Decellularized Liver Matrix-Modified Cryogel Scaffolds as Potential Hepatocyte Carriers in Bioartificial Liver Support Systems and Implantable Liver Constructs
Recent progress in the use of decellularized organ scaffolds as regenerative matrices for tissue engineering holds great promise in addressing the issue of donor organ shortage. Decellularization preserves the mechanical integrity, composition, and microvasculature critical for zonation of hepatocyt...
Saved in:
Published in | ACS applied materials & interfaces Vol. 10; no. 1; pp. 114 - 126 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
10.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent progress in the use of decellularized organ scaffolds as regenerative matrices for tissue engineering holds great promise in addressing the issue of donor organ shortage. Decellularization preserves the mechanical integrity, composition, and microvasculature critical for zonation of hepatocytes in the liver. Earlier studies have reported the possibility of repopulating decellularized matrices with hepatic cell lines or stem cells to improve liver regeneration. In this work, we study the versatility of the decellularized liver matrix as a substrate coating of three-dimensional cryogel scaffolds. The coated cryogels were analyzed for their ability to maintain hepatic cell growth and functionality in vitro, which was found to be significantly better than the uncoated cryogel scaffolds. The decellularized liver matrix-coated cryogel scaffolds were evaluated for their potential application as a cell-loaded bioreactor for bioartificial liver support and as an implantable liver construct. Extracorporeal connection of the coated cryogel bioreactor to a liver failure model showed improvement in liver function parameters. Additionally, offline clinical evaluation of the bioreactor using patient-derived liver failure plasma showed its efficacy in improving liver failure conditions by approximately 30–60%. Furthermore, implantation of the decellularized matrix-coated cryogel showed complete integration with the native tissue as confirmed by hematoxylin and eosin staining of tissue sections. HepG2 cells and primary human hepatocytes seeded in the coated cryogel scaffolds implanted in the liver failure model maintained functionality in terms of albumin synthesis and cytochrome P450 activity post 2 weeks of implantation. In addition, a 20–60% improvement in liver function parameters was observed post implantation. These results, put together, suggest a possibility of using the decellularized matrix-coated cryogel scaffolds for liver tissue engineering applications. |
---|---|
AbstractList | Recent progress in the use of decellularized organ scaffolds as regenerative matrices for tissue engineering holds great promise in addressing the issue of donor organ shortage. Decellularization preserves the mechanical integrity, composition, and microvasculature critical for zonation of hepatocytes in the liver. Earlier studies have reported the possibility of repopulating decellularized matrices with hepatic cell lines or stem cells to improve liver regeneration. In this work, we study the versatility of the decellularized liver matrix as a substrate coating of three-dimensional cryogel scaffolds. The coated cryogels were analyzed for their ability to maintain hepatic cell growth and functionality in vitro, which was found to be significantly better than the uncoated cryogel scaffolds. The decellularized liver matrix-coated cryogel scaffolds were evaluated for their potential application as a cell-loaded bioreactor for bioartificial liver support and as an implantable liver construct. Extracorporeal connection of the coated cryogel bioreactor to a liver failure model showed improvement in liver function parameters. Additionally, offline clinical evaluation of the bioreactor using patient-derived liver failure plasma showed its efficacy in improving liver failure conditions by approximately 30-60%. Furthermore, implantation of the decellularized matrix-coated cryogel showed complete integration with the native tissue as confirmed by hematoxylin and eosin staining of tissue sections. HepG2 cells and primary human hepatocytes seeded in the coated cryogel scaffolds implanted in the liver failure model maintained functionality in terms of albumin synthesis and cytochrome P450 activity post 2 weeks of implantation. In addition, a 20-60% improvement in liver function parameters was observed post implantation. These results, put together, suggest a possibility of using the decellularized matrix-coated cryogel scaffolds for liver tissue engineering applications. |
Author | Damania, Apeksha Kamihira, Masamichi Ijima, Hiroyuki Kumar, Anupam Teotia, Arun K Sarin, Shiv Kumar Kumar, Ashok Kimura, Haruna |
AuthorAffiliation | Department of Biological Sciences and Bioengineering Kyushu University Department of Chemical Engineering, Faculty of Engineering |
AuthorAffiliation_xml | – name: Kyushu University – name: Department of Chemical Engineering, Faculty of Engineering – name: Department of Biological Sciences and Bioengineering |
Author_xml | – sequence: 1 givenname: Apeksha surname: Damania fullname: Damania, Apeksha organization: Department of Biological Sciences and Bioengineering – sequence: 2 givenname: Anupam surname: Kumar fullname: Kumar, Anupam – sequence: 3 givenname: Arun K surname: Teotia fullname: Teotia, Arun K organization: Department of Biological Sciences and Bioengineering – sequence: 4 givenname: Haruna surname: Kimura fullname: Kimura, Haruna organization: Kyushu University – sequence: 5 givenname: Masamichi surname: Kamihira fullname: Kamihira, Masamichi organization: Kyushu University – sequence: 6 givenname: Hiroyuki surname: Ijima fullname: Ijima, Hiroyuki organization: Kyushu University – sequence: 7 givenname: Shiv Kumar surname: Sarin fullname: Sarin, Shiv Kumar – sequence: 8 givenname: Ashok orcidid: 0000-0002-4910-9440 surname: Kumar fullname: Kumar, Ashok email: ashokkum@iitk.ac.in organization: Department of Biological Sciences and Bioengineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29210278$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtr3DAURkVJaF7ddlm0LAVP9fBz2bqPBCYkMO3aXMtXRUG2XEkOnf6Z_NVo8DS7rq64nO_A1XdBTiY3ISFvOdtwJvhHUAFGs6l6LitRvSLnvMnzrBaFOHl55_kZuQjhgbFSCla8JmeiESld1efk6QsqtHax4M1fHOjWPKKntxC9-ZPdusFok7at37tfaOlOgdbODoFCoPcu4hQNWHqNM0Sn9hFpC94b9IGaiX42DnxMBnWAVvNumWfnI93tQ8QxeaaB3oyzhSlCb_FItW4K0S8qhityqsEGfHOcl-Tnt68_2utse_f9pv20zUBKFjPJdKHzHpuKA6hG6FpCjVXZF1jWXDZ6SENwEKwvhwbrHkWjuFAa8lJJUclL8n71zt79XjDEbjTh8DMwoVtCx5tK5iVnhUjoZkWVdyF41N3szQh-33HWHUrp1lK6Yykp8O7oXvoRhxf8XwsJ-LACKdg9uMVP6dT_2Z4B2U6clw |
CitedBy_id | crossref_primary_10_1002_jhbp_882 crossref_primary_10_1002_jbm_b_34454 crossref_primary_10_1080_07853890_2019_1693056 crossref_primary_10_1002_bit_27218 crossref_primary_10_1007_s13770_023_00576_3 crossref_primary_10_1021_acsbiomaterials_8b00233 crossref_primary_10_1007_s40204_022_00203_9 crossref_primary_10_1096_fj_202200807R crossref_primary_10_1016_j_ijbiomac_2021_12_086 crossref_primary_10_1021_acs_biomac_9b01355 crossref_primary_10_1002_jbm_b_34506 crossref_primary_10_1016_j_jconrel_2021_10_013 crossref_primary_10_1080_00914037_2018_1452225 crossref_primary_10_1016_j_jcis_2021_10_131 crossref_primary_10_1080_15265161_2018_1478024 crossref_primary_10_1016_j_msec_2021_111983 crossref_primary_10_1002_adtp_201800114 crossref_primary_10_1016_j_joen_2020_07_008 crossref_primary_10_1080_09205063_2020_1738690 crossref_primary_10_1177_0885328220933505 crossref_primary_10_1021_acsami_1c00719 crossref_primary_10_61186_ibj_3862 crossref_primary_10_1002_adfm_202212231 crossref_primary_10_1080_17474124_2023_2172398 crossref_primary_10_3390_polym16131794 crossref_primary_10_3390_membranes13060576 crossref_primary_10_1002_adfm_201908857 crossref_primary_10_1021_acsbiomaterials_9b00991 crossref_primary_10_1177_03913988231218566 crossref_primary_10_1016_j_colsurfb_2022_112691 crossref_primary_10_3390_cells9020304 crossref_primary_10_1021_acsami_8b08920 crossref_primary_10_3390_gels4020039 crossref_primary_10_1016_j_apmt_2024_102307 crossref_primary_10_1016_j_engreg_2022_10_001 crossref_primary_10_1042_EBC20200129 crossref_primary_10_3390_jfb10020019 crossref_primary_10_1016_j_engreg_2022_02_003 crossref_primary_10_3390_bioengineering5040086 crossref_primary_10_3390_nano11020275 crossref_primary_10_1021_acsami_8b11677 crossref_primary_10_1002_macp_202200348 crossref_primary_10_1039_C9BM01879D crossref_primary_10_1039_D2BM01632J crossref_primary_10_1088_1748_605X_aaf375 crossref_primary_10_1016_j_fct_2020_111188 crossref_primary_10_1016_j_eurpolymj_2020_110234 crossref_primary_10_1007_s40472_021_00325_2 crossref_primary_10_1021_acsbiomaterials_9b00745 crossref_primary_10_1016_j_bioactmat_2023_11_009 crossref_primary_10_1002_jbm_a_36920 crossref_primary_10_1017_erm_2021_22 |
Cites_doi | 10.1146/annurev-bioeng-071910-124743 10.1089/ten.tea.2008.0587 10.1002/hep.27753 10.1002/biot.200700228 10.1097/00000658-190810000-00005 10.1016/s0168-8278(99)80078-6 10.1111/j.1478-3231.2007.01628.x 10.1111/aor.12838 10.1371/journal.pone.0113609 10.1016/0009-8981(80)90407-6 10.1016/0304-4165(86)90306-5 10.1201/b19676-10 10.1016/s0300-483x(99)00200-0 10.1002/stem.2500 10.1038/nm.2193 10.1016/j.biomaterials.2012.03.034 10.1007/s12072-013-9503-7 10.1038/srep40323 10.1371/journal.pone.0155324 10.1016/j.biomaterials.2009.04.005 10.1007/s12072-013-9490-8 10.1111/j.1432-2277.2005.00156.x 10.1038/nm.2170 10.1002/jor.20932 10.1098/rsif.2015.0254 10.1038/srep13079 10.1002/jbm.b.33851 10.1016/j.jbiosc.2013.05.031 10.1155/2016/6397820 10.1016/j.copbio.2013.05.008 10.1007/s00586-008-0745-3 10.1002/jbm.a.35013 10.1016/0003-9861(92)90115-d 10.1016/j.biomaterials.2011.06.005 10.1021/bm4015039 10.1016/j.colsurfb.2015.10.012 10.1007/s00428-014-1547-0 10.1007/7651_2014_75 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1021/acsami.7b13727 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 126 |
ExternalDocumentID | 10_1021_acsami_7b13727 29210278 g13457948 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH ABJNI ABQRX ADHLV AHGAQ BAANH CGR CUPRZ CUY CVF ECM EIF GGK NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a330t-30f5f4be971aac92f83a8e76b5e68139fd68121a20b6d9e8be29c12cfa46c3273 |
IEDL.DBID | ACS |
ISSN | 1944-8244 |
IngestDate | Fri Aug 16 23:26:32 EDT 2024 Fri Aug 23 00:53:57 EDT 2024 Tue Aug 27 13:46:14 EDT 2024 Thu Aug 27 13:42:43 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | implantable liver construct liver failure decellularized liver bioartificial liver regeneration cryogel |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a330t-30f5f4be971aac92f83a8e76b5e68139fd68121a20b6d9e8be29c12cfa46c3273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4910-9440 |
PMID | 29210278 |
PQID | 1973461052 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1973461052 crossref_primary_10_1021_acsami_7b13727 pubmed_primary_29210278 acs_journals_10_1021_acsami_7b13727 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 20180110 2018-Jan-10 2018-01-10 |
PublicationDateYYYYMMDD | 2018-01-10 |
PublicationDate_xml | – month: 01 year: 2018 text: 20180110 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 Abu-Hakmeh A. E. (ref12/cit12) 2014 ref37/cit37 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref15/cit15 Shakya A. K. (ref34/cit34) 2016 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref26/cit26 doi: 10.1146/annurev-bioeng-071910-124743 – ident: ref3/cit3 doi: 10.1089/ten.tea.2008.0587 – ident: ref16/cit16 doi: 10.1002/hep.27753 – ident: ref30/cit30 doi: 10.1002/biot.200700228 – ident: ref32/cit32 doi: 10.1097/00000658-190810000-00005 – ident: ref22/cit22 doi: 10.1016/s0168-8278(99)80078-6 – ident: ref31/cit31 doi: 10.1111/j.1478-3231.2007.01628.x – ident: ref14/cit14 doi: 10.1111/aor.12838 – ident: ref17/cit17 doi: 10.1371/journal.pone.0113609 – ident: ref18/cit18 doi: 10.1016/0009-8981(80)90407-6 – ident: ref13/cit13 doi: 10.1016/0304-4165(86)90306-5 – start-page: 199 volume-title: Supermacroporous Cryogels: Biomedical and Biotechnological Applications year: 2016 ident: ref34/cit34 doi: 10.1201/b19676-10 contributor: fullname: Shakya A. K. – ident: ref36/cit36 doi: 10.1016/s0300-483x(99)00200-0 – ident: ref9/cit9 doi: 10.1002/stem.2500 – ident: ref23/cit23 doi: 10.1038/nm.2193 – ident: ref28/cit28 doi: 10.1016/j.biomaterials.2012.03.034 – ident: ref10/cit10 doi: 10.1007/s12072-013-9503-7 – ident: ref21/cit21 doi: 10.1038/srep40323 – ident: ref25/cit25 doi: 10.1371/journal.pone.0155324 – ident: ref2/cit2 doi: 10.1016/j.biomaterials.2009.04.005 – ident: ref7/cit7 doi: 10.1007/s12072-013-9490-8 – ident: ref38/cit38 doi: 10.1111/j.1432-2277.2005.00156.x – ident: ref5/cit5 doi: 10.1038/nm.2170 – ident: ref27/cit27 doi: 10.1002/jor.20932 – ident: ref29/cit29 doi: 10.1098/rsif.2015.0254 – ident: ref6/cit6 doi: 10.1038/srep13079 – ident: ref19/cit19 doi: 10.1002/jbm.b.33851 – ident: ref11/cit11 doi: 10.1016/j.jbiosc.2013.05.031 – ident: ref33/cit33 doi: 10.1155/2016/6397820 – ident: ref8/cit8 doi: 10.1016/j.copbio.2013.05.008 – ident: ref1/cit1 doi: 10.1007/s00586-008-0745-3 – ident: ref35/cit35 doi: 10.1002/jbm.a.35013 – ident: ref37/cit37 doi: 10.1016/0003-9861(92)90115-d – ident: ref4/cit4 doi: 10.1016/j.biomaterials.2011.06.005 – ident: ref24/cit24 doi: 10.1021/bm4015039 – ident: ref15/cit15 doi: 10.1016/j.colsurfb.2015.10.012 – ident: ref20/cit20 doi: 10.1007/s00428-014-1547-0 – start-page: 11 volume-title: Biomimetics and Stem Cells: Methods and Protocols year: 2014 ident: ref12/cit12 doi: 10.1007/7651_2014_75 contributor: fullname: Abu-Hakmeh A. E. |
SSID | ssj0063205 |
Score | 2.495861 |
Snippet | Recent progress in the use of decellularized organ scaffolds as regenerative matrices for tissue engineering holds great promise in addressing the issue of... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 114 |
SubjectTerms | Cryogels Extracellular Matrix Hepatocytes Humans Liver Liver, Artificial Tissue Engineering Tissue Scaffolds |
Title | Decellularized Liver Matrix-Modified Cryogel Scaffolds as Potential Hepatocyte Carriers in Bioartificial Liver Support Systems and Implantable Liver Constructs |
URI | http://dx.doi.org/10.1021/acsami.7b13727 https://www.ncbi.nlm.nih.gov/pubmed/29210278 https://search.proquest.com/docview/1973461052 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoXNoD9N0tbeWKSj2Zxo7jx5Fui1aIRZUAiVtkOzZaFSUVCRLwZ_pXmUmy9IFQe3ccazyT7_N48g0hH7QBVPbeMu-1YrJwgdmkLeNRxCzxypuIqYH5gZody72T4uRXvuPvG3zBP7nQYisc7XkOWPuArAkNkYEkaHq4_OaqXPTFinAil8wAYi3lGe88jyAU2j9B6B5m2SPM7sYgd9T2woRYWPJ9-6Lz2-H6rmzjPxf_mKyPNJPuDH7xhKzE-il59Jv44DPy80vErD2WoS6uY0X3sUKDzlGy_5LNm2qRgJ3S6flVcxrP6GFwKTVnVUtdS781HRYZwQtmgGZdE666SKfuHLvftXRR08-LBl1yUKcYZ8b-ocD16aiRTl1dUdQmhq3F37fGUdhAtJe0bZ-T492vR9MZG9s1MJfnWcfyLBVJ-mg1dy5YkUzuTNTKF1EZIJqpQq0z7kTmVWWj8VHYwEVITqqQA416QVbrpo6vCPVSe7wC5TJ46ZRxKjjJXRasN-BYfkK2wLLlGG5t2d-kC14O5i5Hc0_Ix-Uulz8G7Y57R75fOkEJ4YXWd3VsLmBmq3OUpC_EhLwcvON2LmHxvKzN6_9azSZ5CGQLKwcB-t6QVbBlfAuEpvPvel--AcMw8-Q |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKOUAPlFfLlpcRSJzcxonjx7EsVAvsVpXaSr1FtmOjFVWCmlSi_TP9q8zkUV6qBNfImTjjcb4v9vgbQt4oDajsnGHOKclEbj0zURnGQxqSyEunAy4NLPbl7Fh8OslPVsjOeBYGOtGApabbxP-pLsB34BpWxFGOZwC5t8jtXAFaIheaHo6fXpmlXc4i_JgLpgG4RpXGv-5HLPLN71h0A8HsgGZvnRxcd7HLL_m6fd66bX_5h3rjf7zDfXJvIJ10t4-SB2QlVA_J2i9ShI_I1fuAa_iYlLq8DCWdY74GXaCA_3e2qMtlBK5Kp2cX9ZdwSg-9jbE-LRtqG3pQt5hyBA-YAba1tb9oA53aM6yF19BlRd8tawzQXqtisIzVRIH500ExndqqpKhUDAONh7mGVlhOtBO4bR6T470PR9MZG4o3MJtlScuyJOZRuGAUt9abNOrM6qCky4PUQDtjicpn3KaJk6UJ2oXUeJ76aIX0GZCqDbJa1VV4QqgTyuGGKBfeCSu1ld4KbhNvnIYwcxPyGjxbDJOvKbp99ZQXvbuLwd0T8nYc7OJbr-RxY8tXYywUMNnQ-7YK9TlYNipDgfo8nZDNPkiubaUG_56V3vqn3rwkd2ZHi3kx_7j_-Sm5CzQMcwoBFJ-RVfBreA5Up3UvuvD-AT47_Ek |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSIgeeEOXpxFInNzGjuPHsWxZLdCtKrWVeotsx0YrqqRqUon2z_BXmUmyFQ9VgmvkjJ3xON_YM_6GkHfaACp7b5n3WjFZuMBs0pbxKGKWeOVNxKOBxZ6aH8nPx8XxeI8b78LAIFqQ1PZBfFzVp1UaGQb4FjzHqjja8xxg9ya5VWjex2a3pwer36_KRZ-3CJtzyQyA14qp8a_3EY9C-zseXeNk9mAzu0cOr4bZ55h82zzv_Ga4_IPB8T-_4z65OzqfdHuwlgfkRqwfkvVfKAkfkR87Ec_yMTl1eRkruot5G3SBRP7f2aKplgl8Vjo9u2i-xhN6EFxKzUnVUtfS_abD1CPoYA4Y1zXhoot06s6wJl5LlzX9sGzQUAfOilEyVhWFHQAdmdOpqyuKjMUw4Xipa2yFZUV7otv2MTmafTycztlYxIG5PM86lmepSNJHq7lzwYpkcmeiVr6IyoD7mSpkQONOZF5VNhofhQ1chOSkCjk4V0_IWt3UcYNQL7XHwCiXwUunjFPBSe6yYL0Bc_MT8hY0W46LsC37-Lrg5aDuclT3hLxfTXh5OjB6XNvyzcoeSlh0qH1Xx-YcJFudI1F9ISbk6WAoV7KExV20Ns_-aTSvye39nVm5-2nvy3NyB7wxTC0EbHxB1kCt8SV4PJ1_1Vv4TzlO_sM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decellularized+Liver+Matrix-Modified+Cryogel+Scaffolds+as+Potential+Hepatocyte+Carriers+in+Bioartificial+Liver+Support+Systems+and+Implantable+Liver+Constructs&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Damania%2C+Apeksha&rft.au=Kumar%2C+Anupam&rft.au=Teotia%2C+Arun+K.&rft.au=Kimura%2C+Haruna&rft.date=2018-01-10&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=10&rft.issue=1&rft.spage=114&rft.epage=126&rft_id=info:doi/10.1021%2Facsami.7b13727&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_7b13727 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |