The Role of Geometry on the Ease of Solidification Inside and Out of Cylindrical Nanopores

We investigated the role of a nanoporous particle on the formation of macroscopic solid in the framework of equilibrium thermodynamics and from the free-energy perspective. The model particle has cylindrical pores with equidistant circular openings on the particle surface. We focused on two potentia...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 41; no. 1; pp. 49 - 65
Main Authors Binyaminov, Hikmat, Elliott, Janet A. W.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We investigated the role of a nanoporous particle on the formation of macroscopic solid in the framework of equilibrium thermodynamics and from the free-energy perspective. The model particle has cylindrical pores with equidistant circular openings on the particle surface. We focused on two potentially limiting steps: (i) the solid nucleation from liquid inside a single pore and (ii) the bridging of multiple pores on the particle surface. We examined the nucleation near the liquid–vapor meniscus inside a pore by considering different solid–vapor and solid–pore wall contact angles, as well as the liquid–vapor meniscus angles. For bridging, we quantified the effects of the proximity of neighboring pores and the number of participating pores where we considered two or three pores, placed two different distances apart, and three contact angles of the solid with the particle surface. Except in special cases where an analytical solution could be developed, we determined the equilibrium nucleus and bridge shapes numerically using the Surface Evolver code. The geometry of these equilibrium shapes was the key for correctly calculating the energy barriers. Our results indicate that the meniscus angle can be an important factor in reducing the barrier for nucleation if the internal angles of the solid nucleus satisfy a certain criterion. For the solid growth out of the pores, we found that the barriers were significantly lower in the presence of multiple, closely packed pores compared to the growth from a single pore. This paper is deliberately written with no reference to material properties or a specific process to highlight the generality of geometry-controlled barriers. A direct application where our findings can be particularly valuable is the ice formation in clouds, which is the subject of intensive research in atmospheric sciences for its role in influencing precipitation patterns and hence the climate.
AbstractList We investigated the role of a nanoporous particle on the formation of macroscopic solid in the framework of equilibrium thermodynamics and from the free-energy perspective. The model particle has cylindrical pores with equidistant circular openings on the particle surface. We focused on two potentially limiting steps: (i) the solid nucleation from liquid inside a single pore and (ii) the bridging of multiple pores on the particle surface. We examined the nucleation near the liquid–vapor meniscus inside a pore by considering different solid–vapor and solid–pore wall contact angles, as well as the liquid–vapor meniscus angles. For bridging, we quantified the effects of the proximity of neighboring pores and the number of participating pores where we considered two or three pores, placed two different distances apart, and three contact angles of the solid with the particle surface. Except in special cases where an analytical solution could be developed, we determined the equilibrium nucleus and bridge shapes numerically using the Surface Evolver code. The geometry of these equilibrium shapes was the key for correctly calculating the energy barriers. Our results indicate that the meniscus angle can be an important factor in reducing the barrier for nucleation if the internal angles of the solid nucleus satisfy a certain criterion. For the solid growth out of the pores, we found that the barriers were significantly lower in the presence of multiple, closely packed pores compared to the growth from a single pore. This paper is deliberately written with no reference to material properties or a specific process to highlight the generality of geometry-controlled barriers. A direct application where our findings can be particularly valuable is the ice formation in clouds, which is the subject of intensive research in atmospheric sciences for its role in influencing precipitation patterns and hence the climate.
We investigated the role of a nanoporous particle on the formation of macroscopic solid in the framework of equilibrium thermodynamics and from the free-energy perspective. The model particle has cylindrical pores with equidistant circular openings on the particle surface. We focused on two potentially limiting steps: (i) the solid nucleation from liquid inside a single pore and (ii) the bridging of multiple pores on the particle surface. We examined the nucleation near the liquid-vapor meniscus inside a pore by considering different solid-vapor and solid-pore wall contact angles, as well as the liquid-vapor meniscus angles. For bridging, we quantified the effects of the proximity of neighboring pores and the number of participating pores where we considered two or three pores, placed two different distances apart, and three contact angles of the solid with the particle surface. Except in special cases where an analytical solution could be developed, we determined the equilibrium nucleus and bridge shapes numerically using the Surface Evolver code. The geometry of these equilibrium shapes was the key for correctly calculating the energy barriers. Our results indicate that the meniscus angle can be an important factor in reducing the barrier for nucleation if the internal angles of the solid nucleus satisfy a certain criterion. For the solid growth out of the pores, we found that the barriers were significantly lower in the presence of multiple, closely packed pores compared to the growth from a single pore. This paper is deliberately written with no reference to material properties or a specific process to highlight the generality of geometry-controlled barriers. A direct application where our findings can be particularly valuable is the ice formation in clouds, which is the subject of intensive research in atmospheric sciences for its role in influencing precipitation patterns and hence the climate.We investigated the role of a nanoporous particle on the formation of macroscopic solid in the framework of equilibrium thermodynamics and from the free-energy perspective. The model particle has cylindrical pores with equidistant circular openings on the particle surface. We focused on two potentially limiting steps: (i) the solid nucleation from liquid inside a single pore and (ii) the bridging of multiple pores on the particle surface. We examined the nucleation near the liquid-vapor meniscus inside a pore by considering different solid-vapor and solid-pore wall contact angles, as well as the liquid-vapor meniscus angles. For bridging, we quantified the effects of the proximity of neighboring pores and the number of participating pores where we considered two or three pores, placed two different distances apart, and three contact angles of the solid with the particle surface. Except in special cases where an analytical solution could be developed, we determined the equilibrium nucleus and bridge shapes numerically using the Surface Evolver code. The geometry of these equilibrium shapes was the key for correctly calculating the energy barriers. Our results indicate that the meniscus angle can be an important factor in reducing the barrier for nucleation if the internal angles of the solid nucleus satisfy a certain criterion. For the solid growth out of the pores, we found that the barriers were significantly lower in the presence of multiple, closely packed pores compared to the growth from a single pore. This paper is deliberately written with no reference to material properties or a specific process to highlight the generality of geometry-controlled barriers. A direct application where our findings can be particularly valuable is the ice formation in clouds, which is the subject of intensive research in atmospheric sciences for its role in influencing precipitation patterns and hence the climate.
Author Binyaminov, Hikmat
Elliott, Janet A. W.
AuthorAffiliation Department of Chemical and Materials Engineering
AuthorAffiliation_xml – name: Department of Chemical and Materials Engineering
Author_xml – sequence: 1
  givenname: Hikmat
  orcidid: 0000-0003-2727-6309
  surname: Binyaminov
  fullname: Binyaminov, Hikmat
– sequence: 2
  givenname: Janet A. W.
  orcidid: 0000-0002-7883-3243
  surname: Elliott
  fullname: Elliott, Janet A. W.
  email: janet.elliott@ualberta.ca
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39718344$$D View this record in MEDLINE/PubMed
BookMark eNqNkT1PwzAYhC0Eoh_wDxDKyJJix3bsjKgqpVJFJSgLS-TENrhK7GInQ_89Lm0ZEdMr3T33DncjcG6dVQDcIDhBMEP3og6TRtiPtjd-QmqIioycgSGiGUwpz9g5GEJGcMpIjgdgFMIGQlhgUlyCAS4Y4piQIXhff6rkxTUqcTqZK9eqzu8SZ5Mu6jMRfvRX1xhptKlFZ6K1sMFIlQgrk1Xf7YHprjFW-gg0ybOwbuu8ClfgQosmqOvjHYO3x9l6-pQuV_PF9GGZCoxhl-oCSsYoqmqca8ZYRSrGpagYFVDlgkOuc5JlkOmMZZiRWmOhpMhpQSXNBcFjcHf4u_Xuq1ehK1sTatXEcpTrQ4lRTjnlBcL_QAnnBGKeR_T2iPZVq2S59aYVfleeqosAOQC1dyF4pX8RBMv9QmVcqDwtVB4XijF4iO3djeu9jd38HfkGZeqWCg
Cites_doi 10.1021/acs.langmuir.6b01561
10.1021/la991227e
10.1063/1.1643728
10.1021/acs.jpcb.1c02877
10.5194/acp-22-10099-2022
10.1021/ja411507a
10.1021/ja210878c
10.1103/PhysRevLett.91.015703
10.1103/PhysRevLett.120.165701
10.1021/ja503311r
10.1021/acs.jpcc.7b09631
10.1073/pnas.1620999114
10.1088/0953-8984/19/46/466106
10.1073/pnas.1617717114
10.1039/C6CP05253C
10.1039/C4CP03948C
10.1021/acs.iecr.9b04116
10.1088/0953-8984/18/6/R01
10.1021/la304603x
10.1021/jp5088493
10.1103/PhysRevLett.97.065701
10.5194/acp-20-9419-2020
10.1002/cjce.5450850516
10.1016/j.cis.2004.05.001
10.1063/5.0049031
10.1088/0953-8984/13/11/201
10.1063/1.332819
10.1103/PhysRevE.91.052402
10.1021/acs.jpcb.0c05946
10.1016/j.mser.2005.06.002
10.1103/PhysRevLett.101.036101
10.1021/la970776m
10.1039/b919724a
10.1021/acs.langmuir.9b01602
10.1038/ncomms15372
10.1063/5.0146952
10.1080/10586458.1992.10504253
10.1038/s41467-019-08292-0
10.1073/pnas.1813647116
10.1038/nature14295
10.1063/5.0032602
10.1088/0034-4885/62/12/201
10.1021/jp205008w
10.1021/jacs.0c10663
10.1021/jp4118375
10.1038/s41586-019-1827-6
10.5194/acp-23-10625-2023
10.1021/acsnano.9b01014
ContentType Journal Article
Copyright 2024 The Authors. Published by American Chemical Society
Copyright_xml – notice: 2024 The Authors. Published by American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acs.langmuir.4c01924
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 65
ExternalDocumentID 39718344
10_1021_acs_langmuir_4c01924
b943161114
Genre Journal Article
GroupedDBID ---
-~X
.K2
4.4
55A
5GY
5VS
7~N
AABXI
AAHBH
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
YQT
~02
AAYXX
ABBLG
ABLBI
CITATION
NPM
53G
7X8
7S9
L.6
ID FETCH-LOGICAL-a330t-f90d7751bc36f777b4b78dab75a0e6a808f642207f272374cf3aeda6595d56a43
IEDL.DBID ACS
ISSN 0743-7463
1520-5827
IngestDate Thu Jul 10 18:59:48 EDT 2025
Fri Jul 11 05:33:46 EDT 2025
Mon Jul 21 05:39:52 EDT 2025
Tue Jul 01 05:41:02 EDT 2025
Thu Jan 16 03:20:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://doi.org/10.15223/policy-029
https://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.15223/policy-045
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a330t-f90d7751bc36f777b4b78dab75a0e6a808f642207f272374cf3aeda6595d56a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2727-6309
0000-0002-7883-3243
PMID 39718344
PQID 3148840386
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_3165858913
proquest_miscellaneous_3148840386
pubmed_primary_39718344
crossref_primary_10_1021_acs_langmuir_4c01924
acs_journals_10_1021_acs_langmuir_4c01924
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-14
PublicationDateYYYYMMDD 2025-01-14
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
Elliott J. A. W. (ref47/cit47) 2001; 35
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref29/cit29
  doi: 10.1021/acs.langmuir.6b01561
– ident: ref40/cit40
  doi: 10.1021/la991227e
– ident: ref50/cit50
  doi: 10.1063/1.1643728
– volume: 35
  start-page: 274
  issue: 4
  year: 2001
  ident: ref47/cit47
  publication-title: Chem. Eng. Educ.
– ident: ref25/cit25
  doi: 10.1021/acs.jpcb.1c02877
– ident: ref10/cit10
  doi: 10.5194/acp-22-10099-2022
– ident: ref33/cit33
  doi: 10.1021/ja411507a
– ident: ref42/cit42
  doi: 10.1021/ja210878c
– ident: ref35/cit35
  doi: 10.1103/PhysRevLett.91.015703
– ident: ref7/cit7
  doi: 10.1103/PhysRevLett.120.165701
– ident: ref43/cit43
  doi: 10.1021/ja503311r
– ident: ref41/cit41
  doi: 10.1021/acs.jpcc.7b09631
– ident: ref15/cit15
  doi: 10.1073/pnas.1620999114
– ident: ref22/cit22
  doi: 10.1088/0953-8984/19/46/466106
– ident: ref6/cit6
  doi: 10.1073/pnas.1617717114
– ident: ref11/cit11
  doi: 10.1039/C6CP05253C
– ident: ref16/cit16
  doi: 10.1039/C4CP03948C
– ident: ref39/cit39
  doi: 10.1021/acs.iecr.9b04116
– ident: ref3/cit3
  doi: 10.1088/0953-8984/18/6/R01
– ident: ref26/cit26
  doi: 10.1021/la304603x
– ident: ref49/cit49
– ident: ref38/cit38
  doi: 10.1021/jp5088493
– ident: ref23/cit23
  doi: 10.1103/PhysRevLett.97.065701
– ident: ref5/cit5
  doi: 10.5194/acp-20-9419-2020
– ident: ref24/cit24
  doi: 10.1002/cjce.5450850516
– ident: ref36/cit36
  doi: 10.1016/j.cis.2004.05.001
– ident: ref46/cit46
  doi: 10.1063/5.0049031
– ident: ref2/cit2
  doi: 10.1088/0953-8984/13/11/201
– ident: ref44/cit44
  doi: 10.1063/1.332819
– ident: ref32/cit32
  doi: 10.1103/PhysRevE.91.052402
– ident: ref45/cit45
  doi: 10.1021/acs.jpcb.0c05946
– ident: ref34/cit34
  doi: 10.1016/j.mser.2005.06.002
– ident: ref12/cit12
  doi: 10.1103/PhysRevLett.101.036101
– ident: ref37/cit37
  doi: 10.1021/la970776m
– ident: ref18/cit18
  doi: 10.1039/b919724a
– ident: ref27/cit27
  doi: 10.1021/acs.langmuir.9b01602
– ident: ref8/cit8
  doi: 10.1038/ncomms15372
– ident: ref28/cit28
  doi: 10.1063/5.0146952
– ident: ref48/cit48
  doi: 10.1080/10586458.1992.10504253
– ident: ref13/cit13
  doi: 10.1038/s41467-019-08292-0
– ident: ref4/cit4
  doi: 10.1073/pnas.1813647116
– ident: ref14/cit14
  doi: 10.1038/nature14295
– ident: ref30/cit30
  doi: 10.1063/5.0032602
– ident: ref1/cit1
  doi: 10.1088/0034-4885/62/12/201
– ident: ref19/cit19
  doi: 10.1021/jp205008w
– ident: ref20/cit20
  doi: 10.1021/jacs.0c10663
– ident: ref31/cit31
  doi: 10.1021/jp4118375
– ident: ref21/cit21
  doi: 10.1038/s41586-019-1827-6
– ident: ref17/cit17
  doi: 10.5194/acp-23-10625-2023
– ident: ref9/cit9
  doi: 10.1021/acsnano.9b01014
SSID ssj0009349
Score 2.4687939
Snippet We investigated the role of a nanoporous particle on the formation of macroscopic solid in the framework of equilibrium thermodynamics and from the free-energy...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 49
SubjectTerms climate
energy
geometry
ice
liquids
nanopores
solidification
thermodynamics
Title The Role of Geometry on the Ease of Solidification Inside and Out of Cylindrical Nanopores
URI http://dx.doi.org/10.1021/acs.langmuir.4c01924
https://www.ncbi.nlm.nih.gov/pubmed/39718344
https://www.proquest.com/docview/3148840386
https://www.proquest.com/docview/3165858913
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT90wELYoHOiFpaXlscmVuPTgV2-xnSN6YpVaJCgS4hLZsSOhQoJIcoBfzzh5AVEEpVdrlGVmnPkm4_kGoW2TMgsoIiWJ1AmRRnKSFsIS5RJKC5oaKWO_889f6uBMHp0n50-J4t8VfM5-2Lwex3931-3l7VjmEZLID2iOK9jHEQpNTp9IdkUPdyPtppZKDK1yr1wlBqS8fh6QXkGZXbTZW0THQ89Of8jkz7ht3Di_f0nh-M4XWUILU-CJd3pPWUYzofyE5ifDvLfP6AI8Bp9UVwFXBd4P1XWAZVyVGCAi3oVgF9dPq6tLH08XdQbFh920T2xLj4_bJgpM7gC3-o53BMOXuwJ4H-oVdLa3-3tyQKaTF4gVgjakSKnXOmEuF6rQWjvptPHW6cTSoKyhpoC8hVNdcM2FljmYN3gbuQl9oqwUX9BsWZVhFWGlAZDa1HrpgmTOOcsipRnPjZdGmTBC30Ex2XTn1FlXFOcsi4uDtrKptkaIDKbKbnoyjn_IfxvsmYEyYynElqFq60xAFgiprTDqLRlAZ3Hoohihr70zPN4VUByLE0rW_uPp19FHHocHU0aY3ECzzW0bNgHRNG6rc-MHuMfwZg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5ReqCXlr5gC6VG6qUHb-3YsZ0jWgFLy0MqUKFeIjt2JAQkFUkO7a9nnN2AWgkQ19HInsxMMp9j-xuAzybjFlFERlOpUyqNTGhWCkuVSxkrWWakjPedDw7V9FR-O0vPFiAd7sKgEQ2O1PSb-HfsAvxrlMVfeFfd-fVYFhGZyGfwHPFIEhN7a3J8x7UrZqg3sm9qqcRwY-6eUWJdKpp_69I9YLMvOjuv4Oetuf1Zk4tx17px8fc_JscnP88yvJzDULI1y5vXsBCqN7A0Gbq_vYVfmD_kR30ZSF2S3VBfBRSTuiIIGMk2lr4oP64vz308a9SHl-z1vT-JrTw56tqoMPmDKNb3LCQEv-M1gv3QvIPTne2TyZTO-zBQKwRraZkxr3XKXSFUqbV20mnjrdOpZUFZw0yJq5iE6TLRidCywGAHbyNToU-VleI9LFZ1FVaBKI3w1GbWSxckd85ZHgnOksJ4aZQJI_iCjsnn71GT91vkCc-jcPBWPvfWCOgQsfz3jJrjEf3NIaw5OjNujNgq1F2TC1wT4kJXGPWQDmK12IJRjGBllhO3syKm47FfyYcnWP8JlqYnB_v5_t7h9zV4kcS2woxTLtdhsb3uwkfEOq3b6DP7BvG2-Mc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSMClvOm2BYzEhYMXO3Zs51gtXVoeBVEqVb1EduxIVdukapJD--s7k01KQSoIrqOR48yMM58z9jeEvLGZcIAiMpYqkzJlVcKyUjqmfcp5yTOrFN53_rKjt_bUx_10_1qrL5hEAyM1fREfV_VpKAeGAfEO5fgb76Q7PJuqAtGJuk3uYOUOg3tjtvuTb1cukC8ycBql5Xhr7oZRMDcVza-56QbA2See-QNycDXl_rzJ0bRr_bS4-I3N8b_e6SFZHuAo3VjEzyNyK1aPyb3Z2AXuCTmAOKLf6-NI65J-iPVJBDGtKwrAkW5CCkT5bn18GPDMUe9mut33AKWuCvRr16LC7BzQbOjZSCh8z2sA_bF5Svbmmz9mW2zox8CclLxlZcaDManwhdSlMcYrb2xw3qSOR-0styXsZhJuysQk0qgCnB6DQ8bCkGqn5DOyVNVVXCFUG4CpLnNB-aiE994JJDpLChuU1TZOyFswTD6spybvS-WJyFE4WisfrDUhbPRafrqg6PiL_uvRtTkYEwskrop11-QS9oaw4ZVW_0kHMBu2YpQT8nwRF1dPBWwnsG_J6j_M_hW5--39PP-8vfNpjdxPsLswF0yodbLUnnXxBUCe1r_sg_sSBK77Sg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+Geometry+on+the+Ease+of+Solidification+Inside+and+Out+of+Cylindrical+Nanopores&rft.jtitle=Langmuir&rft.au=Binyaminov%2C+Hikmat&rft.au=Elliott%2C+Janet+A.+W.&rft.date=2025-01-14&rft.issn=0743-7463&rft.eissn=1520-5827&rft.volume=41&rft.issue=1&rft.spage=49&rft.epage=65&rft_id=info:doi/10.1021%2Facs.langmuir.4c01924&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_langmuir_4c01924
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon