National digital soil map of organic matter in topsoil and its associated uncertainty in 1980's China
Accurate digital soil maps of soil organic matter (SOM) are needed to evaluate soil fertility, to estimate stocks, and for ecological and environment modeling. We used 5982 soil profiles collected during the second national soil survey of China, along with 19 environment predictors, to derive a spat...
Saved in:
Published in | Geoderma Vol. 335; pp. 47 - 56 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2019
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0016-7061 1872-6259 |
DOI | 10.1016/j.geoderma.2018.08.011 |
Cover
Loading…
Abstract | Accurate digital soil maps of soil organic matter (SOM) are needed to evaluate soil fertility, to estimate stocks, and for ecological and environment modeling. We used 5982 soil profiles collected during the second national soil survey of China, along with 19 environment predictors, to derive a spatial model of SOM concentration in the topsoil (0–20 cm layer). The environmental predictors relate to the soil forming factors, climate, vegetation, relief and parent material. We developed the model using the Cubist machine-learning algorithm combined with a non-parametric bootstrap to derive estimates of model uncertainty. We optimized the Cubist model using a 10-fold cross-validation and the best model used 17 rules. The correlation coefficient between the observed and predicted values was 0.65, and the root mean squared error was 0.28 g/kg. We then applied the model over China and mapped the SOM distribution at a resolution of 90 × 90 m. Our predictions show that there is more SOM in the eastern Tibetan Plateau, northern Heilongjiang province, northeast Mongolia, and a small area of Tianshan Mountain in Xinjiang. There is less SOM in the Loess Plateau and most of the desert areas in northwest China. The average topsoil SOM content is 24.82 g/kg. The study provides a map that can be used for decision-making and contribute towards a baseline assessment for inventory and monitoring. The map could also aid the design of future soil surveys and help with the development of a SOM monitoring network in China.
•We created a 90-m resolution map soil organic matter (SOM) in China.•Cubist model used with data from 5982 soil profiles and 19 environmental variables.•Average topsoil SOM is 24.82 g/kg.•The model is effective for large scale, high-resolution digital soil mapping.•The map provides a baseline reference for monitoring and evaluating SOM of topsoil change. |
---|---|
AbstractList | Accurate digital soil maps of soil organic matter (SOM) are needed to evaluate soil fertility, to estimate stocks, and for ecological and environment modeling. We used 5982 soil profiles collected during the second national soil survey of China, along with 19 environment predictors, to derive a spatial model of SOM concentration in the topsoil (0–20 cm layer). The environmental predictors relate to the soil forming factors, climate, vegetation, relief and parent material. We developed the model using the Cubist machine-learning algorithm combined with a non-parametric bootstrap to derive estimates of model uncertainty. We optimized the Cubist model using a 10-fold cross-validation and the best model used 17 rules. The correlation coefficient between the observed and predicted values was 0.65, and the root mean squared error was 0.28 g/kg. We then applied the model over China and mapped the SOM distribution at a resolution of 90 × 90 m. Our predictions show that there is more SOM in the eastern Tibetan Plateau, northern Heilongjiang province, northeast Mongolia, and a small area of Tianshan Mountain in Xinjiang. There is less SOM in the Loess Plateau and most of the desert areas in northwest China. The average topsoil SOM content is 24.82 g/kg. The study provides a map that can be used for decision-making and contribute towards a baseline assessment for inventory and monitoring. The map could also aid the design of future soil surveys and help with the development of a SOM monitoring network in China.
•We created a 90-m resolution map soil organic matter (SOM) in China.•Cubist model used with data from 5982 soil profiles and 19 environmental variables.•Average topsoil SOM is 24.82 g/kg.•The model is effective for large scale, high-resolution digital soil mapping.•The map provides a baseline reference for monitoring and evaluating SOM of topsoil change. Accurate digital soil maps of soil organic matter (SOM) are needed to evaluate soil fertility, to estimate stocks, and for ecological and environment modeling. We used 5982 soil profiles collected during the second national soil survey of China, along with 19 environment predictors, to derive a spatial model of SOM concentration in the topsoil (0-20 cm layer). The environmental predictors relate to the soil forming factors, climate, vegetation, relief and parent material. We developed the model using the Cubist machine-learning algorithm combined with a non-parametric bootstrap to derive estimates of model uncertainty. We optimized the Cubist model using a 10-fold cross-validation and the best model used 17 rules. The correlation coefficient between the observed and predicted values was 0.65, and the root mean squared error was 0.28 g/kg. We then applied the model over China and mapped the SOM distribution at a resolution of 90 x 90 m. Our predictions show that there is more SOM in the eastern Tibetan Plateau, northern Heilongjiang province, northeast Mongolia, and a small area of Tianshan Mountain in Xinjiang. There is less SOM in the Loess Plateau and most of the desert areas in northwest China. The average topsoil SOM content is 24.82 g/kg. The study provides a map that can be used for decision-making and contribute towards a baseline assessment for inventory and monitoring. The map could also aid the design of future soil surveys and help with the development of a SOM monitoring network in China. Accurate digital soil maps of soil organic matter (SOM) are needed to evaluate soil fertility, to estimate stocks, and for ecological and environment modeling. We used 5982 soil profiles collected during the second national soil survey of China, along with 19 environment predictors, to derive a spatial model of SOM concentration in the topsoil (0–20 cm layer). The environmental predictors relate to the soil forming factors, climate, vegetation, relief and parent material. We developed the model using the Cubist machine-learning algorithm combined with a non-parametric bootstrap to derive estimates of model uncertainty. We optimized the Cubist model using a 10-fold cross-validation and the best model used 17 rules. The correlation coefficient between the observed and predicted values was 0.65, and the root mean squared error was 0.28 g/kg. We then applied the model over China and mapped the SOM distribution at a resolution of 90 × 90 m. Our predictions show that there is more SOM in the eastern Tibetan Plateau, northern Heilongjiang province, northeast Mongolia, and a small area of Tianshan Mountain in Xinjiang. There is less SOM in the Loess Plateau and most of the desert areas in northwest China. The average topsoil SOM content is 24.82 g/kg. The study provides a map that can be used for decision-making and contribute towards a baseline assessment for inventory and monitoring. The map could also aid the design of future soil surveys and help with the development of a SOM monitoring network in China. |
Author | Chen, Songchao Liang, Zongzheng Yang, Yuanyuan Viscarra Rossel, Raphael A. Zhao, Ruiying Shi, Zhou |
Author_xml | – sequence: 1 givenname: Zongzheng surname: Liang fullname: Liang, Zongzheng organization: Institute of Agricultural Remote Sensing and Information Technology Application, Zhejiang University, 310058 Hangzhou, China – sequence: 2 givenname: Songchao surname: Chen fullname: Chen, Songchao organization: INRA Unité InfoSol, 45075 Orléans, France – sequence: 3 givenname: Yuanyuan surname: Yang fullname: Yang, Yuanyuan organization: Institute of Agricultural Remote Sensing and Information Technology Application, Zhejiang University, 310058 Hangzhou, China – sequence: 4 givenname: Ruiying surname: Zhao fullname: Zhao, Ruiying organization: Institute of Agricultural Remote Sensing and Information Technology Application, Zhejiang University, 310058 Hangzhou, China – sequence: 5 givenname: Zhou surname: Shi fullname: Shi, Zhou email: shizhou@zju.edu.cn organization: Institute of Agricultural Remote Sensing and Information Technology Application, Zhejiang University, 310058 Hangzhou, China – sequence: 6 givenname: Raphael A. surname: Viscarra Rossel fullname: Viscarra Rossel, Raphael A. organization: CSIRO Land & Water, Bruce E. Butler Laboratory, PO Box 1700, Canberra, ACT 2601, Australia |
BackLink | https://hal.inrae.fr/hal-02625582$$DView record in HAL |
BookMark | eNqFkU9rGzEQxUVJoU7ar1B0a3tYV6Nd7x_oocG0TcC0l_YsZqWxM2YtuZIcyLePtm4uuQQGhhG_NxreuxQXPngS4j2oJShoP--XOwqO4gGXWkG_VKUAXokF9J2uWr0aLsRCFbLqVAtvxGVK-zJ2SquFoJ-YOXicpOMd59JT4Eke8CjDVoa4Q8-2jDlTlOxlDsd_AHonOSeJKQXLmMnJk7cUM7LPDzMJQ68-JLm-Y49vxestTone_e9X4s_3b7_XN9Xm14_b9fWmwrrWuQKrGuXcCKOG0dq6qQddo-vauuuwt-VkItXZwdqeGqAeQHWwGlcD2kbb0dVX4tN57x1O5hj5gPHBBGRzc70x85vSxY9Vr--hsB_P7DGGvydK2Rw4WZom9BROyWhY1a0a-qEp6JczamNIKdLW2GLV7FuOyJMBZeYkzN48JWHmJIwqBfNP7TP502kvCr-ehVQ8u2eKJlmmYrPjSDYbF_ilFY8aI6iN |
CitedBy_id | crossref_primary_10_1016_j_geodrs_2022_e00568 crossref_primary_10_1016_j_still_2024_106248 crossref_primary_10_1016_j_geoderma_2022_116232 crossref_primary_10_5194_essd_17_517_2025 crossref_primary_10_1016_j_renene_2021_03_135 crossref_primary_10_3390_s22228997 crossref_primary_10_1016_j_catena_2024_107813 crossref_primary_10_3390_rs14071701 crossref_primary_10_1016_j_scitotenv_2023_166371 crossref_primary_10_3390_rs16152712 crossref_primary_10_1007_s11356_021_18008_x crossref_primary_10_1088_1748_9326_abfeeb crossref_primary_10_1016_j_geoderma_2019_114145 crossref_primary_10_3390_rs12010085 crossref_primary_10_3390_land11081285 crossref_primary_10_1088_1748_9326_acd1a2 crossref_primary_10_3390_land12101841 crossref_primary_10_1016_j_catena_2020_105062 crossref_primary_10_1016_j_jia_2024_01_015 crossref_primary_10_1016_j_geoderma_2024_117026 crossref_primary_10_1088_1748_9326_acd6a9 crossref_primary_10_3390_w15071435 crossref_primary_10_1016_j_geodrs_2023_e00702 crossref_primary_10_1016_j_ecolind_2022_109420 crossref_primary_10_3390_rs12162601 crossref_primary_10_1016_j_scitotenv_2022_160602 crossref_primary_10_1016_j_scitotenv_2020_143426 crossref_primary_10_1002_ldr_5573 crossref_primary_10_5194_soil_9_351_2023 crossref_primary_10_1016_j_scitotenv_2018_11_230 crossref_primary_10_1016_j_scitotenv_2019_136092 crossref_primary_10_1016_j_scitotenv_2021_146677 crossref_primary_10_1016_j_geoderma_2020_114684 crossref_primary_10_3390_ijerph18020832 crossref_primary_10_1007_s11368_021_02906_1 crossref_primary_10_3390_w14101668 crossref_primary_10_1016_j_catena_2023_107242 crossref_primary_10_3389_fmicb_2022_848305 crossref_primary_10_1016_j_gexplo_2024_107610 crossref_primary_10_1016_j_ecoinf_2023_102111 