National digital soil map of organic matter in topsoil and its associated uncertainty in 1980's China

Accurate digital soil maps of soil organic matter (SOM) are needed to evaluate soil fertility, to estimate stocks, and for ecological and environment modeling. We used 5982 soil profiles collected during the second national soil survey of China, along with 19 environment predictors, to derive a spat...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 335; pp. 47 - 56
Main Authors Liang, Zongzheng, Chen, Songchao, Yang, Yuanyuan, Zhao, Ruiying, Shi, Zhou, Viscarra Rossel, Raphael A.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2019
Elsevier
Subjects
Online AccessGet full text
ISSN0016-7061
1872-6259
DOI10.1016/j.geoderma.2018.08.011

Cover

Loading…
Abstract Accurate digital soil maps of soil organic matter (SOM) are needed to evaluate soil fertility, to estimate stocks, and for ecological and environment modeling. We used 5982 soil profiles collected during the second national soil survey of China, along with 19 environment predictors, to derive a spatial model of SOM concentration in the topsoil (0–20 cm layer). The environmental predictors relate to the soil forming factors, climate, vegetation, relief and parent material. We developed the model using the Cubist machine-learning algorithm combined with a non-parametric bootstrap to derive estimates of model uncertainty. We optimized the Cubist model using a 10-fold cross-validation and the best model used 17 rules. The correlation coefficient between the observed and predicted values was 0.65, and the root mean squared error was 0.28 g/kg. We then applied the model over China and mapped the SOM distribution at a resolution of 90 × 90 m. Our predictions show that there is more SOM in the eastern Tibetan Plateau, northern Heilongjiang province, northeast Mongolia, and a small area of Tianshan Mountain in Xinjiang. There is less SOM in the Loess Plateau and most of the desert areas in northwest China. The average topsoil SOM content is 24.82 g/kg. The study provides a map that can be used for decision-making and contribute towards a baseline assessment for inventory and monitoring. The map could also aid the design of future soil surveys and help with the development of a SOM monitoring network in China. •We created a 90-m resolution map soil organic matter (SOM) in China.•Cubist model used with data from 5982 soil profiles and 19 environmental variables.•Average topsoil SOM is 24.82 g/kg.•The model is effective for large scale, high-resolution digital soil mapping.•The map provides a baseline reference for monitoring and evaluating SOM of topsoil change.
AbstractList Accurate digital soil maps of soil organic matter (SOM) are needed to evaluate soil fertility, to estimate stocks, and for ecological and environment modeling. We used 5982 soil profiles collected during the second national soil survey of China, along with 19 environment predictors, to derive a spatial model of SOM concentration in the topsoil (0–20 cm layer). The environmental predictors relate to the soil forming factors, climate, vegetation, relief and parent material. We developed the model using the Cubist machine-learning algorithm combined with a non-parametric bootstrap to derive estimates of model uncertainty. We optimized the Cubist model using a 10-fold cross-validation and the best model used 17 rules. The correlation coefficient between the observed and predicted values was 0.65, and the root mean squared error was 0.28 g/kg. We then applied the model over China and mapped the SOM distribution at a resolution of 90 × 90 m. Our predictions show that there is more SOM in the eastern Tibetan Plateau, northern Heilongjiang province, northeast Mongolia, and a small area of Tianshan Mountain in Xinjiang. There is less SOM in the Loess Plateau and most of the desert areas in northwest China. The average topsoil SOM content is 24.82 g/kg. The study provides a map that can be used for decision-making and contribute towards a baseline assessment for inventory and monitoring. The map could also aid the design of future soil surveys and help with the development of a SOM monitoring network in China. •We created a 90-m resolution map soil organic matter (SOM) in China.•Cubist model used with data from 5982 soil profiles and 19 environmental variables.•Average topsoil SOM is 24.82 g/kg.•The model is effective for large scale, high-resolution digital soil mapping.•The map provides a baseline reference for monitoring and evaluating SOM of topsoil change.
Accurate digital soil maps of soil organic matter (SOM) are needed to evaluate soil fertility, to estimate stocks, and for ecological and environment modeling. We used 5982 soil profiles collected during the second national soil survey of China, along with 19 environment predictors, to derive a spatial model of SOM concentration in the topsoil (0-20 cm layer). The environmental predictors relate to the soil forming factors, climate, vegetation, relief and parent material. We developed the model using the Cubist machine-learning algorithm combined with a non-parametric bootstrap to derive estimates of model uncertainty. We optimized the Cubist model using a 10-fold cross-validation and the best model used 17 rules. The correlation coefficient between the observed and predicted values was 0.65, and the root mean squared error was 0.28 g/kg. We then applied the model over China and mapped the SOM distribution at a resolution of 90 x 90 m. Our predictions show that there is more SOM in the eastern Tibetan Plateau, northern Heilongjiang province, northeast Mongolia, and a small area of Tianshan Mountain in Xinjiang. There is less SOM in the Loess Plateau and most of the desert areas in northwest China. The average topsoil SOM content is 24.82 g/kg. The study provides a map that can be used for decision-making and contribute towards a baseline assessment for inventory and monitoring. The map could also aid the design of future soil surveys and help with the development of a SOM monitoring network in China.
Accurate digital soil maps of soil organic matter (SOM) are needed to evaluate soil fertility, to estimate stocks, and for ecological and environment modeling. We used 5982 soil profiles collected during the second national soil survey of China, along with 19 environment predictors, to derive a spatial model of SOM concentration in the topsoil (0–20 cm layer). The environmental predictors relate to the soil forming factors, climate, vegetation, relief and parent material. We developed the model using the Cubist machine-learning algorithm combined with a non-parametric bootstrap to derive estimates of model uncertainty. We optimized the Cubist model using a 10-fold cross-validation and the best model used 17 rules. The correlation coefficient between the observed and predicted values was 0.65, and the root mean squared error was 0.28 g/kg. We then applied the model over China and mapped the SOM distribution at a resolution of 90 × 90 m. Our predictions show that there is more SOM in the eastern Tibetan Plateau, northern Heilongjiang province, northeast Mongolia, and a small area of Tianshan Mountain in Xinjiang. There is less SOM in the Loess Plateau and most of the desert areas in northwest China. The average topsoil SOM content is 24.82 g/kg. The study provides a map that can be used for decision-making and contribute towards a baseline assessment for inventory and monitoring. The map could also aid the design of future soil surveys and help with the development of a SOM monitoring network in China.
Author Chen, Songchao
Liang, Zongzheng
Yang, Yuanyuan
Viscarra Rossel, Raphael A.
Zhao, Ruiying
Shi, Zhou
Author_xml – sequence: 1
  givenname: Zongzheng
  surname: Liang
  fullname: Liang, Zongzheng
  organization: Institute of Agricultural Remote Sensing and Information Technology Application, Zhejiang University, 310058 Hangzhou, China
– sequence: 2
  givenname: Songchao
  surname: Chen
  fullname: Chen, Songchao
  organization: INRA Unité InfoSol, 45075 Orléans, France
– sequence: 3
  givenname: Yuanyuan
  surname: Yang
  fullname: Yang, Yuanyuan
  organization: Institute of Agricultural Remote Sensing and Information Technology Application, Zhejiang University, 310058 Hangzhou, China
– sequence: 4
  givenname: Ruiying
  surname: Zhao
  fullname: Zhao, Ruiying
  organization: Institute of Agricultural Remote Sensing and Information Technology Application, Zhejiang University, 310058 Hangzhou, China
– sequence: 5
  givenname: Zhou
  surname: Shi
  fullname: Shi, Zhou
  email: shizhou@zju.edu.cn
  organization: Institute of Agricultural Remote Sensing and Information Technology Application, Zhejiang University, 310058 Hangzhou, China
– sequence: 6
  givenname: Raphael A.
  surname: Viscarra Rossel
  fullname: Viscarra Rossel, Raphael A.
  organization: CSIRO Land & Water, Bruce E. Butler Laboratory, PO Box 1700, Canberra, ACT 2601, Australia
BackLink https://hal.inrae.fr/hal-02625582$$DView record in HAL
BookMark eNqFkU9rGzEQxUVJoU7ar1B0a3tYV6Nd7x_oocG0TcC0l_YsZqWxM2YtuZIcyLePtm4uuQQGhhG_NxreuxQXPngS4j2oJShoP--XOwqO4gGXWkG_VKUAXokF9J2uWr0aLsRCFbLqVAtvxGVK-zJ2SquFoJ-YOXicpOMd59JT4Eke8CjDVoa4Q8-2jDlTlOxlDsd_AHonOSeJKQXLmMnJk7cUM7LPDzMJQ68-JLm-Y49vxestTone_e9X4s_3b7_XN9Xm14_b9fWmwrrWuQKrGuXcCKOG0dq6qQddo-vauuuwt-VkItXZwdqeGqAeQHWwGlcD2kbb0dVX4tN57x1O5hj5gPHBBGRzc70x85vSxY9Vr--hsB_P7DGGvydK2Rw4WZom9BROyWhY1a0a-qEp6JczamNIKdLW2GLV7FuOyJMBZeYkzN48JWHmJIwqBfNP7TP502kvCr-ehVQ8u2eKJlmmYrPjSDYbF_ilFY8aI6iN
CitedBy_id crossref_primary_10_1016_j_geodrs_2022_e00568
crossref_primary_10_1016_j_still_2024_106248
crossref_primary_10_1016_j_geoderma_2022_116232
crossref_primary_10_5194_essd_17_517_2025
crossref_primary_10_1016_j_renene_2021_03_135
crossref_primary_10_3390_s22228997
crossref_primary_10_1016_j_catena_2024_107813
crossref_primary_10_3390_rs14071701
crossref_primary_10_1016_j_scitotenv_2023_166371
crossref_primary_10_3390_rs16152712
crossref_primary_10_1007_s11356_021_18008_x
crossref_primary_10_1088_1748_9326_abfeeb
crossref_primary_10_1016_j_geoderma_2019_114145
crossref_primary_10_3390_rs12010085
crossref_primary_10_3390_land11081285
crossref_primary_10_1088_1748_9326_acd1a2
crossref_primary_10_3390_land12101841
crossref_primary_10_1016_j_catena_2020_105062
crossref_primary_10_1016_j_jia_2024_01_015
crossref_primary_10_1016_j_geoderma_2024_117026
crossref_primary_10_1088_1748_9326_acd6a9
crossref_primary_10_3390_w15071435
crossref_primary_10_1016_j_geodrs_2023_e00702
crossref_primary_10_1016_j_ecolind_2022_109420
crossref_primary_10_3390_rs12162601
crossref_primary_10_1016_j_scitotenv_2022_160602
crossref_primary_10_1016_j_scitotenv_2020_143426
crossref_primary_10_1002_ldr_5573
crossref_primary_10_5194_soil_9_351_2023
crossref_primary_10_1016_j_scitotenv_2018_11_230
crossref_primary_10_1016_j_scitotenv_2019_136092
crossref_primary_10_1016_j_scitotenv_2021_146677
crossref_primary_10_1016_j_geoderma_2020_114684
crossref_primary_10_3390_ijerph18020832
crossref_primary_10_1007_s11368_021_02906_1
crossref_primary_10_3390_w14101668
crossref_primary_10_1016_j_catena_2023_107242
crossref_primary_10_3389_fmicb_2022_848305
crossref_primary_10_1016_j_gexplo_2024_107610
crossref_primary_10_1016_j_ecoinf_2023_102111
crossref_primary_10_1016_j_jenvman_2023_118529
crossref_primary_10_3390_plants12132446
crossref_primary_10_1016_j_scib_2021_10_013
crossref_primary_10_1111_gcb_16154
crossref_primary_10_3390_land11020208
crossref_primary_10_3390_land14020239
crossref_primary_10_3390_rs15205033
crossref_primary_10_1016_j_scitotenv_2019_05_332
crossref_primary_10_3390_rs14205221
crossref_primary_10_1016_j_still_2024_106445
crossref_primary_10_3390_rs14102504
crossref_primary_10_18393_ejss_1558316
crossref_primary_10_3390_ijerph17010292
crossref_primary_10_3390_rs17040729
crossref_primary_10_1016_j_soilbio_2022_108694
crossref_primary_10_3390_su16010245
crossref_primary_10_1038_s41598_024_68424_5
crossref_primary_10_1007_s10661_021_09416_0
crossref_primary_10_1016_j_gsf_2025_102038
crossref_primary_10_1016_j_geoderma_2019_113896
crossref_primary_10_5194_soil_6_35_2020
crossref_primary_10_2139_ssrn_3996866
crossref_primary_10_3390_rs16122149
crossref_primary_10_1002_ldr_4858
crossref_primary_10_1016_j_scitotenv_2019_135387
crossref_primary_10_1038_s41597_024_04158_3
crossref_primary_10_1016_j_jenvman_2020_111383
crossref_primary_10_1016_j_scitotenv_2024_176261
crossref_primary_10_1038_s41597_019_0345_6
crossref_primary_10_1016_j_catena_2023_107183
crossref_primary_10_1016_j_geoderma_2019_05_031
crossref_primary_10_1002_ldr_4293
crossref_primary_10_1038_s43247_023_01044_5
crossref_primary_10_3389_fsoil_2022_890437
crossref_primary_10_3390_s22072685
crossref_primary_10_1016_j_compag_2025_110108
crossref_primary_10_1016_j_agee_2024_109092
crossref_primary_10_3390_rs13245162
crossref_primary_10_1016_j_geoderma_2019_114061
crossref_primary_10_1016_j_catena_2021_105970
crossref_primary_10_1016_j_catena_2021_105572
crossref_primary_10_1016_j_geoderma_2022_115929
crossref_primary_10_1007_s10661_022_10434_9
crossref_primary_10_1016_j_geoderma_2022_115807
crossref_primary_10_1016_j_still_2019_104410
crossref_primary_10_1016_j_geoderma_2024_116941
crossref_primary_10_3390_rs15030803
crossref_primary_10_1016_j_geoderma_2021_115356
crossref_primary_10_1016_j_still_2020_104589
crossref_primary_10_1080_10095020_2025_2454523
crossref_primary_10_1016_j_catena_2022_106054
crossref_primary_10_3390_rs13152934
crossref_primary_10_3390_ijerph17165697
crossref_primary_10_1002_saj2_20371
crossref_primary_10_1016_j_jhazmat_2023_131900
crossref_primary_10_1007_s42773_023_00247_5
crossref_primary_10_1016_j_geoderma_2020_114808
Cites_doi 10.1016/j.geoderma.2009.06.003
10.1002/(SICI)1097-0258(19970415)16:7<783::AID-SIM488>3.0.CO;2-2
10.1016/j.catena.2012.11.012
10.1016/j.geoderma.2015.11.016
10.1071/SR14366
10.1029/2009GB003506
10.1016/j.geoderma.2016.02.006
10.1029/2001GB001844
10.1111/gcb.12569
10.1191/0309133303pp366ra
10.1016/S0016-7061(99)00003-8
10.1002/jame.20026
10.1016/B978-0-12-800137-0.00003-0
10.1175/JHM560.1
10.1016/j.scitotenv.2018.02.209
10.1016/j.rse.2017.08.023
10.1016/j.geoderma.2009.10.007
10.1046/j.1365-2486.2000.00308.x
10.1016/j.scitotenv.2017.09.136
10.1371/journal.pone.0105519
10.1111/j.1475-2743.2012.00421.x
10.1016/j.catena.2012.09.012
10.1109/36.701075
10.1016/j.rse.2011.02.004
10.1097/00010694-199704000-00007
10.1016/j.geoderma.2004.06.007
10.1111/j.1365-2389.1986.tb00377.x
10.1029/94GB02723
10.1016/S0016-7061(03)00223-4
10.1016/j.scitotenv.2015.09.119
10.1111/j.1365-2486.2003.00717.x
10.1016/j.agee.2006.07.011
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7S9
L.6
1XC
DOI 10.1016/j.geoderma.2018.08.011
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Computer Science
Environmental Sciences
EISSN 1872-6259
EndPage 56
ExternalDocumentID oai_HAL_hal_02625582v1
10_1016_j_geoderma_2018_08_011
S0016706117317299
GeographicLocations Mongolia
China
GeographicLocations_xml – name: Mongolia
– name: China
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
EFKBS
L.6
1XC
ID FETCH-LOGICAL-a332t-1c040ddb1b21bcc343923ad76377a8c170ee07c9cc8e41e8110715b59ac42cbd3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri May 09 12:17:18 EDT 2025
Tue Aug 05 11:12:49 EDT 2025
Tue Jul 01 04:04:47 EDT 2025
Thu Apr 24 23:08:14 EDT 2025
Fri Feb 23 02:47:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Soil organic matter
Uncertainty assessment
Cubist machine learning algorithm
Spatial modeling
Soil map
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a332t-1c040ddb1b21bcc343923ad76377a8c170ee07c9cc8e41e8110715b59ac42cbd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3914-5402
PQID 2153609894
PQPubID 24069
PageCount 10
ParticipantIDs hal_primary_oai_HAL_hal_02625582v1
proquest_miscellaneous_2153609894
crossref_citationtrail_10_1016_j_geoderma_2018_08_011
crossref_primary_10_1016_j_geoderma_2018_08_011
elsevier_sciencedirect_doi_10_1016_j_geoderma_2018_08_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2019
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Ponce-Hernandez, Marriott, Beckett (bb0165) 1986; 37
Jenny (bb0065) 1941
Adhikari, Hartemink, Minasny, Kheir, Greve, Greve (bb0005) 2014; 9
National Soil Survey Office (bb0125) 1994; vol. 2
Arrouays, Grundy, Hartemink, Hempel, Heuvelink, Hong, Lagacherie, Lelyk, McBratney (bb0010) 2014; 125
Huang, Minasny, McBratney, Padarian, Triantafilis (bb0055) 2018; 615
Wu, Guo, Peng (bb0250) 2003; 17
Buol, Southard, Graham, McDaniel (bb0025) 2011
Chien, Lee, Guo, Houng (bb0035) 1997; 162
Grunwald (bb0045) 2009; 152
Quinlan (bb0175) 1992
Viscarra Rossel, Webster, Bui, Baldock (bb0230) 2014; 20
Viscarra Rossel, Chen (bb0220) 2011; 115
Bui, Henderson, Viergever (bb0020) 2009; 23
Manlay, Feller, Swift (bb0110) 2007; 119
Bishop, McBratney, Laslett (bb0015) 1999; 91
Chen, Martin, Saby, Walter, Angers, Arrouays (bb0030) 2018; 630
Sun, Zhao, Wu (bb0205) 2012; 28
Wang, Zhou, Li (bb0245) 2000; 55
National Soil Survey Office (bb0140) 1995; vol. 5
Justice, Vermote, Townshend (bb0070) 1998; 36
National Soil Survey Office (bb0135) 1995; vol. 4
Malone, Mcbratney, Minasny, Laslett (bb0105) 2009; 154
Viscarra Rossel (bb0210) 2011; 116
National Soil Survey Office (bb0120) 1993; vol. 1
Viscarra Rossel, Bui (bb0215) 2016; 542
Shen (bb0200) 1998
Viscarra Rossel, Chen, Grundy, Searle, Clifford, Campbell (bb0235) 2015; 53
Pan (bb0155) 1999; 15
Shangguan, Dai, Liu, Zhu, Duan, Wu, Ji, Ye, Yuan, Zhang, Chen, Chen, Chu, Duo, Guo, Li, Li, Liang, Liang, Liu, Liu, Miao, Zhang (bb0195) 2013; 5
Pan, Li, Wu, Zhang (bb0160) 2004; 10
Scull, Franklin, Chadwick, McArthur (bb0190) 2003; 27
Post, Kwon (bb0170) 2000; 6
Viscarra Rossel, Brus, Lobsey, Shi, McLachlan (bb0240) 2016; 265
Xie (bb0255) 2004; 41
Zhou, Biswas, Ma, Lu, Chen, Shi (bb0270) 2016; 271
Lagacherie, McBratney (bb0080) 2007; 31
Zhou, Gao (bb0265) 1997; 16
Ma, Shi, Zhou, Xu, Yu, Yang (bb0100) 2017; 200
Li, Zhang, Pang, Han (bb0095) 2013; 101
National Soil Survey Office (bb0145) 1996; vol. 6
National Soil Survey Office (bb0130) 1994; vol. 3
Kuhn, Weston, Keefer, Coulter (bb0075) 2014
Li, Yue, Wang, Zhang, Yu, Li, Bai (bb0090) 2013; 104
Mcbratney, Mendinca, Minasny (bb0115) 2003; 117
Li, Yue, Fan (bb0085) 2010; 25
Henderson, Bui, Moran, Simon (bb0050) 2005; 124
Yu, Shi, Sun, Wang, Liu, Zhao (bb0260) 2005; 16
Viscarra Rossel, Webster (bb0225) 2012; 63
Huffman, Adler, Bolvin, Gu, Nelkin, Bowman, Hong, Stocker, Wolff (bb0060) 2007; 8
Efron, Tibshirani (bb0040) 1993
R Core Team (bb0180) 2013
Raich, Potter (bb0185) 1995; 9
National Soil Survey Office (bb0150) 1998
Huffman (10.1016/j.geoderma.2018.08.011_bb0060) 2007; 8
Chien (10.1016/j.geoderma.2018.08.011_bb0035) 1997; 162
Henderson (10.1016/j.geoderma.2018.08.011_bb0050) 2005; 124
National Soil Survey Office (10.1016/j.geoderma.2018.08.011_bb0120) 1993; vol. 1
Bishop (10.1016/j.geoderma.2018.08.011_bb0015) 1999; 91
National Soil Survey Office (10.1016/j.geoderma.2018.08.011_bb0130) 1994; vol. 3
Sun (10.1016/j.geoderma.2018.08.011_bb0205) 2012; 28
Huang (10.1016/j.geoderma.2018.08.011_bb0055) 2018; 615
National Soil Survey Office (10.1016/j.geoderma.2018.08.011_bb0140) 1995; vol. 5
Li (10.1016/j.geoderma.2018.08.011_bb0085) 2010; 25
National Soil Survey Office (10.1016/j.geoderma.2018.08.011_bb0150) 1998
Pan (10.1016/j.geoderma.2018.08.011_bb0160) 2004; 10
Buol (10.1016/j.geoderma.2018.08.011_bb0025) 2011
Malone (10.1016/j.geoderma.2018.08.011_bb0105) 2009; 154
Yu (10.1016/j.geoderma.2018.08.011_bb0260) 2005; 16
National Soil Survey Office (10.1016/j.geoderma.2018.08.011_bb0145) 1996; vol. 6
Arrouays (10.1016/j.geoderma.2018.08.011_bb0010) 2014; 125
Ma (10.1016/j.geoderma.2018.08.011_bb0100) 2017; 200
Li (10.1016/j.geoderma.2018.08.011_bb0095) 2013; 101
Zhou (10.1016/j.geoderma.2018.08.011_bb0265) 1997; 16
Raich (10.1016/j.geoderma.2018.08.011_bb0185) 1995; 9
National Soil Survey Office (10.1016/j.geoderma.2018.08.011_bb0125) 1994; vol. 2
Manlay (10.1016/j.geoderma.2018.08.011_bb0110) 2007; 119
Mcbratney (10.1016/j.geoderma.2018.08.011_bb0115) 2003; 117
Scull (10.1016/j.geoderma.2018.08.011_bb0190) 2003; 27
Ponce-Hernandez (10.1016/j.geoderma.2018.08.011_bb0165) 1986; 37
Quinlan (10.1016/j.geoderma.2018.08.011_bb0175) 1992
R Core Team (10.1016/j.geoderma.2018.08.011_bb0180) 2013
Viscarra Rossel (10.1016/j.geoderma.2018.08.011_bb0235) 2015; 53
Efron (10.1016/j.geoderma.2018.08.011_bb0040) 1993
Shen (10.1016/j.geoderma.2018.08.011_bb0200) 1998
Adhikari (10.1016/j.geoderma.2018.08.011_bb0005) 2014; 9
Kuhn (10.1016/j.geoderma.2018.08.011_bb0075) 2014
Pan (10.1016/j.geoderma.2018.08.011_bb0155) 1999; 15
Post (10.1016/j.geoderma.2018.08.011_bb0170) 2000; 6
Chen (10.1016/j.geoderma.2018.08.011_bb0030) 2018; 630
Jenny (10.1016/j.geoderma.2018.08.011_bb0065) 1941
Justice (10.1016/j.geoderma.2018.08.011_bb0070) 1998; 36
Viscarra Rossel (10.1016/j.geoderma.2018.08.011_bb0225) 2012; 63
Viscarra Rossel (10.1016/j.geoderma.2018.08.011_bb0215) 2016; 542
Wu (10.1016/j.geoderma.2018.08.011_bb0250) 2003; 17
Wang (10.1016/j.geoderma.2018.08.011_bb0245) 2000; 55
Grunwald (10.1016/j.geoderma.2018.08.011_bb0045) 2009; 152
Zhou (10.1016/j.geoderma.2018.08.011_bb0270) 2016; 271
Bui (10.1016/j.geoderma.2018.08.011_bb0020) 2009; 23
Viscarra Rossel (10.1016/j.geoderma.2018.08.011_bb0240) 2016; 265
Viscarra Rossel (10.1016/j.geoderma.2018.08.011_bb0230) 2014; 20
Xie (10.1016/j.geoderma.2018.08.011_bb0255) 2004; 41
Viscarra Rossel (10.1016/j.geoderma.2018.08.011_bb0220) 2011; 115
Viscarra Rossel (10.1016/j.geoderma.2018.08.011_bb0210) 2011; 116
Li (10.1016/j.geoderma.2018.08.011_bb0090) 2013; 104
Lagacherie (10.1016/j.geoderma.2018.08.011_bb0080) 2007; 31
National Soil Survey Office (10.1016/j.geoderma.2018.08.011_bb0135) 1995; vol. 4
Shangguan (10.1016/j.geoderma.2018.08.011_bb0195) 2013; 5
References_xml – volume: 25
  start-page: 1385
  year: 2010
  end-page: 1399
  ident: bb0085
  article-title: Study on method for spatial simulation of topsoil SOM at national scale in China
  publication-title: J. Nat. Res.
– volume: 10
  start-page: 79
  year: 2004
  end-page: 92
  ident: bb0160
  article-title: Storage and sequestration potential of topsoil organic carbon in china's paddy soils
  publication-title: Glob. Chang. Biol.
– volume: 9
  start-page: 23
  year: 1995
  end-page: 36
  ident: bb0185
  article-title: Global patterns of carbon dioxide emissions from soils
  publication-title: Glob. Biogeochem. Cycles
– start-page: 1
  year: 1941
  end-page: 270
  ident: bb0065
  article-title: Factors of Soil Formation: A System of Quantitative Pedology
– volume: 116
  year: 2011
  ident: bb0210
  article-title: Fine-resolution multiscale mapping of clay minerals in Australian soils measured with near infrared spectra
  publication-title: J. Geophys. Res. F Earth Surf.
– volume: 152
  start-page: 195
  year: 2009
  end-page: 207
  ident: bb0045
  article-title: Multi-criteria characterization of recent digital soil mapping and modeling approaches
  publication-title: Geoderma
– volume: 265
  year: 2016
  ident: bb0240
  article-title: Baseline estimates of soil organic carbon by proximal sensing: comparing design-based, model-assisted and model-based inference
  publication-title: Geoderma
– volume: 8
  start-page: 38
  year: 2007
  end-page: 55
  ident: bb0060
  article-title: The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales
  publication-title: Hydrometeorology
– year: 2014
  ident: bb0075
  article-title: C Code for Cubist by Ross Quinlan. Cubist: Rule- and Instance-Based Regression Modeling. R Package Version 0.0.18
– volume: 28
  start-page: 318
  year: 2012
  end-page: 328
  ident: bb0205
  article-title: Spatio-temporal change of soil organic matter content of Jiangsu Province, China, based on digital soil maps
  publication-title: Soil Use Manag.
– volume: 271
  start-page: 71
  year: 2016
  end-page: 79
  ident: bb0270
  article-title: Revealing the scale-specific controls of soil organic matter at large scale in Northeast and North China Plain
  publication-title: Geoderma
– volume: 124
  start-page: 383
  year: 2005
  end-page: 398
  ident: bb0050
  article-title: Australia-wide predictions of soil properties using decision trees
  publication-title: Geoderma
– start-page: 343
  year: 1992
  end-page: 348
  ident: bb0175
  article-title: Learning with continuous classes
  publication-title: Proceedings of the 5th Australian Joint Conference on Artificial Intelligence
– volume: 55
  start-page: 533
  year: 2000
  end-page: 544
  ident: bb0245
  article-title: Analysis on spatial distribution characteristics of soil organic carbon reservoir in China
  publication-title: Acta Geograph. Sin.
– year: 2011
  ident: bb0025
  article-title: Soil Genesis and Classification
– volume: 91
  start-page: 27
  year: 1999
  end-page: 45
  ident: bb0015
  article-title: Modelling soil attribute depth functions with equal-area quadratic smoothing splines
  publication-title: Geoderma
– volume: 5
  start-page: 212
  year: 2013
  end-page: 224
  ident: bb0195
  article-title: A China data set of soil properties for land surface modeling
  publication-title: J. Adv. Model. Earth Syst.
– volume: 16
  start-page: 2279
  year: 2005
  end-page: 2283
  ident: bb0260
  article-title: Estimation of China soil organic carbon storage and density based on 1: 1,000,000 soil database
  publication-title: J. Appl. Ecol.
– volume: 23
  start-page: GB4033
  year: 2009
  ident: bb0020
  article-title: Using knowledge discovery with data mining from the Australian Soil Resource Information System database to inform soil carbon mapping in Australia
  publication-title: Glob. Biogeochem. Cycles
– volume: 615
  start-page: 540
  year: 2018
  end-page: 548
  ident: bb0055
  article-title: The location-and scale-specific correlation between temperature and soil carbon sequestration across the globe
  publication-title: Sci. Total Environ.
– volume: 15
  start-page: 330
  year: 1999
  end-page: 332
  ident: bb0155
  article-title: Study on carbon reservoir in soils of China
  publication-title: Bull. Sci. Technol.
– volume: 630
  start-page: 389
  year: 2018
  end-page: 400
  ident: bb0030
  article-title: Fine resolution map of top-and subsoil carbon sequestration potential in France
  publication-title: Sci. Total Environ.
– volume: 154
  start-page: 138
  year: 2009
  end-page: 152
  ident: bb0105
  article-title: Mapping continuous depth functions of soil carbon storage and available water capacity
  publication-title: Geoderma
– volume: 9
  year: 2014
  ident: bb0005
  article-title: Digital mapping of soil organic carbon contents and stocks in Denmark
  publication-title: PLoS One
– year: 1998
  ident: bb0150
  article-title: Soils of China
– volume: vol. 3
  year: 1994
  ident: bb0130
  article-title: Chinese Soil Genus Records
– volume: 101
  start-page: 11
  year: 2013
  end-page: 16
  ident: bb0095
  article-title: The estimation of soil organic carbon distribution and storage in a small catchment area of the loess plateau
  publication-title: Catena
– volume: 17
  start-page: 67
  year: 2003
  end-page: 80
  ident: bb0250
  article-title: Distribution and storage of soil organic carbon in China
  publication-title: Glob. Biogeochem. Cycles
– volume: 63
  year: 2012
  ident: bb0225
  article-title: Predicting soil properties from the Australian soil visible-near infrared spectroscopic database
  publication-title: Eur. J. Soil Sci.
– volume: vol. 5
  year: 1995
  ident: bb0140
  article-title: Chinese Soil Genus Records
– volume: 200
  year: 2017
  ident: bb0100
  article-title: A spatial data mining algorithm for downscaling tmpa 3b43 v7 data over the Qinghai-Tibet plateau with the effects of systematic anomalies removed
  publication-title: Remote Sens. Environ.
– volume: 119
  start-page: 217
  year: 2007
  end-page: 233
  ident: bb0110
  article-title: Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems
  publication-title: Agric. Ecosyst. Environ.
– volume: 37
  start-page: 455
  year: 1986
  end-page: 467
  ident: bb0165
  article-title: An improved method for reconstructing a soil-profile from analysis of a small number of samples
  publication-title: J. Soil Sci.
– year: 1998
  ident: bb0200
  article-title: China Soil Fertility
– volume: vol. 2
  year: 1994
  ident: bb0125
  article-title: Chinese Soil Genus Records
– volume: 115
  start-page: 1443
  year: 2011
  end-page: 1455
  ident: bb0220
  article-title: Digitally mapping the information content of visible-near infrared spectra of surficial Australian soils
  publication-title: Remote Sens. Environ.
– volume: vol. 1
  year: 1993
  ident: bb0120
  article-title: Chinese Soil Genus Records
– volume: 53
  start-page: 845
  year: 2015
  end-page: 864
  ident: bb0235
  article-title: The Australian three-dimensional soil grid: Australia's contribution to the GlobalSoilMap project
  publication-title: Soil Res.
– year: 2013
  ident: bb0180
  article-title: R: A Language and Environment for Statistical Computing. Vienna, Austria
– volume: 31
  start-page: 3
  year: 2007
  end-page: 22
  ident: bb0080
  article-title: Spatial soil information systems and spatial soil inference systems: perspectives for Digital Soil Mapping
  publication-title: Dev. Soil Sci.
– volume: vol. 4
  year: 1995
  ident: bb0135
  article-title: Chinese Soil Genus Records
– volume: 125
  start-page: 93
  year: 2014
  end-page: 134
  ident: bb0010
  article-title: Chapter Three-GlobalSoilMap: toward a fine-resolution global grid of soil properties
  publication-title: Adv. Agron.
– volume: 104
  start-page: 210
  year: 2013
  end-page: 218
  ident: bb0090
  article-title: Spatially distributed modeling of soil organic matter across China: an application of artificial neural network approach
  publication-title: Catena
– volume: 27
  start-page: 171
  year: 2003
  end-page: 197
  ident: bb0190
  article-title: Predictive soil mapping: a review
  publication-title: Prog. Phys. Geogr.
– volume: 41
  start-page: 35
  year: 2004
  end-page: 43
  ident: bb0255
  article-title: Organic carbon density and storage in soils of China and spatial analysis
  publication-title: Acta Pedol. Sin.
– volume: 20
  year: 2014
  ident: bb0230
  article-title: Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change
  publication-title: Glob. Chang. Biol.
– year: 1993
  ident: bb0040
  article-title: An Introduction to the Bootstrap
– volume: 36
  start-page: 1228
  year: 1998
  end-page: 1249
  ident: bb0070
  article-title: The moderate resolution imaging spectroradiometer (MODIS): land remote sensing for global change research
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: vol. 6
  year: 1996
  ident: bb0145
  article-title: Chinese Soil Genus Records
– volume: 117
  start-page: 3
  year: 2003
  end-page: 52
  ident: bb0115
  article-title: On digital soil mapping
  publication-title: Geoderma
– volume: 6
  start-page: 317
  year: 2000
  end-page: 327
  ident: bb0170
  article-title: Soil carbon sequestration and land use change: processes and potential
  publication-title: Glob. Chang. Biol.
– volume: 542
  start-page: 1040
  year: 2016
  end-page: 1049
  ident: bb0215
  article-title: A new detailed map of total phosphorus stocks in Australian soil
  publication-title: Sci. Total Environ.
– volume: 16
  start-page: 783
  year: 1997
  end-page: 790
  ident: bb0265
  article-title: Confidence intervals for the log-normal mean
  publication-title: Stat. Med.
– volume: 162
  start-page: 291
  year: 1997
  end-page: 298
  ident: bb0035
  article-title: Geostatistical analysis of soil properties of mid-west Taiwan soils
  publication-title: Soil Sci.
– volume: 63
  issue: 6
  year: 2012
  ident: 10.1016/j.geoderma.2018.08.011_bb0225
  article-title: Predicting soil properties from the Australian soil visible-near infrared spectroscopic database
  publication-title: Eur. J. Soil Sci.
– volume: vol. 4
  year: 1995
  ident: 10.1016/j.geoderma.2018.08.011_bb0135
– volume: 152
  start-page: 195
  year: 2009
  ident: 10.1016/j.geoderma.2018.08.011_bb0045
  article-title: Multi-criteria characterization of recent digital soil mapping and modeling approaches
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.06.003
– volume: 16
  start-page: 783
  issue: 7
  year: 1997
  ident: 10.1016/j.geoderma.2018.08.011_bb0265
  article-title: Confidence intervals for the log-normal mean
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(19970415)16:7<783::AID-SIM488>3.0.CO;2-2
– volume: 104
  start-page: 210
  year: 2013
  ident: 10.1016/j.geoderma.2018.08.011_bb0090
  article-title: Spatially distributed modeling of soil organic matter across China: an application of artificial neural network approach
  publication-title: Catena
  doi: 10.1016/j.catena.2012.11.012
– volume: 265
  year: 2016
  ident: 10.1016/j.geoderma.2018.08.011_bb0240
  article-title: Baseline estimates of soil organic carbon by proximal sensing: comparing design-based, model-assisted and model-based inference
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.11.016
– year: 1998
  ident: 10.1016/j.geoderma.2018.08.011_bb0200
– volume: 53
  start-page: 845
  issue: 8
  year: 2015
  ident: 10.1016/j.geoderma.2018.08.011_bb0235
  article-title: The Australian three-dimensional soil grid: Australia's contribution to the GlobalSoilMap project
  publication-title: Soil Res.
  doi: 10.1071/SR14366
– year: 1993
  ident: 10.1016/j.geoderma.2018.08.011_bb0040
– volume: 15
  start-page: 330
  issue: 5
  year: 1999
  ident: 10.1016/j.geoderma.2018.08.011_bb0155
  article-title: Study on carbon reservoir in soils of China
  publication-title: Bull. Sci. Technol.
– year: 2013
  ident: 10.1016/j.geoderma.2018.08.011_bb0180
– volume: 16
  start-page: 2279
  issue: 12
  year: 2005
  ident: 10.1016/j.geoderma.2018.08.011_bb0260
  article-title: Estimation of China soil organic carbon storage and density based on 1: 1,000,000 soil database
  publication-title: J. Appl. Ecol.
– volume: 23
  start-page: GB4033
  year: 2009
  ident: 10.1016/j.geoderma.2018.08.011_bb0020
  article-title: Using knowledge discovery with data mining from the Australian Soil Resource Information System database to inform soil carbon mapping in Australia
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2009GB003506
– volume: 271
  start-page: 71
  year: 2016
  ident: 10.1016/j.geoderma.2018.08.011_bb0270
  article-title: Revealing the scale-specific controls of soil organic matter at large scale in Northeast and North China Plain
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.02.006
– volume: 31
  start-page: 3
  year: 2007
  ident: 10.1016/j.geoderma.2018.08.011_bb0080
  article-title: Spatial soil information systems and spatial soil inference systems: perspectives for Digital Soil Mapping
  publication-title: Dev. Soil Sci.
– volume: vol. 1
  year: 1993
  ident: 10.1016/j.geoderma.2018.08.011_bb0120
– volume: vol. 6
  year: 1996
  ident: 10.1016/j.geoderma.2018.08.011_bb0145
– year: 2014
  ident: 10.1016/j.geoderma.2018.08.011_bb0075
– volume: 17
  start-page: 67
  year: 2003
  ident: 10.1016/j.geoderma.2018.08.011_bb0250
  article-title: Distribution and storage of soil organic carbon in China
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2001GB001844
– volume: 25
  start-page: 1385
  year: 2010
  ident: 10.1016/j.geoderma.2018.08.011_bb0085
  article-title: Study on method for spatial simulation of topsoil SOM at national scale in China
  publication-title: J. Nat. Res.
– volume: 20
  issue: 9
  year: 2014
  ident: 10.1016/j.geoderma.2018.08.011_bb0230
  article-title: Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12569
– volume: 27
  start-page: 171
  year: 2003
  ident: 10.1016/j.geoderma.2018.08.011_bb0190
  article-title: Predictive soil mapping: a review
  publication-title: Prog. Phys. Geogr.
  doi: 10.1191/0309133303pp366ra
– volume: 91
  start-page: 27
  year: 1999
  ident: 10.1016/j.geoderma.2018.08.011_bb0015
  article-title: Modelling soil attribute depth functions with equal-area quadratic smoothing splines
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(99)00003-8
– start-page: 1
  year: 1941
  ident: 10.1016/j.geoderma.2018.08.011_bb0065
– volume: 116
  year: 2011
  ident: 10.1016/j.geoderma.2018.08.011_bb0210
  article-title: Fine-resolution multiscale mapping of clay minerals in Australian soils measured with near infrared spectra
  publication-title: J. Geophys. Res. F Earth Surf.
– volume: 5
  start-page: 212
  year: 2013
  ident: 10.1016/j.geoderma.2018.08.011_bb0195
  article-title: A China data set of soil properties for land surface modeling
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1002/jame.20026
– volume: 125
  start-page: 93
  year: 2014
  ident: 10.1016/j.geoderma.2018.08.011_bb0010
  article-title: Chapter Three-GlobalSoilMap: toward a fine-resolution global grid of soil properties
  publication-title: Adv. Agron.
  doi: 10.1016/B978-0-12-800137-0.00003-0
– year: 1998
  ident: 10.1016/j.geoderma.2018.08.011_bb0150
– volume: 8
  start-page: 38
  year: 2007
  ident: 10.1016/j.geoderma.2018.08.011_bb0060
  article-title: The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales
  publication-title: Hydrometeorology
  doi: 10.1175/JHM560.1
– volume: 630
  start-page: 389
  year: 2018
  ident: 10.1016/j.geoderma.2018.08.011_bb0030
  article-title: Fine resolution map of top-and subsoil carbon sequestration potential in France
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.02.209
– volume: vol. 3
  year: 1994
  ident: 10.1016/j.geoderma.2018.08.011_bb0130
– volume: 200
  year: 2017
  ident: 10.1016/j.geoderma.2018.08.011_bb0100
  article-title: A spatial data mining algorithm for downscaling tmpa 3b43 v7 data over the Qinghai-Tibet plateau with the effects of systematic anomalies removed
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.08.023
– volume: 154
  start-page: 138
  year: 2009
  ident: 10.1016/j.geoderma.2018.08.011_bb0105
  article-title: Mapping continuous depth functions of soil carbon storage and available water capacity
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.10.007
– volume: 6
  start-page: 317
  issue: 3
  year: 2000
  ident: 10.1016/j.geoderma.2018.08.011_bb0170
  article-title: Soil carbon sequestration and land use change: processes and potential
  publication-title: Glob. Chang. Biol.
  doi: 10.1046/j.1365-2486.2000.00308.x
– volume: 615
  start-page: 540
  year: 2018
  ident: 10.1016/j.geoderma.2018.08.011_bb0055
  article-title: The location-and scale-specific correlation between temperature and soil carbon sequestration across the globe
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.136
– volume: 9
  issue: 8
  year: 2014
  ident: 10.1016/j.geoderma.2018.08.011_bb0005
  article-title: Digital mapping of soil organic carbon contents and stocks in Denmark
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0105519
– year: 2011
  ident: 10.1016/j.geoderma.2018.08.011_bb0025
– volume: 28
  start-page: 318
  issue: 3
  year: 2012
  ident: 10.1016/j.geoderma.2018.08.011_bb0205
  article-title: Spatio-temporal change of soil organic matter content of Jiangsu Province, China, based on digital soil maps
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.2012.00421.x
– volume: 101
  start-page: 11
  issue: 2
  year: 2013
  ident: 10.1016/j.geoderma.2018.08.011_bb0095
  article-title: The estimation of soil organic carbon distribution and storage in a small catchment area of the loess plateau
  publication-title: Catena
  doi: 10.1016/j.catena.2012.09.012
– volume: 36
  start-page: 1228
  year: 1998
  ident: 10.1016/j.geoderma.2018.08.011_bb0070
  article-title: The moderate resolution imaging spectroradiometer (MODIS): land remote sensing for global change research
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.701075
– volume: 115
  start-page: 1443
  year: 2011
  ident: 10.1016/j.geoderma.2018.08.011_bb0220
  article-title: Digitally mapping the information content of visible-near infrared spectra of surficial Australian soils
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.02.004
– volume: 55
  start-page: 533
  year: 2000
  ident: 10.1016/j.geoderma.2018.08.011_bb0245
  article-title: Analysis on spatial distribution characteristics of soil organic carbon reservoir in China
  publication-title: Acta Geograph. Sin.
– volume: 41
  start-page: 35
  issue: 1
  year: 2004
  ident: 10.1016/j.geoderma.2018.08.011_bb0255
  article-title: Organic carbon density and storage in soils of China and spatial analysis
  publication-title: Acta Pedol. Sin.
– volume: 162
  start-page: 291
  issue: 4
  year: 1997
  ident: 10.1016/j.geoderma.2018.08.011_bb0035
  article-title: Geostatistical analysis of soil properties of mid-west Taiwan soils
  publication-title: Soil Sci.
  doi: 10.1097/00010694-199704000-00007
– volume: 124
  start-page: 383
  issue: 3
  year: 2005
  ident: 10.1016/j.geoderma.2018.08.011_bb0050
  article-title: Australia-wide predictions of soil properties using decision trees
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.06.007
– volume: vol. 2
  year: 1994
  ident: 10.1016/j.geoderma.2018.08.011_bb0125
– volume: 37
  start-page: 455
  year: 1986
  ident: 10.1016/j.geoderma.2018.08.011_bb0165
  article-title: An improved method for reconstructing a soil-profile from analysis of a small number of samples
  publication-title: J. Soil Sci.
  doi: 10.1111/j.1365-2389.1986.tb00377.x
– volume: 9
  start-page: 23
  issue: 1
  year: 1995
  ident: 10.1016/j.geoderma.2018.08.011_bb0185
  article-title: Global patterns of carbon dioxide emissions from soils
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/94GB02723
– volume: 117
  start-page: 3
  year: 2003
  ident: 10.1016/j.geoderma.2018.08.011_bb0115
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– volume: 542
  start-page: 1040
  year: 2016
  ident: 10.1016/j.geoderma.2018.08.011_bb0215
  article-title: A new detailed map of total phosphorus stocks in Australian soil
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.09.119
– volume: 10
  start-page: 79
  issue: 1
  year: 2004
  ident: 10.1016/j.geoderma.2018.08.011_bb0160
  article-title: Storage and sequestration potential of topsoil organic carbon in china's paddy soils
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2003.00717.x
– volume: 119
  start-page: 217
  issue: 3
  year: 2007
  ident: 10.1016/j.geoderma.2018.08.011_bb0110
  article-title: Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2006.07.011
– volume: vol. 5
  year: 1995
  ident: 10.1016/j.geoderma.2018.08.011_bb0140
– start-page: 343
  year: 1992
  ident: 10.1016/j.geoderma.2018.08.011_bb0175
  article-title: Learning with continuous classes
SSID ssj0017020
Score 2.551689
Snippet Accurate digital soil maps of soil organic matter (SOM) are needed to evaluate soil fertility, to estimate stocks, and for ecological and environment modeling....
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 47
SubjectTerms algorithms
artificial intelligence
China
climate
Computer Science
Cubist machine learning algorithm
decision making
deserts
Earth Sciences
Environmental Sciences
Global Changes
inventories
model uncertainty
Modeling and Simulation
Mongolia
monitoring
prediction
Sciences of the Universe
soil fertility
Soil map
Soil organic matter
soil profiles
soil surveys
Spatial modeling
topsoil
Uncertainty assessment
vegetation
Title National digital soil map of organic matter in topsoil and its associated uncertainty in 1980's China
URI https://dx.doi.org/10.1016/j.geoderma.2018.08.011
https://www.proquest.com/docview/2153609894
https://hal.inrae.fr/hal-02625582
Volume 335
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEBbb9NIelu2Lprsb1FLoyU0kP2Qdw7IhfZBTA7kJvZI6pHZInIW97G_fGVsObaHk0KPECIuZ0TzwzDeEfBSJlyYVIsq48FHCNY-kjkUk4uXSyMQZ65oq31k2nSdfF-nijNx0vTBYVhlsf2vTG2sddoaBm8NtUWCPL8sEuCMmwAeCVcUO9kSgln9-OJZ5MDEK0Iwsi5D6ty7hNcgIB441-EMsb6A8GfuXg3ryEysl_zLYjReaXJDzED7ScXvDF-TMly_J8_FqFyA0_CviA9T1hrpihSNB6L4qNvSX3tJqSdspThaW2MZDi5LW1bYh0KWjRb2nOgjMOwo-r60YqO-Rksl89GlPm5Hbr8l8cvvjZhqFYQqRjmNeR8zCc3XOMMOZsTaGQITH2oF5EULnFvjk_UhYaW3uE-ZzzAtZalKpbcKtcfEb0iur0r8l1EjhNENYa6MhnrOaWwk5ORhKjC-k7JO046CyAWkcB15sVFdStlYd5xVyXuEkTMb6ZHg8t22xNk6ekJ2A1B9ao8AhnDz7ASR6_BDCbE_H3xXuQV4KmVbO74DofSdwBe8Of6bo0leHvYJQKc5GCF__7j8ucUmewUq2ZeBXpFfvDv4aopzaDBo1HpCn4y_fprNHZq78EQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6SzaHtofRJk77UUujJ7Ep-yDouocFptntKIDeh16YOW3vJOoX8-87Y8tIWSg49WtYgMSPNA818A_BJZkHZXMqkEDIkmTAiUSaViUxXK6syb53vs3yXRXWRfb3ML_fgeKyFobTKqPsHnd5r6zgyjdycbuqaanx5IdEccYk2ELXqPhwQOlU-gYP56Vm13D0myFlEZ-RFQgS_FQpfo5io51gPQcTLHs2T83_ZqP3vlCz5l87uDdHJE3gcPUg2Hzb5FPZC8wweza9uIopGeA4hol2vma-vqCsI27b1mv0wG9au2NDIyeEnVfKwumFdu-knmMazutsyE2UWPEOzNyQNdHc0k6ty9nnL-q7bL-Di5Mv5cZXEfgqJSVPRJdzhjfXeciu4dS5FX0SkxqOGkdKUDvkUwkw65VwZMh5KCg15bnNlXCac9elLmDRtE14Bs0p6wwnZ2hp06ZwRTmFYjrqSXAylDiEfOahdBBunnhdrPWaVXeuR85o4r6kZJueHMN3RbQa4jXsp1Cgg_cfB0WgT7qX9iBLdLURI29V8oWkMQ1MMtkrxEyd9GAWu8erRe4ppQnu71egtpcWMEOyP_mMT7-FBdf5toReny7PX8BD_qCEr_A1Mupvb8Badns6-i4f6FwcT_sI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=National+digital+soil+map+of+organic+matter+in+topsoil+and+its+associated+uncertainty+in+1980%27s+China&rft.jtitle=Geoderma&rft.au=Liang%2C+Zongzheng&rft.au=Chen%2C+Songchao&rft.au=Yang%2C+Yuanyuan&rft.au=Zhao%2C+Ruiying&rft.date=2019-02-01&rft.issn=0016-7061&rft.volume=335+p.47-56&rft.spage=47&rft.epage=56&rft_id=info:doi/10.1016%2Fj.geoderma.2018.08.011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon