identified by their dual-pore structure
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggad149
– volume: 214
  year: 2022
  ident: 10.1016/j.jappgeo.2024.105501_bb0225
  article-title: Logging-data-driven permeability prediction in low-permeable sandstones based on machine learning with pattern visualization: a case study in Wenchang a Sag, Pearl River Mouth Basin
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2022.110517
– volume: 20
  start-page: 3428
  issue: 6
  year: 2023
  ident: 10.1016/j.jappgeo.2024.105501_bb0125
  article-title: Quantitative characterization of tight gas sandstone reservoirs using seismic data via an integrated rock-physics-based framework
  publication-title: Pet. Sci.
  doi: 10.1016/j.petsci.2023.09.003
– volume: 2
  start-page: 1
  year: 2015
  ident: 10.1016/j.jappgeo.2024.105501_bb0165
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: J. Big Data
  doi: 10.1186/s40537-014-0007-7
– volume: 222
  start-page: 861
  issue: 2
  year: 2020
  ident: 10.1016/j.jappgeo.2024.105501_bb0180
  article-title: Data-driven and machine learning identification of seismic reference stations in Europe
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggaa199
– volume: 48
  start-page: 539
  year: 2000
  ident: 10.1016/j.jappgeo.2024.105501_bb0050
  article-title: A generalized Biot-Gassmann model for the acoustic properties of shaley sandstones
  publication-title: Geophys. Prospect.
  doi: 10.1046/j.1365-2478.2000.00198.x
– volume: 127
  year: 2022
  ident: 10.1016/j.jappgeo.2024.105501_bb0110
  article-title: Dynamic SV-wave signatures of fluid-saturated porous rocks containing intersecting fractures
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/2022JB024745
– volume: 21
  start-page: 1
  issue: 1
  year: 2024
  ident: 10.1016/j.jappgeo.2024.105501_bb0220
  article-title: Permeability estimation of shale oil reservoir with laboratory-derived data: a case study of the Chang 7 Member in Ordos Basin
  publication-title: Appl. Geophys.
– volume: 240
  year: 2024
  ident: 10.1016/j.jappgeo.2024.105501_bb0085
  article-title: Shear-wave velocity prediction of tight reservoirs based on poroelasticity theory: a comparative study of deep neural network and rock physics model
  publication-title: Geoenergy Sci. Eng.
  doi: 10.1016/j.geoen.2024.213028
– volume: 43
  start-page: 578
  issue: 5
  year: 1991
  ident: 10.1016/j.jappgeo.2024.105501_bb0005
  article-title: Permeability estimation: the various sources and their interrelationships
  publication-title: J. Pet. Technol.
  doi: 10.2118/19604-PA
– year: 2014
  ident: 10.1016/j.jappgeo.2024.105501_bb0150
  article-title: Adam: A method for stochastic optimization
– volume: 19
  start-page: 2683
  issue: 6
  year: 2022
  ident: 10.1016/j.jappgeo.2024.105501_bib229
  article-title: Effect of microscopic pore structures on ultrasonic velocity in tight sandstone with different fluid saturation
  publication-title: Pet. Sci.
  doi: 10.1016/j.petsci.2022.06.009
– volume: 13
  start-page: 551
  issue: 3
  year: 2020
  ident: 10.1016/j.jappgeo.2024.105501_bb0170
  article-title: Prediction of permeability using group method of data handling (GMDH) neural network from well log data
  publication-title: Energies
  doi: 10.3390/en13030551
SSID ssj0001304
Score 2.419438
Snippet Permeability is a critical parameter for evaluating reservoir properties, and accurate prediction is an important basis for identifying high-quality reservoirs...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105501
SubjectTerms Deep neural networks
Machine learning
Ordos Basin
Permeability prediction
Tight reservoirs
Well-log data
Title Permeability prediction using logging data from tight reservoirs based on deep neural networks
URI https://dx.doi.org/10.1016/j.jappgeo.2024.105501
Volume 229
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KvehB_MT6UfbgNU1MdrPJsRRLVSyCFnoyJJvd0iJpSKPgxd_uTLKxFUHBY5YdEmYnb17ImxlCLnkYQJxI11JScIvJGF4pzrUlWQh8NEl47GOh8P3YH03Y7ZRPW2TQ1MKgrNJgf43pFVqbFdt4087nc_vRCV0_BMKAKkgg1ljEx5jAKO99rGUegNFVCynYbOHudRWPvegt4jyfVTWALsOJt9zMhvmRnzZyznCP7BqySPv18-yTlsoOyM5GC8FD8vwA0KrqZtvvNC_wvwv6mqKgfUYB2XAKEUUhKMVSElri1zjFoqPibTkvVhTzWErBIlUqp9jfEm6Z1erw1RGZDK-fBiPLzEywYs9zS4slgvtC-TKIhRQ6Sb2Ecy6k0h4TqZfqK80Ba2PXFbAkvUSr1FWxkwbS0Zpr75i0s2WmTghNIbWrQLMEWAETEqik62nI5wFyGBE4HcIaT0XSNBTHuRYvUaMcW0TGwRE6OKod3CG9L7O87qjxl0HQHEP0LTQiQP3fTU__b3pGtvGq1u2dk3ZZvKoL4B9l0q0CrEu2-jd3o_EnBnzcew
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1qPagH8RO_3YPXmJrsZpNjKZbUahFswZMh2eyWFklDrYL_3plmWxVBwesmQ8Jk8-aFvHkDcCGiEPeJ8hytpHC4SvGVEsI4ikfIR7NMpAE1Ct_1gnjAbx7FYw1ai14YklVa7K8wfY7WdsW12XTL0ch9aEReECFhIBUkEutoBVbJnUrUYbXZ6ca9JSAjTM9dpPB8hwI-G3nc8eU4LcvhvA3Q4zT0VtjxMD9K1Jey096CTcsXWbO6pW2o6WIHNr64CO7C0z2iq678tt9ZOaVfL5RuRpr2IUNwo0FEjLSgjLpJ2Iw-yBn1HU3fJqPpC6NSljOMyLUuGVlc4iWLSiD-sgeD9nW_FTt2bIKT-r43c3gmRSB1oMJUKmmy3M-EEFJp43OZ-7m5MgLhNvU8iUvKz4zOPZ028lA1jBHG34d6MSn0AbAcq7sODc-QGHCpkE16vsGSHhKNkWHjEPgiU4mynuI02uI5WYjHxolNcEIJTqoEH8LlMqysTDX-CggXjyH5tjsSBP7fQ4_-H3oOa3H_7ja57fS6x7BORyoZ3wnUZ9NXfYp0ZJad2e32AZp_3yw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Permeability+prediction+using+logging+data+from+tight+reservoirs+based+on+deep+neural+networks&rft.jtitle=Journal+of+applied+geophysics&rft.au=Fang%2C+Zhijian&rft.au=Ba%2C+Jing&rft.au=Carcione%2C+Jos%C3%A9+M.&rft.au=Xiong%2C+Fansheng&rft.date=2024-10-01&rft.pub=Elsevier+B.V&rft.issn=0926-9851&rft.volume=229&rft_id=info:doi/10.1016%2Fj.jappgeo.2024.105501&rft.externalDocID=S0926985124002179
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9851&client=summon