Poro-Acoustic Impedance (PAI) as a new and robust seismic inversion attribute for porosity prediction and reservoir characterization

For the purpose of reservoir modelling, precise porosity estimation is vital as it directly influences the storage capacity, fluid flow dynamics, and overall productivity of the reservoir. The computation of porosity is a key component of reservoir characterization. The Poro-Acoustic Impedance (PAI)...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied geophysics Vol. 223; p. 105351
Main Authors Leisi, Ahsan, Aftab, Saeed, Shad Manaman, Navid
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For the purpose of reservoir modelling, precise porosity estimation is vital as it directly influences the storage capacity, fluid flow dynamics, and overall productivity of the reservoir. The computation of porosity is a key component of reservoir characterization. The Poro-Acoustic Impedance (PAI), a seismic inversion attribute, has proven to be effective for porosity estimation in hydrocarbon reservoirs. PAI, an extended version of Acoustic Impedance (AI), incorporates porosity information directly, enhancing its utility in forward modelling and seismic data inversion. In this study, offshore oil resources in Iran were examined, focusing on two components: sandstone and carbonate. The results of AI and PAI were compared, indicating that PAI is a suitable attribute for estimating porosity. The correlation between porosity and AI was −45%, while it was −74% with PAI. Moreover, the synthetic seismogram created using PAI aligns more closely with real seismograms. Porosity was estimated using both AI and PAI, with a 72% correlation between the porosity estimated using AI and the actual porosity. However, the correlation increased to 78% when using PAI. Furthermore, the porosity section was calculated using both AI and PAI, concluding that the PAI porosity section aligns more closely with the porosity log and provides a greater contrast in low porosity zones compared to AI. Given that porosity is incorporated into the PAI formula, the PAI porosity section and inversion results can be used as an indicator for evaluating the hydrocarbon capacity of the reservoir. The findings of this research suggest that PAI is an effective attribute for porosity estimation, bridging the gap between seismic data and porosity estimation, thereby enhancing our understanding and exploration of the reservoir. •Porosity estimation using PAI has better accuracy and precision.•The porosity section obtained using PAI is more consistent with the porosity log.•The effect of porosity is directly involved in the inversion procedure.•The PAI formula is simple and effective to use.
AbstractList For the purpose of reservoir modelling, precise porosity estimation is vital as it directly influences the storage capacity, fluid flow dynamics, and overall productivity of the reservoir. The computation of porosity is a key component of reservoir characterization. The Poro-Acoustic Impedance (PAI), a seismic inversion attribute, has proven to be effective for porosity estimation in hydrocarbon reservoirs. PAI, an extended version of Acoustic Impedance (AI), incorporates porosity information directly, enhancing its utility in forward modelling and seismic data inversion. In this study, offshore oil resources in Iran were examined, focusing on two components: sandstone and carbonate. The results of AI and PAI were compared, indicating that PAI is a suitable attribute for estimating porosity. The correlation between porosity and AI was −45%, while it was −74% with PAI. Moreover, the synthetic seismogram created using PAI aligns more closely with real seismograms. Porosity was estimated using both AI and PAI, with a 72% correlation between the porosity estimated using AI and the actual porosity. However, the correlation increased to 78% when using PAI. Furthermore, the porosity section was calculated using both AI and PAI, concluding that the PAI porosity section aligns more closely with the porosity log and provides a greater contrast in low porosity zones compared to AI. Given that porosity is incorporated into the PAI formula, the PAI porosity section and inversion results can be used as an indicator for evaluating the hydrocarbon capacity of the reservoir. The findings of this research suggest that PAI is an effective attribute for porosity estimation, bridging the gap between seismic data and porosity estimation, thereby enhancing our understanding and exploration of the reservoir. •Porosity estimation using PAI has better accuracy and precision.•The porosity section obtained using PAI is more consistent with the porosity log.•The effect of porosity is directly involved in the inversion procedure.•The PAI formula is simple and effective to use.
ArticleNumber 105351
Author Leisi, Ahsan
Aftab, Saeed
Shad Manaman, Navid
Author_xml – sequence: 1
  givenname: Ahsan
  surname: Leisi
  fullname: Leisi, Ahsan
– sequence: 2
  givenname: Saeed
  surname: Aftab
  fullname: Aftab, Saeed
– sequence: 3
  givenname: Navid
  surname: Shad Manaman
  fullname: Shad Manaman, Navid
  email: shadmanaman@sut.ac.ir
BookMark eNqFkE9rwjAYh3NwMHX7CIMct0Nd0rS1ZYchsj-CMA_bOcTk7RbRpryJDnfeB1-qnnaREALJ7_nx5hmQXuMaIOSGsxFnvLhfjVaqbT_BjVKWZvEuFznvkT6r0iKpypxfkoH3K8YYFyzrk9-FQ5dMtNv6YDWdbVowqtFAbxeT2R1VnirawDdVjaHoljFFPVi_iVnb7AC9dQ1VIaBdbgPQ2iFtY6O3YU9bBGN1OCQ6HDzgzlmk-kuh0gHQ_qju-Ypc1Grt4fp0DsnH89P79DWZv73MppN5ooRIQ5KKbMkqw2pTZalgeVw1L0qhDBS6rFSpy2JsQBidCeDLkuVxj7O6BOA1M5kYkodjr44TeoRaahsOEwRUdi05k51EuZInibKTKI8SI53_o1u0G4X7s9zjkYP4tZ0FlF5biI6NRdBBGmfPNPwBOEeWIA
CitedBy_id crossref_primary_10_1016_j_marpetgeo_2024_107198
crossref_primary_10_1007_s13146_024_01014_8
crossref_primary_10_1007_s13202_024_01832_5
crossref_primary_10_1007_s13369_024_09405_8
crossref_primary_10_1016_j_pdisas_2024_100347
crossref_primary_10_1007_s11053_024_10402_9
crossref_primary_10_1016_j_geoen_2024_212998
crossref_primary_10_1007_s12145_025_01853_6
crossref_primary_10_1016_j_geoen_2025_213854
crossref_primary_10_1016_j_jseaes_2024_106377
Cites_doi 10.1016/j.jappgeo.2023.104971
10.1016/j.jappgeo.2014.05.010
10.1007/s11053-020-09641-3
10.1016/j.gsf.2018.07.002
10.1080/10916466.2011.584102
10.1016/j.petrol.2016.05.019
10.1016/j.petrol.2017.11.060
10.1007/s12145-022-00902-8
10.1007/s11053-019-09582-6
10.1016/j.petrol.2011.08.016
10.1016/j.jngse.2014.10.027
10.1007/s12665-015-4130-3
10.1016/j.jappgeo.2023.105138
10.1007/s11004-020-09910-0
10.1007/s11053-019-09583-5
10.1007/s11053-018-9447-7
10.1016/j.jseaes.2020.104541
10.1007/s11053-016-9300-9
10.1007/s13202-020-01005-0
10.1007/s11053-018-9394-3
10.1007/s12145-023-01049-w
10.1007/s11004-020-09896-9
10.1016/j.jappgeo.2015.01.008
10.1007/s11053-023-10198-0
10.1016/j.ejpe.2017.08.004
10.1007/s13202-020-01035-8
10.1016/j.jappgeo.2014.05.011
10.1190/1.1444899
10.1016/j.petrol.2019.03.039
10.1016/j.cageo.2010.08.001
10.1007/s13202-022-01497-y
10.1016/j.petrol.2020.107975
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jappgeo.2024.105351
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_jappgeo_2024_105351
S0926985124000673
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACLVX
ACRLP
ACRPL
ACSBN
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSH
SSZ
T5K
VH1
WUQ
XPP
ZMT
~02
~G-
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
CITATION
ID FETCH-LOGICAL-a332t-234b09d0fd942305050f1683ade6c89a8c867de3dc43e1b805b8074f8ee1f0d43
IEDL.DBID .~1
ISSN 0926-9851
IngestDate Thu Apr 24 23:04:31 EDT 2025
Tue Jul 01 02:17:26 EDT 2025
Fri May 16 00:29:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Poro-acoustic impedance
Reservoir characterization
Seismic attribute
Seismic inversion
Porosity prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a332t-234b09d0fd942305050f1683ade6c89a8c867de3dc43e1b805b8074f8ee1f0d43
ParticipantIDs crossref_citationtrail_10_1016_j_jappgeo_2024_105351
crossref_primary_10_1016_j_jappgeo_2024_105351
elsevier_sciencedirect_doi_10_1016_j_jappgeo_2024_105351
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationTitle Journal of applied geophysics
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kheirollahi, Shad Manaman, Leisi (bb0075) 2023; 211
Leite, Vidal (bb0100) 2011; 37
Farfour, Yoon, Kim (bb0050) 2015; 114
Zahmatkesh, Kadkhodaie, Soleimani, Golalzadeh, Azarpour (bb0180) 2018; 161
Ali, Abdelmaksoud, Essa, Abdelhady, Darwish (bb0030) 2020; 29
Khoshdel, Riahi (bb0080) 2011; 78
Azevedo, Narciso, Nunes, Soares (bb0040) 2021; 53
Ali, Younas, Ullah, Hussain, Toqeer, Bhatti, Khan (bb0025) 2019; 178
Hampson, Schuelke, Quirein (bb0060) 2001; 66
Leisi, Kheirollahi, Shadmanaman (bb0095) 2022; 16
Li, Liu, Cao, Yuan, Wang, You (bb0105) 2020; 29
El Sharawy, Nabawy (bb0045) 2019; 28
Jalalalhosseini, Ali, Mostafazadeh (bb0065) 2014; 32
Aftab, Leisi, Kadkhodaie (bb0015) 2023; 16
Viveros, Parra (bb0165) 2014; 107
Anifowose, Adeniye, Abdulraheem, Al-Shuhail (bb0035) 2016; 145
Na’imi, Shadizadeh, Riahi, Mirzakhanian (bb0110) 2014; 107
Gogoi, Chaterjee (bb0055) 2019; 10
Shalaby, Binti Sapri, Islam (bb0130) 2020; 10
Soleimani, Jodeiri, Rafiei (bb0150) 2017; 26
Leisi, Saberi (bb0085) 2023; 16
Talha Qadri, Islam, Shalaby (bb0155) 2019; 28
Shahbazi, Soleimani Monfared, Thiruchelvam, Ka Fei, Babasafari (bb0125) 2020; 202
Abdolahi, Chehrazi, Kadkhodaie, Babasafari (bb0005) 2022; 12
Kadkhodaie-ilkhchi, Moussavi-harami, Rezaee (bb0070) 2014; 21
Yasin, Mohyuddin, Khalid, Baklouti, Du (bb0175) 2021; 197
Aftab, Hamidzadeh, Leisi (bb0010) 2023; 215
Soleimani, Bahadori, Meng (bb0145) 2013; 5
Soares (bb0135) 2021; 53
Saadu, Nwankwo (bb0120) 2018; 27
Rezaei, Emami Niri, Asghari, Talesh Hosseini, Emery (bb0115) 2023; 32
Soleimani, Jodeiri Shokri (bb0140) 2015; 74
Yasin, Sohail, Ding, Ismail, Du (bb0170) 2020; 29
Aftab, Leisi, Shadmanaman (bb0020) 2024; 49
Leisi, Shad Manaman (bb0090) 2024; 49
Talha Qadri, Islam, Shalaby, Abd El-Aal (bb0160) 2021; 11
Khoshdel (10.1016/j.jappgeo.2024.105351_bb0080) 2011; 78
Jalalalhosseini (10.1016/j.jappgeo.2024.105351_bb0065) 2014; 32
Na’imi (10.1016/j.jappgeo.2024.105351_bb0110) 2014; 107
Rezaei (10.1016/j.jappgeo.2024.105351_bb0115) 2023; 32
Azevedo (10.1016/j.jappgeo.2024.105351_bb0040) 2021; 53
Soleimani (10.1016/j.jappgeo.2024.105351_bb0145) 2013; 5
Anifowose (10.1016/j.jappgeo.2024.105351_bb0035) 2016; 145
Saadu (10.1016/j.jappgeo.2024.105351_bb0120) 2018; 27
Zahmatkesh (10.1016/j.jappgeo.2024.105351_bb0180) 2018; 161
Yasin (10.1016/j.jappgeo.2024.105351_bb0175) 2021; 197
Abdolahi (10.1016/j.jappgeo.2024.105351_bb0005) 2022; 12
Gogoi (10.1016/j.jappgeo.2024.105351_bb0055) 2019; 10
Leisi (10.1016/j.jappgeo.2024.105351_bb0095) 2022; 16
Li (10.1016/j.jappgeo.2024.105351_bb0105) 2020; 29
Farfour (10.1016/j.jappgeo.2024.105351_bb0050) 2015; 114
Leisi (10.1016/j.jappgeo.2024.105351_bb0085) 2023; 16
Talha Qadri (10.1016/j.jappgeo.2024.105351_bb0155) 2019; 28
El Sharawy (10.1016/j.jappgeo.2024.105351_bb0045) 2019; 28
Leisi (10.1016/j.jappgeo.2024.105351_bb0090) 2024; 49
Shahbazi (10.1016/j.jappgeo.2024.105351_bb0125) 2020; 202
Kadkhodaie-ilkhchi (10.1016/j.jappgeo.2024.105351_bb0070) 2014; 21
Talha Qadri (10.1016/j.jappgeo.2024.105351_bb0160) 2021; 11
Viveros (10.1016/j.jappgeo.2024.105351_bb0165) 2014; 107
Soleimani (10.1016/j.jappgeo.2024.105351_bb0150) 2017; 26
Aftab (10.1016/j.jappgeo.2024.105351_bb0010) 2023; 215
Hampson (10.1016/j.jappgeo.2024.105351_bb0060) 2001; 66
Leite (10.1016/j.jappgeo.2024.105351_bb0100) 2011; 37
Shalaby (10.1016/j.jappgeo.2024.105351_bb0130) 2020; 10
Soleimani (10.1016/j.jappgeo.2024.105351_bb0140) 2015; 74
Aftab (10.1016/j.jappgeo.2024.105351_bb0015) 2023; 16
Aftab (10.1016/j.jappgeo.2024.105351_bb0020) 2024; 49
Ali (10.1016/j.jappgeo.2024.105351_bb0030) 2020; 29
Ali (10.1016/j.jappgeo.2024.105351_bb0025) 2019; 178
Soares (10.1016/j.jappgeo.2024.105351_bb0135) 2021; 53
Yasin (10.1016/j.jappgeo.2024.105351_bb0170) 2020; 29
Kheirollahi (10.1016/j.jappgeo.2024.105351_bb0075) 2023; 211
References_xml – volume: 114
  start-page: 68
  year: 2015
  end-page: 80
  ident: bb0050
  article-title: Seismic attributes and acoustic impedance inversion in interpretation of complex hydrocarbon reservoirs
  publication-title: J. Appl. Geophys.
– volume: 66
  start-page: 220
  year: 2001
  end-page: 236
  ident: bb0060
  article-title: Use of multiattribute transforms to predict log properties from seismic data
  publication-title: Geophysics
– volume: 74
  start-page: 1403
  year: 2015
  end-page: 1414
  ident: bb0140
  article-title: 3D static reservoir modeling by geostatistical techniques used for reservoir characterization and data integration
  publication-title: Environ. Earth Sci.
– volume: 29
  start-page: 3291
  year: 2020
  end-page: 3317
  ident: bb0170
  article-title: Estimation of Petrophysical Parameters from Seismic Inversion by Combining Particle Swarm Optimization and Multilayer Linear Calculator
  publication-title: Nat. Resour. Res.
– volume: 5
  start-page: 1165
  year: 2013
  end-page: 1176
  ident: bb0145
  article-title: Microbiostratigraphy, microfacies and sequence stratigraphy of upper cretaceous and paleogene sediments, Hendijan oilfield, Northwest of Persian Gulf, Iran
  publication-title: Nat. Sci.
– volume: 161
  start-page: 259
  year: 2018
  end-page: 274
  ident: bb0180
  article-title: Estimating V
  publication-title: J. Pet. Sci. Eng.
– volume: 29
  start-page: 2547
  year: 2020
  end-page: 2573
  ident: bb0105
  article-title: Analysis of petrophysical characteristics and water movability of tight sandstone using low-field nuclear magnetic resonance
  publication-title: Nat. Resour. Res.
– volume: 32
  start-page: 29
  year: 2014
  end-page: 37
  ident: bb0065
  article-title: Predicting porosity by using seismic multi- attributes and well data and combining these available data by geostatistical methods in a South Iranian oil field
  publication-title: Pet. Sci. Technol.
– volume: 16
  start-page: 23
  year: 2022
  end-page: 35
  ident: bb0095
  article-title: Investigation and comparison of conventional methods for estimating shear wave velocity from well logging data in one of the sandstone reservoirs in southern Iran
  publication-title: Iran. J. Geophys.
– volume: 12
  start-page: 3091
  year: 2022
  end-page: 3104
  ident: bb0005
  article-title: Seismic inversion as a reliable technique to anticipating of porosity and facies delineation, a case study on Asmari Formation in Hendijan field, southwest part of Iran
  publication-title: J. Pet. Explor. Prod. Technol.
– volume: 26
  start-page: 75
  year: 2017
  end-page: 88
  ident: bb0150
  article-title: Integrated petrophysical modeling for a strongly heterogeneous and fractured reservoir, Sarvak Formation, SW Iran
  publication-title: Nat. Resour. Res.
– volume: 107
  start-page: 93
  year: 2014
  end-page: 101
  ident: bb0110
  article-title: Estimation of reservoir porosity and water saturation based on seismic attributes using support vector regression approach
  publication-title: J. Appl. Geophys.
– volume: 53
  start-page: 211
  year: 2021
  end-page: 226
  ident: bb0135
  article-title: Geostatistical Seismic Inversion: one Nugget from the Tróia Conference
  publication-title: Math. Geosci.
– volume: 10
  start-page: 1113
  year: 2019
  end-page: 1124
  ident: bb0055
  article-title: Estimation of petrophysical parameters using seismic inversion and neural network modeling in Upper Assam basin, India
  publication-title: Geosci. Front.
– volume: 145
  start-page: 230
  year: 2016
  end-page: 237
  ident: bb0035
  article-title: Integrating seismic and log data for improved petroleum reservoir properties estimation using non-linear feature-selection based hybrid computational intelligence models
  publication-title: J. Pet. Sci. Eng.
– volume: 49
  start-page: 389
  year: 2024
  end-page: 405
  ident: bb0090
  article-title: Shear wave velocity estimation using seismic attributes in one of the sandstone reservoirs of southern Iran
  publication-title: J. Earth Space Phys.
– volume: 211
  year: 2023
  ident: bb0075
  article-title: Robust estimation of shear wave velocity in a carbonate oil reservoir from conventional well logging data using machine learning algorithms
  publication-title: J. Appl. Geophys.
– volume: 197
  year: 2021
  ident: bb0175
  article-title: Application of machine learning tool to predict the porosity of clastic depositional system, Indus Basin, Pakistan
  publication-title: J. Pet. Sci. Eng.
– volume: 27
  start-page: 531
  year: 2018
  end-page: 539
  ident: bb0120
  article-title: Petrophysical evaluation and volumetric estimation within Central swamp depobelt, Niger Delta, using 3-D seismic and well logs
  publication-title: Egypt. J. Pet.
– volume: 16
  start-page: 637
  year: 2023
  end-page: 652
  ident: bb0085
  article-title: Petrophysical parameters estimation of a reservoir using integration of wells and seismic data : a sandstone case study
  publication-title: Earth Sci. Inf.
– volume: 32
  start-page: 1147
  year: 2023
  end-page: 1175
  ident: bb0115
  article-title: Seismic data integration workflow in pluri-Gaussian simulation: application to a heterogeneous carbonate reservoir in southwestern Iran
  publication-title: Nat. Resour. Res.
– volume: 49
  start-page: 11
  year: 2024
  end-page: 25
  ident: bb0020
  article-title: Poro-acoustic impedance as a new seismic inversion attribute for reservoir characterization
  publication-title: J. Earth Space Phys.
– volume: 16
  start-page: 2457
  year: 2023
  end-page: 2473
  ident: bb0015
  article-title: Reservoir Petrophysical Index (RPI) as a robust tool for reservoir quality assessment
  publication-title: Earth Sci. Inf.
– volume: 21
  start-page: 1073
  year: 2014
  end-page: 1083
  ident: bb0070
  article-title: Seismic inversion and attributes analysis for porosity evaluation of the tight gas sandstones of the Whicher Range fi eld in the Perth Basin, Western Australia
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 53
  start-page: 1073
  year: 2021
  end-page: 1093
  ident: bb0040
  article-title: Geostatistical seismic inversion with self-updating of local probability distributions
  publication-title: Math. Geosci.
– volume: 37
  start-page: 1174
  year: 2011
  end-page: 1180
  ident: bb0100
  article-title: 3D porosity prediction from seismic inversion and neural networks Emilson
  publication-title: Comput. Geosci.
– volume: 29
  start-page: 2575
  year: 2020
  end-page: 2597
  ident: bb0030
  article-title: 3D structural, facies and petrophysical modeling of C member of six hills formation, Komombo Basin, Upper Egypt
  publication-title: Nat. Resour. Res.
– volume: 28
  start-page: 369
  year: 2019
  end-page: 392
  ident: bb0155
  article-title: Three-dimensional petrophysical modelling and volumetric analysis to model the reservoir potential of the Kupe Field, Taranaki Basin, New Zealand
  publication-title: Nat. Resour. Res.
– volume: 178
  start-page: 272
  year: 2019
  end-page: 293
  ident: bb0025
  article-title: Characterization of secondary reservoir potential via seismic inversion and attribute analysis: a case study
  publication-title: J. Pet. Sci. Eng.
– volume: 28
  start-page: 1587
  year: 2019
  end-page: 1608
  ident: bb0045
  article-title: Integration of electrofacies and hydraulic flow units to delineate reservoir quality in uncored reservoirs: a case study, Nubia Sandstone Reservoir, Gulf of Suez, Egypt
  publication-title: Nat. Resour. Res.
– volume: 78
  start-page: 740
  year: 2011
  end-page: 747
  ident: bb0080
  article-title: Multi attribute transform and neural network in porosity estimation of an offshore oil field — a case study
  publication-title: J. Pet. Sci. Eng.
– volume: 107
  start-page: 45
  year: 2014
  end-page: 54
  ident: bb0165
  article-title: Artificial Neural Networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well-log data
  publication-title: J. Appl. Geophys.
– volume: 11
  start-page: 11
  year: 2021
  end-page: 31
  ident: bb0160
  article-title: Reservoir quality evaluation of the Farewell sandstone by integrating sedimentological and well log analysis in the Kupe South Field, Taranaki Basin-New Zealand
  publication-title: J. Pet. Explor. Prod. Technol.
– volume: 215
  year: 2023
  ident: bb0010
  article-title: New interpretation approach of well logging data for evaluation of Kern aquifer in South California
  publication-title: J. Appl. Geophys.
– volume: 202
  year: 2020
  ident: bb0125
  article-title: Integration of knowledge-based seismic inversion and sedimentological investigations for heterogeneous reservoir
  publication-title: J. Asian Earth Sci.
– volume: 10
  start-page: 3263
  year: 2020
  end-page: 3279
  ident: bb0130
  article-title: Integrated reservoir characterization and fluid flow distribution of the Kaimiro Formation, Taranaki Basin, New Zealand
  publication-title: J. Pet. Explor. Prod. Technol.
– volume: 211
  year: 2023
  ident: 10.1016/j.jappgeo.2024.105351_bb0075
  article-title: Robust estimation of shear wave velocity in a carbonate oil reservoir from conventional well logging data using machine learning algorithms
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2023.104971
– volume: 107
  start-page: 45
  year: 2014
  ident: 10.1016/j.jappgeo.2024.105351_bb0165
  article-title: Artificial Neural Networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well-log data
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2014.05.010
– volume: 29
  start-page: 3291
  year: 2020
  ident: 10.1016/j.jappgeo.2024.105351_bb0170
  article-title: Estimation of Petrophysical Parameters from Seismic Inversion by Combining Particle Swarm Optimization and Multilayer Linear Calculator
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-020-09641-3
– volume: 10
  start-page: 1113
  year: 2019
  ident: 10.1016/j.jappgeo.2024.105351_bb0055
  article-title: Estimation of petrophysical parameters using seismic inversion and neural network modeling in Upper Assam basin, India
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2018.07.002
– volume: 32
  start-page: 29
  issue: 1
  year: 2014
  ident: 10.1016/j.jappgeo.2024.105351_bb0065
  article-title: Predicting porosity by using seismic multi- attributes and well data and combining these available data by geostatistical methods in a South Iranian oil field
  publication-title: Pet. Sci. Technol.
  doi: 10.1080/10916466.2011.584102
– volume: 145
  start-page: 230
  year: 2016
  ident: 10.1016/j.jappgeo.2024.105351_bb0035
  article-title: Integrating seismic and log data for improved petroleum reservoir properties estimation using non-linear feature-selection based hybrid computational intelligence models
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2016.05.019
– volume: 161
  start-page: 259
  year: 2018
  ident: 10.1016/j.jappgeo.2024.105351_bb0180
  article-title: Estimating Vsand and reservoir property from seismic attributes and acoustic impedance inversion: a case study from the Mansuri oilfield, SW Iran
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2017.11.060
– volume: 16
  start-page: 637
  year: 2023
  ident: 10.1016/j.jappgeo.2024.105351_bb0085
  article-title: Petrophysical parameters estimation of a reservoir using integration of wells and seismic data : a sandstone case study
  publication-title: Earth Sci. Inf.
  doi: 10.1007/s12145-022-00902-8
– volume: 29
  start-page: 2547
  year: 2020
  ident: 10.1016/j.jappgeo.2024.105351_bb0105
  article-title: Analysis of petrophysical characteristics and water movability of tight sandstone using low-field nuclear magnetic resonance
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09582-6
– volume: 78
  start-page: 740
  issue: 3–4
  year: 2011
  ident: 10.1016/j.jappgeo.2024.105351_bb0080
  article-title: Multi attribute transform and neural network in porosity estimation of an offshore oil field — a case study
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2011.08.016
– volume: 21
  start-page: 1073
  year: 2014
  ident: 10.1016/j.jappgeo.2024.105351_bb0070
  article-title: Seismic inversion and attributes analysis for porosity evaluation of the tight gas sandstones of the Whicher Range fi eld in the Perth Basin, Western Australia
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2014.10.027
– volume: 74
  start-page: 1403
  year: 2015
  ident: 10.1016/j.jappgeo.2024.105351_bb0140
  article-title: 3D static reservoir modeling by geostatistical techniques used for reservoir characterization and data integration
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-015-4130-3
– volume: 215
  year: 2023
  ident: 10.1016/j.jappgeo.2024.105351_bb0010
  article-title: New interpretation approach of well logging data for evaluation of Kern aquifer in South California
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2023.105138
– volume: 53
  start-page: 211
  issue: 2
  year: 2021
  ident: 10.1016/j.jappgeo.2024.105351_bb0135
  article-title: Geostatistical Seismic Inversion: one Nugget from the Tróia Conference
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-020-09910-0
– volume: 29
  start-page: 2575
  year: 2020
  ident: 10.1016/j.jappgeo.2024.105351_bb0030
  article-title: 3D structural, facies and petrophysical modeling of C member of six hills formation, Komombo Basin, Upper Egypt
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09583-5
– volume: 28
  start-page: 1587
  year: 2019
  ident: 10.1016/j.jappgeo.2024.105351_bb0045
  article-title: Integration of electrofacies and hydraulic flow units to delineate reservoir quality in uncored reservoirs: a case study, Nubia Sandstone Reservoir, Gulf of Suez, Egypt
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-018-9447-7
– volume: 202
  year: 2020
  ident: 10.1016/j.jappgeo.2024.105351_bb0125
  article-title: Integration of knowledge-based seismic inversion and sedimentological investigations for heterogeneous reservoir
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2020.104541
– volume: 26
  start-page: 75
  year: 2017
  ident: 10.1016/j.jappgeo.2024.105351_bb0150
  article-title: Integrated petrophysical modeling for a strongly heterogeneous and fractured reservoir, Sarvak Formation, SW Iran
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-016-9300-9
– volume: 16
  start-page: 23
  issue: 3
  year: 2022
  ident: 10.1016/j.jappgeo.2024.105351_bb0095
  article-title: Investigation and comparison of conventional methods for estimating shear wave velocity from well logging data in one of the sandstone reservoirs in southern Iran
  publication-title: Iran. J. Geophys.
– volume: 10
  start-page: 3263
  year: 2020
  ident: 10.1016/j.jappgeo.2024.105351_bb0130
  article-title: Integrated reservoir characterization and fluid flow distribution of the Kaimiro Formation, Taranaki Basin, New Zealand
  publication-title: J. Pet. Explor. Prod. Technol.
  doi: 10.1007/s13202-020-01005-0
– volume: 5
  start-page: 1165
  issue: 11
  year: 2013
  ident: 10.1016/j.jappgeo.2024.105351_bb0145
  article-title: Microbiostratigraphy, microfacies and sequence stratigraphy of upper cretaceous and paleogene sediments, Hendijan oilfield, Northwest of Persian Gulf, Iran
  publication-title: Nat. Sci.
– volume: 28
  start-page: 369
  year: 2019
  ident: 10.1016/j.jappgeo.2024.105351_bb0155
  article-title: Three-dimensional petrophysical modelling and volumetric analysis to model the reservoir potential of the Kupe Field, Taranaki Basin, New Zealand
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-018-9394-3
– volume: 16
  start-page: 2457
  year: 2023
  ident: 10.1016/j.jappgeo.2024.105351_bb0015
  article-title: Reservoir Petrophysical Index (RPI) as a robust tool for reservoir quality assessment
  publication-title: Earth Sci. Inf.
  doi: 10.1007/s12145-023-01049-w
– volume: 53
  start-page: 1073
  year: 2021
  ident: 10.1016/j.jappgeo.2024.105351_bb0040
  article-title: Geostatistical seismic inversion with self-updating of local probability distributions
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-020-09896-9
– volume: 114
  start-page: 68
  year: 2015
  ident: 10.1016/j.jappgeo.2024.105351_bb0050
  article-title: Seismic attributes and acoustic impedance inversion in interpretation of complex hydrocarbon reservoirs
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2015.01.008
– volume: 49
  start-page: 11
  issue: 4
  year: 2024
  ident: 10.1016/j.jappgeo.2024.105351_bb0020
  article-title: Poro-acoustic impedance as a new seismic inversion attribute for reservoir characterization
  publication-title: J. Earth Space Phys.
– volume: 32
  start-page: 1147
  year: 2023
  ident: 10.1016/j.jappgeo.2024.105351_bb0115
  article-title: Seismic data integration workflow in pluri-Gaussian simulation: application to a heterogeneous carbonate reservoir in southwestern Iran
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-023-10198-0
– volume: 27
  start-page: 531
  year: 2018
  ident: 10.1016/j.jappgeo.2024.105351_bb0120
  article-title: Petrophysical evaluation and volumetric estimation within Central swamp depobelt, Niger Delta, using 3-D seismic and well logs
  publication-title: Egypt. J. Pet.
  doi: 10.1016/j.ejpe.2017.08.004
– volume: 11
  start-page: 11
  year: 2021
  ident: 10.1016/j.jappgeo.2024.105351_bb0160
  article-title: Reservoir quality evaluation of the Farewell sandstone by integrating sedimentological and well log analysis in the Kupe South Field, Taranaki Basin-New Zealand
  publication-title: J. Pet. Explor. Prod. Technol.
  doi: 10.1007/s13202-020-01035-8
– volume: 49
  start-page: 389
  issue: 2
  year: 2024
  ident: 10.1016/j.jappgeo.2024.105351_bb0090
  article-title: Shear wave velocity estimation using seismic attributes in one of the sandstone reservoirs of southern Iran
  publication-title: J. Earth Space Phys.
– volume: 107
  start-page: 93
  year: 2014
  ident: 10.1016/j.jappgeo.2024.105351_bb0110
  article-title: Estimation of reservoir porosity and water saturation based on seismic attributes using support vector regression approach
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2014.05.011
– volume: 66
  start-page: 220
  issue: 1
  year: 2001
  ident: 10.1016/j.jappgeo.2024.105351_bb0060
  article-title: Use of multiattribute transforms to predict log properties from seismic data
  publication-title: Geophysics
  doi: 10.1190/1.1444899
– volume: 178
  start-page: 272
  year: 2019
  ident: 10.1016/j.jappgeo.2024.105351_bb0025
  article-title: Characterization of secondary reservoir potential via seismic inversion and attribute analysis: a case study
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2019.03.039
– volume: 37
  start-page: 1174
  year: 2011
  ident: 10.1016/j.jappgeo.2024.105351_bb0100
  article-title: 3D porosity prediction from seismic inversion and neural networks Emilson
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2010.08.001
– volume: 12
  start-page: 3091
  year: 2022
  ident: 10.1016/j.jappgeo.2024.105351_bb0005
  article-title: Seismic inversion as a reliable technique to anticipating of porosity and facies delineation, a case study on Asmari Formation in Hendijan field, southwest part of Iran
  publication-title: J. Pet. Explor. Prod. Technol.
  doi: 10.1007/s13202-022-01497-y
– volume: 197
  year: 2021
  ident: 10.1016/j.jappgeo.2024.105351_bb0175
  article-title: Application of machine learning tool to predict the porosity of clastic depositional system, Indus Basin, Pakistan
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.107975
SSID ssj0001304
Score 2.4652092
Snippet For the purpose of reservoir modelling, precise porosity estimation is vital as it directly influences the storage capacity, fluid flow dynamics, and overall...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105351
SubjectTerms Poro-acoustic impedance
Porosity prediction
Reservoir characterization
Seismic attribute
Seismic inversion
Title Poro-Acoustic Impedance (PAI) as a new and robust seismic inversion attribute for porosity prediction and reservoir characterization
URI https://dx.doi.org/10.1016/j.jappgeo.2024.105351
Volume 223
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPvFZ9uBBD9sm2U26OZZiaRWLoIK3sK9IiiYhjYIXT_5wd5K0VhAFjwkzsOwMs182882H0Gmo3JhZ2EqU4yvCAuURGfKA6IAKFz5IaMV6v54Eo3t2-eA_tNBgzoWBtsqm9tc1varWzZtus5vdPEm6t07oBaEFDNAFCXIrwGBnPcjyzvtXm4et0dUIKWtMwPqLxdOddqYizx8rDqDHQPGW-u7P59PSmTPcRBsNWMT9ej1bqGXSbbS-NEJwB33cZEVG-iqrVLnw2KJgDYHEZzf98TkWMyywRc5YpBoXmbRWeGaS2bO1TdLX-rIMi7LWvTLYQlhsETl0cr3hvIC_OGVlAe4GbnCzpMBqMeW5JnHuovvhxd1gRBplBSIo9UriUSadUDuxDi2cAjE7J3YDToU2geKh4IoHPW2oVowaV3LHlzA0J-bGuLGjGd1DK2mWmn2EuQVwsad6UgvFpOhx43FtpMVloa-49A8Qm-9npJqx46B-8RTN-8umUROGCMIQ1WE4QJ2FW17P3fjLgc-DFX1LoMieDb-7Hv7f9QitwVPdynOMVsrixZxYlFLKdpWGbbTaH1-NJp_7Wej3
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF58HNSD-MT63IMHPWybZDfp5lhEabUVQQVvYV-RFE1CGgUvnvzh7iSpDxAFr8kMhJ3NzJfNzPchdBgqN2YWthLl-IqwQHlEhjwgOqDChQ8SWk29jy6D_i07v_PvZtDJdBYG2iqb3F_n9CpbN1c6zWp28iTpXDuhF4QWMEAXJMitzKJ5Zl9fkDFov372edgkXXFIWWsC5p9jPJ1xeyzy_L4aAvQYSN5S3_25QH0pOmcraLlBi7hXP9AqmjHpGlr6wiG4jt6usiIjPZVVslx4YGGwhkjio6ve4BiLCRbYQmcsUo2LTForPDHJ5NHaJulzfVqGRVkLXxlsMSy2kBxauV5wXsBvnLKyAHcDR7hZUmD1QfNcT3FuoNuz05uTPmmkFYig1CuJR5l0Qu3EOrR4CtTsnNgNOBXaBIqHgisedLWhWjFqXMkdXwJrTsyNcWNHM7qJ5tIsNVsIc4vgYk91pRaKSdHlxuPaSAvMQl9x6bcQm65npBrecZC_eIimDWbjqAlDBGGI6jC0UPvDLa-JN_5y4NNgRd92UGSLw--u2_93PUAL_ZvRMBoOLi920CLcqft6dtFcWTyZPQtZSrlfbcl3WmHqhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Poro-Acoustic+Impedance+%28PAI%29+as+a+new+and+robust+seismic+inversion+attribute+for+porosity+prediction+and+reservoir+characterization&rft.jtitle=Journal+of+applied+geophysics&rft.au=Leisi%2C+Ahsan&rft.au=Aftab%2C+Saeed&rft.au=Shad+Manaman%2C+Navid&rft.date=2024-04-01&rft.issn=0926-9851&rft.volume=223&rft.spage=105351&rft_id=info:doi/10.1016%2Fj.jappgeo.2024.105351&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jappgeo_2024_105351
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9851&client=summon