A novel hybrid CNN–SVM method for lithology identification in shale reservoirs based on logging measurements

Shale oil and gas reservoirs are lithologically complex and heterogeneous and accurate identification of lithology is necessary for the correct identification of lithofacies. There is also a poor mapping relation between logging response and lithology, making reliable lithological identification dif...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied geophysics Vol. 223; p. 105346
Main Authors Li, Zhijun, Deng, Shaogui, Hong, Yuzhen, Wei, Zhoutuo, Cai, Lianyun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Shale oil and gas reservoirs are lithologically complex and heterogeneous and accurate identification of lithology is necessary for the correct identification of lithofacies. There is also a poor mapping relation between logging response and lithology, making reliable lithological identification difficult. We propose a hybrid CNN-SVM model for lithological identification of the shale reservoir in the southern Songliao Basin of Northeast China. As training data, seven conventional logging curves are used, including spontaneous potential (SP) and deep and shallow lateral resistivity (RD, RS) logs. The CNN automatically extracts feature information from well log data and lithology, while the SVM overcomes the problem of limited sample size. Using the receiver operator characteristic (ROC) curves and the area under the curve (AUC) values, we assess the effect of lithological classification. The accuracy of lithological identification for test well H2 is 91.95%, and the AUC of the hybrid model is 0.94, 0.98, and 0.99 in mudstone, shale, and sandstone, respectively. The hybrid model outperforms CNN and SVM in terms of the identification of three types of lithologies and is more stable in terms of AUC value and ROC curve shape. The lithological identification accuracy for test well H3 is 89.49%, which demonstrates that the method has much capacity for generalization and may be extensively utilized in the study area. Finally, from the perspective of model interpretability, SHapley Additive exPlanations (SHAP) is developed to increase transparency and further confirm the reliability of the hybrid model. •For logging lithology identification of shale reservoir, a novel hybrid CNN-SVM method is proposed.•ROC and AUC are used to validate the prediction accuracy of the hybrid model.•The SHAP model can effectively explain the model's predictions.
AbstractList Shale oil and gas reservoirs are lithologically complex and heterogeneous and accurate identification of lithology is necessary for the correct identification of lithofacies. There is also a poor mapping relation between logging response and lithology, making reliable lithological identification difficult. We propose a hybrid CNN-SVM model for lithological identification of the shale reservoir in the southern Songliao Basin of Northeast China. As training data, seven conventional logging curves are used, including spontaneous potential (SP) and deep and shallow lateral resistivity (RD, RS) logs. The CNN automatically extracts feature information from well log data and lithology, while the SVM overcomes the problem of limited sample size. Using the receiver operator characteristic (ROC) curves and the area under the curve (AUC) values, we assess the effect of lithological classification. The accuracy of lithological identification for test well H2 is 91.95%, and the AUC of the hybrid model is 0.94, 0.98, and 0.99 in mudstone, shale, and sandstone, respectively. The hybrid model outperforms CNN and SVM in terms of the identification of three types of lithologies and is more stable in terms of AUC value and ROC curve shape. The lithological identification accuracy for test well H3 is 89.49%, which demonstrates that the method has much capacity for generalization and may be extensively utilized in the study area. Finally, from the perspective of model interpretability, SHapley Additive exPlanations (SHAP) is developed to increase transparency and further confirm the reliability of the hybrid model. •For logging lithology identification of shale reservoir, a novel hybrid CNN-SVM method is proposed.•ROC and AUC are used to validate the prediction accuracy of the hybrid model.•The SHAP model can effectively explain the model's predictions.
ArticleNumber 105346
Author Li, Zhijun
Deng, Shaogui
Hong, Yuzhen
Wei, Zhoutuo
Cai, Lianyun
Author_xml – sequence: 1
  givenname: Zhijun
  surname: Li
  fullname: Li, Zhijun
  organization: National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, PR China
– sequence: 2
  givenname: Shaogui
  surname: Deng
  fullname: Deng, Shaogui
  email: dengshg@upc.edu.cn
  organization: National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, PR China
– sequence: 3
  givenname: Yuzhen
  surname: Hong
  fullname: Hong, Yuzhen
  organization: National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, PR China
– sequence: 4
  givenname: Zhoutuo
  surname: Wei
  fullname: Wei, Zhoutuo
  organization: National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, PR China
– sequence: 5
  givenname: Lianyun
  surname: Cai
  fullname: Cai, Lianyun
  organization: National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, PR China
BookMark eNqFkEtOwzAQhr0oEi1wBCRfIMWx4xCLBaoqXlIpCx5by7EnqavUruxQqTvuwA05CS7tik1XM5rR92vmG6GB8w4QuszJOCd5ebUcL9V63YIfU0KLNOOsKAdoSAQtM1Hx_BSNYlwSQnJGiiFyE-z8Bjq82NbBGjydz3--vl8_nvEK-oU3uPEBdza1nW-32BpwvW2sVr31DluH40J1gANECBtvQ8S1imBwWiagta5NQSp-BlglMp6jk0Z1ES4O9Qy939-9TR-z2cvD03QyyxRjtM8YN7ysGa-0aQxvaio4qyhlhClgdSGouM61og0wXhjBRVMZVoGoha6rgqWfz9DNPlcHH2OARmrb_93cB2U7mRO50yWX8qBL7nTJva5E83_0OtiVCtuj3O2eg_TaxkKQUVtwGowNoHtpvD2S8AsPWI6M
CitedBy_id crossref_primary_10_1016_j_jappgeo_2024_105536
crossref_primary_10_1007_s11053_024_10452_z
crossref_primary_10_1109_LGRS_2024_3495976
crossref_primary_10_1063_5_0248592
crossref_primary_10_1088_1742_6596_2902_1_012045
crossref_primary_10_1016_j_measurement_2024_116606
crossref_primary_10_1016_j_foodchem_2024_141393
crossref_primary_10_1016_j_rineng_2025_104267
crossref_primary_10_1016_j_vacuum_2024_113825
crossref_primary_10_3390_pr13010278
crossref_primary_10_3390_sym16050616
crossref_primary_10_1190_INT_2024_0125_1
crossref_primary_10_3390_jmse12071119
Cites_doi 10.1016/j.jappgeo.2013.06.006
10.1016/j.marpetgeo.2015.12.006
10.1016/j.acags.2022.100100
10.1016/j.marpetgeo.2021.105502
10.1016/S1876-3804(13)60002-6
10.1016/j.conbuildmat.2023.133821
10.1016/j.fuel.2020.117601
10.1016/S1876-3804(21)60043-5
10.1016/j.jappgeo.2022.104741
10.1016/j.epsr.2021.107446
10.1016/j.coal.2022.103998
10.1016/j.eswa.2021.116142
10.1016/j.geoen.2023.211459
10.1007/s40846-016-0182-4
10.1109/72.991427
10.1016/j.jnggs.2016.08.004
10.1016/j.jappgeo.2022.104845
10.1016/j.petrol.2020.108247
10.1016/j.egyr.2022.03.120
10.1016/S1876-3804(20)60103-3
10.1016/j.petrol.2020.108182
10.1016/j.measurement.2021.109022
10.1016/j.apacoust.2020.107714
10.1016/j.crfs.2021.01.002
10.1016/j.jngse.2020.103648
10.1016/j.jngse.2022.104500
10.1016/j.petrol.2020.107498
10.1016/j.geoen.2023.211562
10.1016/j.petrol.2018.06.012
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jappgeo.2024.105346
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_jappgeo_2024_105346
S0926985124000624
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACLVX
ACRLP
ACRPL
ACSBN
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSH
SSZ
T5K
VH1
WUQ
XPP
ZMT
~02
~G-
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
CITATION
ID FETCH-LOGICAL-a332t-35d56b358cdfd5fb2953822303ae3b492971ca2fe354d959f8d38e9b9cb843053
IEDL.DBID .~1
ISSN 0926-9851
IngestDate Tue Jul 01 02:17:26 EDT 2025
Thu Apr 24 23:00:45 EDT 2025
Fri May 16 00:29:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Hybrid model
Model interpretability
Support vector machine
Logging lithology identification
Convolutional neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a332t-35d56b358cdfd5fb2953822303ae3b492971ca2fe354d959f8d38e9b9cb843053
ParticipantIDs crossref_citationtrail_10_1016_j_jappgeo_2024_105346
crossref_primary_10_1016_j_jappgeo_2024_105346
elsevier_sciencedirect_doi_10_1016_j_jappgeo_2024_105346
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationTitle Journal of applied geophysics
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Otchere, Arbi Ganat, Gholami, Ridha (bb0130) 2021; 200
Asante-Okyere, Shen, Osei (bb0010) 2022; 16
Zhang, Deng, Zhao, Liu (bb0190) 2022; 207
Leng, Zhao, Guo (bb0080) 2019; 6
Zou, Yang, Cui, Zhu, Hou, Tao, Yuan, Wu, Lin, Wang, Bai, Yao (bb0205) 2013; 40
Guan, Wang, Hua, Li (bb0040) 2021; 173
Zhao, Yang, Kang, Li (bb0200) 2023; 223
Liu, Wang, Liu, Tian, Zhao, Pan, Peng, Liu, Zhao, Zhang, Zhang, Liu, Zhao (bb0110) 2023; 222
Tan, Bai, Zhang, Li, Wei, Wang (bb0150) 2020; 271
Hsu, Lin (bb0065) 2002; 13
Kim (bb0075) 2022; 100
Hassan, Darwish, Tahoun, Radwan (bb0050) 2022; 137
Saha, Manickavasagan (bb0135) 2021; 4
Luo, Xu, Wei (bb0120) 2022; 204
Wang, Ding, Wang, Cui, Wang, Chen, Sun, Xiao (bb0160) 2016; 1
Chen, Xu, Li, He, Han, Qu (bb0020) 2021; 198
Corina, Hovda (bb0025) 2018; 170
Gao, Dong, Tao, Guo, Li, Zhang (bb0035) 2021; 85
Deng, Xie, Su, Xu, Hao, Xiao (bb0030) 2023; 408
Xiang, Qin, Zhang (bb0170) 2020; 173
Hu, Zhao, Hou, Yang, Zhu, Wu, Bai, Jin (bb0070) 2020; 47
Lundberg, Lee (bb0115) 2017
Asoodeh, Bagheripour (bb0015) 2013; 96
Abdo, Liu, Zhang, Guo, Li (bb0005) 2021; 200
Sun, Liu, He, Li, Zhang, Zhu, Jin, Meng, Jiang (bb0140) 2021; 48
He, Gu, Wan (bb0060) 2020; 194
Xu, Zhang, Gu, Pan (bb0175) 2019; 328
Yeşilmen, Tatar (bb0185) 2022; 17
Thanapol, Lavangnananda, Bouvry, Pinel, Leprévost (bb0155) 2020
Xue, Zhang, Feng, Wang (bb0180) 2016; 36
He, Ding, Zhang, Li, Zhao, Dai (bb0055) 2016; 70
Liu, Nakhaei-Kohani, Bai, Wen, Gao, Tian, Yang, Liu, Hemmati-Sarapardeh, Ostadhassan (bb0105) 2022; 257
Liang, Chen, Guo, Bai, Jiang (bb0095) 2022; 189
Liu, Lu, Lyu (bb0100) 2017; 24
Mou, Wang, Huang, Xu, Zhou (bb0125) 2015; 58
Zhang, Sun, Wang, Zhang, Liang (bb0195) 2023
Li, Qiu, Zhang, Wu, Wang, Liu, Gao (bb0090) 2022; 60
Han, Zhang, Yin, Tan (bb0045) 2021; 177
Li (bb0085) 2022; 8
Sun, Zhao, Liu, Zhu, Kang (bb0145) 2023; 44
Wang, Wu, Li, Tan, Wang (bb0165) 2023; 214
Chen (10.1016/j.jappgeo.2024.105346_bb0020) 2021; 198
Zhang (10.1016/j.jappgeo.2024.105346_bb0195) 2023
Asante-Okyere (10.1016/j.jappgeo.2024.105346_bb0010) 2022; 16
Corina (10.1016/j.jappgeo.2024.105346_bb0025) 2018; 170
Leng (10.1016/j.jappgeo.2024.105346_bb0080) 2019; 6
Liu (10.1016/j.jappgeo.2024.105346_bb0100) 2017; 24
Liu (10.1016/j.jappgeo.2024.105346_bb0105) 2022; 257
Luo (10.1016/j.jappgeo.2024.105346_bb0120) 2022; 204
Guan (10.1016/j.jappgeo.2024.105346_bb0040) 2021; 173
Yeşilmen (10.1016/j.jappgeo.2024.105346_bb0185) 2022; 17
He (10.1016/j.jappgeo.2024.105346_bb0060) 2020; 194
Xue (10.1016/j.jappgeo.2024.105346_bb0180) 2016; 36
Gao (10.1016/j.jappgeo.2024.105346_bb0035) 2021; 85
Li (10.1016/j.jappgeo.2024.105346_bb0085) 2022; 8
Xu (10.1016/j.jappgeo.2024.105346_bb0175) 2019; 328
Xiang (10.1016/j.jappgeo.2024.105346_bb0170) 2020; 173
Zou (10.1016/j.jappgeo.2024.105346_bb0205) 2013; 40
Han (10.1016/j.jappgeo.2024.105346_bb0045) 2021; 177
Asoodeh (10.1016/j.jappgeo.2024.105346_bb0015) 2013; 96
Saha (10.1016/j.jappgeo.2024.105346_bb0135) 2021; 4
Wang (10.1016/j.jappgeo.2024.105346_bb0165) 2023; 214
Abdo (10.1016/j.jappgeo.2024.105346_bb0005) 2021; 200
Deng (10.1016/j.jappgeo.2024.105346_bb0030) 2023; 408
Hsu (10.1016/j.jappgeo.2024.105346_bb0065) 2002; 13
Mou (10.1016/j.jappgeo.2024.105346_bb0125) 2015; 58
Li (10.1016/j.jappgeo.2024.105346_bb0090) 2022; 60
Kim (10.1016/j.jappgeo.2024.105346_bb0075) 2022; 100
Liang (10.1016/j.jappgeo.2024.105346_bb0095) 2022; 189
Hassan (10.1016/j.jappgeo.2024.105346_bb0050) 2022; 137
Thanapol (10.1016/j.jappgeo.2024.105346_bb0155) 2020
Sun (10.1016/j.jappgeo.2024.105346_bb0145) 2023; 44
Zhao (10.1016/j.jappgeo.2024.105346_bb0200) 2023; 223
Hu (10.1016/j.jappgeo.2024.105346_bb0070) 2020; 47
Zhang (10.1016/j.jappgeo.2024.105346_bb0190) 2022; 207
Lundberg (10.1016/j.jappgeo.2024.105346_bb0115) 2017
Sun (10.1016/j.jappgeo.2024.105346_bb0140) 2021; 48
Wang (10.1016/j.jappgeo.2024.105346_bb0160) 2016; 1
Tan (10.1016/j.jappgeo.2024.105346_bb0150) 2020; 271
Liu (10.1016/j.jappgeo.2024.105346_bb0110) 2023; 222
Otchere (10.1016/j.jappgeo.2024.105346_bb0130) 2021; 200
He (10.1016/j.jappgeo.2024.105346_bb0055) 2016; 70
References_xml – volume: 222
  year: 2023
  ident: bb0110
  article-title: Identification of tight sandstone reservoir lithofacies based on CNN image recognition technology: a case study of Fuyu reservoir of Sanzhao Sag in Songliao Basin
  publication-title: Geoenergy Sci. Eng.
– year: 2023
  ident: bb0195
  article-title: Lithology identification technology of logging data based on deep learning model | SpringerLink [WWW Document]
– volume: 257
  year: 2022
  ident: bb0105
  article-title: Integrating advanced soft computing techniques with experimental studies for pore structure analysis of Qingshankou shale in Southern Songliao Basin, NE China
  publication-title: Int. J. Coal Geol.
– volume: 36
  start-page: 755
  year: 2016
  end-page: 764
  ident: bb0180
  article-title: CNN-SVM for microvascular morphological type recognition with data augmentation
  publication-title: J. Med. Biol. Eng.
– volume: 137
  year: 2022
  ident: bb0050
  article-title: An integrated high-resolution image log, sequence stratigraphy and palynofacies analysis to reconstruct the Albian – Cenomanian basin depositional setting and cyclicity: insights from the southern Tethys
  publication-title: Mar. Pet. Geol.
– volume: 17
  year: 2022
  ident: bb0185
  article-title: Efficiency of convolutional neural networks (CNN) based image classification for monitoring construction related activities: a case study on aggregate mining for concrete production
  publication-title: Case Stud. Constr. Mater.
– volume: 200
  year: 2021
  ident: bb0130
  article-title: Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties: comparative analysis of ANN and SVM models
  publication-title: J. Pet. Sci. Eng.
– volume: 13
  start-page: 415
  year: 2002
  end-page: 425
  ident: bb0065
  article-title: A comparison of methods for multiclass support vector machines
  publication-title: IEEE Trans. Neural Netw.
– volume: 100
  year: 2022
  ident: bb0075
  article-title: Lithofacies classification integrating conventional approaches and machine learning technique
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 214
  year: 2023
  ident: bb0165
  article-title: A method of improving inversion accuracy for ultra-low signal-to-noise ratio echo train of nuclear magnetic resonance logging
  publication-title: J. Appl. Geophys.
– volume: 200
  year: 2021
  ident: bb0005
  article-title: A new model of faults classification in power transformers based on data optimization method
  publication-title: Electr. Power Syst. Res.
– volume: 40
  start-page: 15
  year: 2013
  end-page: 27
  ident: bb0205
  article-title: Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China
  publication-title: Pet. Explor. Dev.
– volume: 170
  start-page: 664
  year: 2018
  end-page: 674
  ident: bb0025
  article-title: Automatic lithology prediction from well logging using kernel density estimation
  publication-title: J. Pet. Sci. Eng.
– volume: 85
  year: 2021
  ident: bb0035
  article-title: Experiences and lessons learned from China’s shale gas development: 2005–2019
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 47
  start-page: 877
  year: 2020
  end-page: 887
  ident: bb0070
  article-title: Development potential and technical strategy of continental shale oil in China
  publication-title: Pet. Explor. Dev.
– volume: 60
  start-page: 1
  year: 2022
  end-page: 13
  ident: bb0090
  article-title: CNN-based network application for petrophysical parameter inversion: sensitivity analysis of input–output parameters and network architecture
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 16
  year: 2022
  ident: bb0010
  article-title: Enhanced machine learning tree classifiers for lithology identification using Bayesian optimization
  publication-title: Appl. Comput. Geosci.
– volume: 177
  year: 2021
  ident: bb0045
  article-title: Rolling bearing fault diagnosis with combined convolutional neural networks and support vector machine
  publication-title: Measurement
– volume: 173
  year: 2020
  ident: bb0170
  article-title: Research and application of logging lithology identification for igneous reservoirs based on deep learning
  publication-title: J. Appl. Geophys.
– volume: 44
  start-page: 1
  year: 2023
  ident: bb0145
  article-title: Concept and application of “sweet spot” in shale oil
  publication-title: Acta Pet. Sin.
– volume: 96
  start-page: 7
  year: 2013
  end-page: 10
  ident: bb0015
  article-title: Fuzzy classifier based support vector regression framework for Poisson ratio determination
  publication-title: J. Appl. Geophys.
– volume: 8
  start-page: 4344
  year: 2022
  end-page: 4358
  ident: bb0085
  article-title: Research progress on evaluation methods and factors influencing shale brittleness: a review
  publication-title: Energy Rep.
– volume: 189
  year: 2022
  ident: bb0095
  article-title: Research on lithology identification method based on mechanical specific energy principle and machine learning theory
  publication-title: Expert Syst. Appl.
– volume: 207
  year: 2022
  ident: bb0190
  article-title: A new hybrid method based on sparrow search algorithm optimized extreme learning machine for brittleness evaluation
  publication-title: J. Appl. Geophys.
– volume: 408
  year: 2023
  ident: bb0030
  article-title: Three-level evaluation method of cumulative slope deformation hybrid machine learning models and interpretability analysis
  publication-title: Constr. Build. Mater.
– volume: 328
  start-page: 69
  year: 2019
  end-page: 74
  ident: bb0175
  article-title: Overfitting remedy by sparsifying regularization on fully-connected layers of CNNs
  publication-title: Neurocomputing, Chinese Conference on Computer Vision 2017
– start-page: 300
  year: 2020
  end-page: 305
  ident: bb0155
  article-title: Reducing overfitting and improving generalization in training convolutional neural network (CNN) under limited sample sizes in image recognition
  publication-title: 2020 - 5th International Conference on Information Technology (InCIT). Presented at the 2020 - 5th International Conference on Information Technology (InCIT)
– volume: 198
  year: 2021
  ident: bb0020
  article-title: Identification of architectural elements based on SVM with PCA: a case study of sandy braided river reservoir in the Lamadian Oilfield, Songliao Basin, NE China
  publication-title: J. Pet. Sci. Eng.
– volume: 48
  start-page: 527
  year: 2021
  end-page: 540
  ident: bb0140
  article-title: An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China
  publication-title: Pet. Explor. Dev.
– volume: 70
  start-page: 273
  year: 2016
  end-page: 293
  ident: bb0055
  article-title: Logging identification and characteristic analysis of marine–continental transitional organic-rich shale in the Carboniferous-Permian strata, Bohai Bay Basin
  publication-title: Mar. Pet. Geol.
– year: 2017
  ident: bb0115
  article-title: A unified approach to interpreting model predictions
  publication-title: Advances in Neural Information Processing Systems
– volume: 194
  year: 2020
  ident: bb0060
  article-title: Log interpretation for lithology and fluid identification using deep neural network combined with MAHAKIL in a tight sandstone reservoir
  publication-title: J. Pet. Sci. Eng.
– volume: 1
  start-page: 231
  year: 2016
  end-page: 241
  ident: bb0160
  article-title: Logging identification for the Lower Cambrian Niutitang shale reservoir in the Upper Yangtze region, China: a case study of the Cengong block, Guizhou Province
  publication-title: J. Nat. Gas Geosci.
– volume: 173
  year: 2021
  ident: bb0040
  article-title: Quantitative ultrasonic testing for near-surface defects of large ring forgings using feature extraction and GA-SVM
  publication-title: Appl. Acoust.
– volume: 204
  year: 2022
  ident: bb0120
  article-title: Prediction method and application of shale reservoirs core gas content based on machine learning
  publication-title: J. Appl. Geophys.
– volume: 223
  year: 2023
  ident: bb0200
  article-title: CE-SGAN: classification enhancement semi-supervised generative adversarial network for lithology identification
  publication-title: Geoenergy Sci. Eng.
– volume: 58
  start-page: 1785
  year: 2015
  end-page: 1793
  ident: bb0125
  article-title: Lithological identification of volcanic rocks from SVM well logging data: case study in the eastern depression of Liaohe Basin
  publication-title: Chin. J. Geophys.
– volume: 4
  start-page: 28
  year: 2021
  end-page: 44
  ident: bb0135
  article-title: Machine learning techniques for analysis of hyperspectral images to determine quality of food products: a review
  publication-title: Curr. Res. Food Sci.
– volume: 24
  start-page: 360
  year: 2017
  end-page: 363
  ident: bb0100
  article-title: Application of principal component analysis method in lithology identification for shale formation
  publication-title: Fault-Block Oil & Gas Field
– volume: 6
  start-page: 117
  year: 2019
  end-page: 123
  ident: bb0080
  article-title: The application status of shale gas reservoir logging evaluation
  publication-title: Unconvention Oil & Gas
– volume: 271
  year: 2020
  ident: bb0150
  article-title: Fluid typing in tight sandstone from wireline logs using classification committee machine
  publication-title: Fuel
– volume: 96
  start-page: 7
  year: 2013
  ident: 10.1016/j.jappgeo.2024.105346_bb0015
  article-title: Fuzzy classifier based support vector regression framework for Poisson ratio determination
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2013.06.006
– volume: 70
  start-page: 273
  year: 2016
  ident: 10.1016/j.jappgeo.2024.105346_bb0055
  article-title: Logging identification and characteristic analysis of marine–continental transitional organic-rich shale in the Carboniferous-Permian strata, Bohai Bay Basin
  publication-title: Mar. Pet. Geol.
  doi: 10.1016/j.marpetgeo.2015.12.006
– volume: 16
  year: 2022
  ident: 10.1016/j.jappgeo.2024.105346_bb0010
  article-title: Enhanced machine learning tree classifiers for lithology identification using Bayesian optimization
  publication-title: Appl. Comput. Geosci.
  doi: 10.1016/j.acags.2022.100100
– volume: 137
  year: 2022
  ident: 10.1016/j.jappgeo.2024.105346_bb0050
  article-title: An integrated high-resolution image log, sequence stratigraphy and palynofacies analysis to reconstruct the Albian – Cenomanian basin depositional setting and cyclicity: insights from the southern Tethys
  publication-title: Mar. Pet. Geol.
  doi: 10.1016/j.marpetgeo.2021.105502
– volume: 40
  start-page: 15
  year: 2013
  ident: 10.1016/j.jappgeo.2024.105346_bb0205
  article-title: Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China
  publication-title: Pet. Explor. Dev.
  doi: 10.1016/S1876-3804(13)60002-6
– volume: 408
  year: 2023
  ident: 10.1016/j.jappgeo.2024.105346_bb0030
  article-title: Three-level evaluation method of cumulative slope deformation hybrid machine learning models and interpretability analysis
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2023.133821
– volume: 17
  year: 2022
  ident: 10.1016/j.jappgeo.2024.105346_bb0185
  article-title: Efficiency of convolutional neural networks (CNN) based image classification for monitoring construction related activities: a case study on aggregate mining for concrete production
  publication-title: Case Stud. Constr. Mater.
– volume: 58
  start-page: 1785
  year: 2015
  ident: 10.1016/j.jappgeo.2024.105346_bb0125
  article-title: Lithological identification of volcanic rocks from SVM well logging data: case study in the eastern depression of Liaohe Basin
  publication-title: Chin. J. Geophys.
– volume: 271
  year: 2020
  ident: 10.1016/j.jappgeo.2024.105346_bb0150
  article-title: Fluid typing in tight sandstone from wireline logs using classification committee machine
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117601
– volume: 48
  start-page: 527
  year: 2021
  ident: 10.1016/j.jappgeo.2024.105346_bb0140
  article-title: An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China
  publication-title: Pet. Explor. Dev.
  doi: 10.1016/S1876-3804(21)60043-5
– volume: 204
  year: 2022
  ident: 10.1016/j.jappgeo.2024.105346_bb0120
  article-title: Prediction method and application of shale reservoirs core gas content based on machine learning
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2022.104741
– volume: 200
  year: 2021
  ident: 10.1016/j.jappgeo.2024.105346_bb0005
  article-title: A new model of faults classification in power transformers based on data optimization method
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2021.107446
– volume: 257
  year: 2022
  ident: 10.1016/j.jappgeo.2024.105346_bb0105
  article-title: Integrating advanced soft computing techniques with experimental studies for pore structure analysis of Qingshankou shale in Southern Songliao Basin, NE China
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2022.103998
– volume: 189
  year: 2022
  ident: 10.1016/j.jappgeo.2024.105346_bb0095
  article-title: Research on lithology identification method based on mechanical specific energy principle and machine learning theory
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116142
– volume: 24
  start-page: 360
  year: 2017
  ident: 10.1016/j.jappgeo.2024.105346_bb0100
  article-title: Application of principal component analysis method in lithology identification for shale formation
  publication-title: Fault-Block Oil & Gas Field
– volume: 222
  year: 2023
  ident: 10.1016/j.jappgeo.2024.105346_bb0110
  article-title: Identification of tight sandstone reservoir lithofacies based on CNN image recognition technology: a case study of Fuyu reservoir of Sanzhao Sag in Songliao Basin
  publication-title: Geoenergy Sci. Eng.
  doi: 10.1016/j.geoen.2023.211459
– volume: 36
  start-page: 755
  year: 2016
  ident: 10.1016/j.jappgeo.2024.105346_bb0180
  article-title: CNN-SVM for microvascular morphological type recognition with data augmentation
  publication-title: J. Med. Biol. Eng.
  doi: 10.1007/s40846-016-0182-4
– start-page: 300
  year: 2020
  ident: 10.1016/j.jappgeo.2024.105346_bb0155
  article-title: Reducing overfitting and improving generalization in training convolutional neural network (CNN) under limited sample sizes in image recognition
– volume: 6
  start-page: 117
  year: 2019
  ident: 10.1016/j.jappgeo.2024.105346_bb0080
  article-title: The application status of shale gas reservoir logging evaluation
  publication-title: Unconvention Oil & Gas
– volume: 44
  start-page: 1
  year: 2023
  ident: 10.1016/j.jappgeo.2024.105346_bb0145
  article-title: Concept and application of “sweet spot” in shale oil
  publication-title: Acta Pet. Sin.
– volume: 13
  start-page: 415
  year: 2002
  ident: 10.1016/j.jappgeo.2024.105346_bb0065
  article-title: A comparison of methods for multiclass support vector machines
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.991427
– volume: 1
  start-page: 231
  year: 2016
  ident: 10.1016/j.jappgeo.2024.105346_bb0160
  article-title: Logging identification for the Lower Cambrian Niutitang shale reservoir in the Upper Yangtze region, China: a case study of the Cengong block, Guizhou Province
  publication-title: J. Nat. Gas Geosci.
  doi: 10.1016/j.jnggs.2016.08.004
– volume: 207
  year: 2022
  ident: 10.1016/j.jappgeo.2024.105346_bb0190
  article-title: A new hybrid method based on sparrow search algorithm optimized extreme learning machine for brittleness evaluation
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2022.104845
– volume: 198
  year: 2021
  ident: 10.1016/j.jappgeo.2024.105346_bb0020
  article-title: Identification of architectural elements based on SVM with PCA: a case study of sandy braided river reservoir in the Lamadian Oilfield, Songliao Basin, NE China
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.108247
– volume: 214
  year: 2023
  ident: 10.1016/j.jappgeo.2024.105346_bb0165
  article-title: A method of improving inversion accuracy for ultra-low signal-to-noise ratio echo train of nuclear magnetic resonance logging
  publication-title: J. Appl. Geophys.
– volume: 8
  start-page: 4344
  year: 2022
  ident: 10.1016/j.jappgeo.2024.105346_bb0085
  article-title: Research progress on evaluation methods and factors influencing shale brittleness: a review
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.03.120
– volume: 47
  start-page: 877
  year: 2020
  ident: 10.1016/j.jappgeo.2024.105346_bb0070
  article-title: Development potential and technical strategy of continental shale oil in China
  publication-title: Pet. Explor. Dev.
  doi: 10.1016/S1876-3804(20)60103-3
– volume: 200
  year: 2021
  ident: 10.1016/j.jappgeo.2024.105346_bb0130
  article-title: Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties: comparative analysis of ANN and SVM models
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.108182
– volume: 177
  year: 2021
  ident: 10.1016/j.jappgeo.2024.105346_bb0045
  article-title: Rolling bearing fault diagnosis with combined convolutional neural networks and support vector machine
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109022
– volume: 328
  start-page: 69
  year: 2019
  ident: 10.1016/j.jappgeo.2024.105346_bb0175
  article-title: Overfitting remedy by sparsifying regularization on fully-connected layers of CNNs
– volume: 173
  year: 2021
  ident: 10.1016/j.jappgeo.2024.105346_bb0040
  article-title: Quantitative ultrasonic testing for near-surface defects of large ring forgings using feature extraction and GA-SVM
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2020.107714
– year: 2017
  ident: 10.1016/j.jappgeo.2024.105346_bb0115
  article-title: A unified approach to interpreting model predictions
– volume: 4
  start-page: 28
  year: 2021
  ident: 10.1016/j.jappgeo.2024.105346_bb0135
  article-title: Machine learning techniques for analysis of hyperspectral images to determine quality of food products: a review
  publication-title: Curr. Res. Food Sci.
  doi: 10.1016/j.crfs.2021.01.002
– volume: 85
  year: 2021
  ident: 10.1016/j.jappgeo.2024.105346_bb0035
  article-title: Experiences and lessons learned from China’s shale gas development: 2005–2019
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2020.103648
– year: 2023
  ident: 10.1016/j.jappgeo.2024.105346_bb0195
– volume: 100
  year: 2022
  ident: 10.1016/j.jappgeo.2024.105346_bb0075
  article-title: Lithofacies classification integrating conventional approaches and machine learning technique
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2022.104500
– volume: 173
  year: 2020
  ident: 10.1016/j.jappgeo.2024.105346_bb0170
  article-title: Research and application of logging lithology identification for igneous reservoirs based on deep learning
  publication-title: J. Appl. Geophys.
– volume: 194
  year: 2020
  ident: 10.1016/j.jappgeo.2024.105346_bb0060
  article-title: Log interpretation for lithology and fluid identification using deep neural network combined with MAHAKIL in a tight sandstone reservoir
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.107498
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.jappgeo.2024.105346_bb0090
  article-title: CNN-based network application for petrophysical parameter inversion: sensitivity analysis of input–output parameters and network architecture
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 223
  year: 2023
  ident: 10.1016/j.jappgeo.2024.105346_bb0200
  article-title: CE-SGAN: classification enhancement semi-supervised generative adversarial network for lithology identification
  publication-title: Geoenergy Sci. Eng.
  doi: 10.1016/j.geoen.2023.211562
– volume: 170
  start-page: 664
  year: 2018
  ident: 10.1016/j.jappgeo.2024.105346_bb0025
  article-title: Automatic lithology prediction from well logging using kernel density estimation
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2018.06.012
SSID ssj0001304
Score 2.4652195
Snippet Shale oil and gas reservoirs are lithologically complex and heterogeneous and accurate identification of lithology is necessary for the correct identification...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105346
SubjectTerms Convolutional neural network
Hybrid model
Logging lithology identification
Model interpretability
Support vector machine
Title A novel hybrid CNN–SVM method for lithology identification in shale reservoirs based on logging measurements
URI https://dx.doi.org/10.1016/j.jappgeo.2024.105346
Volume 223
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14TROzu-nusRRLVcylVnoL2ezGppS0tLXQi_gf_If-EmfzaCuIgsckOyHMDDMf4ZtvELqWrqu8pmZW6HihRTmlluSaWxpatwQEHes4I8j6XrdP7wdsUEHtchbG0CqL2p_X9KxaF3fswpv2NEnsniNcTwBgMCxIx3ONJiilTZPljbcNzQNqdCYhBYctc3ozxWOPGqNwOn3JZgBdajbeEoODf-pPWz2nc4D2C7CIW_n3HKKKTo_Q3paE4DFKWzidLPUYD1dm9gq3ff_z_aP3_Ijz3dAYQCkGqJ0VuRVOVMEOygKCkxTPh9AisBlCmi0nyWyOTV9TGB6CgdlgBC9a_0acn6B-5_ap3bWKHQpWSIi7sAhTzJOE8UjFisXSFVDhABI4JNREUgBHzZsohJAQRpVgIuaKcC2kiCQ3amDkFFXTSarPEFZS0ZjG4FLlUikcqSKjRyY87pGQMF1DtPRcEBUC42bPxTgomWSjoHB4YBwe5A6vocbabJorbPxlwMuwBN9SJYAu8Lvp-f9NL9CuucpJO5eoupi96ivAIwtZzxKujnZadw9d_wvKo-Gt
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTttAFL0KdAEsUFtAPEo7i3bpxMzDzCxYRKEoKZAND7EzHs8YHCEnSgIoG9R_6Kf0j_gS7tgToBIqEhJbj-5odHznnmPrPgC-a0pNtG1FkIRREnDJeaCllYFF6taooDOblQmy3ah9wn-dibMa_J3Wwri0Sh_7q5heRmv_pOHRbAzyvHEUKhopFAwuCzKMKPeZlft2covfbaOdzi6-5B-U7v08brUDP1ogSBij44AJIyLNhExNZkSmqcKLj0wZssQyzVEzbG-lCZ6UCW6UUJk0TFqlVaqla5LFcN8Z-MCdFV6i-t1TXgmSQtmzCk8XuOM9lQ01evVeMhhclEWHlLsRu8wJ75cI8RnJ7X2ERa9OSbMC4BPUbPEZFp71LFyCokmK_o29IpcTV-xFWt3u_e8_R6eHpBpGTVAFE9T2ZVSdkNz4dKTSA0hekNElchJxVU_Dm34-HBFHpIbgIhq4kUm40eN_y9EynLwLsiswW_QLuwrEaMMzniGkhnKtQm1S1wBNRTJiCRN2DfgUuTj1Hc3dYI2reJq61os94LEDPK4AX4P6o9mgaunxmoGcvpb4H9-MkXb-b7r-dtNvMNc-PjyIDzrd_Q2YdytVxtAXmB0Pr-0miqGx_lo6H4Hz9_b2B9b5HIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+hybrid+CNN%E2%80%93SVM+method+for+lithology+identification+in+shale+reservoirs+based+on+logging+measurements&rft.jtitle=Journal+of+applied+geophysics&rft.au=Li%2C+Zhijun&rft.au=Deng%2C+Shaogui&rft.au=Hong%2C+Yuzhen&rft.au=Wei%2C+Zhoutuo&rft.date=2024-04-01&rft.issn=0926-9851&rft.volume=223&rft.spage=105346&rft_id=info:doi/10.1016%2Fj.jappgeo.2024.105346&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jappgeo_2024_105346
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9851&client=summon