Highly Concentrated Seed-Mediated Synthesis of Monodispersed Gold Nanorods

The extremely large optical extinction coefficient of gold nanorods (Au-NRs) enables their use in a diverse array of technologies, rnging from plasmonic imaging, therapeutics and sensors, to large area coatings, filters, and optical attenuators. Development of the latter technologies has been hinder...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 9; no. 31; pp. 26363 - 26371
Main Authors Park, Kyoungweon, Hsiao, Ming-siao, Yi, Yoon-Jae, Izor, Sarah, Koerner, Hilmar, Jawaid, Ali, Vaia, Richard A
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The extremely large optical extinction coefficient of gold nanorods (Au-NRs) enables their use in a diverse array of technologies, rnging from plasmonic imaging, therapeutics and sensors, to large area coatings, filters, and optical attenuators. Development of the latter technologies has been hindered by the lack of cost-effective, large volume production. This is due in part to the low reactant concentration required for symmetry breaking in conventional seed-mediated synthesis. Direct scale up of laboratory procedures has limited viability because of excessive solvent volume, exhaustive postsynthesis purification processes, and the generation of large amounts of waste (e.g., hexadecyltrimethylammonium bromide­(CTAB)). Following recent insights into the growth mechanism of Au-NRs and the role of seed development, we modify the classic seed-mediated synthesis via temporal control of seed and reactant concentration to demonstrate production of Au-NRs at more than 100-times the conventional concentration, while maintaining independent control and narrow distribution of nanoparticle dimensions, aspect ratio, and volume. Thus, gram scale synthesis of Au-NRs with prescribed aspect ratio and volume is feasible in a 100 mL reactor with 1/100th of organic waste relative to conventional approaches. Such scale-up techniques are crucial to cost-effectively meet the increased demand for large quantities of Au-NRs in emerging applications.
AbstractList The extremely large optical extinction coefficient of gold nanorods (Au-NRs) enables their use in a diverse array of technologies, rnging from plasmonic imaging, therapeutics and sensors, to large area coatings, filters, and optical attenuators. Development of the latter technologies has been hindered by the lack of cost-effective, large volume production. This is due in part to the low reactant concentration required for symmetry breaking in conventional seed-mediated synthesis. Direct scale up of laboratory procedures has limited viability because of excessive solvent volume, exhaustive postsynthesis purification processes, and the generation of large amounts of waste (e.g., hexadecyltrimethylammonium bromide­(CTAB)). Following recent insights into the growth mechanism of Au-NRs and the role of seed development, we modify the classic seed-mediated synthesis via temporal control of seed and reactant concentration to demonstrate production of Au-NRs at more than 100-times the conventional concentration, while maintaining independent control and narrow distribution of nanoparticle dimensions, aspect ratio, and volume. Thus, gram scale synthesis of Au-NRs with prescribed aspect ratio and volume is feasible in a 100 mL reactor with 1/100th of organic waste relative to conventional approaches. Such scale-up techniques are crucial to cost-effectively meet the increased demand for large quantities of Au-NRs in emerging applications.
The extremely large optical extinction coefficient of gold nanorods (Au-NRs) enables their use in a diverse array of technologies, rnging from plasmonic imaging, therapeutics and sensors, to large area coatings, filters, and optical attenuators. Development of the latter technologies has been hindered by the lack of cost-effective, large volume production. This is due in part to the low reactant concentration required for symmetry breaking in conventional seed-mediated synthesis. Direct scale up of laboratory procedures has limited viability because of excessive solvent volume, exhaustive postsynthesis purification processes, and the generation of large amounts of waste (e.g., hexadecyltrimethylammonium bromide(CTAB)). Following recent insights into the growth mechanism of Au-NRs and the role of seed development, we modify the classic seed-mediated synthesis via temporal control of seed and reactant concentration to demonstrate production of Au-NRs at more than 100-times the conventional concentration, while maintaining independent control and narrow distribution of nanoparticle dimensions, aspect ratio, and volume. Thus, gram scale synthesis of Au-NRs with prescribed aspect ratio and volume is feasible in a 100 mL reactor with 1/100th of organic waste relative to conventional approaches. Such scale-up techniques are crucial to cost-effectively meet the increased demand for large quantities of Au-NRs in emerging applications.
Author Jawaid, Ali
Hsiao, Ming-siao
Izor, Sarah
Park, Kyoungweon
Koerner, Hilmar
Vaia, Richard A
Yi, Yoon-Jae
AuthorAffiliation Air Force Research Laboratory
UES, Inc
Materials and Manufacturing Directorate
AuthorAffiliation_xml – name: Air Force Research Laboratory
– name: UES, Inc
– name: Materials and Manufacturing Directorate
Author_xml – sequence: 1
  givenname: Kyoungweon
  orcidid: 0000-0001-8069-3000
  surname: Park
  fullname: Park, Kyoungweon
  organization: UES, Inc
– sequence: 2
  givenname: Ming-siao
  surname: Hsiao
  fullname: Hsiao, Ming-siao
  organization: UES, Inc
– sequence: 3
  givenname: Yoon-Jae
  surname: Yi
  fullname: Yi, Yoon-Jae
  organization: UES, Inc
– sequence: 4
  givenname: Sarah
  surname: Izor
  fullname: Izor, Sarah
  organization: UES, Inc
– sequence: 5
  givenname: Hilmar
  surname: Koerner
  fullname: Koerner, Hilmar
  organization: Air Force Research Laboratory
– sequence: 6
  givenname: Ali
  surname: Jawaid
  fullname: Jawaid, Ali
  organization: UES, Inc
– sequence: 7
  givenname: Richard A
  orcidid: 0000-0003-4589-3423
  surname: Vaia
  fullname: Vaia, Richard A
  organization: Air Force Research Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28714667$$D View this record in MEDLINE/PubMed
BookMark eNp1kL1PwzAQxS1URD9gZUQZEVLK2bGdZEQVtKAWBmCOnPhCUyV2sZOh_z1BKd2Y7k7vd096b0pGxhok5JrCnAKj96rwqqnmcQ4JQHRGJjTlPEyYYKPTzvmYTL3fAciIgbggY5bElEsZT8jLqvra1odgYU2BpnWqRR28I-pwg7oaroNpt-grH9gy2FhjdeX36HwvLW2tg1dlrLPaX5LzUtUer45zRj6fHj8Wq3D9tnxePKxDFUXQhlLlwABTrkFBmaAWkSxy0FwWUqteEqkoBJMlxpQWnPM8EmUiEfowIIWKZuR28N07-92hb7Om8gXWtTJoO5_RlAFNo5SyHp0PaOGs9w7LbO-qRrlDRiH77S8b-suO_fUPN0fvLm9Qn_C_wnrgbgD6x2xnO2f6qP-5_QC4Y3uX
CitedBy_id crossref_primary_10_1016_j_trac_2023_117090
crossref_primary_10_1002_advs_202104426
crossref_primary_10_1021_acs_inorgchem_1c02350
crossref_primary_10_1002_asia_202200823
crossref_primary_10_2217_nnm_2018_0409
crossref_primary_10_1002_anbr_202100029
crossref_primary_10_3390_app9163232
crossref_primary_10_1021_acsphotonics_3c01370
crossref_primary_10_1021_acs_jpcc_0c03817
crossref_primary_10_1007_s00216_020_02814_2
crossref_primary_10_1021_acsami_3c10094
crossref_primary_10_1021_acs_jpcc_9b03197
crossref_primary_10_1039_D3CP02203J
crossref_primary_10_3390_nano10112149
crossref_primary_10_1364_OE_462926
crossref_primary_10_1021_acsnano_9b00905
crossref_primary_10_1016_j_optmat_2023_114497
crossref_primary_10_1016_j_jallcom_2021_163062
crossref_primary_10_1016_j_talanta_2018_02_088
crossref_primary_10_1021_acsomega_2c05813
crossref_primary_10_1016_j_mset_2020_09_006
crossref_primary_10_1021_acs_nanolett_0c03272
crossref_primary_10_1039_D0CS01112F
crossref_primary_10_3390_bios10100146
crossref_primary_10_1021_acsami_9b12973
crossref_primary_10_1021_acsomega_8b00394
crossref_primary_10_1038_s41477_019_0476_y
crossref_primary_10_1021_acsnanoscienceau_1c00014
crossref_primary_10_3390_nano12101723
crossref_primary_10_1016_j_snb_2018_07_139
crossref_primary_10_1039_D1SD00073J
crossref_primary_10_1002_adma_202313745
crossref_primary_10_1016_j_focha_2022_100069
crossref_primary_10_2174_1381612825666191216150052
crossref_primary_10_1039_D0NJ06289H
crossref_primary_10_1166_jbt_2022_2934
crossref_primary_10_1016_j_talanta_2019_120210
crossref_primary_10_1109_TCI_2022_3140551
crossref_primary_10_1021_acs_jpcc_1c06778
crossref_primary_10_1016_j_jiec_2022_05_010
crossref_primary_10_3389_fphar_2021_664123
crossref_primary_10_1016_j_cis_2019_102037
crossref_primary_10_3390_ijms19113385
crossref_primary_10_1016_j_ejps_2021_105914
crossref_primary_10_1021_acsomega_9b01200
crossref_primary_10_1016_j_microc_2019_104296
crossref_primary_10_2174_2665980801999200507090343
crossref_primary_10_1088_2053_1591_abe73a
crossref_primary_10_1016_j_aca_2023_341926
crossref_primary_10_1016_j_colsurfb_2022_112965
crossref_primary_10_1039_C8TC00780B
crossref_primary_10_1103_PhysRevB_99_081112
crossref_primary_10_1364_OE_475978
Cites_doi 10.1021/cm020732l
10.1021/acs.langmuir.5b01444
10.1021/nn8006465
10.1021/acs.jpcc.6b08509
10.1002/jccs.201190128
10.1021/jp0570972
10.1088/0034-4885/75/2/024402
10.1021/cm303661d
10.1021/cm402277y
10.1039/c3ta13905k
10.1021/cm050525w
10.1021/cm303659q
10.1073/pnas.1016530108
10.1021/ja00222a002
10.1038/nature08053
10.1021/acs.jpclett.5b02123
10.1021/jp5013279
10.1021/jp0516846
10.1007/BF00372762
10.1002/adma.201201690
10.1116/1.2198864
10.1002/smll.200500014
10.1039/C5RA19817H
10.1021/nn4005022
10.1021/nn506155r
10.1021/nn203586j
10.1021/jz201392k
10.1021/nn300315j
10.1021/jp4078344
10.1021/acs.chemmater.5b02675
10.1364/OE.24.003329
10.1088/0034-4885/74/10/106401
10.1021/jp0107964
10.1021/cm0492336
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/acsami.7b08003
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 26371
ExternalDocumentID 10_1021_acsami_7b08003
28714667
b768046897
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
ABJNI
ABQRX
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a330t-6ab020e94d0a0f8ed536cb0d46c6da020595c526fe711c444b35f86e0944065a3
IEDL.DBID ACS
ISSN 1944-8244
IngestDate Fri Aug 16 23:00:25 EDT 2024
Fri Aug 23 00:53:48 EDT 2024
Sat Sep 28 08:45:57 EDT 2024
Thu Aug 27 13:41:58 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords small-angle X-ray
growth mechanism
scale-up synthesis
gold nanorods
seed-mediated growth
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a330t-6ab020e94d0a0f8ed536cb0d46c6da020595c526fe711c444b35f86e0944065a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4589-3423
0000-0001-8069-3000
PMID 28714667
PQID 1920193912
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1920193912
crossref_primary_10_1021_acsami_7b08003
pubmed_primary_28714667
acs_journals_10_1021_acsami_7b08003
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20170809
2017-Aug-09
2017-08-09
PublicationDateYYYYMMDD 2017-08-09
PublicationDate_xml – month: 08
  year: 2017
  text: 20170809
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref13/cit13
  doi: 10.1021/cm020732l
– ident: ref34/cit34
  doi: 10.1021/acs.langmuir.5b01444
– ident: ref7/cit7
  doi: 10.1021/nn8006465
– ident: ref29/cit29
  doi: 10.1021/acs.jpcc.6b08509
– ident: ref37/cit37
  doi: 10.1002/jccs.201190128
– ident: ref18/cit18
  doi: 10.1021/jp0570972
– ident: ref1/cit1
  doi: 10.1088/0034-4885/75/2/024402
– ident: ref22/cit22
  doi: 10.1021/cm303661d
– ident: ref21/cit21
  doi: 10.1021/cm402277y
– ident: ref17/cit17
  doi: 10.1039/c3ta13905k
– ident: ref19/cit19
  doi: 10.1021/cm050525w
– ident: ref25/cit25
  doi: 10.1021/cm303659q
– ident: ref20/cit20
  doi: 10.1073/pnas.1016530108
– ident: ref30/cit30
  doi: 10.1021/ja00222a002
– ident: ref2/cit2
  doi: 10.1038/nature08053
– ident: ref31/cit31
  doi: 10.1021/acs.jpclett.5b02123
– ident: ref4/cit4
  doi: 10.1021/jp5013279
– ident: ref12/cit12
  doi: 10.1021/jp0516846
– ident: ref24/cit24
  doi: 10.1007/BF00372762
– ident: ref26/cit26
  doi: 10.1021/acs.jpcc.6b08509
– ident: ref8/cit8
  doi: 10.1002/adma.201201690
– ident: ref36/cit36
  doi: 10.1116/1.2198864
– ident: ref15/cit15
  doi: 10.1002/smll.200500014
– ident: ref16/cit16
  doi: 10.1039/C5RA19817H
– ident: ref23/cit23
  doi: 10.1021/nn4005022
– ident: ref28/cit28
  doi: 10.1021/nn506155r
– ident: ref35/cit35
  doi: 10.1021/nn203586j
– ident: ref5/cit5
  doi: 10.1021/jz201392k
– ident: ref9/cit9
  doi: 10.1021/nn300315j
– ident: ref6/cit6
  doi: 10.1021/jp4078344
– ident: ref32/cit32
  doi: 10.1021/acs.chemmater.5b02675
– ident: ref33/cit33
  doi: 10.1364/OE.24.003329
– ident: ref3/cit3
  doi: 10.1088/0034-4885/74/10/106401
– ident: ref10/cit10
  doi: 10.1021/jp0107964
– ident: ref11/cit11
  doi: 10.1021/cm020732l
– ident: ref27/cit27
  doi: 10.1021/acs.chemmater.5b02675
– ident: ref14/cit14
  doi: 10.1021/cm0492336
SSID ssj0063205
Score 2.4784718
Snippet The extremely large optical extinction coefficient of gold nanorods (Au-NRs) enables their use in a diverse array of technologies, rnging from plasmonic...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 26363
Title Highly Concentrated Seed-Mediated Synthesis of Monodispersed Gold Nanorods
URI http://dx.doi.org/10.1021/acsami.7b08003
https://www.ncbi.nlm.nih.gov/pubmed/28714667
https://search.proquest.com/docview/1920193912
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgXODAvpRNQSBxcklsx3GOVUWpKpVLqdRb5NiOVFEliKSH8vWMs7CqgmPkxLJm7Hlv4vEzQjexMsBzlYcVTwxmHDic4IGLNVB_pTUAqLCHk0ePfDBhw6k__fzf8XMHn3h3UuX2KpwgttyGrqMNAqBo06xub9zEXE5JWawIGTnDAhCrkWf89b0FIZV_B6EVzLJEmP5OJXeUl8KEtrDkubMo4o56-y3b-Ofgd9F2TTOdbjUv9tCaSffR1hfxwQM0tCUe86XTswcX01KkVjtjADM8Kq_vsE_LFPhhPsudLHFg9Wd6ZoXFc2h6yObagdCcQQDOD9Gkf__UG-D6ZgUsKXULzGUMNNGETLvSTYTRPuUqdjXjimsJTX7oK5-A-wLPU4yxmPqJ4AZyQSAAvqRHqJVmqTlBDhBEYlwmk1BYLT8hJNEeU-DpRFKlkza6BiNE9crIo3LTm3hRZZmotkwb3TYOiV4qmY2Vb141_opgJdjtDZmabAE9h0BmQhp6pI2OK0d-9GXzQsZ5cPqv0ZyhTWLRu6wMOUet4nVhLoB7FPFlOe3eAY8S0jE
link.rule.ids 315,786,790,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIAD-1LWIJA4pU1ix0mOqAIKtBUSrdRb5NiOhEAJIukBvp6xm7CqEhwTJ5btsec9a8bPAKeJUMhzhWsLliqbMuRwIQscWyL1F1IigIb6cHKvzzpDejPyRzPQqs_CYCMKrKkwQfxPdQG3he_0jThBoikOmYV5P0Co01yofV-7XkY8k7OIG3NqhwhctUrjr_81FoniOxZNIZgGaC5X4O6jiSa_5LE5LpOmePuh3viPPqzCckU6rfPJLFmDGZWtw9IXKcINuNEJH0-vVlsfY8yMZK207hHa7J65zEM_vWbIFouHwspTC31BLh-0zHiBRVf5k7TQUefojotNGF5eDNodu7pnweaEOKXNeIKkUUVUOtxJQyV9wkTiSMoEkxyL_MgXvofGDFxXUEoT4qchU7gzRDrgc7IFc1meqR2wkC56yqE8jUKt7BeG3JMuFWj3lBMh0wac4CDE1TopYhMC99x4MjJxNTINOKvtEj9PRDemfnlcmy3GdaGDHTxT-RhrjpDaRCRyvQZsT-z5UZfeJVLGgt0_teYIFjqDXjfuXvdv92DR07huckb2Ya58GasDZCVlcmhm4juuYdqc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oBNEH75d5rSj41Nk2ado-jumc04mwCb6VNElhONpht4f56z3JuuEFQR97C2lOzvm-kHO-AFwkQiHPFa4tWKpsypDDhSxwbInUX0iJABrq4uTOI2s90_aL_1LWcetaGOxEgS0VZhNfe_VQpqXCgHuF9_WpOEGiaQ5ZhCU_cKn2xnqjOwu_jHgmbxEX59QOEbxmSo0_vtd4JIqvePQLyTRg01yH3rybJsfktTYeJTXx_k3B8Z__sQFrJfm06tPZsgkLKtuC1U-ShNvQ1okfg4nV0OWMmZGulVYXIc7umEM99NUkQ9ZY9AsrTy2MCbnsa7nxAh_d5gNpYcDOMSwXO_DcvOk1WnZ53oLNCXFGNuMJkkcVUelwJw2V9AkTiSMpE0xyfORHvvA9NGrguoJSmhA_DZnCFSLSAp-TXahkeab2wULa6CmH8jQKtcJfGHJPulSg_VNOhEyrcI6DEJf-UsRmK9xz4-nIxOXIVOFyZpt4OBXf-PXNs5npYvQPvenBM5WPseUIKU5EIterwt7UpvO29GqRMhYc_Kk3p7D8dN2MH-4e7w9hxdPwblJHjqAyehurYyQno-TETMYP19rdFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Concentrated+Seed-Mediated+Synthesis+of+Monodispersed+Gold+Nanorods&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Park%2C+Kyoungweon&rft.au=Hsiao%2C+Ming-siao&rft.au=Yi%2C+Yoon-Jae&rft.au=Izor%2C+Sarah&rft.date=2017-08-09&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=9&rft.issue=31&rft.spage=26363&rft.epage=26371&rft_id=info:doi/10.1021%2Facsami.7b08003&rft.externalDocID=b768046897
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon