Inversion of airborne transient electromagnetic data based on reference point lateral constraint

The airborne transient electromagnetic method (ATEM) has become a popular tool in mineral and resource exploration due to its speed and high efficiency. The distance between two adjacent measured points is minuscule for a flight line because of the oversampling in the ATEM, which results in a sharp...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied geophysics Vol. 202; p. 104675
Main Authors Zhang, Jifeng, Huang, Chaofeng, Feng, Bing, Shi, Yu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The airborne transient electromagnetic method (ATEM) has become a popular tool in mineral and resource exploration due to its speed and high efficiency. The distance between two adjacent measured points is minuscule for a flight line because of the oversampling in the ATEM, which results in a sharp change in the horizontal direction. The conventional lateral constraint inversion method accumulates errors and has a significant calculation cost. Therefore, a laterally constrained, segmented inversion method based on a reference point is proposed to reduce errors and improve accuracy. Electrical information about the known logging data is employed as the lateral constraint of the reference point; alternatively, the inversion results of previous point can be used as lateral constraints, which guarantees a continuous inversion profile. The golden-section method is applied to solve the Lagrange multiplier to ensure a quick and effective convergence of inversions. Constraint inversions of a one-dimensional model show that the strategy converges quickly, and the inversion results are closer to the true resistivity of the model. Constraint inversion of a 2D model indicates that lateral constraints considerably reduce the discontinuity of a single-point inversion and smooths the inversion's resistivity pseudo-section. Finally, the effectiveness of the proposed algorithm is verified by the inversion of the airborne transient electromagnetic survey data in Xinjiang province. •The lateral constrained inversion based on reference point was applied to ATEM.•The golden section method is used to determine the Lagrange multiplier.•Segmented inversion strategy was used improve the inversion speed and accuracy.
AbstractList The airborne transient electromagnetic method (ATEM) has become a popular tool in mineral and resource exploration due to its speed and high efficiency. The distance between two adjacent measured points is minuscule for a flight line because of the oversampling in the ATEM, which results in a sharp change in the horizontal direction. The conventional lateral constraint inversion method accumulates errors and has a significant calculation cost. Therefore, a laterally constrained, segmented inversion method based on a reference point is proposed to reduce errors and improve accuracy. Electrical information about the known logging data is employed as the lateral constraint of the reference point; alternatively, the inversion results of previous point can be used as lateral constraints, which guarantees a continuous inversion profile. The golden-section method is applied to solve the Lagrange multiplier to ensure a quick and effective convergence of inversions. Constraint inversions of a one-dimensional model show that the strategy converges quickly, and the inversion results are closer to the true resistivity of the model. Constraint inversion of a 2D model indicates that lateral constraints considerably reduce the discontinuity of a single-point inversion and smooths the inversion's resistivity pseudo-section. Finally, the effectiveness of the proposed algorithm is verified by the inversion of the airborne transient electromagnetic survey data in Xinjiang province. •The lateral constrained inversion based on reference point was applied to ATEM.•The golden section method is used to determine the Lagrange multiplier.•Segmented inversion strategy was used improve the inversion speed and accuracy.
ArticleNumber 104675
Author Feng, Bing
Huang, Chaofeng
Zhang, Jifeng
Shi, Yu
Author_xml – sequence: 1
  givenname: Jifeng
  surname: Zhang
  fullname: Zhang, Jifeng
  email: zjf@chd.edu.cn
  organization: Department of Geophysics, School of Geology Engineering and Geomatics, Chang'an University, Xi'an 710054, China
– sequence: 2
  givenname: Chaofeng
  surname: Huang
  fullname: Huang, Chaofeng
  organization: Department of Geophysics, School of Geology Engineering and Geomatics, Chang'an University, Xi'an 710054, China
– sequence: 3
  givenname: Bing
  surname: Feng
  fullname: Feng, Bing
  organization: Department of Geophysics, School of Geology Engineering and Geomatics, Chang'an University, Xi'an 710054, China
– sequence: 4
  givenname: Yu
  surname: Shi
  fullname: Shi, Yu
  organization: Department of Geophysics, School of Geology Engineering and Geomatics, Chang'an University, Xi'an 710054, China
BookMark eNqFkMtqwzAQRbVIoUnaTyjoB5zqYTs2XZQS-ggEumnX6kQaBxlHMpII9O8rk6y6yWrgMucycxZk5rxDQh44W3HG68d-1cM4HtCvBBMiZ2W9rmZkzlpRF21T8VuyiLFnjHHJyjn52boThmi9o76jYMPeB4c0BXDRoksUB9Qp-CMcHCarqYEEdA8RDc1MwA4DOo109DZvD5AwwEC1dzF35OiO3HQwRLy_zCX5fnv92nwUu8_37eZlV4CUIhW85VVnOllrybg2jWg6ySTIEgwHrFkrGYqqLNtu34i16IQxJdSNQc55I6SQS1Kde3XwMea71BjsEcKv4kxNalSvLmrUpEad1WTu6R-nbYKUhUz3D1fp5zON-bWTxaCitpMPY0P2poy3Vxr-APY-iQI
CitedBy_id crossref_primary_10_1080_08123985_2024_2367412
crossref_primary_10_3389_fsoil_2024_1346028
crossref_primary_10_1093_gji_ggae253
crossref_primary_10_1007_s10230_025_01036_1
Cites_doi 10.1190/1.1442945
10.1190/1.2904984
10.1038/s41598-018-36153-1
10.1071/EG10003
10.3997/1873-0604.2009043
10.1007/s11430-019-9583-9
10.3997/1873-0604.2008035
10.1190/geo2011-0370.1
10.1190/1.1443980
10.1190/1.1759461
10.1190/geo2011-0194.1
10.1190/1.1442303
10.32389/JEEG20-020
10.1002/gj.3544
10.1088/0266-5611/30/5/055011
10.1007/s11770-012-0307-7
10.1093/gji/ggt465
10.1002/cjg2.30025
10.1071/EG08110
10.1007/s11770-018-0684-7
10.1109/ACCESS.2020.3013626
10.1111/j.1365-2478.1991.tb00346.x
10.1071/EG998163
10.1190/1.2736195
10.32389/JEEG19-087
10.2113/JEEG24.4.653
10.2113/JEEG23.1.103
10.1190/geo2015-0141.1
10.1016/j.jappgeo.2018.06.007
10.1071/EG14046
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.jappgeo.2022.104675
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_jappgeo_2022_104675
S092698512200146X
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACLVX
ACRLP
ACRPL
ACSBN
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPCBC
SSZ
T5K
VH1
WUQ
XPP
ZMT
~02
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
SPC
SSE
SSH
ID FETCH-LOGICAL-a332t-1915fdf36c301cd828f303a34ad1ae60930e25449fb8272f2dd4a68de11182323
IEDL.DBID .~1
ISSN 0926-9851
IngestDate Thu Apr 24 23:02:26 EDT 2025
Tue Jul 01 03:15:09 EDT 2025
Sun Apr 06 06:53:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Decay voltage
Lateral constrained inversion
Reference point
Airborne transient electromagnetic method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a332t-1915fdf36c301cd828f303a34ad1ae60930e25449fb8272f2dd4a68de11182323
ParticipantIDs crossref_primary_10_1016_j_jappgeo_2022_104675
crossref_citationtrail_10_1016_j_jappgeo_2022_104675
elsevier_sciencedirect_doi_10_1016_j_jappgeo_2022_104675
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Journal of applied geophysics
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yin, Qiu, Liu (bb0205) 2016; 46
Yu, Wang, Lu (bb0220) 2018; 155
Fullagar, Pears, Reid (bb0060) 2013
Yin, Qiu, Liu (bb0210) 2017; 60
Di, Xue, Yin (bb0045) 2020; 63
Macnae, King (bb0110) 1998; 29
Xue, Li, Yu (bb0170) 2018; 23
Fullagar, Pears (bb0065) 2015; 46
Macnae, Smith (bb0105) 1991; 56
Wu, Fang, Xue (bb0165) 2019; 24
Gao, Yin, Qi (bb0070) 2018; 15
Oldenburg, Haber, Shekhtman (bb0125) 2013; 78
Yin, Zhang, Liu (bb0200) 2015; 58
Feng, Zhang, Gao (bb0055) 2021; 26
Xue, Li, He (bb0175) 2020; 8
Yang, Oldenburg, Haber (bb0190) 2014; 196
Vallée, Smith (bb0155) 2009; 7
Constable, Parker, Constable (bb0025) 1987; 52
Chandra, Auken, Maurya, Ahmed, Verma (bb0020) 2019; 9
Feng, Zhang, Li (bb0050) 2020; 25
Mao, Wang, Chen (bb0115) 2011; 26
Qiang, Li, Long (bb0130) 2013; 35
Auken, Christiansen (bb0005) 2004; 69
Sun, Zhang, Liu (bb0145) 2019; 62
Yang, Oldenburg (bb0185) 2012; 77
Tikhonov, Arsenin (bb0150) 1977
Su, Yin, Liu (bb0140) 2021; 99
Brodie, Sambridge (bb0010) 2009; 40
Huang, Palacky (bb0080) 1991; 39
Huang, Rudd (bb0085) 2008; 73
McMillan, Schwarzbach, Haber, Oldenburg (bb0120) 2015; 80
Yin, Hodges (bb0195) 2007; 72
Zhu, Ma, Che (bb0225) 2012; 9
Siemon, Christiansen, Auken (bb0135) 2009; 7
Xue, Zhang, Zhou (bb0180) 2020; 55
Cox, Wilson, Zhdanov (bb0035) 2012; 77
Yin, Zhu, Qiu (bb0215) 2018; 61
Di, Li, Xue (bb0040) 2020; 99
Haber, Schwarzbach (bb0075) 2014; 30
Huang, Wang (bb0090) 1990; 1990
Cox, Wilson, Zhdanov (bb0030) 2010; 41
Labrecque, Miletto, Daily (bb0095) 1996; 61
Cai, Qi, Yin (bb0015) 2014; 57
Wang (bb0160) 2002
Lin, Xue, Li (bb0100) 2021; 64
McMillan (10.1016/j.jappgeo.2022.104675_bb0120) 2015; 80
Yin (10.1016/j.jappgeo.2022.104675_bb0205) 2016; 46
Macnae (10.1016/j.jappgeo.2022.104675_bb0110) 1998; 29
Sun (10.1016/j.jappgeo.2022.104675_bb0145) 2019; 62
Cai (10.1016/j.jappgeo.2022.104675_bb0015) 2014; 57
Huang (10.1016/j.jappgeo.2022.104675_bb0090) 1990; 1990
Yin (10.1016/j.jappgeo.2022.104675_bb0195) 2007; 72
Yin (10.1016/j.jappgeo.2022.104675_bb0215) 2018; 61
Di (10.1016/j.jappgeo.2022.104675_bb0040) 2020; 99
Zhu (10.1016/j.jappgeo.2022.104675_bb0225) 2012; 9
Wu (10.1016/j.jappgeo.2022.104675_bb0165) 2019; 24
Mao (10.1016/j.jappgeo.2022.104675_bb0115) 2011; 26
Chandra (10.1016/j.jappgeo.2022.104675_bb0020) 2019; 9
Su (10.1016/j.jappgeo.2022.104675_bb0140) 2021; 99
Vallée (10.1016/j.jappgeo.2022.104675_bb0155) 2009; 7
Oldenburg (10.1016/j.jappgeo.2022.104675_bb0125) 2013; 78
Yang (10.1016/j.jappgeo.2022.104675_bb0185) 2012; 77
Haber (10.1016/j.jappgeo.2022.104675_bb0075) 2014; 30
Yu (10.1016/j.jappgeo.2022.104675_bb0220) 2018; 155
Yin (10.1016/j.jappgeo.2022.104675_bb0200) 2015; 58
Feng (10.1016/j.jappgeo.2022.104675_bb0050) 2020; 25
Feng (10.1016/j.jappgeo.2022.104675_bb0055) 2021; 26
Macnae (10.1016/j.jappgeo.2022.104675_bb0105) 1991; 56
Fullagar (10.1016/j.jappgeo.2022.104675_bb0065) 2015; 46
Lin (10.1016/j.jappgeo.2022.104675_bb0100) 2021; 64
Xue (10.1016/j.jappgeo.2022.104675_bb0175) 2020; 8
Di (10.1016/j.jappgeo.2022.104675_bb0045) 2020; 63
Wang (10.1016/j.jappgeo.2022.104675_bb0160) 2002
Brodie (10.1016/j.jappgeo.2022.104675_bb0010) 2009; 40
Labrecque (10.1016/j.jappgeo.2022.104675_bb0095) 1996; 61
Fullagar (10.1016/j.jappgeo.2022.104675_bb0060) 2013
Cox (10.1016/j.jappgeo.2022.104675_bb0030) 2010; 41
Auken (10.1016/j.jappgeo.2022.104675_bb0005) 2004; 69
Xue (10.1016/j.jappgeo.2022.104675_bb0170) 2018; 23
Constable (10.1016/j.jappgeo.2022.104675_bb0025) 1987; 52
Huang (10.1016/j.jappgeo.2022.104675_bb0080) 1991; 39
Tikhonov (10.1016/j.jappgeo.2022.104675_bb0150) 1977
Yang (10.1016/j.jappgeo.2022.104675_bb0190) 2014; 196
Siemon (10.1016/j.jappgeo.2022.104675_bb0135) 2009; 7
Qiang (10.1016/j.jappgeo.2022.104675_bb0130) 2013; 35
Cox (10.1016/j.jappgeo.2022.104675_bb0035) 2012; 77
Huang (10.1016/j.jappgeo.2022.104675_bb0085) 2008; 73
Xue (10.1016/j.jappgeo.2022.104675_bb0180) 2020; 55
Gao (10.1016/j.jappgeo.2022.104675_bb0070) 2018; 15
Yin (10.1016/j.jappgeo.2022.104675_bb0210) 2017; 60
References_xml – volume: 26
  start-page: 300
  year: 2011
  end-page: 305
  ident: bb0115
  article-title: Study on an adaptive regularized 1D inversion method of helicopter TEM data
  publication-title: Progr. Geohys. (in Chinese)
– volume: 196
  start-page: 1492
  year: 2014
  end-page: 1507
  ident: bb0190
  article-title: 3-D inversion of airborne electromagnetic data parallelized and accelerated by local mesh and adaptive soundings
  publication-title: Geophys. J. Int.
– volume: 56
  start-page: 102
  year: 1991
  end-page: 114
  ident: bb0105
  article-title: Conductivity-depth imaging of airborne electromagnetic step-response data
  publication-title: Geophysics
– volume: 7
  start-page: 63
  year: 2009
  end-page: 71
  ident: bb0155
  article-title: Inversion of airborne time-domain electromagnetic data to a 1D structure using lateral constraints
  publication-title: Near Surf. Geophys.
– volume: 41
  start-page: 250
  year: 2010
  end-page: 259
  ident: bb0030
  article-title: 3D inversion of airborne electromagnetic data using a moving footprint
  publication-title: Explor. Geophys.
– volume: 26
  start-page: 165
  year: 2021
  end-page: 175
  ident: bb0055
  article-title: Nonlinear noise reduction for the airborne transient electromagnetic method based on kernel minimum noise fraction
  publication-title: J. Environ. Eng. Geophys.
– volume: 57
  start-page: 953
  year: 2014
  end-page: 960
  ident: bb0015
  article-title: Weighted Laterally-constrained inversion of frequency-domain airborne EM data
  publication-title: Chin. J. Geophys.
– year: 1977
  ident: bb0150
  article-title: Solution of Ill-Posed Problems
– volume: 72
  start-page: F189
  year: 2007
  end-page: F195
  ident: bb0195
  article-title: Simulated annealing for airborne EM inversion
  publication-title: Geophysics
– volume: 69
  start-page: 752
  year: 2004
  end-page: 761
  ident: bb0005
  article-title: Layered and laterally constrained 2D inversion of resistivity data
  publication-title: Geophysics
– volume: 52
  start-page: 289
  year: 1987
  end-page: 300
  ident: bb0025
  article-title: Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data
  publication-title: Geophysics
– volume: 25
  start-page: 355
  year: 2020
  end-page: 368
  ident: bb0050
  article-title: Resistivity-depth imaging with the airborne transient electromagnetic method based on an artificial neural network
  publication-title: J. Environ. Eng. Geophys.
– volume: 46
  start-page: 112
  year: 2015
  end-page: 117
  ident: bb0065
  article-title: Rapid approximate inversion of airborne TEM
  publication-title: Explor. Geophys.
– volume: 23
  start-page: 103
  year: 2018
  end-page: 113
  ident: bb0170
  article-title: The application of ground-airborne TEM Systems for underground cavity detection in China
  publication-title: J. Environ. Eng. Geophys.
– volume: 61
  start-page: 538
  year: 1996
  end-page: 548
  ident: bb0095
  article-title: The effects of Occam’s inversion of resistivity tomography data
  publication-title: Geophysics
– volume: 8
  start-page: 146172
  year: 2020
  end-page: 146181
  ident: bb0175
  article-title: Development of the inversion method for transient electromagnetic data
  publication-title: IEEE Access
– volume: 40
  start-page: 8
  year: 2009
  end-page: 16
  ident: bb0010
  article-title: Holistic inversion of frequency-domain airborne electromagnetic data with minimal prior information
  publication-title: Explor. Geophys.
– volume: 9
  start-page: 398
  year: 2019
  ident: bb0020
  article-title: Large scale mapping of fractures and groundwater pathways in crystalline hardrock by AEM
  publication-title: Sci. Rep.
– volume: 46
  start-page: 254
  year: 2016
  end-page: 261
  ident: bb0205
  article-title: Weighted laterally-constrained inversion of time-domain airborne electromagnetic data
  publication-title: J. Jilin Univ. (Earth Science Edition)
– volume: 63
  start-page: 1268
  year: 2020
  end-page: 1277
  ident: bb0045
  article-title: New methods of controlled-source electromagnetic detection in China
  publication-title: Sci. China Earth Sci.
– volume: 30
  start-page: 1
  year: 2014
  end-page: 28
  ident: bb0075
  article-title: Parallel inversion of large-scale airborne time-domain electromagnetic data with multiple OcTree meshes
  publication-title: Inverse Problem
– volume: 64
  start-page: 2995
  year: 2021
  end-page: 3004
  ident: bb0100
  article-title: Technological innovation of semi-airborne electromagnetic detection method
  publication-title: Chinese J. Geophys. (in Chinese)
– volume: 78
  start-page: E47
  year: 2013
  end-page: E57
  ident: bb0125
  article-title: Three dimensional inversion of multisource time domain electromagnetic data
– volume: 24
  start-page: 653
  year: 2019
  end-page: 663
  ident: bb0165
  article-title: The development and applications of the helicopter-borne transient electromagnetic system CAS-HTEM
  publication-title: JEEG
– volume: 77
  year: 2012
  ident: bb0035
  article-title: 3D inversion of airborne electromagnetic data
  publication-title: Geophysics
– volume: 62
  start-page: 4860
  year: 2019
  end-page: 4873
  ident: bb0145
  article-title: L1-norm based nonlinear inversion of transient electromagnetic data
  publication-title: Chinese J. Geophys. (in Chinese)
– volume: 155
  start-page: 110
  year: 2018
  end-page: 121
  ident: bb0220
  article-title: A combining regularization strategy for the inversion of airborne time-domain electromagnetic data
  publication-title: J. Appl. Geophys.
– volume: 29
  start-page: 163
  year: 1998
  end-page: 169
  ident: bb0110
  article-title: Fast AEM data processing and inversion
  publication-title: Explor. Geophys.
– start-page: 1
  year: 2013
  end-page: 4
  ident: bb0060
  article-title: Hybrid 1D/3D geologically constrained inversion of airborne TEM data
  publication-title: 23rd International Geophysical Conference and Exhibition (Melbourne), Extended Abstract
– volume: 60
  start-page: 31
  year: 2017
  end-page: 38
  ident: bb0210
  article-title: Time-domain electromagnetic diffusion and imaging depth for airborne electromagnetic data
  publication-title: Chinese J. Geophys. (in Chinese)
– volume: 99
  start-page: 1
  year: 2020
  end-page: 9
  ident: bb0040
  article-title: Pseudo-2D Trans-dimensional Bayesian inversion of the full waveform TEM response from PRBS source
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 58
  start-page: 2637
  year: 2015
  end-page: 2653
  ident: bb0200
  article-title: Review on airborne EM technology and developments
  publication-title: Chinese J. Geophys. Chinese Edition
– volume: 7
  start-page: 629
  year: 2009
  end-page: 646
  ident: bb0135
  article-title: A review of helicopterborne electromagnetic methods for groundwater exploration
  publication-title: Near Surf. Geophys.
– volume: 15
  start-page: 172
  year: 2018
  end-page: 185
  ident: bb0070
  article-title: Bayesian inversion of variable-dimension of airborne electromagnetic data in time domain
  publication-title: Appl. Geophys.
– volume: 35
  start-page: 501
  year: 2013
  end-page: 505
  ident: bb0130
  article-title: 1-D Occam inversion method for airborne transient electromagnetic data
  publication-title: Comput. Techniq. Geophys. Geochem. Explorat. (in Chinese)
– volume: 1990
  start-page: 87
  year: 1990
  end-page: 97
  ident: bb0090
  article-title: Inversion of time-domain airborne electromagnetic data
  publication-title: Chin. J. Geophys.
– volume: 55
  start-page: 1636
  year: 2020
  end-page: 1643
  ident: bb0180
  article-title: Developments measurements of TEM sounding in China
  publication-title: Geol. J.
– volume: 73
  start-page: F115
  year: 2008
  end-page: F120
  ident: bb0085
  article-title: Conductivity-depth imaging of helicopter-borne TEM data based on a pseudo layer half-space model
  publication-title: Geophysics
– volume: 99
  start-page: 1
  year: 2021
  end-page: 13
  ident: bb0140
  article-title: Spare-promoting 3-D airborne electromagnetic inversion based on shearlet transform
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 61
  start-page: 2537
  year: 2018
  end-page: 2547
  ident: bb0215
  article-title: Spatially constrained inversion for airborne EM data using quasi-3D models
  publication-title: Chinese J. Geophys. (in Chinese)
– year: 2002
  ident: bb0160
  article-title: Geophysical Inversion Theory
– volume: 77
  start-page: B23
  year: 2012
  end-page: B34
  ident: bb0185
  article-title: Three-dimensional inversion of airborne time-domain electromagnetic data with applications to a porphyry deposit
  publication-title: Geophysics
– volume: 80
  start-page: K25
  year: 2015
  end-page: K36
  ident: bb0120
  article-title: 3D parametric hybrid inversion of time-domain airborne electromagnetic data
  publication-title: Geophysics
– volume: 9
  start-page: 1
  year: 2012
  end-page: 8
  ident: bb0225
  article-title: PC-based artificial neural network inversion for airborne time-domain electromagnetic data
  publication-title: Appl. Geophys.
– volume: 39
  start-page: 827
  year: 1991
  end-page: 844
  ident: bb0080
  article-title: Damped least-squares inversion of time-domain airborne EM data based on singular value decomposition
  publication-title: Geophys. Prospect.
– volume: 56
  start-page: 102
  year: 1991
  ident: 10.1016/j.jappgeo.2022.104675_bb0105
  article-title: Conductivity-depth imaging of airborne electromagnetic step-response data
  publication-title: Geophysics
  doi: 10.1190/1.1442945
– volume: 61
  start-page: 2537
  issue: 6
  year: 2018
  ident: 10.1016/j.jappgeo.2022.104675_bb0215
  article-title: Spatially constrained inversion for airborne EM data using quasi-3D models
  publication-title: Chinese J. Geophys. (in Chinese)
– volume: 73
  start-page: F115
  year: 2008
  ident: 10.1016/j.jappgeo.2022.104675_bb0085
  article-title: Conductivity-depth imaging of helicopter-borne TEM data based on a pseudo layer half-space model
  publication-title: Geophysics
  doi: 10.1190/1.2904984
– volume: 9
  start-page: 398
  issue: 1
  year: 2019
  ident: 10.1016/j.jappgeo.2022.104675_bb0020
  article-title: Large scale mapping of fractures and groundwater pathways in crystalline hardrock by AEM
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-36153-1
– start-page: 1
  year: 2013
  ident: 10.1016/j.jappgeo.2022.104675_bb0060
  article-title: Hybrid 1D/3D geologically constrained inversion of airborne TEM data
– volume: 41
  start-page: 250
  year: 2010
  ident: 10.1016/j.jappgeo.2022.104675_bb0030
  article-title: 3D inversion of airborne electromagnetic data using a moving footprint
  publication-title: Explor. Geophys.
  doi: 10.1071/EG10003
– volume: 99
  start-page: 1
  year: 2021
  ident: 10.1016/j.jappgeo.2022.104675_bb0140
  article-title: Spare-promoting 3-D airborne electromagnetic inversion based on shearlet transform
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 7
  start-page: 629
  issue: 5–6
  year: 2009
  ident: 10.1016/j.jappgeo.2022.104675_bb0135
  article-title: A review of helicopterborne electromagnetic methods for groundwater exploration
  publication-title: Near Surf. Geophys.
  doi: 10.3997/1873-0604.2009043
– volume: 63
  start-page: 1268
  issue: 09
  year: 2020
  ident: 10.1016/j.jappgeo.2022.104675_bb0045
  article-title: New methods of controlled-source electromagnetic detection in China
  publication-title: Sci. China Earth Sci.
  doi: 10.1007/s11430-019-9583-9
– volume: 35
  start-page: 501
  issue: 5
  year: 2013
  ident: 10.1016/j.jappgeo.2022.104675_bb0130
  article-title: 1-D Occam inversion method for airborne transient electromagnetic data
  publication-title: Comput. Techniq. Geophys. Geochem. Explorat. (in Chinese)
– volume: 62
  start-page: 4860
  issue: 12
  year: 2019
  ident: 10.1016/j.jappgeo.2022.104675_bb0145
  article-title: L1-norm based nonlinear inversion of transient electromagnetic data
  publication-title: Chinese J. Geophys. (in Chinese)
– volume: 7
  start-page: 63
  year: 2009
  ident: 10.1016/j.jappgeo.2022.104675_bb0155
  article-title: Inversion of airborne time-domain electromagnetic data to a 1D structure using lateral constraints
  publication-title: Near Surf. Geophys.
  doi: 10.3997/1873-0604.2008035
– volume: 77
  year: 2012
  ident: 10.1016/j.jappgeo.2022.104675_bb0035
  article-title: 3D inversion of airborne electromagnetic data
  publication-title: Geophysics
  doi: 10.1190/geo2011-0370.1
– volume: 1990
  start-page: 87
  issue: 01
  year: 1990
  ident: 10.1016/j.jappgeo.2022.104675_bb0090
  article-title: Inversion of time-domain airborne electromagnetic data
  publication-title: Chin. J. Geophys.
– volume: 61
  start-page: 538
  issue: 2
  year: 1996
  ident: 10.1016/j.jappgeo.2022.104675_bb0095
  article-title: The effects of Occam’s inversion of resistivity tomography data
  publication-title: Geophysics
  doi: 10.1190/1.1443980
– volume: 69
  start-page: 752
  year: 2004
  ident: 10.1016/j.jappgeo.2022.104675_bb0005
  article-title: Layered and laterally constrained 2D inversion of resistivity data
  publication-title: Geophysics
  doi: 10.1190/1.1759461
– volume: 77
  start-page: B23
  year: 2012
  ident: 10.1016/j.jappgeo.2022.104675_bb0185
  article-title: Three-dimensional inversion of airborne time-domain electromagnetic data with applications to a porphyry deposit
  publication-title: Geophysics
  doi: 10.1190/geo2011-0194.1
– volume: 52
  start-page: 289
  issue: 3
  year: 1987
  ident: 10.1016/j.jappgeo.2022.104675_bb0025
  article-title: Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data
  publication-title: Geophysics
  doi: 10.1190/1.1442303
– volume: 26
  start-page: 300
  issue: 1
  year: 2011
  ident: 10.1016/j.jappgeo.2022.104675_bb0115
  article-title: Study on an adaptive regularized 1D inversion method of helicopter TEM data
  publication-title: Progr. Geohys. (in Chinese)
– year: 2002
  ident: 10.1016/j.jappgeo.2022.104675_bb0160
– volume: 26
  start-page: 165
  issue: 2
  year: 2021
  ident: 10.1016/j.jappgeo.2022.104675_bb0055
  article-title: Nonlinear noise reduction for the airborne transient electromagnetic method based on kernel minimum noise fraction
  publication-title: J. Environ. Eng. Geophys.
  doi: 10.32389/JEEG20-020
– volume: 57
  start-page: 953
  issue: 1
  year: 2014
  ident: 10.1016/j.jappgeo.2022.104675_bb0015
  article-title: Weighted Laterally-constrained inversion of frequency-domain airborne EM data
  publication-title: Chin. J. Geophys.
– volume: 55
  start-page: 1636
  issue: 3
  year: 2020
  ident: 10.1016/j.jappgeo.2022.104675_bb0180
  article-title: Developments measurements of TEM sounding in China
  publication-title: Geol. J.
  doi: 10.1002/gj.3544
– volume: 30
  start-page: 1
  year: 2014
  ident: 10.1016/j.jappgeo.2022.104675_bb0075
  article-title: Parallel inversion of large-scale airborne time-domain electromagnetic data with multiple OcTree meshes
  publication-title: Inverse Problem
  doi: 10.1088/0266-5611/30/5/055011
– year: 1977
  ident: 10.1016/j.jappgeo.2022.104675_bb0150
– volume: 58
  start-page: 2637
  issue: 8
  year: 2015
  ident: 10.1016/j.jappgeo.2022.104675_bb0200
  article-title: Review on airborne EM technology and developments
  publication-title: Chinese J. Geophys. Chinese Edition
– volume: 9
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.jappgeo.2022.104675_bb0225
  article-title: PC-based artificial neural network inversion for airborne time-domain electromagnetic data
  publication-title: Appl. Geophys.
  doi: 10.1007/s11770-012-0307-7
– volume: 99
  start-page: 1
  year: 2020
  ident: 10.1016/j.jappgeo.2022.104675_bb0040
  article-title: Pseudo-2D Trans-dimensional Bayesian inversion of the full waveform TEM response from PRBS source
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 196
  start-page: 1492
  year: 2014
  ident: 10.1016/j.jappgeo.2022.104675_bb0190
  article-title: 3-D inversion of airborne electromagnetic data parallelized and accelerated by local mesh and adaptive soundings
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggt465
– volume: 60
  start-page: 31
  issue: 1
  year: 2017
  ident: 10.1016/j.jappgeo.2022.104675_bb0210
  article-title: Time-domain electromagnetic diffusion and imaging depth for airborne electromagnetic data
  publication-title: Chinese J. Geophys. (in Chinese)
  doi: 10.1002/cjg2.30025
– volume: 40
  start-page: 8
  year: 2009
  ident: 10.1016/j.jappgeo.2022.104675_bb0010
  article-title: Holistic inversion of frequency-domain airborne electromagnetic data with minimal prior information
  publication-title: Explor. Geophys.
  doi: 10.1071/EG08110
– volume: 15
  start-page: 172
  issue: 02
  year: 2018
  ident: 10.1016/j.jappgeo.2022.104675_bb0070
  article-title: Bayesian inversion of variable-dimension of airborne electromagnetic data in time domain
  publication-title: Appl. Geophys.
  doi: 10.1007/s11770-018-0684-7
– volume: 8
  start-page: 146172
  year: 2020
  ident: 10.1016/j.jappgeo.2022.104675_bb0175
  article-title: Development of the inversion method for transient electromagnetic data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3013626
– volume: 64
  start-page: 2995
  issue: 9
  year: 2021
  ident: 10.1016/j.jappgeo.2022.104675_bb0100
  article-title: Technological innovation of semi-airborne electromagnetic detection method
  publication-title: Chinese J. Geophys. (in Chinese)
– volume: 39
  start-page: 827
  year: 1991
  ident: 10.1016/j.jappgeo.2022.104675_bb0080
  article-title: Damped least-squares inversion of time-domain airborne EM data based on singular value decomposition
  publication-title: Geophys. Prospect.
  doi: 10.1111/j.1365-2478.1991.tb00346.x
– volume: 78
  start-page: E47
  issue: 1
  year: 2013
  ident: 10.1016/j.jappgeo.2022.104675_bb0125
  article-title: Three dimensional inversion of multisource time domain electromagnetic data
– volume: 29
  start-page: 163
  year: 1998
  ident: 10.1016/j.jappgeo.2022.104675_bb0110
  article-title: Fast AEM data processing and inversion
  publication-title: Explor. Geophys.
  doi: 10.1071/EG998163
– volume: 72
  start-page: F189
  issue: 4
  year: 2007
  ident: 10.1016/j.jappgeo.2022.104675_bb0195
  article-title: Simulated annealing for airborne EM inversion
  publication-title: Geophysics
  doi: 10.1190/1.2736195
– volume: 25
  start-page: 355
  issue: 3
  year: 2020
  ident: 10.1016/j.jappgeo.2022.104675_bb0050
  article-title: Resistivity-depth imaging with the airborne transient electromagnetic method based on an artificial neural network
  publication-title: J. Environ. Eng. Geophys.
  doi: 10.32389/JEEG19-087
– volume: 24
  start-page: 653
  issue: 4
  year: 2019
  ident: 10.1016/j.jappgeo.2022.104675_bb0165
  article-title: The development and applications of the helicopter-borne transient electromagnetic system CAS-HTEM
  publication-title: JEEG
  doi: 10.2113/JEEG24.4.653
– volume: 23
  start-page: 103
  issue: 1
  year: 2018
  ident: 10.1016/j.jappgeo.2022.104675_bb0170
  article-title: The application of ground-airborne TEM Systems for underground cavity detection in China
  publication-title: J. Environ. Eng. Geophys.
  doi: 10.2113/JEEG23.1.103
– volume: 46
  start-page: 254
  issue: 1
  year: 2016
  ident: 10.1016/j.jappgeo.2022.104675_bb0205
  article-title: Weighted laterally-constrained inversion of time-domain airborne electromagnetic data
  publication-title: J. Jilin Univ. (Earth Science Edition)
– volume: 80
  start-page: K25
  year: 2015
  ident: 10.1016/j.jappgeo.2022.104675_bb0120
  article-title: 3D parametric hybrid inversion of time-domain airborne electromagnetic data
  publication-title: Geophysics
  doi: 10.1190/geo2015-0141.1
– volume: 155
  start-page: 110
  year: 2018
  ident: 10.1016/j.jappgeo.2022.104675_bb0220
  article-title: A combining regularization strategy for the inversion of airborne time-domain electromagnetic data
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2018.06.007
– volume: 46
  start-page: 112
  year: 2015
  ident: 10.1016/j.jappgeo.2022.104675_bb0065
  article-title: Rapid approximate inversion of airborne TEM
  publication-title: Explor. Geophys.
  doi: 10.1071/EG14046
SSID ssj0001304
Score 2.3484318
Snippet The airborne transient electromagnetic method (ATEM) has become a popular tool in mineral and resource exploration due to its speed and high efficiency. The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104675
SubjectTerms Airborne transient electromagnetic method
Decay voltage
Lateral constrained inversion
Reference point
Title Inversion of airborne transient electromagnetic data based on reference point lateral constraint
URI https://dx.doi.org/10.1016/j.jappgeo.2022.104675
Volume 202
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14TZPubrbJsRRLVehFC73FzT5KSk1DiVd_uzvJpq0gCh4TdmCZncwj-30zCN1LkYY6JNwzoYw9Jon2hA5SLzA0MEZouOsDtMWUT2bsaR7OW2jUcGEAVul8f-3TK2_t3vhOm36RZf5LEBMe24SBACyI8Tkw2NkArLz3uYN5WB9dtZCyiz1YvWPx-MveUhTFouIAElLddgLc8Kf4tBdzxifo2CWLeFjv5xS1dH6GjvZaCJ6jN2iUUf3ywmuDRbaxZ5prXEIIAqojdnNu3sUiB74iBkgohtilsJXZThnBxTqzq1cCGMkrLCFthOkR5QWajR9eRxPPTU3wBKWk9GwBFhplKJf225XKVlRW7VRQJlRfaB7ENNDQlyw2aUQGxBClmOCR0n2oNSihl6idr3N9hbDdQsQNg4HEMZNSCa5hmGZkix5JVJ91EGt0lUjXUhz2tkoa7NgycSpOQMVJreIO6m3Firqnxl8CUXMQyTfjSKzf_130-v-iN-gQnmps7i1ql5sPfWczkDLtVibWRQfDx-fJ9AvKZtzi
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF5ED-pBfGJ97kGPadPNZk0OHkQt9XnRQm9xu4_SUtNQI-LFP-UfdCbZWgVREHpNMjDMDvPIfjMfIQdKdkITMuHZUMUeV8x40vgdz7eBb600eNeHaItb0Wzxy3bYniHv41kYhFW62F_G9CJauyc1Z81a1uvV7vyYiRgKBoawIC7aDll5ZV5foG97Or44g0M-ZKxxfn_a9By1gCeDgOUedCmh1TYQChxcaWg7QLdABlzqujQC2nzf4PKu2HYidsQs05pLEWlTx4I8wG0HEPfnOIQLpE2ovk1wJZAUip1VoJ2H6k3Ghmr9al9mWbcYOmSsuF5FfONPCfFLkmsskyVXndKT0gArZMakq2Txy87CNfKAmzmKf2x0aKnsjcCJUkNzzHk4W0kdsc6j7KY4IEkRg0oxWWoKMp-0JjQb9uDrgcQR6AFVWKciXUW-TlpTseUGmU2HqdkkFFSIhOXIgBxzpbQUBtk7I-iyFNN1XiF8bKtEuR3mqNsgGYPV-okzcYImTkoTV0j1Uywrl3j8JRCNDyL55o0JJJrfRbf-L7pP5pv3N9fJ9cXt1TZZwDclMHiHzOajZ7ML5U_e2SvcjcJxT9m_PwBpaRcD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inversion+of+airborne+transient+electromagnetic+data+based+on+reference+point+lateral+constraint&rft.jtitle=Journal+of+applied+geophysics&rft.au=Zhang%2C+Jifeng&rft.au=Huang%2C+Chaofeng&rft.au=Feng%2C+Bing&rft.au=Shi%2C+Yu&rft.date=2022-07-01&rft.issn=0926-9851&rft.volume=202&rft.spage=104675&rft_id=info:doi/10.1016%2Fj.jappgeo.2022.104675&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jappgeo_2022_104675
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9851&client=summon