The Role of Geometry on the Ease of Solidification Inside and Out of Cylindrical Nanopores
We investigated the role of a nanoporous particle on the formation of macroscopic solid in the framework of equilibrium thermodynamics and from the free-energy perspective. The model particle has cylindrical pores with equidistant circular openings on the particle surface. We focused on two potentia...
Saved in:
Published in | Langmuir Vol. 41; no. 1; pp. 49 - 65 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
14.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We investigated the role of a nanoporous particle on the formation of macroscopic solid in the framework of equilibrium thermodynamics and from the free-energy perspective. The model particle has cylindrical pores with equidistant circular openings on the particle surface. We focused on two potentially limiting steps: (i) the solid nucleation from liquid inside a single pore and (ii) the bridging of multiple pores on the particle surface. We examined the nucleation near the liquid–vapor meniscus inside a pore by considering different solid–vapor and solid–pore wall contact angles, as well as the liquid–vapor meniscus angles. For bridging, we quantified the effects of the proximity of neighboring pores and the number of participating pores where we considered two or three pores, placed two different distances apart, and three contact angles of the solid with the particle surface. Except in special cases where an analytical solution could be developed, we determined the equilibrium nucleus and bridge shapes numerically using the Surface Evolver code. The geometry of these equilibrium shapes was the key for correctly calculating the energy barriers. Our results indicate that the meniscus angle can be an important factor in reducing the barrier for nucleation if the internal angles of the solid nucleus satisfy a certain criterion. For the solid growth out of the pores, we found that the barriers were significantly lower in the presence of multiple, closely packed pores compared to the growth from a single pore. This paper is deliberately written with no reference to material properties or a specific process to highlight the generality of geometry-controlled barriers. A direct application where our findings can be particularly valuable is the ice formation in clouds, which is the subject of intensive research in atmospheric sciences for its role in influencing precipitation patterns and hence the climate. |
---|---|
AbstractList | We investigated the role of a nanoporous particle on the formation of macroscopic solid in the framework of equilibrium thermodynamics and from the free-energy perspective. The model particle has cylindrical pores with equidistant circular openings on the particle surface. We focused on two potentially limiting steps: (i) the solid nucleation from liquid inside a single pore and (ii) the bridging of multiple pores on the particle surface. We examined the nucleation near the liquid–vapor meniscus inside a pore by considering different solid–vapor and solid–pore wall contact angles, as well as the liquid–vapor meniscus angles. For bridging, we quantified the effects of the proximity of neighboring pores and the number of participating pores where we considered two or three pores, placed two different distances apart, and three contact angles of the solid with the particle surface. Except in special cases where an analytical solution could be developed, we determined the equilibrium nucleus and bridge shapes numerically using the Surface Evolver code. The geometry of these equilibrium shapes was the key for correctly calculating the energy barriers. Our results indicate that the meniscus angle can be an important factor in reducing the barrier for nucleation if the internal angles of the solid nucleus satisfy a certain criterion. For the solid growth out of the pores, we found that the barriers were significantly lower in the presence of multiple, closely packed pores compared to the growth from a single pore. This paper is deliberately written with no reference to material properties or a specific process to highlight the generality of geometry-controlled barriers. A direct application where our findings can be particularly valuable is the ice formation in clouds, which is the subject of intensive research in atmospheric sciences for its role in influencing precipitation patterns and hence the climate. We investigated the role of a nanoporous particle on the formation of macroscopic solid in the framework of equilibrium thermodynamics and from the free-energy perspective. The model particle has cylindrical pores with equidistant circular openings on the particle surface. We focused on two potentially limiting steps: (i) the solid nucleation from liquid inside a single pore and (ii) the bridging of multiple pores on the particle surface. We examined the nucleation near the liquid-vapor meniscus inside a pore by considering different solid-vapor and solid-pore wall contact angles, as well as the liquid-vapor meniscus angles. For bridging, we quantified the effects of the proximity of neighboring pores and the number of participating pores where we considered two or three pores, placed two different distances apart, and three contact angles of the solid with the particle surface. Except in special cases where an analytical solution could be developed, we determined the equilibrium nucleus and bridge shapes numerically using the Surface Evolver code. The geometry of these equilibrium shapes was the key for correctly calculating the energy barriers. Our results indicate that the meniscus angle can be an important factor in reducing the barrier for nucleation if the internal angles of the solid nucleus satisfy a certain criterion. For the solid growth out of the pores, we found that the barriers were significantly lower in the presence of multiple, closely packed pores compared to the growth from a single pore. This paper is deliberately written with no reference to material properties or a specific process to highlight the generality of geometry-controlled barriers. A direct application where our findings can be particularly valuable is the ice formation in clouds, which is the subject of intensive research in atmospheric sciences for its role in influencing precipitation patterns and hence the climate.We investigated the role of a nanoporous particle on the formation of macroscopic solid in the framework of equilibrium thermodynamics and from the free-energy perspective. The model particle has cylindrical pores with equidistant circular openings on the particle surface. We focused on two potentially limiting steps: (i) the solid nucleation from liquid inside a single pore and (ii) the bridging of multiple pores on the particle surface. We examined the nucleation near the liquid-vapor meniscus inside a pore by considering different solid-vapor and solid-pore wall contact angles, as well as the liquid-vapor meniscus angles. For bridging, we quantified the effects of the proximity of neighboring pores and the number of participating pores where we considered two or three pores, placed two different distances apart, and three contact angles of the solid with the particle surface. Except in special cases where an analytical solution could be developed, we determined the equilibrium nucleus and bridge shapes numerically using the Surface Evolver code. The geometry of these equilibrium shapes was the key for correctly calculating the energy barriers. Our results indicate that the meniscus angle can be an important factor in reducing the barrier for nucleation if the internal angles of the solid nucleus satisfy a certain criterion. For the solid growth out of the pores, we found that the barriers were significantly lower in the presence of multiple, closely packed pores compared to the growth from a single pore. This paper is deliberately written with no reference to material properties or a specific process to highlight the generality of geometry-controlled barriers. A direct application where our findings can be particularly valuable is the ice formation in clouds, which is the subject of intensive research in atmospheric sciences for its role in influencing precipitation patterns and hence the climate. |
Author | Binyaminov, Hikmat Elliott, Janet A. W. |
AuthorAffiliation | Department of Chemical and Materials Engineering |
AuthorAffiliation_xml | – name: Department of Chemical and Materials Engineering |
Author_xml | – sequence: 1 givenname: Hikmat orcidid: 0000-0003-2727-6309 surname: Binyaminov fullname: Binyaminov, Hikmat – sequence: 2 givenname: Janet A. W. orcidid: 0000-0002-7883-3243 surname: Elliott fullname: Elliott, Janet A. W. email: janet.elliott@ualberta.ca |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39718344$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkT1PwzAYhC0Eoh_wDxDKyJJix3bsjKgqpVJFJSgLS-TENrhK7GInQ_89Lm0ZEdMr3T33DncjcG6dVQDcIDhBMEP3og6TRtiPtjd-QmqIioycgSGiGUwpz9g5GEJGcMpIjgdgFMIGQlhgUlyCAS4Y4piQIXhff6rkxTUqcTqZK9eqzu8SZ5Mu6jMRfvRX1xhptKlFZ6K1sMFIlQgrk1Xf7YHprjFW-gg0ybOwbuu8ClfgQosmqOvjHYO3x9l6-pQuV_PF9GGZCoxhl-oCSsYoqmqca8ZYRSrGpagYFVDlgkOuc5JlkOmMZZiRWmOhpMhpQSXNBcFjcHf4u_Xuq1ehK1sTatXEcpTrQ4lRTjnlBcL_QAnnBGKeR_T2iPZVq2S59aYVfleeqosAOQC1dyF4pX8RBMv9QmVcqDwtVB4XijF4iO3djeu9jd38HfkGZeqWCg |
Cites_doi | 10.1021/acs.langmuir.6b01561 10.1021/la991227e 10.1063/1.1643728 10.1021/acs.jpcb.1c02877 10.5194/acp-22-10099-2022 10.1021/ja411507a 10.1021/ja210878c 10.1103/PhysRevLett.91.015703 10.1103/PhysRevLett.120.165701 10.1021/ja503311r 10.1021/acs.jpcc.7b09631 10.1073/pnas.1620999114 10.1088/0953-8984/19/46/466106 10.1073/pnas.1617717114 10.1039/C6CP05253C 10.1039/C4CP03948C 10.1021/acs.iecr.9b04116 10.1088/0953-8984/18/6/R01 10.1021/la304603x 10.1021/jp5088493 10.1103/PhysRevLett.97.065701 10.5194/acp-20-9419-2020 10.1002/cjce.5450850516 10.1016/j.cis.2004.05.001 10.1063/5.0049031 10.1088/0953-8984/13/11/201 10.1063/1.332819 10.1103/PhysRevE.91.052402 10.1021/acs.jpcb.0c05946 10.1016/j.mser.2005.06.002 10.1103/PhysRevLett.101.036101 10.1021/la970776m 10.1039/b919724a 10.1021/acs.langmuir.9b01602 10.1038/ncomms15372 10.1063/5.0146952 10.1080/10586458.1992.10504253 10.1038/s41467-019-08292-0 10.1073/pnas.1813647116 10.1038/nature14295 10.1063/5.0032602 10.1088/0034-4885/62/12/201 10.1021/jp205008w 10.1021/jacs.0c10663 10.1021/jp4118375 10.1038/s41586-019-1827-6 10.5194/acp-23-10625-2023 10.1021/acsnano.9b01014 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Published by American Chemical Society |
Copyright_xml | – notice: 2024 The Authors. Published by American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.langmuir.4c01924 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 65 |
ExternalDocumentID | 39718344 10_1021_acs_langmuir_4c01924 b943161114 |
Genre | Journal Article |
GroupedDBID | --- -~X .K2 4.4 55A 5GY 5VS 7~N AABXI AAHBH ABJNI ABMVS ABQRX ABUCX ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ RNS ROL TN5 UI2 UPT VF5 VG9 W1F YQT ~02 AAYXX ABBLG ABLBI CITATION NPM 53G 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a330t-f90d7751bc36f777b4b78dab75a0e6a808f642207f272374cf3aeda6595d56a43 |
IEDL.DBID | ACS |
ISSN | 0743-7463 1520-5827 |
IngestDate | Thu Jul 10 18:59:48 EDT 2025 Fri Jul 11 05:33:46 EDT 2025 Mon Jul 21 05:39:52 EDT 2025 Tue Jul 01 05:41:02 EDT 2025 Thu Jan 16 03:20:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://creativecommons.org/licenses/by-nc-nd/4.0 https://doi.org/10.15223/policy-045 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a330t-f90d7751bc36f777b4b78dab75a0e6a808f642207f272374cf3aeda6595d56a43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2727-6309 0000-0002-7883-3243 |
PMID | 39718344 |
PQID | 3148840386 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_3165858913 proquest_miscellaneous_3148840386 pubmed_primary_39718344 crossref_primary_10_1021_acs_langmuir_4c01924 acs_journals_10_1021_acs_langmuir_4c01924 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-14 |
PublicationDateYYYYMMDD | 2025-01-14 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2025 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 Elliott J. A. W. (ref47/cit47) 2001; 35 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref29/cit29 doi: 10.1021/acs.langmuir.6b01561 – ident: ref40/cit40 doi: 10.1021/la991227e – ident: ref50/cit50 doi: 10.1063/1.1643728 – volume: 35 start-page: 274 issue: 4 year: 2001 ident: ref47/cit47 publication-title: Chem. Eng. Educ. – ident: ref25/cit25 doi: 10.1021/acs.jpcb.1c02877 – ident: ref10/cit10 doi: 10.5194/acp-22-10099-2022 – ident: ref33/cit33 doi: 10.1021/ja411507a – ident: ref42/cit42 doi: 10.1021/ja210878c – ident: ref35/cit35 doi: 10.1103/PhysRevLett.91.015703 – ident: ref7/cit7 doi: 10.1103/PhysRevLett.120.165701 – ident: ref43/cit43 doi: 10.1021/ja503311r – ident: ref41/cit41 doi: 10.1021/acs.jpcc.7b09631 – ident: ref15/cit15 doi: 10.1073/pnas.1620999114 – ident: ref22/cit22 doi: 10.1088/0953-8984/19/46/466106 – ident: ref6/cit6 doi: 10.1073/pnas.1617717114 – ident: ref11/cit11 doi: 10.1039/C6CP05253C – ident: ref16/cit16 doi: 10.1039/C4CP03948C – ident: ref39/cit39 doi: 10.1021/acs.iecr.9b04116 – ident: ref3/cit3 doi: 10.1088/0953-8984/18/6/R01 – ident: ref26/cit26 doi: 10.1021/la304603x – ident: ref49/cit49 – ident: ref38/cit38 doi: 10.1021/jp5088493 – ident: ref23/cit23 doi: 10.1103/PhysRevLett.97.065701 – ident: ref5/cit5 doi: 10.5194/acp-20-9419-2020 – ident: ref24/cit24 doi: 10.1002/cjce.5450850516 – ident: ref36/cit36 doi: 10.1016/j.cis.2004.05.001 – ident: ref46/cit46 doi: 10.1063/5.0049031 – ident: ref2/cit2 doi: 10.1088/0953-8984/13/11/201 – ident: ref44/cit44 doi: 10.1063/1.332819 – ident: ref32/cit32 doi: 10.1103/PhysRevE.91.052402 – ident: ref45/cit45 doi: 10.1021/acs.jpcb.0c05946 – ident: ref34/cit34 doi: 10.1016/j.mser.2005.06.002 – ident: ref12/cit12 doi: 10.1103/PhysRevLett.101.036101 – ident: ref37/cit37 doi: 10.1021/la970776m – ident: ref18/cit18 doi: 10.1039/b919724a – ident: ref27/cit27 doi: 10.1021/acs.langmuir.9b01602 – ident: ref8/cit8 doi: 10.1038/ncomms15372 – ident: ref28/cit28 doi: 10.1063/5.0146952 – ident: ref48/cit48 doi: 10.1080/10586458.1992.10504253 – ident: ref13/cit13 doi: 10.1038/s41467-019-08292-0 – ident: ref4/cit4 doi: 10.1073/pnas.1813647116 – ident: ref14/cit14 doi: 10.1038/nature14295 – ident: ref30/cit30 doi: 10.1063/5.0032602 – ident: ref1/cit1 doi: 10.1088/0034-4885/62/12/201 – ident: ref19/cit19 doi: 10.1021/jp205008w – ident: ref20/cit20 doi: 10.1021/jacs.0c10663 – ident: ref31/cit31 doi: 10.1021/jp4118375 – ident: ref21/cit21 doi: 10.1038/s41586-019-1827-6 – ident: ref17/cit17 doi: 10.5194/acp-23-10625-2023 – ident: ref9/cit9 doi: 10.1021/acsnano.9b01014 |
SSID | ssj0009349 |
Score | 2.4687939 |
Snippet | We investigated the role of a nanoporous particle on the formation of macroscopic solid in the framework of equilibrium thermodynamics and from the free-energy... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 49 |
SubjectTerms | climate energy geometry ice liquids nanopores solidification thermodynamics |
Title | The Role of Geometry on the Ease of Solidification Inside and Out of Cylindrical Nanopores |
URI | http://dx.doi.org/10.1021/acs.langmuir.4c01924 https://www.ncbi.nlm.nih.gov/pubmed/39718344 https://www.proquest.com/docview/3148840386 https://www.proquest.com/docview/3165858913 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT90wELYoHOiFpaXlscmVuPTgV2-xnSN6YpVaJCgS4hLZsSOhQoJIcoBfzzh5AVEEpVdrlGVmnPkm4_kGoW2TMgsoIiWJ1AmRRnKSFsIS5RJKC5oaKWO_889f6uBMHp0n50-J4t8VfM5-2Lwex3931-3l7VjmEZLID2iOK9jHEQpNTp9IdkUPdyPtppZKDK1yr1wlBqS8fh6QXkGZXbTZW0THQ89Of8jkz7ht3Di_f0nh-M4XWUILU-CJd3pPWUYzofyE5ifDvLfP6AI8Bp9UVwFXBd4P1XWAZVyVGCAi3oVgF9dPq6tLH08XdQbFh920T2xLj4_bJgpM7gC3-o53BMOXuwJ4H-oVdLa3-3tyQKaTF4gVgjakSKnXOmEuF6rQWjvptPHW6cTSoKyhpoC8hVNdcM2FljmYN3gbuQl9oqwUX9BsWZVhFWGlAZDa1HrpgmTOOcsipRnPjZdGmTBC30Ex2XTn1FlXFOcsi4uDtrKptkaIDKbKbnoyjn_IfxvsmYEyYynElqFq60xAFgiprTDqLRlAZ3Hoohihr70zPN4VUByLE0rW_uPp19FHHocHU0aY3ECzzW0bNgHRNG6rc-MHuMfwZg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5ReqCXlr5gC6VG6qUHb-3YsZ0jWgFLy0MqUKFeIjt2JAQkFUkO7a9nnN2AWgkQ19HInsxMMp9j-xuAzybjFlFERlOpUyqNTGhWCkuVSxkrWWakjPedDw7V9FR-O0vPFiAd7sKgEQ2O1PSb-HfsAvxrlMVfeFfd-fVYFhGZyGfwHPFIEhN7a3J8x7UrZqg3sm9qqcRwY-6eUWJdKpp_69I9YLMvOjuv4Oetuf1Zk4tx17px8fc_JscnP88yvJzDULI1y5vXsBCqN7A0Gbq_vYVfmD_kR30ZSF2S3VBfBRSTuiIIGMk2lr4oP64vz308a9SHl-z1vT-JrTw56tqoMPmDKNb3LCQEv-M1gv3QvIPTne2TyZTO-zBQKwRraZkxr3XKXSFUqbV20mnjrdOpZUFZw0yJq5iE6TLRidCywGAHbyNToU-VleI9LFZ1FVaBKI3w1GbWSxckd85ZHgnOksJ4aZQJI_iCjsnn71GT91vkCc-jcPBWPvfWCOgQsfz3jJrjEf3NIaw5OjNujNgq1F2TC1wT4kJXGPWQDmK12IJRjGBllhO3syKm47FfyYcnWP8JlqYnB_v5_t7h9zV4kcS2woxTLtdhsb3uwkfEOq3b6DP7BvG2-Mc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSMClvOm2BYzEhYMXO3Zs51gtXVoeBVEqVb1EduxIVdukapJD--s7k01KQSoIrqOR48yMM58z9jeEvLGZcIAiMpYqkzJlVcKyUjqmfcp5yTOrFN53_rKjt_bUx_10_1qrL5hEAyM1fREfV_VpKAeGAfEO5fgb76Q7PJuqAtGJuk3uYOUOg3tjtvuTb1cukC8ycBql5Xhr7oZRMDcVza-56QbA2See-QNycDXl_rzJ0bRr_bS4-I3N8b_e6SFZHuAo3VjEzyNyK1aPyb3Z2AXuCTmAOKLf6-NI65J-iPVJBDGtKwrAkW5CCkT5bn18GPDMUe9mut33AKWuCvRr16LC7BzQbOjZSCh8z2sA_bF5Svbmmz9mW2zox8CclLxlZcaDManwhdSlMcYrb2xw3qSOR-0styXsZhJuysQk0qgCnB6DQ8bCkGqn5DOyVNVVXCFUG4CpLnNB-aiE994JJDpLChuU1TZOyFswTD6spybvS-WJyFE4WisfrDUhbPRafrqg6PiL_uvRtTkYEwskrop11-QS9oaw4ZVW_0kHMBu2YpQT8nwRF1dPBWwnsG_J6j_M_hW5--39PP-8vfNpjdxPsLswF0yodbLUnnXxBUCe1r_sg_sSBK77Sg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+Geometry+on+the+Ease+of+Solidification+Inside+and+Out+of+Cylindrical+Nanopores&rft.jtitle=Langmuir&rft.au=Binyaminov%2C+Hikmat&rft.au=Elliott%2C+Janet+A.+W.&rft.date=2025-01-14&rft.issn=0743-7463&rft.eissn=1520-5827&rft.volume=41&rft.issue=1&rft.spage=49&rft.epage=65&rft_id=info:doi/10.1021%2Facs.langmuir.4c01924&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_langmuir_4c01924 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |