Biofunctionalized Graphene Quantum Dots Based Fluorescent Biosensor toward Efficient Detection of Small Cell Lung Cancer

Quantitative detection of cancer biomarkers with higher accuracy and sensitivity provides an effective platform for screening, monitoring, early diagnosis, and disease surveillance. The present work demonstrates the fabrication and application of fluorescent turn-on biosensor for ultrasensitive dete...

Full description

Saved in:
Bibliographic Details
Published inACS applied bio materials Vol. 3; no. 8; pp. 4922 - 4932
Main Authors Kalkal, Ashish, Pradhan, Rangadhar, Kadian, Sachin, Manik, Gaurav, Packirisamy, Gopinath
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 17.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quantitative detection of cancer biomarkers with higher accuracy and sensitivity provides an effective platform for screening, monitoring, early diagnosis, and disease surveillance. The present work demonstrates the fabrication and application of fluorescent turn-on biosensor for ultrasensitive detection of small cell lung cancer biomarker utilizing biofunctionalized graphene quantum dots as the energy donor and gold nanoparticles (AuNPs) as the energy acceptor. One-pot and the bottom-up hydrothermal route have been employed for the synthesis of in situ amine-functionalized and nitrogen-doped graphene quantum dots (amine-N-GQDs) and further characterized experimentally by different analytical techniques. The molecular simulation studies were performed using the Material Studio software for optimizing the possible chemical structure of synthesized amine-N-GQDs, a comprehensive analysis of experimental results to validate the presence of potential N-doping and amine functionalization sites. Then monoclonal neuron-specific enolase antibodies (anti-NSE) were covalently immobilized to amine-N-GQDs to provide the biofunctionalized GQDs (anti-NSE/amine-N-GQDs). A label-free and efficient fluorescent biosensor based on nanosurface energy transfer (NSET) between anti-NSE/amine-N-GQDs and AuNPs has been developed for neuron-specific enolase (NSE) detection. The fluorescence response studies of anti-NSE/amine-N-GQDs@AuNPs nanoprobe conducted as a function of NSE antigen exhibited fast response time (16 min), broader linear detection range (0.1 pg mL–1 to 1000 ng mL–1), and remarkably low detection limit (0.09 pg mL–1). Additionally, the fluorescent biosensor exhibited excellent performance in real samples, with an average recovery value of 94.69%.
AbstractList Quantitative detection of cancer biomarkers with higher accuracy and sensitivity provides an effective platform for screening, monitoring, early diagnosis, and disease surveillance. The present work demonstrates the fabrication and application of fluorescent turn-on biosensor for ultrasensitive detection of small cell lung cancer biomarker utilizing biofunctionalized graphene quantum dots as the energy donor and gold nanoparticles (AuNPs) as the energy acceptor. One-pot and the bottom-up hydrothermal route have been employed for the synthesis of in situ amine-functionalized and nitrogen-doped graphene quantum dots (amine-N-GQDs) and further characterized experimentally by different analytical techniques. The molecular simulation studies were performed using the Material Studio software for optimizing the possible chemical structure of synthesized amine-N-GQDs, a comprehensive analysis of experimental results to validate the presence of potential N-doping and amine functionalization sites. Then monoclonal neuron-specific enolase antibodies (anti-NSE) were covalently immobilized to amine-N-GQDs to provide the biofunctionalized GQDs (anti-NSE/amine-N-GQDs). A label-free and efficient fluorescent biosensor based on nanosurface energy transfer (NSET) between anti-NSE/amine-N-GQDs and AuNPs has been developed for neuron-specific enolase (NSE) detection. The fluorescence response studies of anti-NSE/amine-N-GQDs@AuNPs nanoprobe conducted as a function of NSE antigen exhibited fast response time (16 min), broader linear detection range (0.1 pg mL-1 to 1000 ng mL-1), and remarkably low detection limit (0.09 pg mL-1). Additionally, the fluorescent biosensor exhibited excellent performance in real samples, with an average recovery value of 94.69%.Quantitative detection of cancer biomarkers with higher accuracy and sensitivity provides an effective platform for screening, monitoring, early diagnosis, and disease surveillance. The present work demonstrates the fabrication and application of fluorescent turn-on biosensor for ultrasensitive detection of small cell lung cancer biomarker utilizing biofunctionalized graphene quantum dots as the energy donor and gold nanoparticles (AuNPs) as the energy acceptor. One-pot and the bottom-up hydrothermal route have been employed for the synthesis of in situ amine-functionalized and nitrogen-doped graphene quantum dots (amine-N-GQDs) and further characterized experimentally by different analytical techniques. The molecular simulation studies were performed using the Material Studio software for optimizing the possible chemical structure of synthesized amine-N-GQDs, a comprehensive analysis of experimental results to validate the presence of potential N-doping and amine functionalization sites. Then monoclonal neuron-specific enolase antibodies (anti-NSE) were covalently immobilized to amine-N-GQDs to provide the biofunctionalized GQDs (anti-NSE/amine-N-GQDs). A label-free and efficient fluorescent biosensor based on nanosurface energy transfer (NSET) between anti-NSE/amine-N-GQDs and AuNPs has been developed for neuron-specific enolase (NSE) detection. The fluorescence response studies of anti-NSE/amine-N-GQDs@AuNPs nanoprobe conducted as a function of NSE antigen exhibited fast response time (16 min), broader linear detection range (0.1 pg mL-1 to 1000 ng mL-1), and remarkably low detection limit (0.09 pg mL-1). Additionally, the fluorescent biosensor exhibited excellent performance in real samples, with an average recovery value of 94.69%.
Quantitative detection of cancer biomarkers with higher accuracy and sensitivity provides an effective platform for screening, monitoring, early diagnosis, and disease surveillance. The present work demonstrates the fabrication and application of fluorescent turn-on biosensor for ultrasensitive detection of small cell lung cancer biomarker utilizing biofunctionalized graphene quantum dots as the energy donor and gold nanoparticles (AuNPs) as the energy acceptor. One-pot and the bottom-up hydrothermal route have been employed for the synthesis of amine-functionalized and nitrogen-doped graphene quantum dots (amine-N-GQDs) and further characterized experimentally by different analytical techniques. The molecular simulation studies were performed using the Material Studio software for optimizing the possible chemical structure of synthesized amine-N-GQDs, a comprehensive analysis of experimental results to validate the presence of potential N-doping and amine functionalization sites. Then monoclonal neuron-specific enolase antibodies (anti-NSE) were covalently immobilized to amine-N-GQDs to provide the biofunctionalized GQDs (anti-NSE/amine-N-GQDs). A label-free and efficient fluorescent biosensor based on nanosurface energy transfer (NSET) between anti-NSE/amine-N-GQDs and AuNPs has been developed for neuron-specific enolase (NSE) detection. The fluorescence response studies of anti-NSE/amine-N-GQDs@AuNPs nanoprobe conducted as a function of NSE antigen exhibited fast response time (16 min), broader linear detection range (0.1 pg mL to 1000 ng mL ), and remarkably low detection limit (0.09 pg mL ). Additionally, the fluorescent biosensor exhibited excellent performance in real samples, with an average recovery value of 94.69%.
Quantitative detection of cancer biomarkers with higher accuracy and sensitivity provides an effective platform for screening, monitoring, early diagnosis, and disease surveillance. The present work demonstrates the fabrication and application of fluorescent turn-on biosensor for ultrasensitive detection of small cell lung cancer biomarker utilizing biofunctionalized graphene quantum dots as the energy donor and gold nanoparticles (AuNPs) as the energy acceptor. One-pot and the bottom-up hydrothermal route have been employed for the synthesis of in situ amine-functionalized and nitrogen-doped graphene quantum dots (amine-N-GQDs) and further characterized experimentally by different analytical techniques. The molecular simulation studies were performed using the Material Studio software for optimizing the possible chemical structure of synthesized amine-N-GQDs, a comprehensive analysis of experimental results to validate the presence of potential N-doping and amine functionalization sites. Then monoclonal neuron-specific enolase antibodies (anti-NSE) were covalently immobilized to amine-N-GQDs to provide the biofunctionalized GQDs (anti-NSE/amine-N-GQDs). A label-free and efficient fluorescent biosensor based on nanosurface energy transfer (NSET) between anti-NSE/amine-N-GQDs and AuNPs has been developed for neuron-specific enolase (NSE) detection. The fluorescence response studies of anti-NSE/amine-N-GQDs@AuNPs nanoprobe conducted as a function of NSE antigen exhibited fast response time (16 min), broader linear detection range (0.1 pg mL–1 to 1000 ng mL–1), and remarkably low detection limit (0.09 pg mL–1). Additionally, the fluorescent biosensor exhibited excellent performance in real samples, with an average recovery value of 94.69%.
Author Pradhan, Rangadhar
Packirisamy, Gopinath
Kalkal, Ashish
Kadian, Sachin
Manik, Gaurav
AuthorAffiliation Department of Polymer and Process Engineering
Centre for Nanotechnology
Department of Biotechnology
AuthorAffiliation_xml – name: Department of Biotechnology
– name: Department of Polymer and Process Engineering
– name: Centre for Nanotechnology
Author_xml – sequence: 1
  givenname: Ashish
  orcidid: 0000-0002-4342-1193
  surname: Kalkal
  fullname: Kalkal, Ashish
  organization: Department of Biotechnology
– sequence: 2
  givenname: Rangadhar
  orcidid: 0000-0002-9283-4955
  surname: Pradhan
  fullname: Pradhan, Rangadhar
  organization: Centre for Nanotechnology
– sequence: 3
  givenname: Sachin
  orcidid: 0000-0002-2804-1109
  surname: Kadian
  fullname: Kadian, Sachin
  organization: Department of Polymer and Process Engineering
– sequence: 4
  givenname: Gaurav
  orcidid: 0000-0003-2501-1737
  surname: Manik
  fullname: Manik, Gaurav
  organization: Department of Polymer and Process Engineering
– sequence: 5
  givenname: Gopinath
  orcidid: 0000-0003-1379-1203
  surname: Packirisamy
  fullname: Packirisamy, Gopinath
  email: gopi@bt.iitr.ac.in, genegopi@gmail.com
  organization: Centre for Nanotechnology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35021736$$D View this record in MEDLINE/PubMed
BookMark eNp1kdtrFDEUh4NUbK197WPJYynsmttkZh7b7UVhQUR9HjLJiabMJNtcaPWvN-uuRYS-JOGc7zuE83uLDnzwgNApJUtKGH2vdFLjvCSaEMHaV-iINa1cSMHYwT_vQ3SS0j0hhBHCade_QYe8qXrL5RF6unLBFq-zC15N7hcYfBfV5gd4wJ-L8rnM-DrkhK9Uqr3bqYQISYPPuJoJfAoR5_CoosE31jrttq1ryPBnJA4Wf5nVNOEV1GNd_He8Ul5DfIdeWzUlONnfx-jb7c3X1YfF-tPdx9XleqE4J3nRGdqMrWS2M3KUtu9kO4qeGNG0hIOGjoOx3DCudAfc1Lox1IjeEgtd2xh-jM53czcxPBRIeZhd_f80KQ-hpIFJ2jdCCCorerZHyziDGTbRzSr-HP5uqwLLHaBjSCmCfUYoGbaJDLtEhn0iVRD_CdpltV1MjspNL2sXO63Wh_tQYo0mvQT_BtRen-0
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2023_125157
crossref_primary_10_1515_ntrev_2023_0116
crossref_primary_10_1016_j_csbj_2023_08_010
crossref_primary_10_1007_s44174_024_00226_9
crossref_primary_10_1016_j_snb_2023_135041
crossref_primary_10_1016_j_talanta_2024_126346
crossref_primary_10_1039_D2NJ02603A
crossref_primary_10_1007_s00604_020_04448_8
crossref_primary_10_1016_j_aca_2024_343276
crossref_primary_10_2174_1389201023666211222165508
crossref_primary_10_1021_acs_analchem_3c00058
crossref_primary_10_3390_coatings13111956
crossref_primary_10_3390_s21041109
crossref_primary_10_1080_1536383X_2025_2450261
crossref_primary_10_1038_s41598_022_13016_4
crossref_primary_10_1007_s10068_023_01309_x
crossref_primary_10_1007_s10895_024_03809_3
crossref_primary_10_1080_00032719_2022_2027957
crossref_primary_10_1007_s10895_023_03501_y
crossref_primary_10_1007_s12668_024_01639_y
crossref_primary_10_3390_bios12070460
crossref_primary_10_1016_j_slasd_2024_100205
crossref_primary_10_1088_1748_605X_ac41fd
crossref_primary_10_3390_cancers13133194
crossref_primary_10_1016_j_microc_2023_109262
crossref_primary_10_1021_acsbiomaterials_1c01087
crossref_primary_10_1166_mex_2022_2143
crossref_primary_10_3390_nano13212880
crossref_primary_10_1002_elan_202400247
crossref_primary_10_1039_D4AN00764F
crossref_primary_10_1016_j_jpba_2022_115215
crossref_primary_10_1080_21655979_2024_2401269
crossref_primary_10_1016_j_colsurfb_2024_113878
crossref_primary_10_1021_acsanm_4c03305
crossref_primary_10_1007_s12088_024_01404_5
crossref_primary_10_1016_j_sbsr_2022_100497
crossref_primary_10_1016_j_scitotenv_2022_155219
crossref_primary_10_1021_acsomega_2c00092
crossref_primary_10_1080_1061186X_2021_1987442
crossref_primary_10_1016_j_sintl_2022_100180
crossref_primary_10_3390_nano12213874
crossref_primary_10_1016_j_rser_2021_111993
crossref_primary_10_1016_j_jphotobiol_2023_112800
crossref_primary_10_1016_j_mssp_2024_109066
crossref_primary_10_1016_j_electacta_2023_143664
crossref_primary_10_3390_nano13020361
crossref_primary_10_1016_j_microc_2023_109298
crossref_primary_10_1002_ppsc_202400221
crossref_primary_10_1016_j_biosx_2022_100245
crossref_primary_10_1016_j_biosx_2022_100247
crossref_primary_10_1016_j_bios_2021_113620
crossref_primary_10_1155_2023_2832964
crossref_primary_10_1007_s10853_023_08812_w
crossref_primary_10_2174_0929867331666230912101634
crossref_primary_10_1016_j_jhazmat_2021_128107
crossref_primary_10_3389_fchem_2021_669169
crossref_primary_10_1007_s10895_024_03924_1
crossref_primary_10_1016_j_sna_2024_115748
crossref_primary_10_1002_smsc_202200087
crossref_primary_10_1016_j_aej_2024_10_089
crossref_primary_10_1016_j_bios_2023_115701
crossref_primary_10_1007_s12088_024_01318_2
crossref_primary_10_1039_D0RA09155C
crossref_primary_10_3390_cancers15133414
crossref_primary_10_1039_D2MA00238H
crossref_primary_10_1039_D3MA00438D
crossref_primary_10_3390_bios14120624
crossref_primary_10_1016_j_snb_2022_132543
crossref_primary_10_1007_s00604_022_05353_y
crossref_primary_10_1016_j_talanta_2021_123075
crossref_primary_10_1002_smsc_202300221
crossref_primary_10_1039_D0QM00550A
crossref_primary_10_1016_j_jpba_2022_114628
crossref_primary_10_1016_j_talo_2023_100267
crossref_primary_10_1016_j_envres_2023_116932
crossref_primary_10_1088_1361_6528_acd00a
crossref_primary_10_1088_1748_605X_ad581a
crossref_primary_10_1002_cbdv_202401581
crossref_primary_10_1021_acsanm_1c03235
crossref_primary_10_1016_j_jics_2021_100069
crossref_primary_10_1063_5_0231279
crossref_primary_10_1016_j_susmat_2022_e00494
crossref_primary_10_1016_j_heliyon_2023_e19929
crossref_primary_10_1016_j_snb_2021_130075
crossref_primary_10_1016_j_ijbiomac_2023_127260
crossref_primary_10_1021_acsanm_1c01295
crossref_primary_10_1021_acsanm_4c03631
crossref_primary_10_1103_PhysRevMaterials_5_124004
crossref_primary_10_1002_agt2_707
crossref_primary_10_1002_wnan_1998
crossref_primary_10_1088_2043_6262_ac5e35
crossref_primary_10_1016_j_nwnano_2023_100008
crossref_primary_10_1016_j_bioelechem_2023_108371
crossref_primary_10_3390_nano14242014
crossref_primary_10_1016_j_matlet_2021_131540
crossref_primary_10_1039_D3NR05648A
crossref_primary_10_1002_ardp_202200299
crossref_primary_10_1088_1742_6596_2653_1_012071
crossref_primary_10_2174_0115680266282489240109050225
crossref_primary_10_1016_j_microc_2024_110350
crossref_primary_10_1016_j_talanta_2024_126022
crossref_primary_10_1186_s43088_022_00293_1
crossref_primary_10_1007_s42823_025_00860_3
crossref_primary_10_1039_D1MA00251A
crossref_primary_10_1557_s43579_023_00430_6
crossref_primary_10_1016_j_microc_2024_110639
crossref_primary_10_1021_acs_analchem_2c01874
crossref_primary_10_3390_chemosensors10120498
crossref_primary_10_1186_s13045_024_01531_y
crossref_primary_10_3389_fchem_2022_946574
crossref_primary_10_1016_j_sintl_2021_100102
crossref_primary_10_1016_j_jphotobiol_2022_112602
crossref_primary_10_3390_bios13010040
crossref_primary_10_1016_j_colsurfb_2024_113863
crossref_primary_10_1021_acsanm_1c01398
crossref_primary_10_1007_s10544_021_00545_4
crossref_primary_10_1016_j_microc_2025_113278
crossref_primary_10_1039_D3AY00590A
crossref_primary_10_3390_biom11111714
crossref_primary_10_1016_j_nanoso_2022_100886
crossref_primary_10_1007_s10895_023_03252_w
crossref_primary_10_1016_j_bios_2022_114196
crossref_primary_10_1016_j_colsurfa_2024_134819
crossref_primary_10_1016_j_talanta_2023_124399
crossref_primary_10_1088_1755_1315_1285_1_012034
crossref_primary_10_1016_j_microc_2022_107971
crossref_primary_10_1016_j_saa_2025_126002
crossref_primary_10_1088_1748_605X_ac84ba
crossref_primary_10_1109_JSEN_2023_3265069
crossref_primary_10_1016_j_mtelec_2023_100067
crossref_primary_10_1080_10408398_2021_1980765
crossref_primary_10_1016_j_addma_2021_102088
crossref_primary_10_1063_5_0166740
Cites_doi 10.1038/lsa.2015.137
10.1021/acssensors.9b00400
10.1039/C7TB02356A
10.1016/j.bios.2017.04.003
10.1002/ppsc.201400189
10.1016/j.aca.2012.02.007
10.1039/c2cc33869f
10.1002/chem.201102876
10.1016/j.talanta.2012.02.047
10.1038/srep23406
10.1039/b501536g
10.1021/acsabm.9b00659
10.1021/acsami.9b08521
10.1002/adma.201200164
10.1021/ac504456w
10.1016/j.trac.2019.115748
10.1021/am4042355
10.1021/acsabm.9b00805
10.1039/b926512k
10.1016/j.bios.2017.11.004
10.1021/nl903178n
10.1088/1361-6528/ab3566
10.1039/C5AN02270C
10.1021/acs.langmuir.8b03739
10.1021/acsabm.9b00084
10.1021/acsami.6b11525
10.1002/smll.201402648
10.1039/C8TB01869C
10.1016/j.ab.2018.02.024
10.1039/C9TB02823D
10.1039/C5TC01933H
10.1021/acsabm.9b00694
10.1016/j.aca.2018.07.060
10.1016/j.snb.2018.11.105
10.1021/cr100420s
10.1039/C5TB00885A
10.1038/srep05294
10.1016/B978-0-12-815890-6.00001-3
10.1039/c3nr05376h
10.1039/c0an00704h
10.1039/C7TB01399J
10.1021/acs.chemmater.5b00112
10.1021/acsami.8b01429
10.1002/adfm.201201499
10.1002/adfm.201800881
10.1002/elan.201000221
10.1039/c4ta00860j
10.1039/C3CS60273G
10.4236/opj.2013.31004
10.1021/acs.jpcc.8b06539
10.1021/acsami.8b20501
10.1016/j.ab.2017.05.025
10.1021/acsabm.9b00580
10.1016/j.bios.2011.10.055
10.1016/j.lungcan.2011.11.015
10.1039/C3NR06353D
10.1021/cr5000943
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsabm.0c00427
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2576-6422
EndPage 4932
ExternalDocumentID 35021736
10_1021_acsabm_0c00427
c411509580
Genre Journal Article
GroupedDBID ABUCX
ACS
ALMA_UNASSIGNED_HOLDINGS
EBS
VF5
VG9
53G
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a330t-8d15b762f8d6b6f9867b490d45703ece83edf3d23ac8e3dd45dd1d49f0fe875d3
IEDL.DBID ACS
ISSN 2576-6422
IngestDate Fri Jul 11 05:48:30 EDT 2025
Wed Feb 19 02:27:37 EST 2025
Thu Apr 24 23:06:36 EDT 2025
Tue Jul 01 04:25:32 EDT 2025
Wed Aug 19 19:16:36 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords energy transfer
graphene quantum dots (GQDs)
biosensor
small cell lung cancer (SCLC)
biomarker
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a330t-8d15b762f8d6b6f9867b490d45703ece83edf3d23ac8e3dd45dd1d49f0fe875d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9283-4955
0000-0003-2501-1737
0000-0002-4342-1193
0000-0002-2804-1109
0000-0003-1379-1203
PMID 35021736
PQID 2619544416
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2619544416
pubmed_primary_35021736
crossref_primary_10_1021_acsabm_0c00427
crossref_citationtrail_10_1021_acsabm_0c00427
acs_journals_10_1021_acsabm_0c00427
ProviderPackageCode ACS
VG9
ABUCX
VF5
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200817
2020-08-17
2020-Aug-17
PublicationDateYYYYMMDD 2020-08-17
PublicationDate_xml – month: 08
  year: 2020
  text: 20200817
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied bio materials
PublicationTitleAlternate ACS Appl. Bio Mater
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref28/cit28
  doi: 10.1038/lsa.2015.137
– ident: ref5/cit5
  doi: 10.1021/acssensors.9b00400
– ident: ref21/cit21
  doi: 10.1039/C7TB02356A
– ident: ref58/cit58
  doi: 10.1016/j.bios.2017.04.003
– ident: ref15/cit15
  doi: 10.1002/ppsc.201400189
– ident: ref56/cit56
  doi: 10.1016/j.aca.2012.02.007
– ident: ref42/cit42
  doi: 10.1039/c2cc33869f
– ident: ref55/cit55
  doi: 10.1002/chem.201102876
– ident: ref52/cit52
  doi: 10.1016/j.talanta.2012.02.047
– ident: ref34/cit34
  doi: 10.1038/srep23406
– ident: ref12/cit12
  doi: 10.1039/b501536g
– ident: ref48/cit48
  doi: 10.1021/acsabm.9b00659
– ident: ref6/cit6
  doi: 10.1021/acsami.9b08521
– ident: ref29/cit29
  doi: 10.1002/adma.201200164
– ident: ref50/cit50
  doi: 10.1021/ac504456w
– ident: ref18/cit18
  doi: 10.1016/j.trac.2019.115748
– ident: ref41/cit41
  doi: 10.1021/am4042355
– ident: ref24/cit24
  doi: 10.1021/acsabm.9b00805
– ident: ref14/cit14
  doi: 10.1039/b926512k
– ident: ref35/cit35
  doi: 10.1016/j.bios.2017.11.004
– ident: ref36/cit36
  doi: 10.1021/nl903178n
– ident: ref25/cit25
  doi: 10.1088/1361-6528/ab3566
– ident: ref30/cit30
  doi: 10.1039/C5AN02270C
– ident: ref9/cit9
  doi: 10.1021/acs.langmuir.8b03739
– ident: ref44/cit44
  doi: 10.1021/acsabm.9b00084
– ident: ref26/cit26
  doi: 10.1021/acsami.6b11525
– ident: ref20/cit20
  doi: 10.1002/smll.201402648
– ident: ref11/cit11
  doi: 10.1039/C8TB01869C
– ident: ref3/cit3
  doi: 10.1016/j.ab.2018.02.024
– ident: ref22/cit22
  doi: 10.1039/C9TB02823D
– ident: ref43/cit43
– ident: ref23/cit23
  doi: 10.1039/C5TC01933H
– ident: ref49/cit49
  doi: 10.1021/acsabm.9b00694
– ident: ref10/cit10
  doi: 10.1016/j.aca.2018.07.060
– ident: ref37/cit37
  doi: 10.1016/j.snb.2018.11.105
– ident: ref2/cit2
  doi: 10.1021/cr100420s
– ident: ref4/cit4
  doi: 10.1039/C5TB00885A
– ident: ref27/cit27
  doi: 10.1038/srep05294
– ident: ref47/cit47
  doi: 10.1016/B978-0-12-815890-6.00001-3
– ident: ref40/cit40
  doi: 10.1039/c3nr05376h
– ident: ref54/cit54
  doi: 10.1039/c0an00704h
– ident: ref8/cit8
  doi: 10.1039/C7TB01399J
– ident: ref16/cit16
  doi: 10.1021/acs.chemmater.5b00112
– ident: ref39/cit39
  doi: 10.1021/acsami.8b01429
– ident: ref19/cit19
  doi: 10.1002/adfm.201201499
– ident: ref31/cit31
  doi: 10.1002/adfm.201800881
– ident: ref51/cit51
  doi: 10.1002/elan.201000221
– ident: ref13/cit13
  doi: 10.1039/c4ta00860j
– ident: ref33/cit33
  doi: 10.1039/C3CS60273G
– ident: ref46/cit46
  doi: 10.4236/opj.2013.31004
– ident: ref17/cit17
  doi: 10.1021/acs.jpcc.8b06539
– ident: ref7/cit7
  doi: 10.1021/acsami.8b20501
– ident: ref57/cit57
  doi: 10.1016/j.ab.2017.05.025
– ident: ref45/cit45
  doi: 10.1021/acsabm.9b00580
– ident: ref53/cit53
  doi: 10.1016/j.bios.2011.10.055
– ident: ref1/cit1
  doi: 10.1016/j.lungcan.2011.11.015
– ident: ref38/cit38
  doi: 10.1039/C3NR06353D
– ident: ref32/cit32
  doi: 10.1021/cr5000943
SSID ssj0002003189
Score 2.5289884
Snippet Quantitative detection of cancer biomarkers with higher accuracy and sensitivity provides an effective platform for screening, monitoring, early diagnosis, and...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4922
Title Biofunctionalized Graphene Quantum Dots Based Fluorescent Biosensor toward Efficient Detection of Small Cell Lung Cancer
URI http://dx.doi.org/10.1021/acsabm.0c00427
https://www.ncbi.nlm.nih.gov/pubmed/35021736
https://www.proquest.com/docview/2619544416
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pa9swFBZrdtmlP-h-ZG2Hygo9ObMlW1aOSdq0lK5QukBvRrYkCE3sEdtQ8tf3PdlJ2UJoLz7IkhBPT3rf9yQ-EXKmZJgapWLPish6oeWBByUwIangph_6SrrUxe87cT0Jbx6jx9d8x_8n-Cz4pbJSpfOen7lnIXbIRyZkjDRrMHpYZ1OYc07EugigPQDVbKXQuNEFxqGs_DcObQGXLsiM9xrFo9JpE-LdkqdeXaW9bLmp3Pjm-PfJbos06aBxjQPyweSH5Hk4LTCUNRnA6dJoeoWS1bDj0fsarFzP6UVRlXQI0U3T8awuFo3gE4WWJXDeYkErd9WWXjr1Cfx1YSp3oyunhaUPczWb0ZGBzy3sJHSEfrX4TCbjyz-ja699fMFTnPuVJ3UQpbBTWqlFKmxfijgN-74OUbLLZEZyoy3XjKtMGq6hXOtAh33rWwMcSPMvpJMXuflGKEftURkYzRTgQ8tkoKCFzyzQcimDuEt-gpGSdvGUiTsXZ0HSWC5pLdcl3mrCkqzVL8dnNGZb65-v6_9tlDu21jxdzX8CiwtPTFRuirpMkF5GISBG0SVfG8dY98UjpHNcfH_X6I_IJ4ZMHcV042PSqRa1OQE4U6U_nCe_AHpn73Q
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFH4CdhiXsYkBHTCMQOKUkthJ6h5LoRRoq6EWiVvkxLaE1iZTk0hTf_2enbRomyrBJQfHtpznZ7_vs53PAOeC-7ESouXoMNCOr5nnYAp2SBwy1fZdwe3SxXAU9p_8--fgeQMul__CYCNyrCm3m_iv6gLeJaaJeNZ0E3s7xCZ8QCRCDdvqdMerRRVqfdRAXoOjHcTWdCnU-F8VJhwl-d_haA3GtLGmtwM_Vq20R0x-NssibiaLfwQc3_EZn-FTjTtJp3KUL7Ch0l34ffWSmcBWrQe-LJQkt0bAGuc_8liizcsZuc6KnFxhrJOkNy2zeSX_RLBkjgw4m5PCHrwlN1aLwry6VoU935WSTJPxTEynpKvwMcB5hXSNl82_wlPvZtLtO_VVDI5gzC0cLr0gxnlTcxnGoW7zsBX7bVf6RsBLJYozJTWTlImEKyYxXUpP-m3taoWMSLI92EqzVB0AYUaJlHtKUoFoUVPuCSzhUo0knXOv1YAzNFJUD6U8srvk1Isqy0W15RrgLPstSmo1c3OpxnRt_otV_l-VjsfanKdLN4hwqJn9E5GqrMwjQzYDH_Fj2ID9yj9WdbHAkDsWfntT60_gY38yHESDu9HDIWxTw-GNzG7rCLaKeamOEegU8Xfr3H8AoW_31Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5eQHzxgrd5jSj41Nk2bZc96uacOocyBd9K2iQgbq2sLYi_3nPSbqAy0Jc-pElITk5yvpOTfCHkVHAvUkI0LB342vI0cyxIgQGJAqaani242bq47wfdZ-_2xX-p7nHjXRhoRAY1ZSaIj7P6XeqKYcA5h3QRjep2bF6ImCeLGLNDj-uiNZhurLhGTxH2Ipa2AF-7E7LGX1WgSYqz7yZpBs409qazSp6mLTXHTN7qRR7V488fJI7_7MoaWanwJ70oFWadzKlkg3xcvqZo4Mp9wddPJek1ElnDOkgfC5B9MaLtNM_oJdg8STvDIh2XNFAUSmbgCadjmpsDuPTKcFLgr7bKzTmvhKaaDkZiOKQtBZ8erC-0hdo23iTPnaunVteqnmSwBGN2bnHp-BGsn5rLIAp0kweNyGva0kMiLxUrzpTUTLpMxFwxCelSOtJralsr8Iwk2yILSZqoHUIZMpJyR0lXAGrULncElLBdDc46506jRk5ASGE1pbLQRMtdJywlF1aSqxFrMnZhXLGa4-Maw5n5z6b530s-j5k5jyeqEMKUwziKSFRaZCE6nb4HODKoke1SR6Z1MR-dPBbs_qn1R2Tpod0Jezf9uz2y7KIrj2y7jX2ykI8LdQB4J48OjX5_AbFd-lg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biofunctionalized+Graphene+Quantum+Dots+Based+Fluorescent+Biosensor+toward+Efficient+Detection+of+Small+Cell+Lung+Cancer&rft.jtitle=ACS+applied+bio+materials&rft.au=Kalkal%2C+Ashish&rft.au=Pradhan%2C+Rangadhar&rft.au=Kadian%2C+Sachin&rft.au=Manik%2C+Gaurav&rft.date=2020-08-17&rft.issn=2576-6422&rft.eissn=2576-6422&rft.volume=3&rft.issue=8&rft.spage=4922&rft_id=info:doi/10.1021%2Facsabm.0c00427&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-6422&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-6422&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-6422&client=summon