crossref_primary_10_1016_j_jenvman_2023_118529 crossref_primary_10_3390_plants12132446 crossref_primary_10_1016_j_scib_2021_10_013 crossref_primary_10_1111_gcb_16154 crossref_primary_10_3390_land11020208 crossref_primary_10_3390_land14020239 crossref_primary_10_3390_rs15205033 crossref_primary_10_1016_j_scitotenv_2019_05_332 crossref_primary_10_3390_rs14205221 crossref_primary_10_1016_j_still_2024_106445 crossref_primary_10_3390_rs14102504 crossref_primary_10_18393_ejss_1558316 crossref_primary_10_3390_ijerph17010292 crossref_primary_10_3390_rs17040729 crossref_primary_10_1016_j_soilbio_2022_108694 crossref_primary_10_3390_su16010245 crossref_primary_10_1038_s41598_024_68424_5 crossref_primary_10_1007_s10661_021_09416_0 crossref_primary_10_1016_j_gsf_2025_102038 crossref_primary_10_1016_j_geoderma_2019_113896 crossref_primary_10_5194_soil_6_35_2020 crossref_primary_10_2139_ssrn_3996866 crossref_primary_10_3390_rs16122149 crossref_primary_10_1002_ldr_4858 crossref_primary_10_1016_j_scitotenv_2019_135387 crossref_primary_10_1038_s41597_024_04158_3 crossref_primary_10_1016_j_jenvman_2020_111383 crossref_primary_10_1016_j_scitotenv_2024_176261 crossref_primary_10_1038_s41597_019_0345_6 crossref_primary_10_1016_j_catena_2023_107183 crossref_primary_10_1016_j_geoderma_2019_05_031 crossref_primary_10_1002_ldr_4293 crossref_primary_10_1038_s43247_023_01044_5 crossref_primary_10_3389_fsoil_2022_890437 crossref_primary_10_3390_s22072685 crossref_primary_10_1016_j_compag_2025_110108 crossref_primary_10_1016_j_agee_2024_109092 crossref_primary_10_3390_rs13245162 crossref_primary_10_1016_j_geoderma_2019_114061 crossref_primary_10_1016_j_catena_2021_105970 crossref_primary_10_1016_j_catena_2021_105572 crossref_primary_10_1016_j_geoderma_2022_115929 crossref_primary_10_1007_s10661_022_10434_9 crossref_primary_10_1016_j_geoderma_2022_115807 crossref_primary_10_1016_j_still_2019_104410 crossref_primary_10_1016_j_geoderma_2024_116941 crossref_primary_10_3390_rs15030803 crossref_primary_10_1016_j_geoderma_2021_115356 crossref_primary_10_1016_j_still_2020_104589 crossref_primary_10_1080_10095020_2025_2454523 crossref_primary_10_1016_j_catena_2022_106054 crossref_primary_10_3390_rs13152934 crossref_primary_10_3390_ijerph17165697 crossref_primary_10_1002_saj2_20371 crossref_primary_10_1016_j_jhazmat_2023_131900 crossref_primary_10_1007_s42773_023_00247_5 crossref_primary_10_1016_j_geoderma_2020_114808 |
Cites_doi | 10.1016/j.geoderma.2009.06.003 10.1002/(SICI)1097-0258(19970415)16:7<783::AID-SIM488>3.0.CO;2-2 10.1016/j.catena.2012.11.012 10.1016/j.geoderma.2015.11.016 10.1071/SR14366 10.1029/2009GB003506 10.1016/j.geoderma.2016.02.006 10.1029/2001GB001844 10.1111/gcb.12569 10.1191/0309133303pp366ra 10.1016/S0016-7061(99)00003-8 10.1002/jame.20026 10.1016/B978-0-12-800137-0.00003-0 10.1175/JHM560.1 10.1016/j.scitotenv.2018.02.209 10.1016/j.rse.2017.08.023 10.1016/j.geoderma.2009.10.007 10.1046/j.1365-2486.2000.00308.x 10.1016/j.scitotenv.2017.09.136 10.1371/journal.pone.0105519 10.1111/j.1475-2743.2012.00421.x 10.1016/j.catena.2012.09.012 10.1109/36.701075 10.1016/j.rse.2011.02.004 10.1097/00010694-199704000-00007 10.1016/j.geoderma.2004.06.007 10.1111/j.1365-2389.1986.tb00377.x 10.1029/94GB02723 10.1016/S0016-7061(03)00223-4 10.1016/j.scitotenv.2015.09.119 10.1111/j.1365-2486.2003.00717.x 10.1016/j.agee.2006.07.011 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7S9 L.6 1XC |
DOI | 10.1016/j.geoderma.2018.08.011 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Computer Science Environmental Sciences |
EISSN | 1872-6259 |
EndPage | 56 |
ExternalDocumentID | oai_HAL_hal_02625582v1 10_1016_j_geoderma_2018_08_011 S0016706117317299 |
GeographicLocations | Mongolia China |
GeographicLocations_xml | – name: Mongolia – name: China |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 EFKBS L.6 1XC |
ID | FETCH-LOGICAL-a332t-1c040ddb1b21bcc343923ad76377a8c170ee07c9cc8e41e8110715b59ac42cbd3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri May 09 12:17:18 EDT 2025 Tue Aug 05 11:12:49 EDT 2025 Tue Jul 01 04:04:47 EDT 2025 Thu Apr 24 23:08:14 EDT 2025 Fri Feb 23 02:47:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soil organic matter Uncertainty assessment Cubist machine learning algorithm Spatial modeling Soil map |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a332t-1c040ddb1b21bcc343923ad76377a8c170ee07c9cc8e41e8110715b59ac42cbd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3914-5402 |
PQID | 2153609894 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | hal_primary_oai_HAL_hal_02625582v1 proquest_miscellaneous_2153609894 crossref_citationtrail_10_1016_j_geoderma_2018_08_011 crossref_primary_10_1016_j_geoderma_2018_08_011 elsevier_sciencedirect_doi_10_1016_j_geoderma_2018_08_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Ponce-Hernandez, Marriott, Beckett (bb0165) 1986; 37 Jenny (bb0065) 1941 Adhikari, Hartemink, Minasny, Kheir, Greve, Greve (bb0005) 2014; 9 National Soil Survey Office (bb0125) 1994; vol. 2 Arrouays, Grundy, Hartemink, Hempel, Heuvelink, Hong, Lagacherie, Lelyk, McBratney (bb0010) 2014; 125 Huang, Minasny, McBratney, Padarian, Triantafilis (bb0055) 2018; 615 Wu, Guo, Peng (bb0250) 2003; 17 Buol, Southard, Graham, McDaniel (bb0025) 2011 Chien, Lee, Guo, Houng (bb0035) 1997; 162 Grunwald (bb0045) 2009; 152 Quinlan (bb0175) 1992 Viscarra Rossel, Webster, Bui, Baldock (bb0230) 2014; 20 Viscarra Rossel, Chen (bb0220) 2011; 115 Bui, Henderson, Viergever (bb0020) 2009; 23 Manlay, Feller, Swift (bb0110) 2007; 119 Bishop, McBratney, Laslett (bb0015) 1999; 91 Chen, Martin, Saby, Walter, Angers, Arrouays (bb0030) 2018; 630 Sun, Zhao, Wu (bb0205) 2012; 28 Wang, Zhou, Li (bb0245) 2000; 55 National Soil Survey Office (bb0140) 1995; vol. 5 Justice, Vermote, Townshend (bb0070) 1998; 36 National Soil Survey Office (bb0135) 1995; vol. 4 Malone, Mcbratney, Minasny, Laslett (bb0105) 2009; 154 Viscarra Rossel (bb0210) 2011; 116 National Soil Survey Office (bb0120) 1993; vol. 1 Viscarra Rossel, Bui (bb0215) 2016; 542 Shen (bb0200) 1998 Viscarra Rossel, Chen, Grundy, Searle, Clifford, Campbell (bb0235) 2015; 53 Pan (bb0155) 1999; 15 Shangguan, Dai, Liu, Zhu, Duan, Wu, Ji, Ye, Yuan, Zhang, Chen, Chen, Chu, Duo, Guo, Li, Li, Liang, Liang, Liu, Liu, Miao, Zhang (bb0195) 2013; 5 Pan, Li, Wu, Zhang (bb0160) 2004; 10 Scull, Franklin, Chadwick, McArthur (bb0190) 2003; 27 Post, Kwon (bb0170) 2000; 6 Viscarra Rossel, Brus, Lobsey, Shi, McLachlan (bb0240) 2016; 265 Xie (bb0255) 2004; 41 Zhou, Biswas, Ma, Lu, Chen, Shi (bb0270) 2016; 271 Lagacherie, McBratney (bb0080) 2007; 31 Zhou, Gao (bb0265) 1997; 16 Ma, Shi, Zhou, Xu, Yu, Yang (bb0100) 2017; 200 Li, Zhang, Pang, Han (bb0095) 2013; 101 National Soil Survey Office (bb0145) 1996; vol. 6 National Soil Survey Office (bb0130) 1994; vol. 3 Kuhn, Weston, Keefer, Coulter (bb0075) 2014 Li, Yue, Wang, Zhang, Yu, Li, Bai (bb0090) 2013; 104 Mcbratney, Mendinca, Minasny (bb0115) 2003; 117 Li, Yue, Fan (bb0085) 2010; 25 Henderson, Bui, Moran, Simon (bb0050) 2005; 124 Yu, Shi, Sun, Wang, Liu, Zhao (bb0260) 2005; 16 Viscarra Rossel, Webster (bb0225) 2012; 63 Huffman, Adler, Bolvin, Gu, Nelkin, Bowman, Hong, Stocker, Wolff (bb0060) 2007; 8 Efron, Tibshirani (bb0040) 1993 R Core Team (bb0180) 2013 Raich, Potter (bb0185) 1995; 9 National Soil Survey Office (bb0150) 1998 Huffman (10.1016/j.geoderma.2018.08.011_bb0060) 2007; 8 Chien (10.1016/j.geoderma.2018.08.011_bb0035) 1997; 162 Henderson (10.1016/j.geoderma.2018.08.011_bb0050) 2005; 124 National Soil Survey Office (10.1016/j.geoderma.2018.08.011_bb0120) 1993; vol. 1 Bishop (10.1016/j.geoderma.2018.08.011_bb0015) 1999; 91 National Soil Survey Office (10.1016/j.geoderma.2018.08.011_bb0130) 1994; vol. 3 Sun (10.1016/j.geoderma.2018.08.011_bb0205) 2012; 28 Huang (10.1016/j.geoderma.2018.08.011_bb0055) 2018; 615 National Soil Survey Office (10.1016/j.geoderma.2018.08.011_bb0140) 1995; vol. 5 Li (10.1016/j.geoderma.2018.08.011_bb0085) 2010; 25 National Soil Survey Office (10.1016/j.geoderma.2018.08.011_bb0150) 1998 Pan (10.1016/j.geoderma.2018.08.011_bb0160) 2004; 10 Buol (10.1016/j.geoderma.2018.08.011_bb0025) 2011 Malone (10.1016/j.geoderma.2018.08.011_bb0105) 2009; 154 Yu (10.1016/j.geoderma.2018.08.011_bb0260) 2005; 16 National Soil Survey Office (10.1016/j.geoderma.2018.08.011_bb0145) 1996; vol. 6 Arrouays (10.1016/j.geoderma.2018.08.011_bb0010) 2014; 125 Ma (10.1016/j.geoderma.2018.08.011_bb0100) 2017; 200 Li (10.1016/j.geoderma.2018.08.011_bb0095) 2013; 101 Zhou (10.1016/j.geoderma.2018.08.011_bb0265) 1997; 16 Raich (10.1016/j.geoderma.2018.08.011_bb0185) 1995; 9 National Soil Survey Office (10.1016/j.geoderma.2018.08.011_bb0125) 1994; vol. 2 Manlay (10.1016/j.geoderma.2018.08.011_bb0110) 2007; 119 Mcbratney (10.1016/j.geoderma.2018.08.011_bb0115) 2003; 117 Scull (10.1016/j.geoderma.2018.08.011_bb0190) 2003; 27 Ponce-Hernandez (10.1016/j.geoderma.2018.08.011_bb0165) 1986; 37 Quinlan (10.1016/j.geoderma.2018.08.011_bb0175) 1992 R Core Team (10.1016/j.geoderma.2018.08.011_bb0180) 2013 Viscarra Rossel (10.1016/j.geoderma.2018.08.011_bb0235) 2015; 53 Efron (10.1016/j.geoderma.2018.08.011_bb0040) 1993 Shen (10.1016/j.geoderma.2018.08.011_bb0200) 1998 Adhikari (10.1016/j.geoderma.2018.08.011_bb0005) 2014; 9 Kuhn (10.1016/j.geoderma.2018.08.011_bb0075) 2014 Pan (10.1016/j.geoderma.2018.08.011_bb0155) 1999; 15 Post (10.1016/j.geoderma.2018.08.011_bb0170) 2000; 6 Chen (10.1016/j.geoderma.2018.08.011_bb0030) 2018; 630 Jenny (10.1016/j.geoderma.2018.08.011_bb0065) 1941 Justice (10.1016/j.geoderma.2018.08.011_bb0070) 1998; 36 Viscarra Rossel (10.1016/j.geoderma.2018.08.011_bb0225) 2012; 63 Viscarra Rossel (10.1016/j.geoderma.2018.08.011_bb0215) 2016; 542 Wu (10.1016/j.geoderma.2018.08.011_bb0250) 2003; 17 Wang (10.1016/j.geoderma.2018.08.011_bb0245) 2000; 55 Grunwald (10.1016/j.geoderma.2018.08.011_bb0045) 2009; 152 Zhou (10.1016/j.geoderma.2018.08.011_bb0270) 2016; 271 Bui (10.1016/j.geoderma.2018.08.011_bb0020) 2009; 23 Viscarra Rossel (10.1016/j.geoderma.2018.08.011_bb0240) 2016; 265 Viscarra Rossel (10.1016/j.geoderma.2018.08.011_bb0230) 2014; 20 Xie (10.1016/j.geoderma.2018.08.011_bb0255) 2004; 41 Viscarra Rossel (10.1016/j.geoderma.2018.08.011_bb0220) 2011; 115 Viscarra Rossel (10.1016/j.geoderma.2018.08.011_bb0210) 2011; 116 Li (10.1016/j.geoderma.2018.08.011_bb0090) 2013; 104 Lagacherie (10.1016/j.geoderma.2018.08.011_bb0080) 2007; 31 National Soil Survey Office (10.1016/j.geoderma.2018.08.011_bb0135) 1995; vol. 4 Shangguan (10.1016/j.geoderma.2018.08.011_bb0195) 2013; 5 |
References_xml | – volume: 25 start-page: 1385 year: 2010 end-page: 1399 ident: bb0085 article-title: Study on method for spatial simulation of topsoil SOM at national scale in China publication-title: J. Nat. Res. – volume: 10 start-page: 79 year: 2004 end-page: 92 ident: bb0160 article-title: Storage and sequestration potential of topsoil organic carbon in china's paddy soils publication-title: Glob. Chang. Biol. – volume: 9 start-page: 23 year: 1995 end-page: 36 ident: bb0185 article-title: Global patterns of carbon dioxide emissions from soils publication-title: Glob. Biogeochem. Cycles – start-page: 1 year: 1941 end-page: 270 ident: bb0065 article-title: Factors of Soil Formation: A System of Quantitative Pedology – volume: 116 year: 2011 ident: bb0210 article-title: Fine-resolution multiscale mapping of clay minerals in Australian soils measured with near infrared spectra publication-title: J. Geophys. Res. F Earth Surf. – volume: 152 start-page: 195 year: 2009 end-page: 207 ident: bb0045 article-title: Multi-criteria characterization of recent digital soil mapping and modeling approaches publication-title: Geoderma – volume: 265 year: 2016 ident: bb0240 article-title: Baseline estimates of soil organic carbon by proximal sensing: comparing design-based, model-assisted and model-based inference publication-title: Geoderma – volume: 8 start-page: 38 year: 2007 end-page: 55 ident: bb0060 article-title: The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales publication-title: Hydrometeorology – year: 2014 ident: bb0075 article-title: C Code for Cubist by Ross Quinlan. Cubist: Rule- and Instance-Based Regression Modeling. R Package Version 0.0.18 – volume: 28 start-page: 318 year: 2012 end-page: 328 ident: bb0205 article-title: Spatio-temporal change of soil organic matter content of Jiangsu Province, China, based on digital soil maps publication-title: Soil Use Manag. – volume: 271 start-page: 71 year: 2016 end-page: 79 ident: bb0270 article-title: Revealing the scale-specific controls of soil organic matter at large scale in Northeast and North China Plain publication-title: Geoderma – volume: 124 start-page: 383 year: 2005 end-page: 398 ident: bb0050 article-title: Australia-wide predictions of soil properties using decision trees publication-title: Geoderma – start-page: 343 year: 1992 end-page: 348 ident: bb0175 article-title: Learning with continuous classes publication-title: Proceedings of the 5th Australian Joint Conference on Artificial Intelligence – volume: 55 start-page: 533 year: 2000 end-page: 544 ident: bb0245 article-title: Analysis on spatial distribution characteristics of soil organic carbon reservoir in China publication-title: Acta Geograph. Sin. – year: 2011 ident: bb0025 article-title: Soil Genesis and Classification – volume: 91 start-page: 27 year: 1999 end-page: 45 ident: bb0015 article-title: Modelling soil attribute depth functions with equal-area quadratic smoothing splines publication-title: Geoderma – volume: 5 start-page: 212 year: 2013 end-page: 224 ident: bb0195 article-title: A China data set of soil properties for land surface modeling publication-title: J. Adv. Model. Earth Syst. – volume: 16 start-page: 2279 year: 2005 end-page: 2283 ident: bb0260 article-title: Estimation of China soil organic carbon storage and density based on 1: 1,000,000 soil database publication-title: J. Appl. Ecol. – volume: 23 start-page: GB4033 year: 2009 ident: bb0020 article-title: Using knowledge discovery with data mining from the Australian Soil Resource Information System database to inform soil carbon mapping in Australia publication-title: Glob. Biogeochem. Cycles – volume: 615 start-page: 540 year: 2018 end-page: 548 ident: bb0055 article-title: The location-and scale-specific correlation between temperature and soil carbon sequestration across the globe publication-title: Sci. Total Environ. – volume: 15 start-page: 330 year: 1999 end-page: 332 ident: bb0155 article-title: Study on carbon reservoir in soils of China publication-title: Bull. Sci. Technol. – volume: 630 start-page: 389 year: 2018 end-page: 400 ident: bb0030 article-title: Fine resolution map of top-and subsoil carbon sequestration potential in France publication-title: Sci. Total Environ. – volume: 154 start-page: 138 year: 2009 end-page: 152 ident: bb0105 article-title: Mapping continuous depth functions of soil carbon storage and available water capacity publication-title: Geoderma – volume: 9 year: 2014 ident: bb0005 article-title: Digital mapping of soil organic carbon contents and stocks in Denmark publication-title: PLoS One – year: 1998 ident: bb0150 article-title: Soils of China – volume: vol. 3 year: 1994 ident: bb0130 article-title: Chinese Soil Genus Records – volume: 101 start-page: 11 year: 2013 end-page: 16 ident: bb0095 article-title: The estimation of soil organic carbon distribution and storage in a small catchment area of the loess plateau publication-title: Catena – volume: 17 start-page: 67 year: 2003 end-page: 80 ident: bb0250 article-title: Distribution and storage of soil organic carbon in China publication-title: Glob. Biogeochem. Cycles – volume: 63 year: 2012 ident: bb0225 article-title: Predicting soil properties from the Australian soil visible-near infrared spectroscopic database publication-title: Eur. J. Soil Sci. – volume: vol. 5 year: 1995 ident: bb0140 article-title: Chinese Soil Genus Records – volume: 200 year: 2017 ident: bb0100 article-title: A spatial data mining algorithm for downscaling tmpa 3b43 v7 data over the Qinghai-Tibet plateau with the effects of systematic anomalies removed publication-title: Remote Sens. Environ. – volume: 119 start-page: 217 year: 2007 end-page: 233 ident: bb0110 article-title: Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems publication-title: Agric. Ecosyst. Environ. – volume: 37 start-page: 455 year: 1986 end-page: 467 ident: bb0165 article-title: An improved method for reconstructing a soil-profile from analysis of a small number of samples publication-title: J. Soil Sci. – year: 1998 ident: bb0200 article-title: China Soil Fertility – volume: vol. 2 year: 1994 ident: bb0125 article-title: Chinese Soil Genus Records – volume: 115 start-page: 1443 year: 2011 end-page: 1455 ident: bb0220 article-title: Digitally mapping the information content of visible-near infrared spectra of surficial Australian soils publication-title: Remote Sens. Environ. – volume: vol. 1 year: 1993 ident: bb0120 article-title: Chinese Soil Genus Records – volume: 53 start-page: 845 year: 2015 end-page: 864 ident: bb0235 article-title: The Australian three-dimensional soil grid: Australia's contribution to the GlobalSoilMap project publication-title: Soil Res. – year: 2013 ident: bb0180 article-title: R: A Language and Environment for Statistical Computing. Vienna, Austria – volume: 31 start-page: 3 year: 2007 end-page: 22 ident: bb0080 article-title: Spatial soil information systems and spatial soil inference systems: perspectives for Digital Soil Mapping publication-title: Dev. Soil Sci. – volume: vol. 4 year: 1995 ident: bb0135 article-title: Chinese Soil Genus Records – volume: 125 start-page: 93 year: 2014 end-page: 134 ident: bb0010 article-title: Chapter Three-GlobalSoilMap: toward a fine-resolution global grid of soil properties publication-title: Adv. Agron. – volume: 104 start-page: 210 year: 2013 end-page: 218 ident: bb0090 article-title: Spatially distributed modeling of soil organic matter across China: an application of artificial neural network approach publication-title: Catena – volume: 27 start-page: 171 year: 2003 end-page: 197 ident: bb0190 article-title: Predictive soil mapping: a review publication-title: Prog. Phys. Geogr. – volume: 41 start-page: 35 year: 2004 end-page: 43 ident: bb0255 article-title: Organic carbon density and storage in soils of China and spatial analysis publication-title: Acta Pedol. Sin. – volume: 20 year: 2014 ident: bb0230 article-title: Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change publication-title: Glob. Chang. Biol. – year: 1993 ident: bb0040 article-title: An Introduction to the Bootstrap – volume: 36 start-page: 1228 year: 1998 end-page: 1249 ident: bb0070 article-title: The moderate resolution imaging spectroradiometer (MODIS): land remote sensing for global change research publication-title: IEEE Trans. Geosci. Remote Sens. – volume: vol. 6 year: 1996 ident: bb0145 article-title: Chinese Soil Genus Records – volume: 117 start-page: 3 year: 2003 end-page: 52 ident: bb0115 article-title: On digital soil mapping publication-title: Geoderma – volume: 6 start-page: 317 year: 2000 end-page: 327 ident: bb0170 article-title: Soil carbon sequestration and land use change: processes and potential publication-title: Glob. Chang. Biol. – volume: 542 start-page: 1040 year: 2016 end-page: 1049 ident: bb0215 article-title: A new detailed map of total phosphorus stocks in Australian soil publication-title: Sci. Total Environ. – volume: 16 start-page: 783 year: 1997 end-page: 790 ident: bb0265 article-title: Confidence intervals for the log-normal mean publication-title: Stat. Med. – volume: 162 start-page: 291 year: 1997 end-page: 298 ident: bb0035 article-title: Geostatistical analysis of soil properties of mid-west Taiwan soils publication-title: Soil Sci. – volume: 63 issue: 6 year: 2012 ident: 10.1016/j.geoderma.2018.08.011_bb0225 article-title: Predicting soil properties from the Australian soil visible-near infrared spectroscopic database publication-title: Eur. J. Soil Sci. – volume: vol. 4 year: 1995 ident: 10.1016/j.geoderma.2018.08.011_bb0135 – volume: 152 start-page: 195 year: 2009 ident: 10.1016/j.geoderma.2018.08.011_bb0045 article-title: Multi-criteria characterization of recent digital soil mapping and modeling approaches publication-title: Geoderma doi: 10.1016/j.geoderma.2009.06.003 – volume: 16 start-page: 783 issue: 7 year: 1997 ident: 10.1016/j.geoderma.2018.08.011_bb0265 article-title: Confidence intervals for the log-normal mean publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(19970415)16:7<783::AID-SIM488>3.0.CO;2-2 – volume: 104 start-page: 210 year: 2013 ident: 10.1016/j.geoderma.2018.08.011_bb0090 article-title: Spatially distributed modeling of soil organic matter across China: an application of artificial neural network approach publication-title: Catena doi: 10.1016/j.catena.2012.11.012 – volume: 265 year: 2016 ident: 10.1016/j.geoderma.2018.08.011_bb0240 article-title: Baseline estimates of soil organic carbon by proximal sensing: comparing design-based, model-assisted and model-based inference publication-title: Geoderma doi: 10.1016/j.geoderma.2015.11.016 – year: 1998 ident: 10.1016/j.geoderma.2018.08.011_bb0200 – volume: 53 start-page: 845 issue: 8 year: 2015 ident: 10.1016/j.geoderma.2018.08.011_bb0235 article-title: The Australian three-dimensional soil grid: Australia's contribution to the GlobalSoilMap project publication-title: Soil Res. doi: 10.1071/SR14366 – year: 1993 ident: 10.1016/j.geoderma.2018.08.011_bb0040 – volume: 15 start-page: 330 issue: 5 year: 1999 ident: 10.1016/j.geoderma.2018.08.011_bb0155 article-title: Study on carbon reservoir in soils of China publication-title: Bull. Sci. Technol. – year: 2013 ident: 10.1016/j.geoderma.2018.08.011_bb0180 – volume: 16 start-page: 2279 issue: 12 year: 2005 ident: 10.1016/j.geoderma.2018.08.011_bb0260 article-title: Estimation of China soil organic carbon storage and density based on 1: 1,000,000 soil database publication-title: J. Appl. Ecol. – volume: 23 start-page: GB4033 year: 2009 ident: 10.1016/j.geoderma.2018.08.011_bb0020 article-title: Using knowledge discovery with data mining from the Australian Soil Resource Information System database to inform soil carbon mapping in Australia publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2009GB003506 – volume: 271 start-page: 71 year: 2016 ident: 10.1016/j.geoderma.2018.08.011_bb0270 article-title: Revealing the scale-specific controls of soil organic matter at large scale in Northeast and North China Plain publication-title: Geoderma doi: 10.1016/j.geoderma.2016.02.006 – volume: 31 start-page: 3 year: 2007 ident: 10.1016/j.geoderma.2018.08.011_bb0080 article-title: Spatial soil information systems and spatial soil inference systems: perspectives for Digital Soil Mapping publication-title: Dev. Soil Sci. – volume: vol. 1 year: 1993 ident: 10.1016/j.geoderma.2018.08.011_bb0120 – volume: vol. 6 year: 1996 ident: 10.1016/j.geoderma.2018.08.011_bb0145 – year: 2014 ident: 10.1016/j.geoderma.2018.08.011_bb0075 – volume: 17 start-page: 67 year: 2003 ident: 10.1016/j.geoderma.2018.08.011_bb0250 article-title: Distribution and storage of soil organic carbon in China publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2001GB001844 – volume: 25 start-page: 1385 year: 2010 ident: 10.1016/j.geoderma.2018.08.011_bb0085 article-title: Study on method for spatial simulation of topsoil SOM at national scale in China publication-title: J. Nat. Res. – volume: 20 issue: 9 year: 2014 ident: 10.1016/j.geoderma.2018.08.011_bb0230 article-title: Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12569 – volume: 27 start-page: 171 year: 2003 ident: 10.1016/j.geoderma.2018.08.011_bb0190 article-title: Predictive soil mapping: a review publication-title: Prog. Phys. Geogr. doi: 10.1191/0309133303pp366ra – volume: 91 start-page: 27 year: 1999 ident: 10.1016/j.geoderma.2018.08.011_bb0015 article-title: Modelling soil attribute depth functions with equal-area quadratic smoothing splines publication-title: Geoderma doi: 10.1016/S0016-7061(99)00003-8 – start-page: 1 year: 1941 ident: 10.1016/j.geoderma.2018.08.011_bb0065 – volume: 116 year: 2011 ident: 10.1016/j.geoderma.2018.08.011_bb0210 article-title: Fine-resolution multiscale mapping of clay minerals in Australian soils measured with near infrared spectra publication-title: J. Geophys. Res. F Earth Surf. – volume: 5 start-page: 212 year: 2013 ident: 10.1016/j.geoderma.2018.08.011_bb0195 article-title: A China data set of soil properties for land surface modeling publication-title: J. Adv. Model. Earth Syst. doi: 10.1002/jame.20026 – volume: 125 start-page: 93 year: 2014 ident: 10.1016/j.geoderma.2018.08.011_bb0010 article-title: Chapter Three-GlobalSoilMap: toward a fine-resolution global grid of soil properties publication-title: Adv. Agron. doi: 10.1016/B978-0-12-800137-0.00003-0 – year: 1998 ident: 10.1016/j.geoderma.2018.08.011_bb0150 – volume: 8 start-page: 38 year: 2007 ident: 10.1016/j.geoderma.2018.08.011_bb0060 article-title: The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales publication-title: Hydrometeorology doi: 10.1175/JHM560.1 – volume: 630 start-page: 389 year: 2018 ident: 10.1016/j.geoderma.2018.08.011_bb0030 article-title: Fine resolution map of top-and subsoil carbon sequestration potential in France publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.02.209 – volume: vol. 3 year: 1994 ident: 10.1016/j.geoderma.2018.08.011_bb0130 – volume: 200 year: 2017 ident: 10.1016/j.geoderma.2018.08.011_bb0100 article-title: A spatial data mining algorithm for downscaling tmpa 3b43 v7 data over the Qinghai-Tibet plateau with the effects of systematic anomalies removed publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.08.023 – volume: 154 start-page: 138 year: 2009 ident: 10.1016/j.geoderma.2018.08.011_bb0105 article-title: Mapping continuous depth functions of soil carbon storage and available water capacity publication-title: Geoderma doi: 10.1016/j.geoderma.2009.10.007 – volume: 6 start-page: 317 issue: 3 year: 2000 ident: 10.1016/j.geoderma.2018.08.011_bb0170 article-title: Soil carbon sequestration and land use change: processes and potential publication-title: Glob. Chang. Biol. doi: 10.1046/j.1365-2486.2000.00308.x – volume: 615 start-page: 540 year: 2018 ident: 10.1016/j.geoderma.2018.08.011_bb0055 article-title: The location-and scale-specific correlation between temperature and soil carbon sequestration across the globe publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.09.136 – volume: 9 issue: 8 year: 2014 ident: 10.1016/j.geoderma.2018.08.011_bb0005 article-title: Digital mapping of soil organic carbon contents and stocks in Denmark publication-title: PLoS One doi: 10.1371/journal.pone.0105519 – year: 2011 ident: 10.1016/j.geoderma.2018.08.011_bb0025 – volume: 28 start-page: 318 issue: 3 year: 2012 ident: 10.1016/j.geoderma.2018.08.011_bb0205 article-title: Spatio-temporal change of soil organic matter content of Jiangsu Province, China, based on digital soil maps publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.2012.00421.x – volume: 101 start-page: 11 issue: 2 year: 2013 ident: 10.1016/j.geoderma.2018.08.011_bb0095 article-title: The estimation of soil organic carbon distribution and storage in a small catchment area of the loess plateau publication-title: Catena doi: 10.1016/j.catena.2012.09.012 – volume: 36 start-page: 1228 year: 1998 ident: 10.1016/j.geoderma.2018.08.011_bb0070 article-title: The moderate resolution imaging spectroradiometer (MODIS): land remote sensing for global change research publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.701075 – volume: 115 start-page: 1443 year: 2011 ident: 10.1016/j.geoderma.2018.08.011_bb0220 article-title: Digitally mapping the information content of visible-near infrared spectra of surficial Australian soils publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.02.004 – volume: 55 start-page: 533 year: 2000 ident: 10.1016/j.geoderma.2018.08.011_bb0245 article-title: Analysis on spatial distribution characteristics of soil organic carbon reservoir in China publication-title: Acta Geograph. Sin. – volume: 41 start-page: 35 issue: 1 year: 2004 ident: 10.1016/j.geoderma.2018.08.011_bb0255 article-title: Organic carbon density and storage in soils of China and spatial analysis publication-title: Acta Pedol. Sin. – volume: 162 start-page: 291 issue: 4 year: 1997 ident: 10.1016/j.geoderma.2018.08.011_bb0035 article-title: Geostatistical analysis of soil properties of mid-west Taiwan soils publication-title: Soil Sci. doi: 10.1097/00010694-199704000-00007 – volume: 124 start-page: 383 issue: 3 year: 2005 ident: 10.1016/j.geoderma.2018.08.011_bb0050 article-title: Australia-wide predictions of soil properties using decision trees publication-title: Geoderma doi: 10.1016/j.geoderma.2004.06.007 – volume: vol. 2 year: 1994 ident: 10.1016/j.geoderma.2018.08.011_bb0125 – volume: 37 start-page: 455 year: 1986 ident: 10.1016/j.geoderma.2018.08.011_bb0165 article-title: An improved method for reconstructing a soil-profile from analysis of a small number of samples publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1986.tb00377.x – volume: 9 start-page: 23 issue: 1 year: 1995 ident: 10.1016/j.geoderma.2018.08.011_bb0185 article-title: Global patterns of carbon dioxide emissions from soils publication-title: Glob. Biogeochem. Cycles doi: 10.1029/94GB02723 – volume: 117 start-page: 3 year: 2003 ident: 10.1016/j.geoderma.2018.08.011_bb0115 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – volume: 542 start-page: 1040 year: 2016 ident: 10.1016/j.geoderma.2018.08.011_bb0215 article-title: A new detailed map of total phosphorus stocks in Australian soil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.09.119 – volume: 10 start-page: 79 issue: 1 year: 2004 ident: 10.1016/j.geoderma.2018.08.011_bb0160 article-title: Storage and sequestration potential of topsoil organic carbon in china's paddy soils publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2003.00717.x – volume: 119 start-page: 217 issue: 3 year: 2007 ident: 10.1016/j.geoderma.2018.08.011_bb0110 article-title: Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2006.07.011 – volume: vol. 5 year: 1995 ident: 10.1016/j.geoderma.2018.08.011_bb0140 – start-page: 343 year: 1992 ident: 10.1016/j.geoderma.2018.08.011_bb0175 article-title: Learning with continuous classes |
SSID | ssj0017020 |
Score | 2.551689 |
Snippet | Accurate digital soil maps of soil organic matter (SOM) are needed to evaluate soil fertility, to estimate stocks, and for ecological and environment modeling.... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 47 |
SubjectTerms | algorithms artificial intelligence China climate Computer Science Cubist machine learning algorithm decision making deserts Earth Sciences Environmental Sciences Global Changes inventories model uncertainty Modeling and Simulation Mongolia monitoring prediction Sciences of the Universe soil fertility Soil map Soil organic matter soil profiles soil surveys Spatial modeling topsoil Uncertainty assessment vegetation |
Title | National digital soil map of organic matter in topsoil and its associated uncertainty in 1980's China |
URI | https://dx.doi.org/10.1016/j.geoderma.2018.08.011 https://www.proquest.com/docview/2153609894 https://hal.inrae.fr/hal-02625582 |
Volume | 335 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEBbb9NIelu2Lprsb1FLoyU0kP2Qdw7IhfZBTA7kJvZI6pHZInIW97G_fGVsObaHk0KPECIuZ0TzwzDeEfBSJlyYVIsq48FHCNY-kjkUk4uXSyMQZ65oq31k2nSdfF-nijNx0vTBYVhlsf2vTG2sddoaBm8NtUWCPL8sEuCMmwAeCVcUO9kSgln9-OJZ5MDEK0Iwsi5D6ty7hNcgIB441-EMsb6A8GfuXg3ryEysl_zLYjReaXJDzED7ScXvDF-TMly_J8_FqFyA0_CviA9T1hrpihSNB6L4qNvSX3tJqSdspThaW2MZDi5LW1bYh0KWjRb2nOgjMOwo-r60YqO-Rksl89GlPm5Hbr8l8cvvjZhqFYQqRjmNeR8zCc3XOMMOZsTaGQITH2oF5EULnFvjk_UhYaW3uE-ZzzAtZalKpbcKtcfEb0iur0r8l1EjhNENYa6MhnrOaWwk5ORhKjC-k7JO046CyAWkcB15sVFdStlYd5xVyXuEkTMb6ZHg8t22xNk6ekJ2A1B9ao8AhnDz7ASR6_BDCbE_H3xXuQV4KmVbO74DofSdwBe8Of6bo0leHvYJQKc5GCF__7j8ucUmewUq2ZeBXpFfvDv4aopzaDBo1HpCn4y_fprNHZq78EQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6SzaHtofRJk77UUujJ7Ep-yDouocFptntKIDeh16YOW3vJOoX8-87Y8tIWSg49WtYgMSPNA818A_BJZkHZXMqkEDIkmTAiUSaViUxXK6syb53vs3yXRXWRfb3ML_fgeKyFobTKqPsHnd5r6zgyjdycbuqaanx5IdEccYk2ELXqPhwQOlU-gYP56Vm13D0myFlEZ-RFQgS_FQpfo5io51gPQcTLHs2T83_ZqP3vlCz5l87uDdHJE3gcPUg2Hzb5FPZC8wweza9uIopGeA4hol2vma-vqCsI27b1mv0wG9au2NDIyeEnVfKwumFdu-knmMazutsyE2UWPEOzNyQNdHc0k6ty9nnL-q7bL-Di5Mv5cZXEfgqJSVPRJdzhjfXeciu4dS5FX0SkxqOGkdKUDvkUwkw65VwZMh5KCg15bnNlXCac9elLmDRtE14Bs0p6wwnZ2hp06ZwRTmFYjrqSXAylDiEfOahdBBunnhdrPWaVXeuR85o4r6kZJueHMN3RbQa4jXsp1Cgg_cfB0WgT7qX9iBLdLURI29V8oWkMQ1MMtkrxEyd9GAWu8erRe4ppQnu71egtpcWMEOyP_mMT7-FBdf5toReny7PX8BD_qCEr_A1Mupvb8Badns6-i4f6FwcT_sI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=National+digital+soil+map+of+organic+matter+in+topsoil+and+its+associated+uncertainty+in+1980%27s+China&rft.jtitle=Geoderma&rft.au=Liang%2C+Zongzheng&rft.au=Chen%2C+Songchao&rft.au=Yang%2C+Yuanyuan&rft.au=Zhao%2C+Ruiying&rft.date=2019-02-01&rft.issn=0016-7061&rft.volume=335+p.47-56&rft.spage=47&rft.epage=56&rft_id=info:doi/10.1016%2Fj.geoderma.2018.08.011&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |