Biofunctionalized Graphene Quantum Dots Based Fluorescent Biosensor toward Efficient Detection of Small Cell Lung Cancer
Quantitative detection of cancer biomarkers with higher accuracy and sensitivity provides an effective platform for screening, monitoring, early diagnosis, and disease surveillance. The present work demonstrates the fabrication and application of fluorescent turn-on biosensor for ultrasensitive dete...
Saved in:
Published in | ACS applied bio materials Vol. 3; no. 8; pp. 4922 - 4932 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quantitative detection of cancer biomarkers with higher accuracy and sensitivity provides an effective platform for screening, monitoring, early diagnosis, and disease surveillance. The present work demonstrates the fabrication and application of fluorescent turn-on biosensor for ultrasensitive detection of small cell lung cancer biomarker utilizing biofunctionalized graphene quantum dots as the energy donor and gold nanoparticles (AuNPs) as the energy acceptor. One-pot and the bottom-up hydrothermal route have been employed for the synthesis of in situ amine-functionalized and nitrogen-doped graphene quantum dots (amine-N-GQDs) and further characterized experimentally by different analytical techniques. The molecular simulation studies were performed using the Material Studio software for optimizing the possible chemical structure of synthesized amine-N-GQDs, a comprehensive analysis of experimental results to validate the presence of potential N-doping and amine functionalization sites. Then monoclonal neuron-specific enolase antibodies (anti-NSE) were covalently immobilized to amine-N-GQDs to provide the biofunctionalized GQDs (anti-NSE/amine-N-GQDs). A label-free and efficient fluorescent biosensor based on nanosurface energy transfer (NSET) between anti-NSE/amine-N-GQDs and AuNPs has been developed for neuron-specific enolase (NSE) detection. The fluorescence response studies of anti-NSE/amine-N-GQDs@AuNPs nanoprobe conducted as a function of NSE antigen exhibited fast response time (16 min), broader linear detection range (0.1 pg mL–1 to 1000 ng mL–1), and remarkably low detection limit (0.09 pg mL–1). Additionally, the fluorescent biosensor exhibited excellent performance in real samples, with an average recovery value of 94.69%. |
---|---|
AbstractList | Quantitative detection of cancer biomarkers with higher accuracy and sensitivity provides an effective platform for screening, monitoring, early diagnosis, and disease surveillance. The present work demonstrates the fabrication and application of fluorescent turn-on biosensor for ultrasensitive detection of small cell lung cancer biomarker utilizing biofunctionalized graphene quantum dots as the energy donor and gold nanoparticles (AuNPs) as the energy acceptor. One-pot and the bottom-up hydrothermal route have been employed for the synthesis of in situ amine-functionalized and nitrogen-doped graphene quantum dots (amine-N-GQDs) and further characterized experimentally by different analytical techniques. The molecular simulation studies were performed using the Material Studio software for optimizing the possible chemical structure of synthesized amine-N-GQDs, a comprehensive analysis of experimental results to validate the presence of potential N-doping and amine functionalization sites. Then monoclonal neuron-specific enolase antibodies (anti-NSE) were covalently immobilized to amine-N-GQDs to provide the biofunctionalized GQDs (anti-NSE/amine-N-GQDs). A label-free and efficient fluorescent biosensor based on nanosurface energy transfer (NSET) between anti-NSE/amine-N-GQDs and AuNPs has been developed for neuron-specific enolase (NSE) detection. The fluorescence response studies of anti-NSE/amine-N-GQDs@AuNPs nanoprobe conducted as a function of NSE antigen exhibited fast response time (16 min), broader linear detection range (0.1 pg mL-1 to 1000 ng mL-1), and remarkably low detection limit (0.09 pg mL-1). Additionally, the fluorescent biosensor exhibited excellent performance in real samples, with an average recovery value of 94.69%.Quantitative detection of cancer biomarkers with higher accuracy and sensitivity provides an effective platform for screening, monitoring, early diagnosis, and disease surveillance. The present work demonstrates the fabrication and application of fluorescent turn-on biosensor for ultrasensitive detection of small cell lung cancer biomarker utilizing biofunctionalized graphene quantum dots as the energy donor and gold nanoparticles (AuNPs) as the energy acceptor. One-pot and the bottom-up hydrothermal route have been employed for the synthesis of in situ amine-functionalized and nitrogen-doped graphene quantum dots (amine-N-GQDs) and further characterized experimentally by different analytical techniques. The molecular simulation studies were performed using the Material Studio software for optimizing the possible chemical structure of synthesized amine-N-GQDs, a comprehensive analysis of experimental results to validate the presence of potential N-doping and amine functionalization sites. Then monoclonal neuron-specific enolase antibodies (anti-NSE) were covalently immobilized to amine-N-GQDs to provide the biofunctionalized GQDs (anti-NSE/amine-N-GQDs). A label-free and efficient fluorescent biosensor based on nanosurface energy transfer (NSET) between anti-NSE/amine-N-GQDs and AuNPs has been developed for neuron-specific enolase (NSE) detection. The fluorescence response studies of anti-NSE/amine-N-GQDs@AuNPs nanoprobe conducted as a function of NSE antigen exhibited fast response time (16 min), broader linear detection range (0.1 pg mL-1 to 1000 ng mL-1), and remarkably low detection limit (0.09 pg mL-1). Additionally, the fluorescent biosensor exhibited excellent performance in real samples, with an average recovery value of 94.69%. Quantitative detection of cancer biomarkers with higher accuracy and sensitivity provides an effective platform for screening, monitoring, early diagnosis, and disease surveillance. The present work demonstrates the fabrication and application of fluorescent turn-on biosensor for ultrasensitive detection of small cell lung cancer biomarker utilizing biofunctionalized graphene quantum dots as the energy donor and gold nanoparticles (AuNPs) as the energy acceptor. One-pot and the bottom-up hydrothermal route have been employed for the synthesis of amine-functionalized and nitrogen-doped graphene quantum dots (amine-N-GQDs) and further characterized experimentally by different analytical techniques. The molecular simulation studies were performed using the Material Studio software for optimizing the possible chemical structure of synthesized amine-N-GQDs, a comprehensive analysis of experimental results to validate the presence of potential N-doping and amine functionalization sites. Then monoclonal neuron-specific enolase antibodies (anti-NSE) were covalently immobilized to amine-N-GQDs to provide the biofunctionalized GQDs (anti-NSE/amine-N-GQDs). A label-free and efficient fluorescent biosensor based on nanosurface energy transfer (NSET) between anti-NSE/amine-N-GQDs and AuNPs has been developed for neuron-specific enolase (NSE) detection. The fluorescence response studies of anti-NSE/amine-N-GQDs@AuNPs nanoprobe conducted as a function of NSE antigen exhibited fast response time (16 min), broader linear detection range (0.1 pg mL to 1000 ng mL ), and remarkably low detection limit (0.09 pg mL ). Additionally, the fluorescent biosensor exhibited excellent performance in real samples, with an average recovery value of 94.69%. Quantitative detection of cancer biomarkers with higher accuracy and sensitivity provides an effective platform for screening, monitoring, early diagnosis, and disease surveillance. The present work demonstrates the fabrication and application of fluorescent turn-on biosensor for ultrasensitive detection of small cell lung cancer biomarker utilizing biofunctionalized graphene quantum dots as the energy donor and gold nanoparticles (AuNPs) as the energy acceptor. One-pot and the bottom-up hydrothermal route have been employed for the synthesis of in situ amine-functionalized and nitrogen-doped graphene quantum dots (amine-N-GQDs) and further characterized experimentally by different analytical techniques. The molecular simulation studies were performed using the Material Studio software for optimizing the possible chemical structure of synthesized amine-N-GQDs, a comprehensive analysis of experimental results to validate the presence of potential N-doping and amine functionalization sites. Then monoclonal neuron-specific enolase antibodies (anti-NSE) were covalently immobilized to amine-N-GQDs to provide the biofunctionalized GQDs (anti-NSE/amine-N-GQDs). A label-free and efficient fluorescent biosensor based on nanosurface energy transfer (NSET) between anti-NSE/amine-N-GQDs and AuNPs has been developed for neuron-specific enolase (NSE) detection. The fluorescence response studies of anti-NSE/amine-N-GQDs@AuNPs nanoprobe conducted as a function of NSE antigen exhibited fast response time (16 min), broader linear detection range (0.1 pg mL–1 to 1000 ng mL–1), and remarkably low detection limit (0.09 pg mL–1). Additionally, the fluorescent biosensor exhibited excellent performance in real samples, with an average recovery value of 94.69%. |
Author | Pradhan, Rangadhar Packirisamy, Gopinath Kalkal, Ashish Kadian, Sachin Manik, Gaurav |
AuthorAffiliation | Department of Polymer and Process Engineering Centre for Nanotechnology Department of Biotechnology |
AuthorAffiliation_xml | – name: Department of Biotechnology – name: Department of Polymer and Process Engineering – name: Centre for Nanotechnology |
Author_xml | – sequence: 1 givenname: Ashish orcidid: 0000-0002-4342-1193 surname: Kalkal fullname: Kalkal, Ashish organization: Department of Biotechnology – sequence: 2 givenname: Rangadhar orcidid: 0000-0002-9283-4955 surname: Pradhan fullname: Pradhan, Rangadhar organization: Centre for Nanotechnology – sequence: 3 givenname: Sachin orcidid: 0000-0002-2804-1109 surname: Kadian fullname: Kadian, Sachin organization: Department of Polymer and Process Engineering – sequence: 4 givenname: Gaurav orcidid: 0000-0003-2501-1737 surname: Manik fullname: Manik, Gaurav organization: Department of Polymer and Process Engineering – sequence: 5 givenname: Gopinath orcidid: 0000-0003-1379-1203 surname: Packirisamy fullname: Packirisamy, Gopinath email: gopi@bt.iitr.ac.in, genegopi@gmail.com organization: Centre for Nanotechnology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35021736$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kdtrFDEUh4NUbK197WPJYynsmttkZh7b7UVhQUR9HjLJiabMJNtcaPWvN-uuRYS-JOGc7zuE83uLDnzwgNApJUtKGH2vdFLjvCSaEMHaV-iINa1cSMHYwT_vQ3SS0j0hhBHCade_QYe8qXrL5RF6unLBFq-zC15N7hcYfBfV5gd4wJ-L8rnM-DrkhK9Uqr3bqYQISYPPuJoJfAoR5_CoosE31jrttq1ryPBnJA4Wf5nVNOEV1GNd_He8Ul5DfIdeWzUlONnfx-jb7c3X1YfF-tPdx9XleqE4J3nRGdqMrWS2M3KUtu9kO4qeGNG0hIOGjoOx3DCudAfc1Lox1IjeEgtd2xh-jM53czcxPBRIeZhd_f80KQ-hpIFJ2jdCCCorerZHyziDGTbRzSr-HP5uqwLLHaBjSCmCfUYoGbaJDLtEhn0iVRD_CdpltV1MjspNL2sXO63Wh_tQYo0mvQT_BtRen-0 |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2023_125157 crossref_primary_10_1515_ntrev_2023_0116 crossref_primary_10_1016_j_csbj_2023_08_010 crossref_primary_10_1007_s44174_024_00226_9 crossref_primary_10_1016_j_snb_2023_135041 crossref_primary_10_1016_j_talanta_2024_126346 crossref_primary_10_1039_D2NJ02603A crossref_primary_10_1007_s00604_020_04448_8 crossref_primary_10_1016_j_aca_2024_343276 crossref_primary_10_2174_1389201023666211222165508 crossref_primary_10_1021_acs_analchem_3c00058 crossref_primary_10_3390_coatings13111956 crossref_primary_10_3390_s21041109 crossref_primary_10_1080_1536383X_2025_2450261 crossref_primary_10_1038_s41598_022_13016_4 crossref_primary_10_1007_s10068_023_01309_x crossref_primary_10_1007_s10895_024_03809_3 crossref_primary_10_1080_00032719_2022_2027957 crossref_primary_10_1007_s10895_023_03501_y crossref_primary_10_1007_s12668_024_01639_y crossref_primary_10_3390_bios12070460 crossref_primary_10_1016_j_slasd_2024_100205 crossref_primary_10_1088_1748_605X_ac41fd crossref_primary_10_3390_cancers13133194 crossref_primary_10_1016_j_microc_2023_109262 crossref_primary_10_1021_acsbiomaterials_1c01087 crossref_primary_10_1166_mex_2022_2143 crossref_primary_10_3390_nano13212880 crossref_primary_10_1002_elan_202400247 crossref_primary_10_1039_D4AN00764F crossref_primary_10_1016_j_jpba_2022_115215 crossref_primary_10_1080_21655979_2024_2401269 crossref_primary_10_1016_j_colsurfb_2024_113878 crossref_primary_10_1021_acsanm_4c03305 crossref_primary_10_1007_s12088_024_01404_5 crossref_primary_10_1016_j_sbsr_2022_100497 crossref_primary_10_1016_j_scitotenv_2022_155219 crossref_primary_10_1021_acsomega_2c00092 crossref_primary_10_1080_1061186X_2021_1987442 crossref_primary_10_1016_j_sintl_2022_100180 crossref_primary_10_3390_nano12213874 crossref_primary_10_1016_j_rser_2021_111993 crossref_primary_10_1016_j_jphotobiol_2023_112800 crossref_primary_10_1016_j_mssp_2024_109066 crossref_primary_10_1016_j_electacta_2023_143664 crossref_primary_10_3390_nano13020361 crossref_primary_10_1016_j_microc_2023_109298 crossref_primary_10_1002_ppsc_202400221 crossref_primary_10_1016_j_biosx_2022_100245 crossref_primary_10_1016_j_biosx_2022_100247 crossref_primary_10_1016_j_bios_2021_113620 crossref_primary_10_1155_2023_2832964 crossref_primary_10_1007_s10853_023_08812_w crossref_primary_10_2174_0929867331666230912101634 crossref_primary_10_1016_j_jhazmat_2021_128107 crossref_primary_10_3389_fchem_2021_669169 crossref_primary_10_1007_s10895_024_03924_1 crossref_primary_10_1016_j_sna_2024_115748 crossref_primary_10_1002_smsc_202200087 crossref_primary_10_1016_j_aej_2024_10_089 crossref_primary_10_1016_j_bios_2023_115701 crossref_primary_10_1007_s12088_024_01318_2 crossref_primary_10_1039_D0RA09155C crossref_primary_10_3390_cancers15133414 crossref_primary_10_1039_D2MA00238H crossref_primary_10_1039_D3MA00438D crossref_primary_10_3390_bios14120624 crossref_primary_10_1016_j_snb_2022_132543 crossref_primary_10_1007_s00604_022_05353_y crossref_primary_10_1016_j_talanta_2021_123075 crossref_primary_10_1002_smsc_202300221 crossref_primary_10_1039_D0QM00550A crossref_primary_10_1016_j_jpba_2022_114628 crossref_primary_10_1016_j_talo_2023_100267 crossref_primary_10_1016_j_envres_2023_116932 crossref_primary_10_1088_1361_6528_acd00a crossref_primary_10_1088_1748_605X_ad581a crossref_primary_10_1002_cbdv_202401581 crossref_primary_10_1021_acsanm_1c03235 crossref_primary_10_1016_j_jics_2021_100069 crossref_primary_10_1063_5_0231279 crossref_primary_10_1016_j_susmat_2022_e00494 crossref_primary_10_1016_j_heliyon_2023_e19929 crossref_primary_10_1016_j_snb_2021_130075 crossref_primary_10_1016_j_ijbiomac_2023_127260 crossref_primary_10_1021_acsanm_1c01295 crossref_primary_10_1021_acsanm_4c03631 crossref_primary_10_1103_PhysRevMaterials_5_124004 crossref_primary_10_1002_agt2_707 crossref_primary_10_1002_wnan_1998 crossref_primary_10_1088_2043_6262_ac5e35 crossref_primary_10_1016_j_nwnano_2023_100008 crossref_primary_10_1016_j_bioelechem_2023_108371 crossref_primary_10_3390_nano14242014 crossref_primary_10_1016_j_matlet_2021_131540 crossref_primary_10_1039_D3NR05648A crossref_primary_10_1002_ardp_202200299 crossref_primary_10_1088_1742_6596_2653_1_012071 crossref_primary_10_2174_0115680266282489240109050225 crossref_primary_10_1016_j_microc_2024_110350 crossref_primary_10_1016_j_talanta_2024_126022 crossref_primary_10_1186_s43088_022_00293_1 crossref_primary_10_1007_s42823_025_00860_3 crossref_primary_10_1039_D1MA00251A crossref_primary_10_1557_s43579_023_00430_6 crossref_primary_10_1016_j_microc_2024_110639 crossref_primary_10_1021_acs_analchem_2c01874 crossref_primary_10_3390_chemosensors10120498 crossref_primary_10_1186_s13045_024_01531_y crossref_primary_10_3389_fchem_2022_946574 crossref_primary_10_1016_j_sintl_2021_100102 crossref_primary_10_1016_j_jphotobiol_2022_112602 crossref_primary_10_3390_bios13010040 crossref_primary_10_1016_j_colsurfb_2024_113863 crossref_primary_10_1021_acsanm_1c01398 crossref_primary_10_1007_s10544_021_00545_4 crossref_primary_10_1016_j_microc_2025_113278 crossref_primary_10_1039_D3AY00590A crossref_primary_10_3390_biom11111714 crossref_primary_10_1016_j_nanoso_2022_100886 crossref_primary_10_1007_s10895_023_03252_w crossref_primary_10_1016_j_bios_2022_114196 crossref_primary_10_1016_j_colsurfa_2024_134819 crossref_primary_10_1016_j_talanta_2023_124399 crossref_primary_10_1088_1755_1315_1285_1_012034 crossref_primary_10_1016_j_microc_2022_107971 crossref_primary_10_1016_j_saa_2025_126002 crossref_primary_10_1088_1748_605X_ac84ba crossref_primary_10_1109_JSEN_2023_3265069 crossref_primary_10_1016_j_mtelec_2023_100067 crossref_primary_10_1080_10408398_2021_1980765 crossref_primary_10_1016_j_addma_2021_102088 crossref_primary_10_1063_5_0166740 |
Cites_doi | 10.1038/lsa.2015.137 10.1021/acssensors.9b00400 10.1039/C7TB02356A 10.1016/j.bios.2017.04.003 10.1002/ppsc.201400189 10.1016/j.aca.2012.02.007 10.1039/c2cc33869f 10.1002/chem.201102876 10.1016/j.talanta.2012.02.047 10.1038/srep23406 10.1039/b501536g 10.1021/acsabm.9b00659 10.1021/acsami.9b08521 10.1002/adma.201200164 10.1021/ac504456w 10.1016/j.trac.2019.115748 10.1021/am4042355 10.1021/acsabm.9b00805 10.1039/b926512k 10.1016/j.bios.2017.11.004 10.1021/nl903178n 10.1088/1361-6528/ab3566 10.1039/C5AN02270C 10.1021/acs.langmuir.8b03739 10.1021/acsabm.9b00084 10.1021/acsami.6b11525 10.1002/smll.201402648 10.1039/C8TB01869C 10.1016/j.ab.2018.02.024 10.1039/C9TB02823D 10.1039/C5TC01933H 10.1021/acsabm.9b00694 10.1016/j.aca.2018.07.060 10.1016/j.snb.2018.11.105 10.1021/cr100420s 10.1039/C5TB00885A 10.1038/srep05294 10.1016/B978-0-12-815890-6.00001-3 10.1039/c3nr05376h 10.1039/c0an00704h 10.1039/C7TB01399J 10.1021/acs.chemmater.5b00112 10.1021/acsami.8b01429 10.1002/adfm.201201499 10.1002/adfm.201800881 10.1002/elan.201000221 10.1039/c4ta00860j 10.1039/C3CS60273G 10.4236/opj.2013.31004 10.1021/acs.jpcc.8b06539 10.1021/acsami.8b20501 10.1016/j.ab.2017.05.025 10.1021/acsabm.9b00580 10.1016/j.bios.2011.10.055 10.1016/j.lungcan.2011.11.015 10.1039/C3NR06353D 10.1021/cr5000943 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsabm.0c00427 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2576-6422 |
EndPage | 4932 |
ExternalDocumentID | 35021736 10_1021_acsabm_0c00427 c411509580 |
Genre | Journal Article |
GroupedDBID | ABUCX ACS ALMA_UNASSIGNED_HOLDINGS EBS VF5 VG9 53G AAYXX ABBLG ABJNI ABLBI ABQRX AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a330t-8d15b762f8d6b6f9867b490d45703ece83edf3d23ac8e3dd45dd1d49f0fe875d3 |
IEDL.DBID | ACS |
ISSN | 2576-6422 |
IngestDate | Fri Jul 11 05:48:30 EDT 2025 Wed Feb 19 02:27:37 EST 2025 Thu Apr 24 23:06:36 EDT 2025 Tue Jul 01 04:25:32 EDT 2025 Wed Aug 19 19:16:36 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | energy transfer graphene quantum dots (GQDs) biosensor small cell lung cancer (SCLC) biomarker |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a330t-8d15b762f8d6b6f9867b490d45703ece83edf3d23ac8e3dd45dd1d49f0fe875d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9283-4955 0000-0003-2501-1737 0000-0002-4342-1193 0000-0002-2804-1109 0000-0003-1379-1203 |
PMID | 35021736 |
PQID | 2619544416 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2619544416 pubmed_primary_35021736 crossref_primary_10_1021_acsabm_0c00427 crossref_citationtrail_10_1021_acsabm_0c00427 acs_journals_10_1021_acsabm_0c00427 |
ProviderPackageCode | ACS VG9 ABUCX VF5 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200817 2020-08-17 2020-Aug-17 |
PublicationDateYYYYMMDD | 2020-08-17 |
PublicationDate_xml | – month: 08 year: 2020 text: 20200817 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied bio materials |
PublicationTitleAlternate | ACS Appl. Bio Mater |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref28/cit28 doi: 10.1038/lsa.2015.137 – ident: ref5/cit5 doi: 10.1021/acssensors.9b00400 – ident: ref21/cit21 doi: 10.1039/C7TB02356A – ident: ref58/cit58 doi: 10.1016/j.bios.2017.04.003 – ident: ref15/cit15 doi: 10.1002/ppsc.201400189 – ident: ref56/cit56 doi: 10.1016/j.aca.2012.02.007 – ident: ref42/cit42 doi: 10.1039/c2cc33869f – ident: ref55/cit55 doi: 10.1002/chem.201102876 – ident: ref52/cit52 doi: 10.1016/j.talanta.2012.02.047 – ident: ref34/cit34 doi: 10.1038/srep23406 – ident: ref12/cit12 doi: 10.1039/b501536g – ident: ref48/cit48 doi: 10.1021/acsabm.9b00659 – ident: ref6/cit6 doi: 10.1021/acsami.9b08521 – ident: ref29/cit29 doi: 10.1002/adma.201200164 – ident: ref50/cit50 doi: 10.1021/ac504456w – ident: ref18/cit18 doi: 10.1016/j.trac.2019.115748 – ident: ref41/cit41 doi: 10.1021/am4042355 – ident: ref24/cit24 doi: 10.1021/acsabm.9b00805 – ident: ref14/cit14 doi: 10.1039/b926512k – ident: ref35/cit35 doi: 10.1016/j.bios.2017.11.004 – ident: ref36/cit36 doi: 10.1021/nl903178n – ident: ref25/cit25 doi: 10.1088/1361-6528/ab3566 – ident: ref30/cit30 doi: 10.1039/C5AN02270C – ident: ref9/cit9 doi: 10.1021/acs.langmuir.8b03739 – ident: ref44/cit44 doi: 10.1021/acsabm.9b00084 – ident: ref26/cit26 doi: 10.1021/acsami.6b11525 – ident: ref20/cit20 doi: 10.1002/smll.201402648 – ident: ref11/cit11 doi: 10.1039/C8TB01869C – ident: ref3/cit3 doi: 10.1016/j.ab.2018.02.024 – ident: ref22/cit22 doi: 10.1039/C9TB02823D – ident: ref43/cit43 – ident: ref23/cit23 doi: 10.1039/C5TC01933H – ident: ref49/cit49 doi: 10.1021/acsabm.9b00694 – ident: ref10/cit10 doi: 10.1016/j.aca.2018.07.060 – ident: ref37/cit37 doi: 10.1016/j.snb.2018.11.105 – ident: ref2/cit2 doi: 10.1021/cr100420s – ident: ref4/cit4 doi: 10.1039/C5TB00885A – ident: ref27/cit27 doi: 10.1038/srep05294 – ident: ref47/cit47 doi: 10.1016/B978-0-12-815890-6.00001-3 – ident: ref40/cit40 doi: 10.1039/c3nr05376h – ident: ref54/cit54 doi: 10.1039/c0an00704h – ident: ref8/cit8 doi: 10.1039/C7TB01399J – ident: ref16/cit16 doi: 10.1021/acs.chemmater.5b00112 – ident: ref39/cit39 doi: 10.1021/acsami.8b01429 – ident: ref19/cit19 doi: 10.1002/adfm.201201499 – ident: ref31/cit31 doi: 10.1002/adfm.201800881 – ident: ref51/cit51 doi: 10.1002/elan.201000221 – ident: ref13/cit13 doi: 10.1039/c4ta00860j – ident: ref33/cit33 doi: 10.1039/C3CS60273G – ident: ref46/cit46 doi: 10.4236/opj.2013.31004 – ident: ref17/cit17 doi: 10.1021/acs.jpcc.8b06539 – ident: ref7/cit7 doi: 10.1021/acsami.8b20501 – ident: ref57/cit57 doi: 10.1016/j.ab.2017.05.025 – ident: ref45/cit45 doi: 10.1021/acsabm.9b00580 – ident: ref53/cit53 doi: 10.1016/j.bios.2011.10.055 – ident: ref1/cit1 doi: 10.1016/j.lungcan.2011.11.015 – ident: ref38/cit38 doi: 10.1039/C3NR06353D – ident: ref32/cit32 doi: 10.1021/cr5000943 |
SSID | ssj0002003189 |
Score | 2.5289884 |
Snippet | Quantitative detection of cancer biomarkers with higher accuracy and sensitivity provides an effective platform for screening, monitoring, early diagnosis, and... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4922 |
Title | Biofunctionalized Graphene Quantum Dots Based Fluorescent Biosensor toward Efficient Detection of Small Cell Lung Cancer |
URI | http://dx.doi.org/10.1021/acsabm.0c00427 https://www.ncbi.nlm.nih.gov/pubmed/35021736 https://www.proquest.com/docview/2619544416 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pa9swFBZrdtmlP-h-ZG2Hygo9ObMlW1aOSdq0lK5QukBvRrYkCE3sEdtQ8tf3PdlJ2UJoLz7IkhBPT3rf9yQ-EXKmZJgapWLPish6oeWBByUwIangph_6SrrUxe87cT0Jbx6jx9d8x_8n-Cz4pbJSpfOen7lnIXbIRyZkjDRrMHpYZ1OYc07EugigPQDVbKXQuNEFxqGs_DcObQGXLsiM9xrFo9JpE-LdkqdeXaW9bLmp3Pjm-PfJbos06aBxjQPyweSH5Hk4LTCUNRnA6dJoeoWS1bDj0fsarFzP6UVRlXQI0U3T8awuFo3gE4WWJXDeYkErd9WWXjr1Cfx1YSp3oyunhaUPczWb0ZGBzy3sJHSEfrX4TCbjyz-ja699fMFTnPuVJ3UQpbBTWqlFKmxfijgN-74OUbLLZEZyoy3XjKtMGq6hXOtAh33rWwMcSPMvpJMXuflGKEftURkYzRTgQ8tkoKCFzyzQcimDuEt-gpGSdvGUiTsXZ0HSWC5pLdcl3mrCkqzVL8dnNGZb65-v6_9tlDu21jxdzX8CiwtPTFRuirpMkF5GISBG0SVfG8dY98UjpHNcfH_X6I_IJ4ZMHcV042PSqRa1OQE4U6U_nCe_AHpn73Q |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFH4CdhiXsYkBHTCMQOKUkthJ6h5LoRRoq6EWiVvkxLaE1iZTk0hTf_2enbRomyrBJQfHtpznZ7_vs53PAOeC-7ESouXoMNCOr5nnYAp2SBwy1fZdwe3SxXAU9p_8--fgeQMul__CYCNyrCm3m_iv6gLeJaaJeNZ0E3s7xCZ8QCRCDdvqdMerRRVqfdRAXoOjHcTWdCnU-F8VJhwl-d_haA3GtLGmtwM_Vq20R0x-NssibiaLfwQc3_EZn-FTjTtJp3KUL7Ch0l34ffWSmcBWrQe-LJQkt0bAGuc_8liizcsZuc6KnFxhrJOkNy2zeSX_RLBkjgw4m5PCHrwlN1aLwry6VoU935WSTJPxTEynpKvwMcB5hXSNl82_wlPvZtLtO_VVDI5gzC0cLr0gxnlTcxnGoW7zsBX7bVf6RsBLJYozJTWTlImEKyYxXUpP-m3taoWMSLI92EqzVB0AYUaJlHtKUoFoUVPuCSzhUo0knXOv1YAzNFJUD6U8srvk1Isqy0W15RrgLPstSmo1c3OpxnRt_otV_l-VjsfanKdLN4hwqJn9E5GqrMwjQzYDH_Fj2ID9yj9WdbHAkDsWfntT60_gY38yHESDu9HDIWxTw-GNzG7rCLaKeamOEegU8Xfr3H8AoW_31Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5eQHzxgrd5jSj41Nk2bZc96uacOocyBd9K2iQgbq2sLYi_3nPSbqAy0Jc-pElITk5yvpOTfCHkVHAvUkI0LB342vI0cyxIgQGJAqaani242bq47wfdZ-_2xX-p7nHjXRhoRAY1ZSaIj7P6XeqKYcA5h3QRjep2bF6ImCeLGLNDj-uiNZhurLhGTxH2Ipa2AF-7E7LGX1WgSYqz7yZpBs409qazSp6mLTXHTN7qRR7V488fJI7_7MoaWanwJ70oFWadzKlkg3xcvqZo4Mp9wddPJek1ElnDOkgfC5B9MaLtNM_oJdg8STvDIh2XNFAUSmbgCadjmpsDuPTKcFLgr7bKzTmvhKaaDkZiOKQtBZ8erC-0hdo23iTPnaunVteqnmSwBGN2bnHp-BGsn5rLIAp0kweNyGva0kMiLxUrzpTUTLpMxFwxCelSOtJralsr8Iwk2yILSZqoHUIZMpJyR0lXAGrULncElLBdDc46506jRk5ASGE1pbLQRMtdJywlF1aSqxFrMnZhXLGa4-Maw5n5z6b530s-j5k5jyeqEMKUwziKSFRaZCE6nb4HODKoke1SR6Z1MR-dPBbs_qn1R2Tpod0Jezf9uz2y7KIrj2y7jX2ykI8LdQB4J48OjX5_AbFd-lg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biofunctionalized+Graphene+Quantum+Dots+Based+Fluorescent+Biosensor+toward+Efficient+Detection+of+Small+Cell+Lung+Cancer&rft.jtitle=ACS+applied+bio+materials&rft.au=Kalkal%2C+Ashish&rft.au=Pradhan%2C+Rangadhar&rft.au=Kadian%2C+Sachin&rft.au=Manik%2C+Gaurav&rft.date=2020-08-17&rft.issn=2576-6422&rft.eissn=2576-6422&rft.volume=3&rft.issue=8&rft.spage=4922&rft_id=info:doi/10.1021%2Facsabm.0c00427&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-6422&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-6422&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-6422&client=summon |