Inversion of airborne transient electromagnetic data based on reference point lateral constraint
The airborne transient electromagnetic method (ATEM) has become a popular tool in mineral and resource exploration due to its speed and high efficiency. The distance between two adjacent measured points is minuscule for a flight line because of the oversampling in the ATEM, which results in a sharp...
Saved in:
Published in | Journal of applied geophysics Vol. 202; p. 104675 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The airborne transient electromagnetic method (ATEM) has become a popular tool in mineral and resource exploration due to its speed and high efficiency. The distance between two adjacent measured points is minuscule for a flight line because of the oversampling in the ATEM, which results in a sharp change in the horizontal direction. The conventional lateral constraint inversion method accumulates errors and has a significant calculation cost. Therefore, a laterally constrained, segmented inversion method based on a reference point is proposed to reduce errors and improve accuracy. Electrical information about the known logging data is employed as the lateral constraint of the reference point; alternatively, the inversion results of previous point can be used as lateral constraints, which guarantees a continuous inversion profile. The golden-section method is applied to solve the Lagrange multiplier to ensure a quick and effective convergence of inversions. Constraint inversions of a one-dimensional model show that the strategy converges quickly, and the inversion results are closer to the true resistivity of the model. Constraint inversion of a 2D model indicates that lateral constraints considerably reduce the discontinuity of a single-point inversion and smooths the inversion's resistivity pseudo-section. Finally, the effectiveness of the proposed algorithm is verified by the inversion of the airborne transient electromagnetic survey data in Xinjiang province.
•The lateral constrained inversion based on reference point was applied to ATEM.•The golden section method is used to determine the Lagrange multiplier.•Segmented inversion strategy was used improve the inversion speed and accuracy. |
---|---|
AbstractList | The airborne transient electromagnetic method (ATEM) has become a popular tool in mineral and resource exploration due to its speed and high efficiency. The distance between two adjacent measured points is minuscule for a flight line because of the oversampling in the ATEM, which results in a sharp change in the horizontal direction. The conventional lateral constraint inversion method accumulates errors and has a significant calculation cost. Therefore, a laterally constrained, segmented inversion method based on a reference point is proposed to reduce errors and improve accuracy. Electrical information about the known logging data is employed as the lateral constraint of the reference point; alternatively, the inversion results of previous point can be used as lateral constraints, which guarantees a continuous inversion profile. The golden-section method is applied to solve the Lagrange multiplier to ensure a quick and effective convergence of inversions. Constraint inversions of a one-dimensional model show that the strategy converges quickly, and the inversion results are closer to the true resistivity of the model. Constraint inversion of a 2D model indicates that lateral constraints considerably reduce the discontinuity of a single-point inversion and smooths the inversion's resistivity pseudo-section. Finally, the effectiveness of the proposed algorithm is verified by the inversion of the airborne transient electromagnetic survey data in Xinjiang province.
•The lateral constrained inversion based on reference point was applied to ATEM.•The golden section method is used to determine the Lagrange multiplier.•Segmented inversion strategy was used improve the inversion speed and accuracy. |
ArticleNumber | 104675 |
Author | Feng, Bing Huang, Chaofeng Zhang, Jifeng Shi, Yu |
Author_xml | – sequence: 1 givenname: Jifeng surname: Zhang fullname: Zhang, Jifeng email: zjf@chd.edu.cn organization: Department of Geophysics, School of Geology Engineering and Geomatics, Chang'an University, Xi'an 710054, China – sequence: 2 givenname: Chaofeng surname: Huang fullname: Huang, Chaofeng organization: Department of Geophysics, School of Geology Engineering and Geomatics, Chang'an University, Xi'an 710054, China – sequence: 3 givenname: Bing surname: Feng fullname: Feng, Bing organization: Department of Geophysics, School of Geology Engineering and Geomatics, Chang'an University, Xi'an 710054, China – sequence: 4 givenname: Yu surname: Shi fullname: Shi, Yu organization: Department of Geophysics, School of Geology Engineering and Geomatics, Chang'an University, Xi'an 710054, China |
BookMark | eNqFkMtqwzAQRbVIoUnaTyjoB5zqYTs2XZQS-ggEumnX6kQaBxlHMpII9O8rk6y6yWrgMucycxZk5rxDQh44W3HG68d-1cM4HtCvBBMiZ2W9rmZkzlpRF21T8VuyiLFnjHHJyjn52boThmi9o76jYMPeB4c0BXDRoksUB9Qp-CMcHCarqYEEdA8RDc1MwA4DOo109DZvD5AwwEC1dzF35OiO3HQwRLy_zCX5fnv92nwUu8_37eZlV4CUIhW85VVnOllrybg2jWg6ySTIEgwHrFkrGYqqLNtu34i16IQxJdSNQc55I6SQS1Kde3XwMea71BjsEcKv4kxNalSvLmrUpEad1WTu6R-nbYKUhUz3D1fp5zON-bWTxaCitpMPY0P2poy3Vxr-APY-iQI |
CitedBy_id | crossref_primary_10_1080_08123985_2024_2367412 crossref_primary_10_3389_fsoil_2024_1346028 crossref_primary_10_1093_gji_ggae253 crossref_primary_10_1007_s10230_025_01036_1 |
Cites_doi | 10.1190/1.1442945 10.1190/1.2904984 10.1038/s41598-018-36153-1 10.1071/EG10003 10.3997/1873-0604.2009043 10.1007/s11430-019-9583-9 10.3997/1873-0604.2008035 10.1190/geo2011-0370.1 10.1190/1.1443980 10.1190/1.1759461 10.1190/geo2011-0194.1 10.1190/1.1442303 10.32389/JEEG20-020 10.1002/gj.3544 10.1088/0266-5611/30/5/055011 10.1007/s11770-012-0307-7 10.1093/gji/ggt465 10.1002/cjg2.30025 10.1071/EG08110 10.1007/s11770-018-0684-7 10.1109/ACCESS.2020.3013626 10.1111/j.1365-2478.1991.tb00346.x 10.1071/EG998163 10.1190/1.2736195 10.32389/JEEG19-087 10.2113/JEEG24.4.653 10.2113/JEEG23.1.103 10.1190/geo2015-0141.1 10.1016/j.jappgeo.2018.06.007 10.1071/EG14046 |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jappgeo.2022.104675 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_jappgeo_2022_104675 S092698512200146X |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACLVX ACRLP ACRPL ACSBN ADBBV ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SEW SPCBC SSZ T5K VH1 WUQ XPP ZMT ~02 ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION SPC SSE SSH |
ID | FETCH-LOGICAL-a332t-1915fdf36c301cd828f303a34ad1ae60930e25449fb8272f2dd4a68de11182323 |
IEDL.DBID | .~1 |
ISSN | 0926-9851 |
IngestDate | Thu Apr 24 23:02:26 EDT 2025 Tue Jul 01 03:15:09 EDT 2025 Sun Apr 06 06:53:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Decay voltage Lateral constrained inversion Reference point Airborne transient electromagnetic method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a332t-1915fdf36c301cd828f303a34ad1ae60930e25449fb8272f2dd4a68de11182323 |
ParticipantIDs | crossref_primary_10_1016_j_jappgeo_2022_104675 crossref_citationtrail_10_1016_j_jappgeo_2022_104675 elsevier_sciencedirect_doi_10_1016_j_jappgeo_2022_104675 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 2022-07-00 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of applied geophysics |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yin, Qiu, Liu (bb0205) 2016; 46 Yu, Wang, Lu (bb0220) 2018; 155 Fullagar, Pears, Reid (bb0060) 2013 Yin, Qiu, Liu (bb0210) 2017; 60 Di, Xue, Yin (bb0045) 2020; 63 Macnae, King (bb0110) 1998; 29 Xue, Li, Yu (bb0170) 2018; 23 Fullagar, Pears (bb0065) 2015; 46 Macnae, Smith (bb0105) 1991; 56 Wu, Fang, Xue (bb0165) 2019; 24 Gao, Yin, Qi (bb0070) 2018; 15 Oldenburg, Haber, Shekhtman (bb0125) 2013; 78 Yin, Zhang, Liu (bb0200) 2015; 58 Feng, Zhang, Gao (bb0055) 2021; 26 Xue, Li, He (bb0175) 2020; 8 Yang, Oldenburg, Haber (bb0190) 2014; 196 Vallée, Smith (bb0155) 2009; 7 Constable, Parker, Constable (bb0025) 1987; 52 Chandra, Auken, Maurya, Ahmed, Verma (bb0020) 2019; 9 Feng, Zhang, Li (bb0050) 2020; 25 Mao, Wang, Chen (bb0115) 2011; 26 Qiang, Li, Long (bb0130) 2013; 35 Auken, Christiansen (bb0005) 2004; 69 Sun, Zhang, Liu (bb0145) 2019; 62 Yang, Oldenburg (bb0185) 2012; 77 Tikhonov, Arsenin (bb0150) 1977 Su, Yin, Liu (bb0140) 2021; 99 Brodie, Sambridge (bb0010) 2009; 40 Huang, Palacky (bb0080) 1991; 39 Huang, Rudd (bb0085) 2008; 73 McMillan, Schwarzbach, Haber, Oldenburg (bb0120) 2015; 80 Yin, Hodges (bb0195) 2007; 72 Zhu, Ma, Che (bb0225) 2012; 9 Siemon, Christiansen, Auken (bb0135) 2009; 7 Xue, Zhang, Zhou (bb0180) 2020; 55 Cox, Wilson, Zhdanov (bb0035) 2012; 77 Yin, Zhu, Qiu (bb0215) 2018; 61 Di, Li, Xue (bb0040) 2020; 99 Haber, Schwarzbach (bb0075) 2014; 30 Huang, Wang (bb0090) 1990; 1990 Cox, Wilson, Zhdanov (bb0030) 2010; 41 Labrecque, Miletto, Daily (bb0095) 1996; 61 Cai, Qi, Yin (bb0015) 2014; 57 Wang (bb0160) 2002 Lin, Xue, Li (bb0100) 2021; 64 McMillan (10.1016/j.jappgeo.2022.104675_bb0120) 2015; 80 Yin (10.1016/j.jappgeo.2022.104675_bb0205) 2016; 46 Macnae (10.1016/j.jappgeo.2022.104675_bb0110) 1998; 29 Sun (10.1016/j.jappgeo.2022.104675_bb0145) 2019; 62 Cai (10.1016/j.jappgeo.2022.104675_bb0015) 2014; 57 Huang (10.1016/j.jappgeo.2022.104675_bb0090) 1990; 1990 Yin (10.1016/j.jappgeo.2022.104675_bb0195) 2007; 72 Yin (10.1016/j.jappgeo.2022.104675_bb0215) 2018; 61 Di (10.1016/j.jappgeo.2022.104675_bb0040) 2020; 99 Zhu (10.1016/j.jappgeo.2022.104675_bb0225) 2012; 9 Wu (10.1016/j.jappgeo.2022.104675_bb0165) 2019; 24 Mao (10.1016/j.jappgeo.2022.104675_bb0115) 2011; 26 Chandra (10.1016/j.jappgeo.2022.104675_bb0020) 2019; 9 Su (10.1016/j.jappgeo.2022.104675_bb0140) 2021; 99 Vallée (10.1016/j.jappgeo.2022.104675_bb0155) 2009; 7 Oldenburg (10.1016/j.jappgeo.2022.104675_bb0125) 2013; 78 Yang (10.1016/j.jappgeo.2022.104675_bb0185) 2012; 77 Haber (10.1016/j.jappgeo.2022.104675_bb0075) 2014; 30 Yu (10.1016/j.jappgeo.2022.104675_bb0220) 2018; 155 Yin (10.1016/j.jappgeo.2022.104675_bb0200) 2015; 58 Feng (10.1016/j.jappgeo.2022.104675_bb0050) 2020; 25 Feng (10.1016/j.jappgeo.2022.104675_bb0055) 2021; 26 Macnae (10.1016/j.jappgeo.2022.104675_bb0105) 1991; 56 Fullagar (10.1016/j.jappgeo.2022.104675_bb0065) 2015; 46 Lin (10.1016/j.jappgeo.2022.104675_bb0100) 2021; 64 Xue (10.1016/j.jappgeo.2022.104675_bb0175) 2020; 8 Di (10.1016/j.jappgeo.2022.104675_bb0045) 2020; 63 Wang (10.1016/j.jappgeo.2022.104675_bb0160) 2002 Brodie (10.1016/j.jappgeo.2022.104675_bb0010) 2009; 40 Labrecque (10.1016/j.jappgeo.2022.104675_bb0095) 1996; 61 Fullagar (10.1016/j.jappgeo.2022.104675_bb0060) 2013 Cox (10.1016/j.jappgeo.2022.104675_bb0030) 2010; 41 Auken (10.1016/j.jappgeo.2022.104675_bb0005) 2004; 69 Xue (10.1016/j.jappgeo.2022.104675_bb0170) 2018; 23 Constable (10.1016/j.jappgeo.2022.104675_bb0025) 1987; 52 Huang (10.1016/j.jappgeo.2022.104675_bb0080) 1991; 39 Tikhonov (10.1016/j.jappgeo.2022.104675_bb0150) 1977 Yang (10.1016/j.jappgeo.2022.104675_bb0190) 2014; 196 Siemon (10.1016/j.jappgeo.2022.104675_bb0135) 2009; 7 Qiang (10.1016/j.jappgeo.2022.104675_bb0130) 2013; 35 Cox (10.1016/j.jappgeo.2022.104675_bb0035) 2012; 77 Huang (10.1016/j.jappgeo.2022.104675_bb0085) 2008; 73 Xue (10.1016/j.jappgeo.2022.104675_bb0180) 2020; 55 Gao (10.1016/j.jappgeo.2022.104675_bb0070) 2018; 15 Yin (10.1016/j.jappgeo.2022.104675_bb0210) 2017; 60 |
References_xml | – volume: 26 start-page: 300 year: 2011 end-page: 305 ident: bb0115 article-title: Study on an adaptive regularized 1D inversion method of helicopter TEM data publication-title: Progr. Geohys. (in Chinese) – volume: 196 start-page: 1492 year: 2014 end-page: 1507 ident: bb0190 article-title: 3-D inversion of airborne electromagnetic data parallelized and accelerated by local mesh and adaptive soundings publication-title: Geophys. J. Int. – volume: 56 start-page: 102 year: 1991 end-page: 114 ident: bb0105 article-title: Conductivity-depth imaging of airborne electromagnetic step-response data publication-title: Geophysics – volume: 7 start-page: 63 year: 2009 end-page: 71 ident: bb0155 article-title: Inversion of airborne time-domain electromagnetic data to a 1D structure using lateral constraints publication-title: Near Surf. Geophys. – volume: 41 start-page: 250 year: 2010 end-page: 259 ident: bb0030 article-title: 3D inversion of airborne electromagnetic data using a moving footprint publication-title: Explor. Geophys. – volume: 26 start-page: 165 year: 2021 end-page: 175 ident: bb0055 article-title: Nonlinear noise reduction for the airborne transient electromagnetic method based on kernel minimum noise fraction publication-title: J. Environ. Eng. Geophys. – volume: 57 start-page: 953 year: 2014 end-page: 960 ident: bb0015 article-title: Weighted Laterally-constrained inversion of frequency-domain airborne EM data publication-title: Chin. J. Geophys. – year: 1977 ident: bb0150 article-title: Solution of Ill-Posed Problems – volume: 72 start-page: F189 year: 2007 end-page: F195 ident: bb0195 article-title: Simulated annealing for airborne EM inversion publication-title: Geophysics – volume: 69 start-page: 752 year: 2004 end-page: 761 ident: bb0005 article-title: Layered and laterally constrained 2D inversion of resistivity data publication-title: Geophysics – volume: 52 start-page: 289 year: 1987 end-page: 300 ident: bb0025 article-title: Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data publication-title: Geophysics – volume: 25 start-page: 355 year: 2020 end-page: 368 ident: bb0050 article-title: Resistivity-depth imaging with the airborne transient electromagnetic method based on an artificial neural network publication-title: J. Environ. Eng. Geophys. – volume: 46 start-page: 112 year: 2015 end-page: 117 ident: bb0065 article-title: Rapid approximate inversion of airborne TEM publication-title: Explor. Geophys. – volume: 23 start-page: 103 year: 2018 end-page: 113 ident: bb0170 article-title: The application of ground-airborne TEM Systems for underground cavity detection in China publication-title: J. Environ. Eng. Geophys. – volume: 61 start-page: 538 year: 1996 end-page: 548 ident: bb0095 article-title: The effects of Occam’s inversion of resistivity tomography data publication-title: Geophysics – volume: 8 start-page: 146172 year: 2020 end-page: 146181 ident: bb0175 article-title: Development of the inversion method for transient electromagnetic data publication-title: IEEE Access – volume: 40 start-page: 8 year: 2009 end-page: 16 ident: bb0010 article-title: Holistic inversion of frequency-domain airborne electromagnetic data with minimal prior information publication-title: Explor. Geophys. – volume: 9 start-page: 398 year: 2019 ident: bb0020 article-title: Large scale mapping of fractures and groundwater pathways in crystalline hardrock by AEM publication-title: Sci. Rep. – volume: 46 start-page: 254 year: 2016 end-page: 261 ident: bb0205 article-title: Weighted laterally-constrained inversion of time-domain airborne electromagnetic data publication-title: J. Jilin Univ. (Earth Science Edition) – volume: 63 start-page: 1268 year: 2020 end-page: 1277 ident: bb0045 article-title: New methods of controlled-source electromagnetic detection in China publication-title: Sci. China Earth Sci. – volume: 30 start-page: 1 year: 2014 end-page: 28 ident: bb0075 article-title: Parallel inversion of large-scale airborne time-domain electromagnetic data with multiple OcTree meshes publication-title: Inverse Problem – volume: 64 start-page: 2995 year: 2021 end-page: 3004 ident: bb0100 article-title: Technological innovation of semi-airborne electromagnetic detection method publication-title: Chinese J. Geophys. (in Chinese) – volume: 78 start-page: E47 year: 2013 end-page: E57 ident: bb0125 article-title: Three dimensional inversion of multisource time domain electromagnetic data – volume: 24 start-page: 653 year: 2019 end-page: 663 ident: bb0165 article-title: The development and applications of the helicopter-borne transient electromagnetic system CAS-HTEM publication-title: JEEG – volume: 77 year: 2012 ident: bb0035 article-title: 3D inversion of airborne electromagnetic data publication-title: Geophysics – volume: 62 start-page: 4860 year: 2019 end-page: 4873 ident: bb0145 article-title: L1-norm based nonlinear inversion of transient electromagnetic data publication-title: Chinese J. Geophys. (in Chinese) – volume: 155 start-page: 110 year: 2018 end-page: 121 ident: bb0220 article-title: A combining regularization strategy for the inversion of airborne time-domain electromagnetic data publication-title: J. Appl. Geophys. – volume: 29 start-page: 163 year: 1998 end-page: 169 ident: bb0110 article-title: Fast AEM data processing and inversion publication-title: Explor. Geophys. – start-page: 1 year: 2013 end-page: 4 ident: bb0060 article-title: Hybrid 1D/3D geologically constrained inversion of airborne TEM data publication-title: 23rd International Geophysical Conference and Exhibition (Melbourne), Extended Abstract – volume: 60 start-page: 31 year: 2017 end-page: 38 ident: bb0210 article-title: Time-domain electromagnetic diffusion and imaging depth for airborne electromagnetic data publication-title: Chinese J. Geophys. (in Chinese) – volume: 99 start-page: 1 year: 2020 end-page: 9 ident: bb0040 article-title: Pseudo-2D Trans-dimensional Bayesian inversion of the full waveform TEM response from PRBS source publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 58 start-page: 2637 year: 2015 end-page: 2653 ident: bb0200 article-title: Review on airborne EM technology and developments publication-title: Chinese J. Geophys. Chinese Edition – volume: 7 start-page: 629 year: 2009 end-page: 646 ident: bb0135 article-title: A review of helicopterborne electromagnetic methods for groundwater exploration publication-title: Near Surf. Geophys. – volume: 15 start-page: 172 year: 2018 end-page: 185 ident: bb0070 article-title: Bayesian inversion of variable-dimension of airborne electromagnetic data in time domain publication-title: Appl. Geophys. – volume: 35 start-page: 501 year: 2013 end-page: 505 ident: bb0130 article-title: 1-D Occam inversion method for airborne transient electromagnetic data publication-title: Comput. Techniq. Geophys. Geochem. Explorat. (in Chinese) – volume: 1990 start-page: 87 year: 1990 end-page: 97 ident: bb0090 article-title: Inversion of time-domain airborne electromagnetic data publication-title: Chin. J. Geophys. – volume: 55 start-page: 1636 year: 2020 end-page: 1643 ident: bb0180 article-title: Developments measurements of TEM sounding in China publication-title: Geol. J. – volume: 73 start-page: F115 year: 2008 end-page: F120 ident: bb0085 article-title: Conductivity-depth imaging of helicopter-borne TEM data based on a pseudo layer half-space model publication-title: Geophysics – volume: 99 start-page: 1 year: 2021 end-page: 13 ident: bb0140 article-title: Spare-promoting 3-D airborne electromagnetic inversion based on shearlet transform publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 61 start-page: 2537 year: 2018 end-page: 2547 ident: bb0215 article-title: Spatially constrained inversion for airborne EM data using quasi-3D models publication-title: Chinese J. Geophys. (in Chinese) – year: 2002 ident: bb0160 article-title: Geophysical Inversion Theory – volume: 77 start-page: B23 year: 2012 end-page: B34 ident: bb0185 article-title: Three-dimensional inversion of airborne time-domain electromagnetic data with applications to a porphyry deposit publication-title: Geophysics – volume: 80 start-page: K25 year: 2015 end-page: K36 ident: bb0120 article-title: 3D parametric hybrid inversion of time-domain airborne electromagnetic data publication-title: Geophysics – volume: 9 start-page: 1 year: 2012 end-page: 8 ident: bb0225 article-title: PC-based artificial neural network inversion for airborne time-domain electromagnetic data publication-title: Appl. Geophys. – volume: 39 start-page: 827 year: 1991 end-page: 844 ident: bb0080 article-title: Damped least-squares inversion of time-domain airborne EM data based on singular value decomposition publication-title: Geophys. Prospect. – volume: 56 start-page: 102 year: 1991 ident: 10.1016/j.jappgeo.2022.104675_bb0105 article-title: Conductivity-depth imaging of airborne electromagnetic step-response data publication-title: Geophysics doi: 10.1190/1.1442945 – volume: 61 start-page: 2537 issue: 6 year: 2018 ident: 10.1016/j.jappgeo.2022.104675_bb0215 article-title: Spatially constrained inversion for airborne EM data using quasi-3D models publication-title: Chinese J. Geophys. (in Chinese) – volume: 73 start-page: F115 year: 2008 ident: 10.1016/j.jappgeo.2022.104675_bb0085 article-title: Conductivity-depth imaging of helicopter-borne TEM data based on a pseudo layer half-space model publication-title: Geophysics doi: 10.1190/1.2904984 – volume: 9 start-page: 398 issue: 1 year: 2019 ident: 10.1016/j.jappgeo.2022.104675_bb0020 article-title: Large scale mapping of fractures and groundwater pathways in crystalline hardrock by AEM publication-title: Sci. Rep. doi: 10.1038/s41598-018-36153-1 – start-page: 1 year: 2013 ident: 10.1016/j.jappgeo.2022.104675_bb0060 article-title: Hybrid 1D/3D geologically constrained inversion of airborne TEM data – volume: 41 start-page: 250 year: 2010 ident: 10.1016/j.jappgeo.2022.104675_bb0030 article-title: 3D inversion of airborne electromagnetic data using a moving footprint publication-title: Explor. Geophys. doi: 10.1071/EG10003 – volume: 99 start-page: 1 year: 2021 ident: 10.1016/j.jappgeo.2022.104675_bb0140 article-title: Spare-promoting 3-D airborne electromagnetic inversion based on shearlet transform publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 7 start-page: 629 issue: 5–6 year: 2009 ident: 10.1016/j.jappgeo.2022.104675_bb0135 article-title: A review of helicopterborne electromagnetic methods for groundwater exploration publication-title: Near Surf. Geophys. doi: 10.3997/1873-0604.2009043 – volume: 63 start-page: 1268 issue: 09 year: 2020 ident: 10.1016/j.jappgeo.2022.104675_bb0045 article-title: New methods of controlled-source electromagnetic detection in China publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-019-9583-9 – volume: 35 start-page: 501 issue: 5 year: 2013 ident: 10.1016/j.jappgeo.2022.104675_bb0130 article-title: 1-D Occam inversion method for airborne transient electromagnetic data publication-title: Comput. Techniq. Geophys. Geochem. Explorat. (in Chinese) – volume: 62 start-page: 4860 issue: 12 year: 2019 ident: 10.1016/j.jappgeo.2022.104675_bb0145 article-title: L1-norm based nonlinear inversion of transient electromagnetic data publication-title: Chinese J. Geophys. (in Chinese) – volume: 7 start-page: 63 year: 2009 ident: 10.1016/j.jappgeo.2022.104675_bb0155 article-title: Inversion of airborne time-domain electromagnetic data to a 1D structure using lateral constraints publication-title: Near Surf. Geophys. doi: 10.3997/1873-0604.2008035 – volume: 77 year: 2012 ident: 10.1016/j.jappgeo.2022.104675_bb0035 article-title: 3D inversion of airborne electromagnetic data publication-title: Geophysics doi: 10.1190/geo2011-0370.1 – volume: 1990 start-page: 87 issue: 01 year: 1990 ident: 10.1016/j.jappgeo.2022.104675_bb0090 article-title: Inversion of time-domain airborne electromagnetic data publication-title: Chin. J. Geophys. – volume: 61 start-page: 538 issue: 2 year: 1996 ident: 10.1016/j.jappgeo.2022.104675_bb0095 article-title: The effects of Occam’s inversion of resistivity tomography data publication-title: Geophysics doi: 10.1190/1.1443980 – volume: 69 start-page: 752 year: 2004 ident: 10.1016/j.jappgeo.2022.104675_bb0005 article-title: Layered and laterally constrained 2D inversion of resistivity data publication-title: Geophysics doi: 10.1190/1.1759461 – volume: 77 start-page: B23 year: 2012 ident: 10.1016/j.jappgeo.2022.104675_bb0185 article-title: Three-dimensional inversion of airborne time-domain electromagnetic data with applications to a porphyry deposit publication-title: Geophysics doi: 10.1190/geo2011-0194.1 – volume: 52 start-page: 289 issue: 3 year: 1987 ident: 10.1016/j.jappgeo.2022.104675_bb0025 article-title: Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data publication-title: Geophysics doi: 10.1190/1.1442303 – volume: 26 start-page: 300 issue: 1 year: 2011 ident: 10.1016/j.jappgeo.2022.104675_bb0115 article-title: Study on an adaptive regularized 1D inversion method of helicopter TEM data publication-title: Progr. Geohys. (in Chinese) – year: 2002 ident: 10.1016/j.jappgeo.2022.104675_bb0160 – volume: 26 start-page: 165 issue: 2 year: 2021 ident: 10.1016/j.jappgeo.2022.104675_bb0055 article-title: Nonlinear noise reduction for the airborne transient electromagnetic method based on kernel minimum noise fraction publication-title: J. Environ. Eng. Geophys. doi: 10.32389/JEEG20-020 – volume: 57 start-page: 953 issue: 1 year: 2014 ident: 10.1016/j.jappgeo.2022.104675_bb0015 article-title: Weighted Laterally-constrained inversion of frequency-domain airborne EM data publication-title: Chin. J. Geophys. – volume: 55 start-page: 1636 issue: 3 year: 2020 ident: 10.1016/j.jappgeo.2022.104675_bb0180 article-title: Developments measurements of TEM sounding in China publication-title: Geol. J. doi: 10.1002/gj.3544 – volume: 30 start-page: 1 year: 2014 ident: 10.1016/j.jappgeo.2022.104675_bb0075 article-title: Parallel inversion of large-scale airborne time-domain electromagnetic data with multiple OcTree meshes publication-title: Inverse Problem doi: 10.1088/0266-5611/30/5/055011 – year: 1977 ident: 10.1016/j.jappgeo.2022.104675_bb0150 – volume: 58 start-page: 2637 issue: 8 year: 2015 ident: 10.1016/j.jappgeo.2022.104675_bb0200 article-title: Review on airborne EM technology and developments publication-title: Chinese J. Geophys. Chinese Edition – volume: 9 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.jappgeo.2022.104675_bb0225 article-title: PC-based artificial neural network inversion for airborne time-domain electromagnetic data publication-title: Appl. Geophys. doi: 10.1007/s11770-012-0307-7 – volume: 99 start-page: 1 year: 2020 ident: 10.1016/j.jappgeo.2022.104675_bb0040 article-title: Pseudo-2D Trans-dimensional Bayesian inversion of the full waveform TEM response from PRBS source publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 196 start-page: 1492 year: 2014 ident: 10.1016/j.jappgeo.2022.104675_bb0190 article-title: 3-D inversion of airborne electromagnetic data parallelized and accelerated by local mesh and adaptive soundings publication-title: Geophys. J. Int. doi: 10.1093/gji/ggt465 – volume: 60 start-page: 31 issue: 1 year: 2017 ident: 10.1016/j.jappgeo.2022.104675_bb0210 article-title: Time-domain electromagnetic diffusion and imaging depth for airborne electromagnetic data publication-title: Chinese J. Geophys. (in Chinese) doi: 10.1002/cjg2.30025 – volume: 40 start-page: 8 year: 2009 ident: 10.1016/j.jappgeo.2022.104675_bb0010 article-title: Holistic inversion of frequency-domain airborne electromagnetic data with minimal prior information publication-title: Explor. Geophys. doi: 10.1071/EG08110 – volume: 15 start-page: 172 issue: 02 year: 2018 ident: 10.1016/j.jappgeo.2022.104675_bb0070 article-title: Bayesian inversion of variable-dimension of airborne electromagnetic data in time domain publication-title: Appl. Geophys. doi: 10.1007/s11770-018-0684-7 – volume: 8 start-page: 146172 year: 2020 ident: 10.1016/j.jappgeo.2022.104675_bb0175 article-title: Development of the inversion method for transient electromagnetic data publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3013626 – volume: 64 start-page: 2995 issue: 9 year: 2021 ident: 10.1016/j.jappgeo.2022.104675_bb0100 article-title: Technological innovation of semi-airborne electromagnetic detection method publication-title: Chinese J. Geophys. (in Chinese) – volume: 39 start-page: 827 year: 1991 ident: 10.1016/j.jappgeo.2022.104675_bb0080 article-title: Damped least-squares inversion of time-domain airborne EM data based on singular value decomposition publication-title: Geophys. Prospect. doi: 10.1111/j.1365-2478.1991.tb00346.x – volume: 78 start-page: E47 issue: 1 year: 2013 ident: 10.1016/j.jappgeo.2022.104675_bb0125 article-title: Three dimensional inversion of multisource time domain electromagnetic data – volume: 29 start-page: 163 year: 1998 ident: 10.1016/j.jappgeo.2022.104675_bb0110 article-title: Fast AEM data processing and inversion publication-title: Explor. Geophys. doi: 10.1071/EG998163 – volume: 72 start-page: F189 issue: 4 year: 2007 ident: 10.1016/j.jappgeo.2022.104675_bb0195 article-title: Simulated annealing for airborne EM inversion publication-title: Geophysics doi: 10.1190/1.2736195 – volume: 25 start-page: 355 issue: 3 year: 2020 ident: 10.1016/j.jappgeo.2022.104675_bb0050 article-title: Resistivity-depth imaging with the airborne transient electromagnetic method based on an artificial neural network publication-title: J. Environ. Eng. Geophys. doi: 10.32389/JEEG19-087 – volume: 24 start-page: 653 issue: 4 year: 2019 ident: 10.1016/j.jappgeo.2022.104675_bb0165 article-title: The development and applications of the helicopter-borne transient electromagnetic system CAS-HTEM publication-title: JEEG doi: 10.2113/JEEG24.4.653 – volume: 23 start-page: 103 issue: 1 year: 2018 ident: 10.1016/j.jappgeo.2022.104675_bb0170 article-title: The application of ground-airborne TEM Systems for underground cavity detection in China publication-title: J. Environ. Eng. Geophys. doi: 10.2113/JEEG23.1.103 – volume: 46 start-page: 254 issue: 1 year: 2016 ident: 10.1016/j.jappgeo.2022.104675_bb0205 article-title: Weighted laterally-constrained inversion of time-domain airborne electromagnetic data publication-title: J. Jilin Univ. (Earth Science Edition) – volume: 80 start-page: K25 year: 2015 ident: 10.1016/j.jappgeo.2022.104675_bb0120 article-title: 3D parametric hybrid inversion of time-domain airborne electromagnetic data publication-title: Geophysics doi: 10.1190/geo2015-0141.1 – volume: 155 start-page: 110 year: 2018 ident: 10.1016/j.jappgeo.2022.104675_bb0220 article-title: A combining regularization strategy for the inversion of airborne time-domain electromagnetic data publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2018.06.007 – volume: 46 start-page: 112 year: 2015 ident: 10.1016/j.jappgeo.2022.104675_bb0065 article-title: Rapid approximate inversion of airborne TEM publication-title: Explor. Geophys. doi: 10.1071/EG14046 |
SSID | ssj0001304 |
Score | 2.3484318 |
Snippet | The airborne transient electromagnetic method (ATEM) has become a popular tool in mineral and resource exploration due to its speed and high efficiency. The... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104675 |
SubjectTerms | Airborne transient electromagnetic method Decay voltage Lateral constrained inversion Reference point |
Title | Inversion of airborne transient electromagnetic data based on reference point lateral constraint |
URI | https://dx.doi.org/10.1016/j.jappgeo.2022.104675 |
Volume | 202 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14TZPubrbJsRRLVehFC73FzT5KSk1DiVd_uzvJpq0gCh4TdmCZncwj-30zCN1LkYY6JNwzoYw9Jon2hA5SLzA0MEZouOsDtMWUT2bsaR7OW2jUcGEAVul8f-3TK2_t3vhOm36RZf5LEBMe24SBACyI8Tkw2NkArLz3uYN5WB9dtZCyiz1YvWPx-MveUhTFouIAElLddgLc8Kf4tBdzxifo2CWLeFjv5xS1dH6GjvZaCJ6jN2iUUf3ywmuDRbaxZ5prXEIIAqojdnNu3sUiB74iBkgohtilsJXZThnBxTqzq1cCGMkrLCFthOkR5QWajR9eRxPPTU3wBKWk9GwBFhplKJf225XKVlRW7VRQJlRfaB7ENNDQlyw2aUQGxBClmOCR0n2oNSihl6idr3N9hbDdQsQNg4HEMZNSCa5hmGZkix5JVJ91EGt0lUjXUhz2tkoa7NgycSpOQMVJreIO6m3Firqnxl8CUXMQyTfjSKzf_130-v-iN-gQnmps7i1ql5sPfWczkDLtVibWRQfDx-fJ9AvKZtzi |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF5ED-pBfGJ97kGPadPNZk0OHkQt9XnRQm9xu4_SUtNQI-LFP-UfdCbZWgVREHpNMjDMDvPIfjMfIQdKdkITMuHZUMUeV8x40vgdz7eBb600eNeHaItb0Wzxy3bYniHv41kYhFW62F_G9CJauyc1Z81a1uvV7vyYiRgKBoawIC7aDll5ZV5foG97Or44g0M-ZKxxfn_a9By1gCeDgOUedCmh1TYQChxcaWg7QLdABlzqujQC2nzf4PKu2HYidsQs05pLEWlTx4I8wG0HEPfnOIQLpE2ovk1wJZAUip1VoJ2H6k3Ghmr9al9mWbcYOmSsuF5FfONPCfFLkmsskyVXndKT0gArZMakq2Txy87CNfKAmzmKf2x0aKnsjcCJUkNzzHk4W0kdsc6j7KY4IEkRg0oxWWoKMp-0JjQb9uDrgcQR6AFVWKciXUW-TlpTseUGmU2HqdkkFFSIhOXIgBxzpbQUBtk7I-iyFNN1XiF8bKtEuR3mqNsgGYPV-okzcYImTkoTV0j1Uywrl3j8JRCNDyL55o0JJJrfRbf-L7pP5pv3N9fJ9cXt1TZZwDclMHiHzOajZ7ML5U_e2SvcjcJxT9m_PwBpaRcD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inversion+of+airborne+transient+electromagnetic+data+based+on+reference+point+lateral+constraint&rft.jtitle=Journal+of+applied+geophysics&rft.au=Zhang%2C+Jifeng&rft.au=Huang%2C+Chaofeng&rft.au=Feng%2C+Bing&rft.au=Shi%2C+Yu&rft.date=2022-07-01&rft.issn=0926-9851&rft.volume=202&rft.spage=104675&rft_id=info:doi/10.1016%2Fj.jappgeo.2022.104675&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jappgeo_2022_104675 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9851&client=summon |