A novel hybrid CNN–SVM method for lithology identification in shale reservoirs based on logging measurements
Shale oil and gas reservoirs are lithologically complex and heterogeneous and accurate identification of lithology is necessary for the correct identification of lithofacies. There is also a poor mapping relation between logging response and lithology, making reliable lithological identification dif...
Saved in:
Published in | Journal of applied geophysics Vol. 223; p. 105346 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Shale oil and gas reservoirs are lithologically complex and heterogeneous and accurate identification of lithology is necessary for the correct identification of lithofacies. There is also a poor mapping relation between logging response and lithology, making reliable lithological identification difficult. We propose a hybrid CNN-SVM model for lithological identification of the shale reservoir in the southern Songliao Basin of Northeast China. As training data, seven conventional logging curves are used, including spontaneous potential (SP) and deep and shallow lateral resistivity (RD, RS) logs. The CNN automatically extracts feature information from well log data and lithology, while the SVM overcomes the problem of limited sample size. Using the receiver operator characteristic (ROC) curves and the area under the curve (AUC) values, we assess the effect of lithological classification. The accuracy of lithological identification for test well H2 is 91.95%, and the AUC of the hybrid model is 0.94, 0.98, and 0.99 in mudstone, shale, and sandstone, respectively. The hybrid model outperforms CNN and SVM in terms of the identification of three types of lithologies and is more stable in terms of AUC value and ROC curve shape. The lithological identification accuracy for test well H3 is 89.49%, which demonstrates that the method has much capacity for generalization and may be extensively utilized in the study area. Finally, from the perspective of model interpretability, SHapley Additive exPlanations (SHAP) is developed to increase transparency and further confirm the reliability of the hybrid model.
•For logging lithology identification of shale reservoir, a novel hybrid CNN-SVM method is proposed.•ROC and AUC are used to validate the prediction accuracy of the hybrid model.•The SHAP model can effectively explain the model's predictions. |
---|---|
AbstractList | Shale oil and gas reservoirs are lithologically complex and heterogeneous and accurate identification of lithology is necessary for the correct identification of lithofacies. There is also a poor mapping relation between logging response and lithology, making reliable lithological identification difficult. We propose a hybrid CNN-SVM model for lithological identification of the shale reservoir in the southern Songliao Basin of Northeast China. As training data, seven conventional logging curves are used, including spontaneous potential (SP) and deep and shallow lateral resistivity (RD, RS) logs. The CNN automatically extracts feature information from well log data and lithology, while the SVM overcomes the problem of limited sample size. Using the receiver operator characteristic (ROC) curves and the area under the curve (AUC) values, we assess the effect of lithological classification. The accuracy of lithological identification for test well H2 is 91.95%, and the AUC of the hybrid model is 0.94, 0.98, and 0.99 in mudstone, shale, and sandstone, respectively. The hybrid model outperforms CNN and SVM in terms of the identification of three types of lithologies and is more stable in terms of AUC value and ROC curve shape. The lithological identification accuracy for test well H3 is 89.49%, which demonstrates that the method has much capacity for generalization and may be extensively utilized in the study area. Finally, from the perspective of model interpretability, SHapley Additive exPlanations (SHAP) is developed to increase transparency and further confirm the reliability of the hybrid model.
•For logging lithology identification of shale reservoir, a novel hybrid CNN-SVM method is proposed.•ROC and AUC are used to validate the prediction accuracy of the hybrid model.•The SHAP model can effectively explain the model's predictions. |
ArticleNumber | 105346 |
Author | Li, Zhijun Deng, Shaogui Hong, Yuzhen Wei, Zhoutuo Cai, Lianyun |
Author_xml | – sequence: 1 givenname: Zhijun surname: Li fullname: Li, Zhijun organization: National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, PR China – sequence: 2 givenname: Shaogui surname: Deng fullname: Deng, Shaogui email: dengshg@upc.edu.cn organization: National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, PR China – sequence: 3 givenname: Yuzhen surname: Hong fullname: Hong, Yuzhen organization: National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, PR China – sequence: 4 givenname: Zhoutuo surname: Wei fullname: Wei, Zhoutuo organization: National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, PR China – sequence: 5 givenname: Lianyun surname: Cai fullname: Cai, Lianyun organization: National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, PR China |
BookMark | eNqFkEtOwzAQhr0oEi1wBCRfIMWx4xCLBaoqXlIpCx5by7EnqavUruxQqTvuwA05CS7tik1XM5rR92vmG6GB8w4QuszJOCd5ebUcL9V63YIfU0KLNOOsKAdoSAQtM1Hx_BSNYlwSQnJGiiFyE-z8Bjq82NbBGjydz3--vl8_nvEK-oU3uPEBdza1nW-32BpwvW2sVr31DluH40J1gANECBtvQ8S1imBwWiagta5NQSp-BlglMp6jk0Z1ES4O9Qy939-9TR-z2cvD03QyyxRjtM8YN7ysGa-0aQxvaio4qyhlhClgdSGouM61og0wXhjBRVMZVoGoha6rgqWfz9DNPlcHH2OARmrb_93cB2U7mRO50yWX8qBL7nTJva5E83_0OtiVCtuj3O2eg_TaxkKQUVtwGowNoHtpvD2S8AsPWI6M |
CitedBy_id | crossref_primary_10_1016_j_jappgeo_2024_105536 crossref_primary_10_1007_s11053_024_10452_z crossref_primary_10_1109_LGRS_2024_3495976 crossref_primary_10_1063_5_0248592 crossref_primary_10_1088_1742_6596_2902_1_012045 crossref_primary_10_1016_j_measurement_2024_116606 crossref_primary_10_1016_j_foodchem_2024_141393 crossref_primary_10_1016_j_rineng_2025_104267 crossref_primary_10_1016_j_vacuum_2024_113825 crossref_primary_10_3390_pr13010278 crossref_primary_10_3390_sym16050616 crossref_primary_10_1190_INT_2024_0125_1 crossref_primary_10_3390_jmse12071119 |
Cites_doi | 10.1016/j.jappgeo.2013.06.006 10.1016/j.marpetgeo.2015.12.006 10.1016/j.acags.2022.100100 10.1016/j.marpetgeo.2021.105502 10.1016/S1876-3804(13)60002-6 10.1016/j.conbuildmat.2023.133821 10.1016/j.fuel.2020.117601 10.1016/S1876-3804(21)60043-5 10.1016/j.jappgeo.2022.104741 10.1016/j.epsr.2021.107446 10.1016/j.coal.2022.103998 10.1016/j.eswa.2021.116142 10.1016/j.geoen.2023.211459 10.1007/s40846-016-0182-4 10.1109/72.991427 10.1016/j.jnggs.2016.08.004 10.1016/j.jappgeo.2022.104845 10.1016/j.petrol.2020.108247 10.1016/j.egyr.2022.03.120 10.1016/S1876-3804(20)60103-3 10.1016/j.petrol.2020.108182 10.1016/j.measurement.2021.109022 10.1016/j.apacoust.2020.107714 10.1016/j.crfs.2021.01.002 10.1016/j.jngse.2020.103648 10.1016/j.jngse.2022.104500 10.1016/j.petrol.2020.107498 10.1016/j.geoen.2023.211562 10.1016/j.petrol.2018.06.012 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jappgeo.2024.105346 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_jappgeo_2024_105346 S0926985124000624 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACLVX ACRLP ACRPL ACSBN ADBBV ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSH SSZ T5K VH1 WUQ XPP ZMT ~02 ~G- AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP CITATION |
ID | FETCH-LOGICAL-a332t-35d56b358cdfd5fb2953822303ae3b492971ca2fe354d959f8d38e9b9cb843053 |
IEDL.DBID | .~1 |
ISSN | 0926-9851 |
IngestDate | Tue Jul 01 02:17:26 EDT 2025 Thu Apr 24 23:00:45 EDT 2025 Fri May 16 00:29:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hybrid model Model interpretability Support vector machine Logging lithology identification Convolutional neural network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a332t-35d56b358cdfd5fb2953822303ae3b492971ca2fe354d959f8d38e9b9cb843053 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jappgeo_2024_105346 crossref_primary_10_1016_j_jappgeo_2024_105346 elsevier_sciencedirect_doi_10_1016_j_jappgeo_2024_105346 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2024 2024-04-00 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of applied geophysics |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Otchere, Arbi Ganat, Gholami, Ridha (bb0130) 2021; 200 Asante-Okyere, Shen, Osei (bb0010) 2022; 16 Zhang, Deng, Zhao, Liu (bb0190) 2022; 207 Leng, Zhao, Guo (bb0080) 2019; 6 Zou, Yang, Cui, Zhu, Hou, Tao, Yuan, Wu, Lin, Wang, Bai, Yao (bb0205) 2013; 40 Guan, Wang, Hua, Li (bb0040) 2021; 173 Zhao, Yang, Kang, Li (bb0200) 2023; 223 Liu, Wang, Liu, Tian, Zhao, Pan, Peng, Liu, Zhao, Zhang, Zhang, Liu, Zhao (bb0110) 2023; 222 Tan, Bai, Zhang, Li, Wei, Wang (bb0150) 2020; 271 Hsu, Lin (bb0065) 2002; 13 Kim (bb0075) 2022; 100 Hassan, Darwish, Tahoun, Radwan (bb0050) 2022; 137 Saha, Manickavasagan (bb0135) 2021; 4 Luo, Xu, Wei (bb0120) 2022; 204 Wang, Ding, Wang, Cui, Wang, Chen, Sun, Xiao (bb0160) 2016; 1 Chen, Xu, Li, He, Han, Qu (bb0020) 2021; 198 Corina, Hovda (bb0025) 2018; 170 Gao, Dong, Tao, Guo, Li, Zhang (bb0035) 2021; 85 Deng, Xie, Su, Xu, Hao, Xiao (bb0030) 2023; 408 Xiang, Qin, Zhang (bb0170) 2020; 173 Hu, Zhao, Hou, Yang, Zhu, Wu, Bai, Jin (bb0070) 2020; 47 Lundberg, Lee (bb0115) 2017 Asoodeh, Bagheripour (bb0015) 2013; 96 Abdo, Liu, Zhang, Guo, Li (bb0005) 2021; 200 Sun, Liu, He, Li, Zhang, Zhu, Jin, Meng, Jiang (bb0140) 2021; 48 He, Gu, Wan (bb0060) 2020; 194 Xu, Zhang, Gu, Pan (bb0175) 2019; 328 Yeşilmen, Tatar (bb0185) 2022; 17 Thanapol, Lavangnananda, Bouvry, Pinel, Leprévost (bb0155) 2020 Xue, Zhang, Feng, Wang (bb0180) 2016; 36 He, Ding, Zhang, Li, Zhao, Dai (bb0055) 2016; 70 Liu, Nakhaei-Kohani, Bai, Wen, Gao, Tian, Yang, Liu, Hemmati-Sarapardeh, Ostadhassan (bb0105) 2022; 257 Liang, Chen, Guo, Bai, Jiang (bb0095) 2022; 189 Liu, Lu, Lyu (bb0100) 2017; 24 Mou, Wang, Huang, Xu, Zhou (bb0125) 2015; 58 Zhang, Sun, Wang, Zhang, Liang (bb0195) 2023 Li, Qiu, Zhang, Wu, Wang, Liu, Gao (bb0090) 2022; 60 Han, Zhang, Yin, Tan (bb0045) 2021; 177 Li (bb0085) 2022; 8 Sun, Zhao, Liu, Zhu, Kang (bb0145) 2023; 44 Wang, Wu, Li, Tan, Wang (bb0165) 2023; 214 Chen (10.1016/j.jappgeo.2024.105346_bb0020) 2021; 198 Zhang (10.1016/j.jappgeo.2024.105346_bb0195) 2023 Asante-Okyere (10.1016/j.jappgeo.2024.105346_bb0010) 2022; 16 Corina (10.1016/j.jappgeo.2024.105346_bb0025) 2018; 170 Leng (10.1016/j.jappgeo.2024.105346_bb0080) 2019; 6 Liu (10.1016/j.jappgeo.2024.105346_bb0100) 2017; 24 Liu (10.1016/j.jappgeo.2024.105346_bb0105) 2022; 257 Luo (10.1016/j.jappgeo.2024.105346_bb0120) 2022; 204 Guan (10.1016/j.jappgeo.2024.105346_bb0040) 2021; 173 Yeşilmen (10.1016/j.jappgeo.2024.105346_bb0185) 2022; 17 He (10.1016/j.jappgeo.2024.105346_bb0060) 2020; 194 Xue (10.1016/j.jappgeo.2024.105346_bb0180) 2016; 36 Gao (10.1016/j.jappgeo.2024.105346_bb0035) 2021; 85 Li (10.1016/j.jappgeo.2024.105346_bb0085) 2022; 8 Xu (10.1016/j.jappgeo.2024.105346_bb0175) 2019; 328 Xiang (10.1016/j.jappgeo.2024.105346_bb0170) 2020; 173 Zou (10.1016/j.jappgeo.2024.105346_bb0205) 2013; 40 Han (10.1016/j.jappgeo.2024.105346_bb0045) 2021; 177 Asoodeh (10.1016/j.jappgeo.2024.105346_bb0015) 2013; 96 Saha (10.1016/j.jappgeo.2024.105346_bb0135) 2021; 4 Wang (10.1016/j.jappgeo.2024.105346_bb0165) 2023; 214 Abdo (10.1016/j.jappgeo.2024.105346_bb0005) 2021; 200 Deng (10.1016/j.jappgeo.2024.105346_bb0030) 2023; 408 Hsu (10.1016/j.jappgeo.2024.105346_bb0065) 2002; 13 Mou (10.1016/j.jappgeo.2024.105346_bb0125) 2015; 58 Li (10.1016/j.jappgeo.2024.105346_bb0090) 2022; 60 Kim (10.1016/j.jappgeo.2024.105346_bb0075) 2022; 100 Liang (10.1016/j.jappgeo.2024.105346_bb0095) 2022; 189 Hassan (10.1016/j.jappgeo.2024.105346_bb0050) 2022; 137 Thanapol (10.1016/j.jappgeo.2024.105346_bb0155) 2020 Sun (10.1016/j.jappgeo.2024.105346_bb0145) 2023; 44 Zhao (10.1016/j.jappgeo.2024.105346_bb0200) 2023; 223 Hu (10.1016/j.jappgeo.2024.105346_bb0070) 2020; 47 Zhang (10.1016/j.jappgeo.2024.105346_bb0190) 2022; 207 Lundberg (10.1016/j.jappgeo.2024.105346_bb0115) 2017 Sun (10.1016/j.jappgeo.2024.105346_bb0140) 2021; 48 Wang (10.1016/j.jappgeo.2024.105346_bb0160) 2016; 1 Tan (10.1016/j.jappgeo.2024.105346_bb0150) 2020; 271 Liu (10.1016/j.jappgeo.2024.105346_bb0110) 2023; 222 Otchere (10.1016/j.jappgeo.2024.105346_bb0130) 2021; 200 He (10.1016/j.jappgeo.2024.105346_bb0055) 2016; 70 |
References_xml | – volume: 222 year: 2023 ident: bb0110 article-title: Identification of tight sandstone reservoir lithofacies based on CNN image recognition technology: a case study of Fuyu reservoir of Sanzhao Sag in Songliao Basin publication-title: Geoenergy Sci. Eng. – year: 2023 ident: bb0195 article-title: Lithology identification technology of logging data based on deep learning model | SpringerLink [WWW Document] – volume: 257 year: 2022 ident: bb0105 article-title: Integrating advanced soft computing techniques with experimental studies for pore structure analysis of Qingshankou shale in Southern Songliao Basin, NE China publication-title: Int. J. Coal Geol. – volume: 36 start-page: 755 year: 2016 end-page: 764 ident: bb0180 article-title: CNN-SVM for microvascular morphological type recognition with data augmentation publication-title: J. Med. Biol. Eng. – volume: 137 year: 2022 ident: bb0050 article-title: An integrated high-resolution image log, sequence stratigraphy and palynofacies analysis to reconstruct the Albian – Cenomanian basin depositional setting and cyclicity: insights from the southern Tethys publication-title: Mar. Pet. Geol. – volume: 17 year: 2022 ident: bb0185 article-title: Efficiency of convolutional neural networks (CNN) based image classification for monitoring construction related activities: a case study on aggregate mining for concrete production publication-title: Case Stud. Constr. Mater. – volume: 200 year: 2021 ident: bb0130 article-title: Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties: comparative analysis of ANN and SVM models publication-title: J. Pet. Sci. Eng. – volume: 13 start-page: 415 year: 2002 end-page: 425 ident: bb0065 article-title: A comparison of methods for multiclass support vector machines publication-title: IEEE Trans. Neural Netw. – volume: 100 year: 2022 ident: bb0075 article-title: Lithofacies classification integrating conventional approaches and machine learning technique publication-title: J. Nat. Gas Sci. Eng. – volume: 214 year: 2023 ident: bb0165 article-title: A method of improving inversion accuracy for ultra-low signal-to-noise ratio echo train of nuclear magnetic resonance logging publication-title: J. Appl. Geophys. – volume: 200 year: 2021 ident: bb0005 article-title: A new model of faults classification in power transformers based on data optimization method publication-title: Electr. Power Syst. Res. – volume: 40 start-page: 15 year: 2013 end-page: 27 ident: bb0205 article-title: Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China publication-title: Pet. Explor. Dev. – volume: 170 start-page: 664 year: 2018 end-page: 674 ident: bb0025 article-title: Automatic lithology prediction from well logging using kernel density estimation publication-title: J. Pet. Sci. Eng. – volume: 85 year: 2021 ident: bb0035 article-title: Experiences and lessons learned from China’s shale gas development: 2005–2019 publication-title: J. Nat. Gas Sci. Eng. – volume: 47 start-page: 877 year: 2020 end-page: 887 ident: bb0070 article-title: Development potential and technical strategy of continental shale oil in China publication-title: Pet. Explor. Dev. – volume: 60 start-page: 1 year: 2022 end-page: 13 ident: bb0090 article-title: CNN-based network application for petrophysical parameter inversion: sensitivity analysis of input–output parameters and network architecture publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 16 year: 2022 ident: bb0010 article-title: Enhanced machine learning tree classifiers for lithology identification using Bayesian optimization publication-title: Appl. Comput. Geosci. – volume: 177 year: 2021 ident: bb0045 article-title: Rolling bearing fault diagnosis with combined convolutional neural networks and support vector machine publication-title: Measurement – volume: 173 year: 2020 ident: bb0170 article-title: Research and application of logging lithology identification for igneous reservoirs based on deep learning publication-title: J. Appl. Geophys. – volume: 44 start-page: 1 year: 2023 ident: bb0145 article-title: Concept and application of “sweet spot” in shale oil publication-title: Acta Pet. Sin. – volume: 96 start-page: 7 year: 2013 end-page: 10 ident: bb0015 article-title: Fuzzy classifier based support vector regression framework for Poisson ratio determination publication-title: J. Appl. Geophys. – volume: 8 start-page: 4344 year: 2022 end-page: 4358 ident: bb0085 article-title: Research progress on evaluation methods and factors influencing shale brittleness: a review publication-title: Energy Rep. – volume: 189 year: 2022 ident: bb0095 article-title: Research on lithology identification method based on mechanical specific energy principle and machine learning theory publication-title: Expert Syst. Appl. – volume: 207 year: 2022 ident: bb0190 article-title: A new hybrid method based on sparrow search algorithm optimized extreme learning machine for brittleness evaluation publication-title: J. Appl. Geophys. – volume: 408 year: 2023 ident: bb0030 article-title: Three-level evaluation method of cumulative slope deformation hybrid machine learning models and interpretability analysis publication-title: Constr. Build. Mater. – volume: 328 start-page: 69 year: 2019 end-page: 74 ident: bb0175 article-title: Overfitting remedy by sparsifying regularization on fully-connected layers of CNNs publication-title: Neurocomputing, Chinese Conference on Computer Vision 2017 – start-page: 300 year: 2020 end-page: 305 ident: bb0155 article-title: Reducing overfitting and improving generalization in training convolutional neural network (CNN) under limited sample sizes in image recognition publication-title: 2020 - 5th International Conference on Information Technology (InCIT). Presented at the 2020 - 5th International Conference on Information Technology (InCIT) – volume: 198 year: 2021 ident: bb0020 article-title: Identification of architectural elements based on SVM with PCA: a case study of sandy braided river reservoir in the Lamadian Oilfield, Songliao Basin, NE China publication-title: J. Pet. Sci. Eng. – volume: 48 start-page: 527 year: 2021 end-page: 540 ident: bb0140 article-title: An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China publication-title: Pet. Explor. Dev. – volume: 70 start-page: 273 year: 2016 end-page: 293 ident: bb0055 article-title: Logging identification and characteristic analysis of marine–continental transitional organic-rich shale in the Carboniferous-Permian strata, Bohai Bay Basin publication-title: Mar. Pet. Geol. – year: 2017 ident: bb0115 article-title: A unified approach to interpreting model predictions publication-title: Advances in Neural Information Processing Systems – volume: 194 year: 2020 ident: bb0060 article-title: Log interpretation for lithology and fluid identification using deep neural network combined with MAHAKIL in a tight sandstone reservoir publication-title: J. Pet. Sci. Eng. – volume: 1 start-page: 231 year: 2016 end-page: 241 ident: bb0160 article-title: Logging identification for the Lower Cambrian Niutitang shale reservoir in the Upper Yangtze region, China: a case study of the Cengong block, Guizhou Province publication-title: J. Nat. Gas Geosci. – volume: 173 year: 2021 ident: bb0040 article-title: Quantitative ultrasonic testing for near-surface defects of large ring forgings using feature extraction and GA-SVM publication-title: Appl. Acoust. – volume: 204 year: 2022 ident: bb0120 article-title: Prediction method and application of shale reservoirs core gas content based on machine learning publication-title: J. Appl. Geophys. – volume: 223 year: 2023 ident: bb0200 article-title: CE-SGAN: classification enhancement semi-supervised generative adversarial network for lithology identification publication-title: Geoenergy Sci. Eng. – volume: 58 start-page: 1785 year: 2015 end-page: 1793 ident: bb0125 article-title: Lithological identification of volcanic rocks from SVM well logging data: case study in the eastern depression of Liaohe Basin publication-title: Chin. J. Geophys. – volume: 4 start-page: 28 year: 2021 end-page: 44 ident: bb0135 article-title: Machine learning techniques for analysis of hyperspectral images to determine quality of food products: a review publication-title: Curr. Res. Food Sci. – volume: 24 start-page: 360 year: 2017 end-page: 363 ident: bb0100 article-title: Application of principal component analysis method in lithology identification for shale formation publication-title: Fault-Block Oil & Gas Field – volume: 6 start-page: 117 year: 2019 end-page: 123 ident: bb0080 article-title: The application status of shale gas reservoir logging evaluation publication-title: Unconvention Oil & Gas – volume: 271 year: 2020 ident: bb0150 article-title: Fluid typing in tight sandstone from wireline logs using classification committee machine publication-title: Fuel – volume: 96 start-page: 7 year: 2013 ident: 10.1016/j.jappgeo.2024.105346_bb0015 article-title: Fuzzy classifier based support vector regression framework for Poisson ratio determination publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2013.06.006 – volume: 70 start-page: 273 year: 2016 ident: 10.1016/j.jappgeo.2024.105346_bb0055 article-title: Logging identification and characteristic analysis of marine–continental transitional organic-rich shale in the Carboniferous-Permian strata, Bohai Bay Basin publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2015.12.006 – volume: 16 year: 2022 ident: 10.1016/j.jappgeo.2024.105346_bb0010 article-title: Enhanced machine learning tree classifiers for lithology identification using Bayesian optimization publication-title: Appl. Comput. Geosci. doi: 10.1016/j.acags.2022.100100 – volume: 137 year: 2022 ident: 10.1016/j.jappgeo.2024.105346_bb0050 article-title: An integrated high-resolution image log, sequence stratigraphy and palynofacies analysis to reconstruct the Albian – Cenomanian basin depositional setting and cyclicity: insights from the southern Tethys publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2021.105502 – volume: 40 start-page: 15 year: 2013 ident: 10.1016/j.jappgeo.2024.105346_bb0205 article-title: Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(13)60002-6 – volume: 408 year: 2023 ident: 10.1016/j.jappgeo.2024.105346_bb0030 article-title: Three-level evaluation method of cumulative slope deformation hybrid machine learning models and interpretability analysis publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2023.133821 – volume: 17 year: 2022 ident: 10.1016/j.jappgeo.2024.105346_bb0185 article-title: Efficiency of convolutional neural networks (CNN) based image classification for monitoring construction related activities: a case study on aggregate mining for concrete production publication-title: Case Stud. Constr. Mater. – volume: 58 start-page: 1785 year: 2015 ident: 10.1016/j.jappgeo.2024.105346_bb0125 article-title: Lithological identification of volcanic rocks from SVM well logging data: case study in the eastern depression of Liaohe Basin publication-title: Chin. J. Geophys. – volume: 271 year: 2020 ident: 10.1016/j.jappgeo.2024.105346_bb0150 article-title: Fluid typing in tight sandstone from wireline logs using classification committee machine publication-title: Fuel doi: 10.1016/j.fuel.2020.117601 – volume: 48 start-page: 527 year: 2021 ident: 10.1016/j.jappgeo.2024.105346_bb0140 article-title: An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(21)60043-5 – volume: 204 year: 2022 ident: 10.1016/j.jappgeo.2024.105346_bb0120 article-title: Prediction method and application of shale reservoirs core gas content based on machine learning publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2022.104741 – volume: 200 year: 2021 ident: 10.1016/j.jappgeo.2024.105346_bb0005 article-title: A new model of faults classification in power transformers based on data optimization method publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2021.107446 – volume: 257 year: 2022 ident: 10.1016/j.jappgeo.2024.105346_bb0105 article-title: Integrating advanced soft computing techniques with experimental studies for pore structure analysis of Qingshankou shale in Southern Songliao Basin, NE China publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2022.103998 – volume: 189 year: 2022 ident: 10.1016/j.jappgeo.2024.105346_bb0095 article-title: Research on lithology identification method based on mechanical specific energy principle and machine learning theory publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116142 – volume: 24 start-page: 360 year: 2017 ident: 10.1016/j.jappgeo.2024.105346_bb0100 article-title: Application of principal component analysis method in lithology identification for shale formation publication-title: Fault-Block Oil & Gas Field – volume: 222 year: 2023 ident: 10.1016/j.jappgeo.2024.105346_bb0110 article-title: Identification of tight sandstone reservoir lithofacies based on CNN image recognition technology: a case study of Fuyu reservoir of Sanzhao Sag in Songliao Basin publication-title: Geoenergy Sci. Eng. doi: 10.1016/j.geoen.2023.211459 – volume: 36 start-page: 755 year: 2016 ident: 10.1016/j.jappgeo.2024.105346_bb0180 article-title: CNN-SVM for microvascular morphological type recognition with data augmentation publication-title: J. Med. Biol. Eng. doi: 10.1007/s40846-016-0182-4 – start-page: 300 year: 2020 ident: 10.1016/j.jappgeo.2024.105346_bb0155 article-title: Reducing overfitting and improving generalization in training convolutional neural network (CNN) under limited sample sizes in image recognition – volume: 6 start-page: 117 year: 2019 ident: 10.1016/j.jappgeo.2024.105346_bb0080 article-title: The application status of shale gas reservoir logging evaluation publication-title: Unconvention Oil & Gas – volume: 44 start-page: 1 year: 2023 ident: 10.1016/j.jappgeo.2024.105346_bb0145 article-title: Concept and application of “sweet spot” in shale oil publication-title: Acta Pet. Sin. – volume: 13 start-page: 415 year: 2002 ident: 10.1016/j.jappgeo.2024.105346_bb0065 article-title: A comparison of methods for multiclass support vector machines publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.991427 – volume: 1 start-page: 231 year: 2016 ident: 10.1016/j.jappgeo.2024.105346_bb0160 article-title: Logging identification for the Lower Cambrian Niutitang shale reservoir in the Upper Yangtze region, China: a case study of the Cengong block, Guizhou Province publication-title: J. Nat. Gas Geosci. doi: 10.1016/j.jnggs.2016.08.004 – volume: 207 year: 2022 ident: 10.1016/j.jappgeo.2024.105346_bb0190 article-title: A new hybrid method based on sparrow search algorithm optimized extreme learning machine for brittleness evaluation publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2022.104845 – volume: 198 year: 2021 ident: 10.1016/j.jappgeo.2024.105346_bb0020 article-title: Identification of architectural elements based on SVM with PCA: a case study of sandy braided river reservoir in the Lamadian Oilfield, Songliao Basin, NE China publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.108247 – volume: 214 year: 2023 ident: 10.1016/j.jappgeo.2024.105346_bb0165 article-title: A method of improving inversion accuracy for ultra-low signal-to-noise ratio echo train of nuclear magnetic resonance logging publication-title: J. Appl. Geophys. – volume: 8 start-page: 4344 year: 2022 ident: 10.1016/j.jappgeo.2024.105346_bb0085 article-title: Research progress on evaluation methods and factors influencing shale brittleness: a review publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.03.120 – volume: 47 start-page: 877 year: 2020 ident: 10.1016/j.jappgeo.2024.105346_bb0070 article-title: Development potential and technical strategy of continental shale oil in China publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(20)60103-3 – volume: 200 year: 2021 ident: 10.1016/j.jappgeo.2024.105346_bb0130 article-title: Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties: comparative analysis of ANN and SVM models publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.108182 – volume: 177 year: 2021 ident: 10.1016/j.jappgeo.2024.105346_bb0045 article-title: Rolling bearing fault diagnosis with combined convolutional neural networks and support vector machine publication-title: Measurement doi: 10.1016/j.measurement.2021.109022 – volume: 328 start-page: 69 year: 2019 ident: 10.1016/j.jappgeo.2024.105346_bb0175 article-title: Overfitting remedy by sparsifying regularization on fully-connected layers of CNNs – volume: 173 year: 2021 ident: 10.1016/j.jappgeo.2024.105346_bb0040 article-title: Quantitative ultrasonic testing for near-surface defects of large ring forgings using feature extraction and GA-SVM publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2020.107714 – year: 2017 ident: 10.1016/j.jappgeo.2024.105346_bb0115 article-title: A unified approach to interpreting model predictions – volume: 4 start-page: 28 year: 2021 ident: 10.1016/j.jappgeo.2024.105346_bb0135 article-title: Machine learning techniques for analysis of hyperspectral images to determine quality of food products: a review publication-title: Curr. Res. Food Sci. doi: 10.1016/j.crfs.2021.01.002 – volume: 85 year: 2021 ident: 10.1016/j.jappgeo.2024.105346_bb0035 article-title: Experiences and lessons learned from China’s shale gas development: 2005–2019 publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2020.103648 – year: 2023 ident: 10.1016/j.jappgeo.2024.105346_bb0195 – volume: 100 year: 2022 ident: 10.1016/j.jappgeo.2024.105346_bb0075 article-title: Lithofacies classification integrating conventional approaches and machine learning technique publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2022.104500 – volume: 173 year: 2020 ident: 10.1016/j.jappgeo.2024.105346_bb0170 article-title: Research and application of logging lithology identification for igneous reservoirs based on deep learning publication-title: J. Appl. Geophys. – volume: 194 year: 2020 ident: 10.1016/j.jappgeo.2024.105346_bb0060 article-title: Log interpretation for lithology and fluid identification using deep neural network combined with MAHAKIL in a tight sandstone reservoir publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.107498 – volume: 60 start-page: 1 year: 2022 ident: 10.1016/j.jappgeo.2024.105346_bb0090 article-title: CNN-based network application for petrophysical parameter inversion: sensitivity analysis of input–output parameters and network architecture publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 223 year: 2023 ident: 10.1016/j.jappgeo.2024.105346_bb0200 article-title: CE-SGAN: classification enhancement semi-supervised generative adversarial network for lithology identification publication-title: Geoenergy Sci. Eng. doi: 10.1016/j.geoen.2023.211562 – volume: 170 start-page: 664 year: 2018 ident: 10.1016/j.jappgeo.2024.105346_bb0025 article-title: Automatic lithology prediction from well logging using kernel density estimation publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2018.06.012 |
SSID | ssj0001304 |
Score | 2.4652195 |
Snippet | Shale oil and gas reservoirs are lithologically complex and heterogeneous and accurate identification of lithology is necessary for the correct identification... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105346 |
SubjectTerms | Convolutional neural network Hybrid model Logging lithology identification Model interpretability Support vector machine |
Title | A novel hybrid CNN–SVM method for lithology identification in shale reservoirs based on logging measurements |
URI | https://dx.doi.org/10.1016/j.jappgeo.2024.105346 |
Volume | 223 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14TROzu-nusRRLVcylVnoL2ezGppS0tLXQi_gf_If-EmfzaCuIgsckOyHMDDMf4ZtvELqWrqu8pmZW6HihRTmlluSaWxpatwQEHes4I8j6XrdP7wdsUEHtchbG0CqL2p_X9KxaF3fswpv2NEnsniNcTwBgMCxIx3ONJiilTZPljbcNzQNqdCYhBYctc3ozxWOPGqNwOn3JZgBdajbeEoODf-pPWz2nc4D2C7CIW_n3HKKKTo_Q3paE4DFKWzidLPUYD1dm9gq3ff_z_aP3_Ijz3dAYQCkGqJ0VuRVOVMEOygKCkxTPh9AisBlCmi0nyWyOTV9TGB6CgdlgBC9a_0acn6B-5_ap3bWKHQpWSIi7sAhTzJOE8UjFisXSFVDhABI4JNREUgBHzZsohJAQRpVgIuaKcC2kiCQ3amDkFFXTSarPEFZS0ZjG4FLlUikcqSKjRyY87pGQMF1DtPRcEBUC42bPxTgomWSjoHB4YBwe5A6vocbabJorbPxlwMuwBN9SJYAu8Lvp-f9NL9CuucpJO5eoupi96ivAIwtZzxKujnZadw9d_wvKo-Gt |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTttAFL0KdAEsUFtAPEo7i3bpxMzDzCxYRKEoKZAND7EzHs8YHCEnSgIoG9R_6Kf0j_gS7tgToBIqEhJbj-5odHznnmPrPgC-a0pNtG1FkIRREnDJeaCllYFF6taooDOblQmy3ah9wn-dibMa_J3Wwri0Sh_7q5heRmv_pOHRbAzyvHEUKhopFAwuCzKMKPeZlft2covfbaOdzi6-5B-U7v08brUDP1ogSBij44AJIyLNhExNZkSmqcKLj0wZssQyzVEzbG-lCZ6UCW6UUJk0TFqlVaqla5LFcN8Z-MCdFV6i-t1TXgmSQtmzCk8XuOM9lQ01evVeMhhclEWHlLsRu8wJ75cI8RnJ7X2ERa9OSbMC4BPUbPEZFp71LFyCokmK_o29IpcTV-xFWt3u_e8_R6eHpBpGTVAFE9T2ZVSdkNz4dKTSA0hekNElchJxVU_Dm34-HBFHpIbgIhq4kUm40eN_y9EynLwLsiswW_QLuwrEaMMzniGkhnKtQm1S1wBNRTJiCRN2DfgUuTj1Hc3dYI2reJq61os94LEDPK4AX4P6o9mgaunxmoGcvpb4H9-MkXb-b7r-dtNvMNc-PjyIDzrd_Q2YdytVxtAXmB0Pr-0miqGx_lo6H4Hz9_b2B9b5HIg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+hybrid+CNN%E2%80%93SVM+method+for+lithology+identification+in+shale+reservoirs+based+on+logging+measurements&rft.jtitle=Journal+of+applied+geophysics&rft.au=Li%2C+Zhijun&rft.au=Deng%2C+Shaogui&rft.au=Hong%2C+Yuzhen&rft.au=Wei%2C+Zhoutuo&rft.date=2024-04-01&rft.issn=0926-9851&rft.volume=223&rft.spage=105346&rft_id=info:doi/10.1016%2Fj.jappgeo.2024.105346&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jappgeo_2024_105346 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9851&client=summon |