Fabrication of Surface Protein-Imprinted Nanoparticles Using a Metal Chelating Monomer via Aqueous Precipitation Polymerization

Molecular imprinting is a promising way for constructing artificial protein recognition materials, but it has been challenged by difficulties such as restricted biomacromolecule transfer in the cross-linked polymer networks, and reduced template-monomer interactions that are due to the required aque...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 7; no. 49; pp. 27188 - 27196
Main Authors Li, Wei, Sun, Yan, Yang, Chongchong, Yan, Xianming, Guo, Hao, Fu, Guoqi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.12.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Molecular imprinting is a promising way for constructing artificial protein recognition materials, but it has been challenged by difficulties such as restricted biomacromolecule transfer in the cross-linked polymer networks, and reduced template-monomer interactions that are due to the required aqueous media. Herein, we propose a strategy for imprinting of histidine (His)-exposed proteins by combining previous approaches such as surface imprinting over nanostructures, utilization of metal coordination interactions, and adoption of aqueous precipitation polymerization capable of forming reversible physical crosslinks. With lysozyme as a model template bearing His residues, imprinted polymer nanoshells were grafted over vinyl-modified nanoparticles by aqueous precipitation copolymerization of a Cu2+ chelating monomer with a temperature-responsive monomer carried out at 37 °C, above the volume phase-transition temperature (VPTT) of the final copolymer. The imprinted nanoshells showed significant temperature sensitivity and the template removal could be facilitated by swelling of the imprinted layers at 4 °C, below the VPTT. The resultant core–shell imprinted nanoparticles exhibited strikingly high rebinding selectivity against a variety of nontemplate proteins. An imprinting factor up to 22.7 was achieved, which is among the best values reported for protein imprinting, and a rather high specific binding capacity of 67.3 mg/g was obtained. Moreover, this approach was successfully extended to preliminary imprinting of hemoglobin, another protein with accessible His. Therefore, it may be a versatile method for fabrication of high-performance surface-imprinted nanoparticles toward His-exposed proteins.
AbstractList Molecular imprinting is a promising way for constructing artificial protein recognition materials, but it has been challenged by difficulties such as restricted biomacromolecule transfer in the cross-linked polymer networks, and reduced template-monomer interactions that are due to the required aqueous media. Herein, we propose a strategy for imprinting of histidine (His)-exposed proteins by combining previous approaches such as surface imprinting over nanostructures, utilization of metal coordination interactions, and adoption of aqueous precipitation polymerization capable of forming reversible physical crosslinks. With lysozyme as a model template bearing His residues, imprinted polymer nanoshells were grafted over vinyl-modified nanoparticles by aqueous precipitation copolymerization of a Cu(2+) chelating monomer with a temperature-responsive monomer carried out at 37 °C, above the volume phase-transition temperature (VPTT) of the final copolymer. The imprinted nanoshells showed significant temperature sensitivity and the template removal could be facilitated by swelling of the imprinted layers at 4 °C, below the VPTT. The resultant core-shell imprinted nanoparticles exhibited strikingly high rebinding selectivity against a variety of nontemplate proteins. An imprinting factor up to 22.7 was achieved, which is among the best values reported for protein imprinting, and a rather high specific binding capacity of 67.3 mg/g was obtained. Moreover, this approach was successfully extended to preliminary imprinting of hemoglobin, another protein with accessible His. Therefore, it may be a versatile method for fabrication of high-performance surface-imprinted nanoparticles toward His-exposed proteins.
Molecular imprinting is a promising way for constructing artificial protein recognition materials, but it has been challenged by difficulties such as restricted biomacromolecule transfer in the cross-linked polymer networks, and reduced template-monomer interactions that are due to the required aqueous media. Herein, we propose a strategy for imprinting of histidine (His)-exposed proteins by combining previous approaches such as surface imprinting over nanostructures, utilization of metal coordination interactions, and adoption of aqueous precipitation polymerization capable of forming reversible physical crosslinks. With lysozyme as a model template bearing His residues, imprinted polymer nanoshells were grafted over vinyl-modified nanoparticles by aqueous precipitation copolymerization of a Cu2+ chelating monomer with a temperature-responsive monomer carried out at 37 °C, above the volume phase-transition temperature (VPTT) of the final copolymer. The imprinted nanoshells showed significant temperature sensitivity and the template removal could be facilitated by swelling of the imprinted layers at 4 °C, below the VPTT. The resultant core–shell imprinted nanoparticles exhibited strikingly high rebinding selectivity against a variety of nontemplate proteins. An imprinting factor up to 22.7 was achieved, which is among the best values reported for protein imprinting, and a rather high specific binding capacity of 67.3 mg/g was obtained. Moreover, this approach was successfully extended to preliminary imprinting of hemoglobin, another protein with accessible His. Therefore, it may be a versatile method for fabrication of high-performance surface-imprinted nanoparticles toward His-exposed proteins.
Author Li, Wei
Yan, Xianming
Fu, Guoqi
Guo, Hao
Yang, Chongchong
Sun, Yan
AuthorAffiliation Tianjin University
Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry
Nankai University
Department of Chemistry, School of Science
AuthorAffiliation_xml – name: Tianjin University
– name: Department of Chemistry, School of Science
– name: Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry
– name: Nankai University
Author_xml – sequence: 1
  givenname: Wei
  surname: Li
  fullname: Li, Wei
– sequence: 2
  givenname: Yan
  surname: Sun
  fullname: Sun, Yan
– sequence: 3
  givenname: Chongchong
  surname: Yang
  fullname: Yang, Chongchong
– sequence: 4
  givenname: Xianming
  surname: Yan
  fullname: Yan, Xianming
– sequence: 5
  givenname: Hao
  surname: Guo
  fullname: Guo, Hao
– sequence: 6
  givenname: Guoqi
  surname: Fu
  fullname: Fu, Guoqi
  email: gqfu@nankai.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26588023$$D View this record in MEDLINE/PubMed
BookMark eNp1kElPxDAMhSMEYr9yRDkjdXCWlukRjdgklpFgzpWbcSGoTYakRYILf51AgRsn29F7n-O3w9add8TYgYCJACmO0UTs7CSv4aTUxRrbFqXW2VTmcv2v13qL7cT4DFAoCfkm25JFPp2CVNvs4xzrYA321jvuG34_hAYN8XnwPVmXXXWrYF1PS36Lzq8w9Na0FPkiWvfIkd9Qjy2fPVGbEOnlxjvfUeCvFvnpy0B-iIlFxq5sPy6Z-_YtKez797jHNhpsI-3_1F22OD97mF1m13cXV7PT6wyVgj4rxVSUINEIqQiQTN40RmilQTWkQEpd1kVTiwIIQUORS2VyIjiBQpe4LNUum4xcE3yMgZoq3dVheKsEVF9JVmOS1U-SyXA4GlZD3dHyT_4bXRIcjYJkrJ79EFz6_3-0TzgSghk
CitedBy_id crossref_primary_10_3390_s18093016
crossref_primary_10_1016_j_seppur_2018_03_057
crossref_primary_10_1016_j_jcis_2016_08_033
crossref_primary_10_1021_acsami_9b06507
crossref_primary_10_1039_D2RA02298B
crossref_primary_10_1016_j_progpolymsci_2024_101790
crossref_primary_10_1021_acsami_6b05440
crossref_primary_10_1016_j_snb_2022_131548
crossref_primary_10_1016_j_talanta_2018_04_025
crossref_primary_10_1007_s00604_016_1930_4
crossref_primary_10_1016_j_cej_2019_04_019
crossref_primary_10_1039_C6AN02121B
crossref_primary_10_1039_C9CC03950C
crossref_primary_10_1016_j_colsurfa_2020_125981
crossref_primary_10_1039_C6TB02215D
crossref_primary_10_1039_C6RA08782E
crossref_primary_10_1016_j_bios_2017_02_040
crossref_primary_10_1039_C7TB03044D
crossref_primary_10_1039_D1NJ01104A
crossref_primary_10_1016_j_msec_2020_111076
crossref_primary_10_1021_acsami_7b11426
crossref_primary_10_1007_s12161_017_0875_5
crossref_primary_10_1016_j_msec_2019_110141
crossref_primary_10_1007_s44211_024_00512_y
crossref_primary_10_1016_j_msec_2016_10_037
crossref_primary_10_1002_jssc_201700939
crossref_primary_10_1039_C8AN02057D
crossref_primary_10_1038_srep40046
crossref_primary_10_1007_s00216_020_02803_5
crossref_primary_10_1016_j_talanta_2016_12_087
crossref_primary_10_1039_C7AN01509G
crossref_primary_10_1021_acssensors_0c01634
crossref_primary_10_1016_j_jcis_2018_05_030
crossref_primary_10_1002_macp_202000222
crossref_primary_10_1016_j_talanta_2021_123070
crossref_primary_10_1016_j_arabjc_2020_06_040
crossref_primary_10_1039_C9TB01579E
crossref_primary_10_1021_acssensors_7b00804
crossref_primary_10_1039_C7PY01179B
crossref_primary_10_1016_j_cej_2019_123463
crossref_primary_10_1016_j_colsurfb_2020_111435
crossref_primary_10_1016_j_talanta_2016_05_054
crossref_primary_10_1021_acsami_6b12010
Cites_doi 10.1021/am505427j
10.1016/j.actbio.2011.11.005
10.1021/ja8062875
10.1021/ac900676t
10.1002/jssc.201400086
10.1002/adfm.200500626
10.1073/pnas.0506786103
10.1039/c3sm27505a
10.1038/nchem.1994
10.1016/j.jcis.2014.12.022
10.1002/adfm.201202370
10.1002/adfm.201501900
10.1016/j.bios.2015.08.033
10.1016/j.bios.2015.07.061
10.1039/C5RA06454F
10.1016/j.chroma.2010.06.001
10.1039/c0cs00084a
10.1016/j.bios.2010.06.043
10.1021/ac401251j
10.1021/ac5047246
10.1016/j.progpolymsci.2007.09.004
10.1039/c2jm32734a
10.1002/jmr.870
10.1039/C4PY00350K
10.1039/C0CS00049C
10.1039/c3cc41701h
10.1002/adhm.201300634
10.1039/c2cc33572g
10.1021/acs.macromol.5b00834
10.1021/ma8027722
10.1002/app.10243
10.1016/j.bios.2013.07.008
10.1002/adma.201404235
10.1021/ac1029924
10.1021/ma901761z
10.1002/adfm.201201328
10.1002/pola.22706
10.1016/j.progpolymsci.2013.10.002
10.1016/S0167-4838(00)00226-0
10.1016/j.bios.2013.09.037
10.1021/ja402423r
10.1002/anie.201004774
10.1002/anie.200503760
10.1002/anie.201207950
10.1002/jssc.200900250
10.1021/ja400576p
10.1016/j.chroma.2008.02.110
10.1016/j.biomaterials.2005.02.007
10.1002/jbio.201400100
10.1021/ja901600e
10.1039/c0cc05317a
10.1002/adma.200803597
ContentType Journal Article
Copyright Copyright © 2015 American Chemical Society
Copyright_xml – notice: Copyright © 2015 American Chemical Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
DOI 10.1021/acsami.5b07946
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 27196
ExternalDocumentID 10_1021_acsami_5b07946
26588023
b646553366
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
ABJNI
ABQRX
ADHLV
AHGAQ
BAANH
CGR
CUPRZ
CUY
CVF
ECM
EIF
GGK
NPM
AAYXX
CITATION
ID FETCH-LOGICAL-a330t-9181902ac123e0aec5ffc143403fe302249b6fb160ea0406523c5ee070649ad93
IEDL.DBID ACS
ISSN 1944-8244
IngestDate Fri Aug 23 01:28:54 EDT 2024
Tue Aug 27 13:44:12 EDT 2024
Thu Aug 27 13:42:28 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 49
Keywords nanoparticles
surface imprinting
metal coordination
aqueous precipitation polymerization
protein imprinting
His-exposed proteins
reversible physical cross-links
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a330t-9181902ac123e0aec5ffc143403fe302249b6fb160ea0406523c5ee070649ad93
PMID 26588023
PageCount 9
ParticipantIDs crossref_primary_10_1021_acsami_5b07946
pubmed_primary_26588023
acs_journals_10_1021_acsami_5b07946
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20151216
2015-Dec-16
2015-12-16
PublicationDateYYYYMMDD 2015-12-16
PublicationDate_xml – month: 12
  year: 2015
  text: 20151216
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref25/cit25
  doi: 10.1021/am505427j
– ident: ref6/cit6
  doi: 10.1016/j.actbio.2011.11.005
– ident: ref17/cit17
  doi: 10.1021/ja8062875
– ident: ref29/cit29
  doi: 10.1021/ac900676t
– ident: ref38/cit38
  doi: 10.1002/jssc.201400086
– ident: ref8/cit8
  doi: 10.1002/adfm.200500626
– ident: ref48/cit48
  doi: 10.1073/pnas.0506786103
– ident: ref20/cit20
  doi: 10.1039/c3sm27505a
– ident: ref1/cit1
  doi: 10.1038/nchem.1994
– ident: ref43/cit43
  doi: 10.1016/j.jcis.2014.12.022
– ident: ref26/cit26
  doi: 10.1002/adfm.201202370
– ident: ref49/cit49
  doi: 10.1002/adfm.201501900
– ident: ref41/cit41
  doi: 10.1016/j.bios.2015.08.033
– ident: ref50/cit50
  doi: 10.1016/j.bios.2015.07.061
– ident: ref51/cit51
  doi: 10.1039/C5RA06454F
– ident: ref45/cit45
  doi: 10.1016/j.chroma.2010.06.001
– ident: ref4/cit4
  doi: 10.1039/c0cs00084a
– ident: ref22/cit22
  doi: 10.1016/j.bios.2010.06.043
– ident: ref2/cit2
  doi: 10.1021/ac401251j
– ident: ref37/cit37
  doi: 10.1021/ac5047246
– ident: ref3/cit3
  doi: 10.1016/j.progpolymsci.2007.09.004
– ident: ref23/cit23
  doi: 10.1039/c2jm32734a
– ident: ref47/cit47
  doi: 10.1002/jmr.870
– ident: ref31/cit31
  doi: 10.1039/C4PY00350K
– ident: ref5/cit5
  doi: 10.1039/C0CS00049C
– ident: ref19/cit19
  doi: 10.1039/c3cc41701h
– ident: ref21/cit21
  doi: 10.1002/adhm.201300634
– ident: ref11/cit11
  doi: 10.1039/c2cc33572g
– ident: ref16/cit16
  doi: 10.1021/acs.macromol.5b00834
– ident: ref15/cit15
  doi: 10.1021/ma8027722
– ident: ref42/cit42
  doi: 10.1002/app.10243
– ident: ref24/cit24
  doi: 10.1016/j.bios.2013.07.008
– ident: ref32/cit32
  doi: 10.1002/adma.201404235
– ident: ref28/cit28
  doi: 10.1021/ac1029924
– ident: ref44/cit44
  doi: 10.1021/ma901761z
– ident: ref10/cit10
  doi: 10.1002/adfm.201201328
– ident: ref46/cit46
  doi: 10.1002/pola.22706
– ident: ref7/cit7
  doi: 10.1016/j.progpolymsci.2013.10.002
– ident: ref13/cit13
  doi: 10.1016/S0167-4838(00)00226-0
– ident: ref40/cit40
  doi: 10.1016/j.bios.2013.09.037
– ident: ref52/cit52
  doi: 10.1021/ja402423r
– ident: ref12/cit12
  doi: 10.1002/anie.201004774
– ident: ref14/cit14
  doi: 10.1002/anie.200503760
– ident: ref30/cit30
  doi: 10.1002/anie.201207950
– ident: ref35/cit35
  doi: 10.1002/jssc.200900250
– ident: ref33/cit33
  doi: 10.1021/ja400576p
– ident: ref34/cit34
  doi: 10.1016/j.chroma.2008.02.110
– ident: ref27/cit27
  doi: 10.1016/j.biomaterials.2005.02.007
– ident: ref39/cit39
  doi: 10.1002/jbio.201400100
– ident: ref18/cit18
  doi: 10.1021/ja901600e
– ident: ref36/cit36
  doi: 10.1039/c0cc05317a
– ident: ref9/cit9
  doi: 10.1002/adma.200803597
SSID ssj0063205
Score 2.4244225
Snippet Molecular imprinting is a promising way for constructing artificial protein recognition materials, but it has been challenged by difficulties such as...
SourceID crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 27188
SubjectTerms Molecular Imprinting - methods
Nanoparticles - chemistry
Polymerization
Proteins - chemistry
Title Fabrication of Surface Protein-Imprinted Nanoparticles Using a Metal Chelating Monomer via Aqueous Precipitation Polymerization
URI http://dx.doi.org/10.1021/acsami.5b07946
https://www.ncbi.nlm.nih.gov/pubmed/26588023
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB60XvTgvtSNAQVPqZklY3MsxVKESqEWegszkwkWJSlZBL34132TpGototdhsjDL-743771vELpkoWyHBjag1lw7tlTTkYAsDidGcs1vvDCyjuLgXvTH_G7iTb7OO35G8Cm5ljqzV-F4yrVa6KtojQIoWjer0x3Nba5gtExWBI-cO21ArLk849LzFoR0tgBCC3SyhJXeVqVxlJVqhDab5KlV5Kql35a1Gv_84220WXNL3KkWww5aMfEu2vimOLiH3ntSpfUxHU4iPCrSSGqDh1auYRo79ozBKkiEGMwu-NN12hwuMwuwxAMDZB13H8sUOmgZ2JoIk-KXqcQdgJikyOBdRk9ntfY3HibPrzYqVJV77qNx7_ah23fqOxgcyZibgy20lIFKDQhnXGm0F0UaOBZ3WWSYJQC-EpEiwjUS7IEAv1Z7xoAhEdyXoc8OUCNOYnOEMNFCKwouNzAgLilTpO0rRiQwQmh0dRNdwMgF9R7KgjI8TklQDWdQD2cTXc2nLphVghy_9jysZvazHwW6ZQXvjv_1pRO0DuzIs7krRJyiRp4W5gwYSK7Oy8X3AelT1nA
link.rule.ids 315,786,790,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFD5BfFAfvF_w2kQTnwbb2g32SIgEFQgJkPC2tF0XiYYRBib64l_3dBcVjYm-Nl3X9HK-77TnfAW4ogGvBQo3oJRMGjpV0-CILAazFGeSVZ0g1I5ip-u2huxu5IwKUMlzYbATMbYUJ5f4n-oCVgXL9Is4jjC1JPoKrDpVhDrNhRr93PS61E5iFtExZ0YNgStXafzxvcYiGS9h0RKrTNCluQW9j34lQSWP5cVclOXrN8nGf3R8GzYzpknq6dLYgYKa7MLGF_3BPXhrcjHLDu1IFJL-YhZyqUhPizeMJ4Y-cdB6EgFBI4zedRZER5I4A8JJRyF1J42HJKAOSzo6Q0LNyPOYkzoCTrSIsS0lx9NMCZz0oqcXfUeUJn_uw7B5M2i0jOxFBoNTas7RMmoCYXOJeKdMrqQThhIZFzNpqKimA55wQ2G5puJoHVz0cqWjFJoVl3k88OgBFCfRRB0BsaQrhY0OOPIhxm0qrJonqMWRH2KhKUtwiSPnZzsq9pPLctvy0-H0s-EswXU-g_40lef4teZhOsEf9WwkX1r-7vhPf7qAtdag0_bbt937E1hH3uToqBbLPYXifLZQZ8hN5uI8WY_vZLne2w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQfTg-1GfAQVPWzeb7LY9lmqpj5ZCW-htSbJZLEpbuq2gF_-6M7tpsYqg15DNhiQz801m5gshlzySpciAAGottIOlmo4Ey-IIZqTQouhHMTqKjWZQ74r7nt-zddxYCwOTSGCkJA3io1SPotgyDLBraMdXcXzlIi36Mlnxi0ygNFaq7Zn6DbiX5i2Ccy6cEhivGVPjj-_RHulkwR4tIMvUwtQ2SWc-tzSx5LkwnaiCfv9G2_jPyW-RDYs4aSU7IttkyQx2yPoXHsJd8lGTamwv7-gwpu3pOJba0BaSOPQHDt48IK9EREEZg5dtk-lomm9AJW0YgPC0-pQm1kFLAyslzJi-9iWtgOEZThMYy-j-yDKC09bw5Q1jRVkR6B7p1m471bpjX2ZwJOfuBDQkAglParB7xpVG-3GsAXkJl8eGIywoqyBWLHCNBC0RgLerfWNAvQSiLKMy3ye5wXBgDgllOtDKA0cccJGQHlesVFacScCJ0OjqPLmAlQutZCVhGjT3WJgtZ2iXM0-uZrsYjjKajl97HmSbPO_nAQhDGryjP_3pnKy2bmrh413z4ZisAXzyMbmFBSckNxlPzSlAlIk6S4_kJ5294VU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+Surface+Protein-Imprinted+Nanoparticles+Using+a+Metal+Chelating+Monomer+via+Aqueous+Precipitation+Polymerization&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Li%2C+Wei&rft.au=Sun%2C+Yan&rft.au=Yang%2C+Chongchong&rft.au=Yan%2C+Xianming&rft.date=2015-12-16&rft.eissn=1944-8252&rft.volume=7&rft.issue=49&rft.spage=27188&rft_id=info:doi/10.1021%2Facsami.5b07946&rft_id=info%3Apmid%2F26588023&rft.externalDocID=26588023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon