Asymmetrically Curved Hyperbolic Metamaterial Structure with Gradient Thicknesses for Enhanced Directional Spontaneous Emission
We demonstrate hyperbolic metamaterials (HMMs) on a curved surface for an efficient outcoupling of nonradiative modes, which lead to an enhanced spontaneous emission. Those high-wavevector plasmonic modes can propagate along the curved structure and emit into the far field, realizing a directional l...
Saved in:
Published in | ACS applied materials & interfaces Vol. 10; no. 9; pp. 7704 - 7708 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
07.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We demonstrate hyperbolic metamaterials (HMMs) on a curved surface for an efficient outcoupling of nonradiative modes, which lead to an enhanced spontaneous emission. Those high-wavevector plasmonic modes can propagate along the curved structure and emit into the far field, realizing a directional light emission with maximal fluorescent intensity. Detailed simulations disclose a high Purcell factor and a spatial power distribution in the curved HMM, which agrees with the experimental result. Our work presents remarkable enhancing capability in both the Purcell factor and emission intensity, which could suggest a unique structure design in metamaterials for potential application in, e.g., high-speed optical sensing and communications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.7b19721 |