Poro-Acoustic Impedance (PAI) as a new and robust seismic inversion attribute for porosity prediction and reservoir characterization
For the purpose of reservoir modelling, precise porosity estimation is vital as it directly influences the storage capacity, fluid flow dynamics, and overall productivity of the reservoir. The computation of porosity is a key component of reservoir characterization. The Poro-Acoustic Impedance (PAI)...
Saved in:
Published in | Journal of applied geophysics Vol. 223; p. 105351 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For the purpose of reservoir modelling, precise porosity estimation is vital as it directly influences the storage capacity, fluid flow dynamics, and overall productivity of the reservoir. The computation of porosity is a key component of reservoir characterization. The Poro-Acoustic Impedance (PAI), a seismic inversion attribute, has proven to be effective for porosity estimation in hydrocarbon reservoirs. PAI, an extended version of Acoustic Impedance (AI), incorporates porosity information directly, enhancing its utility in forward modelling and seismic data inversion. In this study, offshore oil resources in Iran were examined, focusing on two components: sandstone and carbonate. The results of AI and PAI were compared, indicating that PAI is a suitable attribute for estimating porosity. The correlation between porosity and AI was −45%, while it was −74% with PAI. Moreover, the synthetic seismogram created using PAI aligns more closely with real seismograms. Porosity was estimated using both AI and PAI, with a 72% correlation between the porosity estimated using AI and the actual porosity. However, the correlation increased to 78% when using PAI. Furthermore, the porosity section was calculated using both AI and PAI, concluding that the PAI porosity section aligns more closely with the porosity log and provides a greater contrast in low porosity zones compared to AI. Given that porosity is incorporated into the PAI formula, the PAI porosity section and inversion results can be used as an indicator for evaluating the hydrocarbon capacity of the reservoir. The findings of this research suggest that PAI is an effective attribute for porosity estimation, bridging the gap between seismic data and porosity estimation, thereby enhancing our understanding and exploration of the reservoir.
•Porosity estimation using PAI has better accuracy and precision.•The porosity section obtained using PAI is more consistent with the porosity log.•The effect of porosity is directly involved in the inversion procedure.•The PAI formula is simple and effective to use. |
---|---|
AbstractList | For the purpose of reservoir modelling, precise porosity estimation is vital as it directly influences the storage capacity, fluid flow dynamics, and overall productivity of the reservoir. The computation of porosity is a key component of reservoir characterization. The Poro-Acoustic Impedance (PAI), a seismic inversion attribute, has proven to be effective for porosity estimation in hydrocarbon reservoirs. PAI, an extended version of Acoustic Impedance (AI), incorporates porosity information directly, enhancing its utility in forward modelling and seismic data inversion. In this study, offshore oil resources in Iran were examined, focusing on two components: sandstone and carbonate. The results of AI and PAI were compared, indicating that PAI is a suitable attribute for estimating porosity. The correlation between porosity and AI was −45%, while it was −74% with PAI. Moreover, the synthetic seismogram created using PAI aligns more closely with real seismograms. Porosity was estimated using both AI and PAI, with a 72% correlation between the porosity estimated using AI and the actual porosity. However, the correlation increased to 78% when using PAI. Furthermore, the porosity section was calculated using both AI and PAI, concluding that the PAI porosity section aligns more closely with the porosity log and provides a greater contrast in low porosity zones compared to AI. Given that porosity is incorporated into the PAI formula, the PAI porosity section and inversion results can be used as an indicator for evaluating the hydrocarbon capacity of the reservoir. The findings of this research suggest that PAI is an effective attribute for porosity estimation, bridging the gap between seismic data and porosity estimation, thereby enhancing our understanding and exploration of the reservoir.
•Porosity estimation using PAI has better accuracy and precision.•The porosity section obtained using PAI is more consistent with the porosity log.•The effect of porosity is directly involved in the inversion procedure.•The PAI formula is simple and effective to use. |
ArticleNumber | 105351 |
Author | Leisi, Ahsan Aftab, Saeed Shad Manaman, Navid |
Author_xml | – sequence: 1 givenname: Ahsan surname: Leisi fullname: Leisi, Ahsan – sequence: 2 givenname: Saeed surname: Aftab fullname: Aftab, Saeed – sequence: 3 givenname: Navid surname: Shad Manaman fullname: Shad Manaman, Navid email: shadmanaman@sut.ac.ir |
BookMark | eNqFkE9rwjAYh3NwMHX7CIMct0Nd0rS1ZYchsj-CMA_bOcTk7RbRpryJDnfeB1-qnnaREALJ7_nx5hmQXuMaIOSGsxFnvLhfjVaqbT_BjVKWZvEuFznvkT6r0iKpypxfkoH3K8YYFyzrk9-FQ5dMtNv6YDWdbVowqtFAbxeT2R1VnirawDdVjaHoljFFPVi_iVnb7AC9dQ1VIaBdbgPQ2iFtY6O3YU9bBGN1OCQ6HDzgzlmk-kuh0gHQ_qju-Ypc1Grt4fp0DsnH89P79DWZv73MppN5ooRIQ5KKbMkqw2pTZalgeVw1L0qhDBS6rFSpy2JsQBidCeDLkuVxj7O6BOA1M5kYkodjr44TeoRaahsOEwRUdi05k51EuZInibKTKI8SI53_o1u0G4X7s9zjkYP4tZ0FlF5biI6NRdBBGmfPNPwBOEeWIA |
CitedBy_id | crossref_primary_10_1016_j_marpetgeo_2024_107198 crossref_primary_10_1007_s13146_024_01014_8 crossref_primary_10_1007_s13202_024_01832_5 crossref_primary_10_1007_s13369_024_09405_8 crossref_primary_10_1016_j_pdisas_2024_100347 crossref_primary_10_1007_s11053_024_10402_9 crossref_primary_10_1016_j_geoen_2024_212998 crossref_primary_10_1007_s12145_025_01853_6 crossref_primary_10_1016_j_geoen_2025_213854 crossref_primary_10_1016_j_jseaes_2024_106377 |
Cites_doi | 10.1016/j.jappgeo.2023.104971 10.1016/j.jappgeo.2014.05.010 10.1007/s11053-020-09641-3 10.1016/j.gsf.2018.07.002 10.1080/10916466.2011.584102 10.1016/j.petrol.2016.05.019 10.1016/j.petrol.2017.11.060 10.1007/s12145-022-00902-8 10.1007/s11053-019-09582-6 10.1016/j.petrol.2011.08.016 10.1016/j.jngse.2014.10.027 10.1007/s12665-015-4130-3 10.1016/j.jappgeo.2023.105138 10.1007/s11004-020-09910-0 10.1007/s11053-019-09583-5 10.1007/s11053-018-9447-7 10.1016/j.jseaes.2020.104541 10.1007/s11053-016-9300-9 10.1007/s13202-020-01005-0 10.1007/s11053-018-9394-3 10.1007/s12145-023-01049-w 10.1007/s11004-020-09896-9 10.1016/j.jappgeo.2015.01.008 10.1007/s11053-023-10198-0 10.1016/j.ejpe.2017.08.004 10.1007/s13202-020-01035-8 10.1016/j.jappgeo.2014.05.011 10.1190/1.1444899 10.1016/j.petrol.2019.03.039 10.1016/j.cageo.2010.08.001 10.1007/s13202-022-01497-y 10.1016/j.petrol.2020.107975 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jappgeo.2024.105351 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_jappgeo_2024_105351 S0926985124000673 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACLVX ACRLP ACRPL ACSBN ADBBV ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSH SSZ T5K VH1 WUQ XPP ZMT ~02 ~G- AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP CITATION |
ID | FETCH-LOGICAL-a332t-234b09d0fd942305050f1683ade6c89a8c867de3dc43e1b805b8074f8ee1f0d43 |
IEDL.DBID | .~1 |
ISSN | 0926-9851 |
IngestDate | Thu Apr 24 23:04:31 EDT 2025 Tue Jul 01 02:17:26 EDT 2025 Fri May 16 00:29:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Poro-acoustic impedance Reservoir characterization Seismic attribute Seismic inversion Porosity prediction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a332t-234b09d0fd942305050f1683ade6c89a8c867de3dc43e1b805b8074f8ee1f0d43 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jappgeo_2024_105351 crossref_primary_10_1016_j_jappgeo_2024_105351 elsevier_sciencedirect_doi_10_1016_j_jappgeo_2024_105351 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2024 2024-04-00 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of applied geophysics |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kheirollahi, Shad Manaman, Leisi (bb0075) 2023; 211 Leite, Vidal (bb0100) 2011; 37 Farfour, Yoon, Kim (bb0050) 2015; 114 Zahmatkesh, Kadkhodaie, Soleimani, Golalzadeh, Azarpour (bb0180) 2018; 161 Ali, Abdelmaksoud, Essa, Abdelhady, Darwish (bb0030) 2020; 29 Khoshdel, Riahi (bb0080) 2011; 78 Azevedo, Narciso, Nunes, Soares (bb0040) 2021; 53 Ali, Younas, Ullah, Hussain, Toqeer, Bhatti, Khan (bb0025) 2019; 178 Hampson, Schuelke, Quirein (bb0060) 2001; 66 Leisi, Kheirollahi, Shadmanaman (bb0095) 2022; 16 Li, Liu, Cao, Yuan, Wang, You (bb0105) 2020; 29 El Sharawy, Nabawy (bb0045) 2019; 28 Jalalalhosseini, Ali, Mostafazadeh (bb0065) 2014; 32 Aftab, Leisi, Kadkhodaie (bb0015) 2023; 16 Viveros, Parra (bb0165) 2014; 107 Anifowose, Adeniye, Abdulraheem, Al-Shuhail (bb0035) 2016; 145 Na’imi, Shadizadeh, Riahi, Mirzakhanian (bb0110) 2014; 107 Gogoi, Chaterjee (bb0055) 2019; 10 Shalaby, Binti Sapri, Islam (bb0130) 2020; 10 Soleimani, Jodeiri, Rafiei (bb0150) 2017; 26 Leisi, Saberi (bb0085) 2023; 16 Talha Qadri, Islam, Shalaby (bb0155) 2019; 28 Shahbazi, Soleimani Monfared, Thiruchelvam, Ka Fei, Babasafari (bb0125) 2020; 202 Abdolahi, Chehrazi, Kadkhodaie, Babasafari (bb0005) 2022; 12 Kadkhodaie-ilkhchi, Moussavi-harami, Rezaee (bb0070) 2014; 21 Yasin, Mohyuddin, Khalid, Baklouti, Du (bb0175) 2021; 197 Aftab, Hamidzadeh, Leisi (bb0010) 2023; 215 Soleimani, Bahadori, Meng (bb0145) 2013; 5 Soares (bb0135) 2021; 53 Saadu, Nwankwo (bb0120) 2018; 27 Rezaei, Emami Niri, Asghari, Talesh Hosseini, Emery (bb0115) 2023; 32 Soleimani, Jodeiri Shokri (bb0140) 2015; 74 Yasin, Sohail, Ding, Ismail, Du (bb0170) 2020; 29 Aftab, Leisi, Shadmanaman (bb0020) 2024; 49 Leisi, Shad Manaman (bb0090) 2024; 49 Talha Qadri, Islam, Shalaby, Abd El-Aal (bb0160) 2021; 11 Khoshdel (10.1016/j.jappgeo.2024.105351_bb0080) 2011; 78 Jalalalhosseini (10.1016/j.jappgeo.2024.105351_bb0065) 2014; 32 Na’imi (10.1016/j.jappgeo.2024.105351_bb0110) 2014; 107 Rezaei (10.1016/j.jappgeo.2024.105351_bb0115) 2023; 32 Azevedo (10.1016/j.jappgeo.2024.105351_bb0040) 2021; 53 Soleimani (10.1016/j.jappgeo.2024.105351_bb0145) 2013; 5 Anifowose (10.1016/j.jappgeo.2024.105351_bb0035) 2016; 145 Saadu (10.1016/j.jappgeo.2024.105351_bb0120) 2018; 27 Zahmatkesh (10.1016/j.jappgeo.2024.105351_bb0180) 2018; 161 Yasin (10.1016/j.jappgeo.2024.105351_bb0175) 2021; 197 Abdolahi (10.1016/j.jappgeo.2024.105351_bb0005) 2022; 12 Gogoi (10.1016/j.jappgeo.2024.105351_bb0055) 2019; 10 Leisi (10.1016/j.jappgeo.2024.105351_bb0095) 2022; 16 Li (10.1016/j.jappgeo.2024.105351_bb0105) 2020; 29 Farfour (10.1016/j.jappgeo.2024.105351_bb0050) 2015; 114 Leisi (10.1016/j.jappgeo.2024.105351_bb0085) 2023; 16 Talha Qadri (10.1016/j.jappgeo.2024.105351_bb0155) 2019; 28 El Sharawy (10.1016/j.jappgeo.2024.105351_bb0045) 2019; 28 Leisi (10.1016/j.jappgeo.2024.105351_bb0090) 2024; 49 Shahbazi (10.1016/j.jappgeo.2024.105351_bb0125) 2020; 202 Kadkhodaie-ilkhchi (10.1016/j.jappgeo.2024.105351_bb0070) 2014; 21 Talha Qadri (10.1016/j.jappgeo.2024.105351_bb0160) 2021; 11 Viveros (10.1016/j.jappgeo.2024.105351_bb0165) 2014; 107 Soleimani (10.1016/j.jappgeo.2024.105351_bb0150) 2017; 26 Aftab (10.1016/j.jappgeo.2024.105351_bb0010) 2023; 215 Hampson (10.1016/j.jappgeo.2024.105351_bb0060) 2001; 66 Leite (10.1016/j.jappgeo.2024.105351_bb0100) 2011; 37 Shalaby (10.1016/j.jappgeo.2024.105351_bb0130) 2020; 10 Soleimani (10.1016/j.jappgeo.2024.105351_bb0140) 2015; 74 Aftab (10.1016/j.jappgeo.2024.105351_bb0015) 2023; 16 Aftab (10.1016/j.jappgeo.2024.105351_bb0020) 2024; 49 Ali (10.1016/j.jappgeo.2024.105351_bb0030) 2020; 29 Ali (10.1016/j.jappgeo.2024.105351_bb0025) 2019; 178 Soares (10.1016/j.jappgeo.2024.105351_bb0135) 2021; 53 Yasin (10.1016/j.jappgeo.2024.105351_bb0170) 2020; 29 Kheirollahi (10.1016/j.jappgeo.2024.105351_bb0075) 2023; 211 |
References_xml | – volume: 114 start-page: 68 year: 2015 end-page: 80 ident: bb0050 article-title: Seismic attributes and acoustic impedance inversion in interpretation of complex hydrocarbon reservoirs publication-title: J. Appl. Geophys. – volume: 66 start-page: 220 year: 2001 end-page: 236 ident: bb0060 article-title: Use of multiattribute transforms to predict log properties from seismic data publication-title: Geophysics – volume: 74 start-page: 1403 year: 2015 end-page: 1414 ident: bb0140 article-title: 3D static reservoir modeling by geostatistical techniques used for reservoir characterization and data integration publication-title: Environ. Earth Sci. – volume: 29 start-page: 3291 year: 2020 end-page: 3317 ident: bb0170 article-title: Estimation of Petrophysical Parameters from Seismic Inversion by Combining Particle Swarm Optimization and Multilayer Linear Calculator publication-title: Nat. Resour. Res. – volume: 5 start-page: 1165 year: 2013 end-page: 1176 ident: bb0145 article-title: Microbiostratigraphy, microfacies and sequence stratigraphy of upper cretaceous and paleogene sediments, Hendijan oilfield, Northwest of Persian Gulf, Iran publication-title: Nat. Sci. – volume: 161 start-page: 259 year: 2018 end-page: 274 ident: bb0180 article-title: Estimating V publication-title: J. Pet. Sci. Eng. – volume: 29 start-page: 2547 year: 2020 end-page: 2573 ident: bb0105 article-title: Analysis of petrophysical characteristics and water movability of tight sandstone using low-field nuclear magnetic resonance publication-title: Nat. Resour. Res. – volume: 32 start-page: 29 year: 2014 end-page: 37 ident: bb0065 article-title: Predicting porosity by using seismic multi- attributes and well data and combining these available data by geostatistical methods in a South Iranian oil field publication-title: Pet. Sci. Technol. – volume: 16 start-page: 23 year: 2022 end-page: 35 ident: bb0095 article-title: Investigation and comparison of conventional methods for estimating shear wave velocity from well logging data in one of the sandstone reservoirs in southern Iran publication-title: Iran. J. Geophys. – volume: 12 start-page: 3091 year: 2022 end-page: 3104 ident: bb0005 article-title: Seismic inversion as a reliable technique to anticipating of porosity and facies delineation, a case study on Asmari Formation in Hendijan field, southwest part of Iran publication-title: J. Pet. Explor. Prod. Technol. – volume: 26 start-page: 75 year: 2017 end-page: 88 ident: bb0150 article-title: Integrated petrophysical modeling for a strongly heterogeneous and fractured reservoir, Sarvak Formation, SW Iran publication-title: Nat. Resour. Res. – volume: 107 start-page: 93 year: 2014 end-page: 101 ident: bb0110 article-title: Estimation of reservoir porosity and water saturation based on seismic attributes using support vector regression approach publication-title: J. Appl. Geophys. – volume: 53 start-page: 211 year: 2021 end-page: 226 ident: bb0135 article-title: Geostatistical Seismic Inversion: one Nugget from the Tróia Conference publication-title: Math. Geosci. – volume: 10 start-page: 1113 year: 2019 end-page: 1124 ident: bb0055 article-title: Estimation of petrophysical parameters using seismic inversion and neural network modeling in Upper Assam basin, India publication-title: Geosci. Front. – volume: 145 start-page: 230 year: 2016 end-page: 237 ident: bb0035 article-title: Integrating seismic and log data for improved petroleum reservoir properties estimation using non-linear feature-selection based hybrid computational intelligence models publication-title: J. Pet. Sci. Eng. – volume: 49 start-page: 389 year: 2024 end-page: 405 ident: bb0090 article-title: Shear wave velocity estimation using seismic attributes in one of the sandstone reservoirs of southern Iran publication-title: J. Earth Space Phys. – volume: 211 year: 2023 ident: bb0075 article-title: Robust estimation of shear wave velocity in a carbonate oil reservoir from conventional well logging data using machine learning algorithms publication-title: J. Appl. Geophys. – volume: 197 year: 2021 ident: bb0175 article-title: Application of machine learning tool to predict the porosity of clastic depositional system, Indus Basin, Pakistan publication-title: J. Pet. Sci. Eng. – volume: 27 start-page: 531 year: 2018 end-page: 539 ident: bb0120 article-title: Petrophysical evaluation and volumetric estimation within Central swamp depobelt, Niger Delta, using 3-D seismic and well logs publication-title: Egypt. J. Pet. – volume: 16 start-page: 637 year: 2023 end-page: 652 ident: bb0085 article-title: Petrophysical parameters estimation of a reservoir using integration of wells and seismic data : a sandstone case study publication-title: Earth Sci. Inf. – volume: 32 start-page: 1147 year: 2023 end-page: 1175 ident: bb0115 article-title: Seismic data integration workflow in pluri-Gaussian simulation: application to a heterogeneous carbonate reservoir in southwestern Iran publication-title: Nat. Resour. Res. – volume: 49 start-page: 11 year: 2024 end-page: 25 ident: bb0020 article-title: Poro-acoustic impedance as a new seismic inversion attribute for reservoir characterization publication-title: J. Earth Space Phys. – volume: 16 start-page: 2457 year: 2023 end-page: 2473 ident: bb0015 article-title: Reservoir Petrophysical Index (RPI) as a robust tool for reservoir quality assessment publication-title: Earth Sci. Inf. – volume: 21 start-page: 1073 year: 2014 end-page: 1083 ident: bb0070 article-title: Seismic inversion and attributes analysis for porosity evaluation of the tight gas sandstones of the Whicher Range fi eld in the Perth Basin, Western Australia publication-title: J. Nat. Gas Sci. Eng. – volume: 53 start-page: 1073 year: 2021 end-page: 1093 ident: bb0040 article-title: Geostatistical seismic inversion with self-updating of local probability distributions publication-title: Math. Geosci. – volume: 37 start-page: 1174 year: 2011 end-page: 1180 ident: bb0100 article-title: 3D porosity prediction from seismic inversion and neural networks Emilson publication-title: Comput. Geosci. – volume: 29 start-page: 2575 year: 2020 end-page: 2597 ident: bb0030 article-title: 3D structural, facies and petrophysical modeling of C member of six hills formation, Komombo Basin, Upper Egypt publication-title: Nat. Resour. Res. – volume: 28 start-page: 369 year: 2019 end-page: 392 ident: bb0155 article-title: Three-dimensional petrophysical modelling and volumetric analysis to model the reservoir potential of the Kupe Field, Taranaki Basin, New Zealand publication-title: Nat. Resour. Res. – volume: 178 start-page: 272 year: 2019 end-page: 293 ident: bb0025 article-title: Characterization of secondary reservoir potential via seismic inversion and attribute analysis: a case study publication-title: J. Pet. Sci. Eng. – volume: 28 start-page: 1587 year: 2019 end-page: 1608 ident: bb0045 article-title: Integration of electrofacies and hydraulic flow units to delineate reservoir quality in uncored reservoirs: a case study, Nubia Sandstone Reservoir, Gulf of Suez, Egypt publication-title: Nat. Resour. Res. – volume: 78 start-page: 740 year: 2011 end-page: 747 ident: bb0080 article-title: Multi attribute transform and neural network in porosity estimation of an offshore oil field — a case study publication-title: J. Pet. Sci. Eng. – volume: 107 start-page: 45 year: 2014 end-page: 54 ident: bb0165 article-title: Artificial Neural Networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well-log data publication-title: J. Appl. Geophys. – volume: 11 start-page: 11 year: 2021 end-page: 31 ident: bb0160 article-title: Reservoir quality evaluation of the Farewell sandstone by integrating sedimentological and well log analysis in the Kupe South Field, Taranaki Basin-New Zealand publication-title: J. Pet. Explor. Prod. Technol. – volume: 215 year: 2023 ident: bb0010 article-title: New interpretation approach of well logging data for evaluation of Kern aquifer in South California publication-title: J. Appl. Geophys. – volume: 202 year: 2020 ident: bb0125 article-title: Integration of knowledge-based seismic inversion and sedimentological investigations for heterogeneous reservoir publication-title: J. Asian Earth Sci. – volume: 10 start-page: 3263 year: 2020 end-page: 3279 ident: bb0130 article-title: Integrated reservoir characterization and fluid flow distribution of the Kaimiro Formation, Taranaki Basin, New Zealand publication-title: J. Pet. Explor. Prod. Technol. – volume: 211 year: 2023 ident: 10.1016/j.jappgeo.2024.105351_bb0075 article-title: Robust estimation of shear wave velocity in a carbonate oil reservoir from conventional well logging data using machine learning algorithms publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2023.104971 – volume: 107 start-page: 45 year: 2014 ident: 10.1016/j.jappgeo.2024.105351_bb0165 article-title: Artificial Neural Networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well-log data publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2014.05.010 – volume: 29 start-page: 3291 year: 2020 ident: 10.1016/j.jappgeo.2024.105351_bb0170 article-title: Estimation of Petrophysical Parameters from Seismic Inversion by Combining Particle Swarm Optimization and Multilayer Linear Calculator publication-title: Nat. Resour. Res. doi: 10.1007/s11053-020-09641-3 – volume: 10 start-page: 1113 year: 2019 ident: 10.1016/j.jappgeo.2024.105351_bb0055 article-title: Estimation of petrophysical parameters using seismic inversion and neural network modeling in Upper Assam basin, India publication-title: Geosci. Front. doi: 10.1016/j.gsf.2018.07.002 – volume: 32 start-page: 29 issue: 1 year: 2014 ident: 10.1016/j.jappgeo.2024.105351_bb0065 article-title: Predicting porosity by using seismic multi- attributes and well data and combining these available data by geostatistical methods in a South Iranian oil field publication-title: Pet. Sci. Technol. doi: 10.1080/10916466.2011.584102 – volume: 145 start-page: 230 year: 2016 ident: 10.1016/j.jappgeo.2024.105351_bb0035 article-title: Integrating seismic and log data for improved petroleum reservoir properties estimation using non-linear feature-selection based hybrid computational intelligence models publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2016.05.019 – volume: 161 start-page: 259 year: 2018 ident: 10.1016/j.jappgeo.2024.105351_bb0180 article-title: Estimating Vsand and reservoir property from seismic attributes and acoustic impedance inversion: a case study from the Mansuri oilfield, SW Iran publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2017.11.060 – volume: 16 start-page: 637 year: 2023 ident: 10.1016/j.jappgeo.2024.105351_bb0085 article-title: Petrophysical parameters estimation of a reservoir using integration of wells and seismic data : a sandstone case study publication-title: Earth Sci. Inf. doi: 10.1007/s12145-022-00902-8 – volume: 29 start-page: 2547 year: 2020 ident: 10.1016/j.jappgeo.2024.105351_bb0105 article-title: Analysis of petrophysical characteristics and water movability of tight sandstone using low-field nuclear magnetic resonance publication-title: Nat. Resour. Res. doi: 10.1007/s11053-019-09582-6 – volume: 78 start-page: 740 issue: 3–4 year: 2011 ident: 10.1016/j.jappgeo.2024.105351_bb0080 article-title: Multi attribute transform and neural network in porosity estimation of an offshore oil field — a case study publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2011.08.016 – volume: 21 start-page: 1073 year: 2014 ident: 10.1016/j.jappgeo.2024.105351_bb0070 article-title: Seismic inversion and attributes analysis for porosity evaluation of the tight gas sandstones of the Whicher Range fi eld in the Perth Basin, Western Australia publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2014.10.027 – volume: 74 start-page: 1403 year: 2015 ident: 10.1016/j.jappgeo.2024.105351_bb0140 article-title: 3D static reservoir modeling by geostatistical techniques used for reservoir characterization and data integration publication-title: Environ. Earth Sci. doi: 10.1007/s12665-015-4130-3 – volume: 215 year: 2023 ident: 10.1016/j.jappgeo.2024.105351_bb0010 article-title: New interpretation approach of well logging data for evaluation of Kern aquifer in South California publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2023.105138 – volume: 53 start-page: 211 issue: 2 year: 2021 ident: 10.1016/j.jappgeo.2024.105351_bb0135 article-title: Geostatistical Seismic Inversion: one Nugget from the Tróia Conference publication-title: Math. Geosci. doi: 10.1007/s11004-020-09910-0 – volume: 29 start-page: 2575 year: 2020 ident: 10.1016/j.jappgeo.2024.105351_bb0030 article-title: 3D structural, facies and petrophysical modeling of C member of six hills formation, Komombo Basin, Upper Egypt publication-title: Nat. Resour. Res. doi: 10.1007/s11053-019-09583-5 – volume: 28 start-page: 1587 year: 2019 ident: 10.1016/j.jappgeo.2024.105351_bb0045 article-title: Integration of electrofacies and hydraulic flow units to delineate reservoir quality in uncored reservoirs: a case study, Nubia Sandstone Reservoir, Gulf of Suez, Egypt publication-title: Nat. Resour. Res. doi: 10.1007/s11053-018-9447-7 – volume: 202 year: 2020 ident: 10.1016/j.jappgeo.2024.105351_bb0125 article-title: Integration of knowledge-based seismic inversion and sedimentological investigations for heterogeneous reservoir publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2020.104541 – volume: 26 start-page: 75 year: 2017 ident: 10.1016/j.jappgeo.2024.105351_bb0150 article-title: Integrated petrophysical modeling for a strongly heterogeneous and fractured reservoir, Sarvak Formation, SW Iran publication-title: Nat. Resour. Res. doi: 10.1007/s11053-016-9300-9 – volume: 16 start-page: 23 issue: 3 year: 2022 ident: 10.1016/j.jappgeo.2024.105351_bb0095 article-title: Investigation and comparison of conventional methods for estimating shear wave velocity from well logging data in one of the sandstone reservoirs in southern Iran publication-title: Iran. J. Geophys. – volume: 10 start-page: 3263 year: 2020 ident: 10.1016/j.jappgeo.2024.105351_bb0130 article-title: Integrated reservoir characterization and fluid flow distribution of the Kaimiro Formation, Taranaki Basin, New Zealand publication-title: J. Pet. Explor. Prod. Technol. doi: 10.1007/s13202-020-01005-0 – volume: 5 start-page: 1165 issue: 11 year: 2013 ident: 10.1016/j.jappgeo.2024.105351_bb0145 article-title: Microbiostratigraphy, microfacies and sequence stratigraphy of upper cretaceous and paleogene sediments, Hendijan oilfield, Northwest of Persian Gulf, Iran publication-title: Nat. Sci. – volume: 28 start-page: 369 year: 2019 ident: 10.1016/j.jappgeo.2024.105351_bb0155 article-title: Three-dimensional petrophysical modelling and volumetric analysis to model the reservoir potential of the Kupe Field, Taranaki Basin, New Zealand publication-title: Nat. Resour. Res. doi: 10.1007/s11053-018-9394-3 – volume: 16 start-page: 2457 year: 2023 ident: 10.1016/j.jappgeo.2024.105351_bb0015 article-title: Reservoir Petrophysical Index (RPI) as a robust tool for reservoir quality assessment publication-title: Earth Sci. Inf. doi: 10.1007/s12145-023-01049-w – volume: 53 start-page: 1073 year: 2021 ident: 10.1016/j.jappgeo.2024.105351_bb0040 article-title: Geostatistical seismic inversion with self-updating of local probability distributions publication-title: Math. Geosci. doi: 10.1007/s11004-020-09896-9 – volume: 114 start-page: 68 year: 2015 ident: 10.1016/j.jappgeo.2024.105351_bb0050 article-title: Seismic attributes and acoustic impedance inversion in interpretation of complex hydrocarbon reservoirs publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2015.01.008 – volume: 49 start-page: 11 issue: 4 year: 2024 ident: 10.1016/j.jappgeo.2024.105351_bb0020 article-title: Poro-acoustic impedance as a new seismic inversion attribute for reservoir characterization publication-title: J. Earth Space Phys. – volume: 32 start-page: 1147 year: 2023 ident: 10.1016/j.jappgeo.2024.105351_bb0115 article-title: Seismic data integration workflow in pluri-Gaussian simulation: application to a heterogeneous carbonate reservoir in southwestern Iran publication-title: Nat. Resour. Res. doi: 10.1007/s11053-023-10198-0 – volume: 27 start-page: 531 year: 2018 ident: 10.1016/j.jappgeo.2024.105351_bb0120 article-title: Petrophysical evaluation and volumetric estimation within Central swamp depobelt, Niger Delta, using 3-D seismic and well logs publication-title: Egypt. J. Pet. doi: 10.1016/j.ejpe.2017.08.004 – volume: 11 start-page: 11 year: 2021 ident: 10.1016/j.jappgeo.2024.105351_bb0160 article-title: Reservoir quality evaluation of the Farewell sandstone by integrating sedimentological and well log analysis in the Kupe South Field, Taranaki Basin-New Zealand publication-title: J. Pet. Explor. Prod. Technol. doi: 10.1007/s13202-020-01035-8 – volume: 49 start-page: 389 issue: 2 year: 2024 ident: 10.1016/j.jappgeo.2024.105351_bb0090 article-title: Shear wave velocity estimation using seismic attributes in one of the sandstone reservoirs of southern Iran publication-title: J. Earth Space Phys. – volume: 107 start-page: 93 year: 2014 ident: 10.1016/j.jappgeo.2024.105351_bb0110 article-title: Estimation of reservoir porosity and water saturation based on seismic attributes using support vector regression approach publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2014.05.011 – volume: 66 start-page: 220 issue: 1 year: 2001 ident: 10.1016/j.jappgeo.2024.105351_bb0060 article-title: Use of multiattribute transforms to predict log properties from seismic data publication-title: Geophysics doi: 10.1190/1.1444899 – volume: 178 start-page: 272 year: 2019 ident: 10.1016/j.jappgeo.2024.105351_bb0025 article-title: Characterization of secondary reservoir potential via seismic inversion and attribute analysis: a case study publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2019.03.039 – volume: 37 start-page: 1174 year: 2011 ident: 10.1016/j.jappgeo.2024.105351_bb0100 article-title: 3D porosity prediction from seismic inversion and neural networks Emilson publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2010.08.001 – volume: 12 start-page: 3091 year: 2022 ident: 10.1016/j.jappgeo.2024.105351_bb0005 article-title: Seismic inversion as a reliable technique to anticipating of porosity and facies delineation, a case study on Asmari Formation in Hendijan field, southwest part of Iran publication-title: J. Pet. Explor. Prod. Technol. doi: 10.1007/s13202-022-01497-y – volume: 197 year: 2021 ident: 10.1016/j.jappgeo.2024.105351_bb0175 article-title: Application of machine learning tool to predict the porosity of clastic depositional system, Indus Basin, Pakistan publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.107975 |
SSID | ssj0001304 |
Score | 2.4652092 |
Snippet | For the purpose of reservoir modelling, precise porosity estimation is vital as it directly influences the storage capacity, fluid flow dynamics, and overall... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105351 |
SubjectTerms | Poro-acoustic impedance Porosity prediction Reservoir characterization Seismic attribute Seismic inversion |
Title | Poro-Acoustic Impedance (PAI) as a new and robust seismic inversion attribute for porosity prediction and reservoir characterization |
URI | https://dx.doi.org/10.1016/j.jappgeo.2024.105351 |
Volume | 223 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPvFZ9uBBD9sm2U26OZZiaRWLoIK3sK9IiiYhjYIXT_5wd5K0VhAFjwkzsOwMs182882H0Gmo3JhZ2EqU4yvCAuURGfKA6IAKFz5IaMV6v54Eo3t2-eA_tNBgzoWBtsqm9tc1varWzZtus5vdPEm6t07oBaEFDNAFCXIrwGBnPcjyzvtXm4et0dUIKWtMwPqLxdOddqYizx8rDqDHQPGW-u7P59PSmTPcRBsNWMT9ej1bqGXSbbS-NEJwB33cZEVG-iqrVLnw2KJgDYHEZzf98TkWMyywRc5YpBoXmbRWeGaS2bO1TdLX-rIMi7LWvTLYQlhsETl0cr3hvIC_OGVlAe4GbnCzpMBqMeW5JnHuovvhxd1gRBplBSIo9UriUSadUDuxDi2cAjE7J3YDToU2geKh4IoHPW2oVowaV3LHlzA0J-bGuLGjGd1DK2mWmn2EuQVwsad6UgvFpOhx43FtpMVloa-49A8Qm-9npJqx46B-8RTN-8umUROGCMIQ1WE4QJ2FW17P3fjLgc-DFX1LoMieDb-7Hv7f9QitwVPdynOMVsrixZxYlFLKdpWGbbTaH1-NJp_7Wej3 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF58HNSD-MT63IMHPWybZDfp5lhEabUVQQVvYV-RFE1CGgUvnvzh7iSpDxAFr8kMhJ3NzJfNzPchdBgqN2YWthLl-IqwQHlEhjwgOqDChQ8SWk29jy6D_i07v_PvZtDJdBYG2iqb3F_n9CpbN1c6zWp28iTpXDuhF4QWMEAXJMitzKJ5Zl9fkDFov372edgkXXFIWWsC5p9jPJ1xeyzy_L4aAvQYSN5S3_25QH0pOmcraLlBi7hXP9AqmjHpGlr6wiG4jt6usiIjPZVVslx4YGGwhkjio6ve4BiLCRbYQmcsUo2LTForPDHJ5NHaJulzfVqGRVkLXxlsMSy2kBxauV5wXsBvnLKyAHcDR7hZUmD1QfNcT3FuoNuz05uTPmmkFYig1CuJR5l0Qu3EOrR4CtTsnNgNOBXaBIqHgisedLWhWjFqXMkdXwJrTsyNcWNHM7qJ5tIsNVsIc4vgYk91pRaKSdHlxuPaSAvMQl9x6bcQm65npBrecZC_eIimDWbjqAlDBGGI6jC0UPvDLa-JN_5y4NNgRd92UGSLw--u2_93PUAL_ZvRMBoOLi920CLcqft6dtFcWTyZPQtZSrlfbcl3WmHqhQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Poro-Acoustic+Impedance+%28PAI%29+as+a+new+and+robust+seismic+inversion+attribute+for+porosity+prediction+and+reservoir+characterization&rft.jtitle=Journal+of+applied+geophysics&rft.au=Leisi%2C+Ahsan&rft.au=Aftab%2C+Saeed&rft.au=Shad+Manaman%2C+Navid&rft.date=2024-04-01&rft.issn=0926-9851&rft.volume=223&rft.spage=105351&rft_id=info:doi/10.1016%2Fj.jappgeo.2024.105351&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jappgeo_2024_105351 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9851&client=summon |