Decellularized Liver Matrix-Modified Cryogel Scaffolds as Potential Hepatocyte Carriers in Bioartificial Liver Support Systems and Implantable Liver Constructs

Recent progress in the use of decellularized organ scaffolds as regenerative matrices for tissue engineering holds great promise in addressing the issue of donor organ shortage. Decellularization preserves the mechanical integrity, composition, and microvasculature critical for zonation of hepatocyt...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 10; no. 1; pp. 114 - 126
Main Authors Damania, Apeksha, Kumar, Anupam, Teotia, Arun K, Kimura, Haruna, Kamihira, Masamichi, Ijima, Hiroyuki, Sarin, Shiv Kumar, Kumar, Ashok
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 10.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent progress in the use of decellularized organ scaffolds as regenerative matrices for tissue engineering holds great promise in addressing the issue of donor organ shortage. Decellularization preserves the mechanical integrity, composition, and microvasculature critical for zonation of hepatocytes in the liver. Earlier studies have reported the possibility of repopulating decellularized matrices with hepatic cell lines or stem cells to improve liver regeneration. In this work, we study the versatility of the decellularized liver matrix as a substrate coating of three-dimensional cryogel scaffolds. The coated cryogels were analyzed for their ability to maintain hepatic cell growth and functionality in vitro, which was found to be significantly better than the uncoated cryogel scaffolds. The decellularized liver matrix-coated cryogel scaffolds were evaluated for their potential application as a cell-loaded bioreactor for bioartificial liver support and as an implantable liver construct. Extracorporeal connection of the coated cryogel bioreactor to a liver failure model showed improvement in liver function parameters. Additionally, offline clinical evaluation of the bioreactor using patient-derived liver failure plasma showed its efficacy in improving liver failure conditions by approximately 30–60%. Furthermore, implantation of the decellularized matrix-coated cryogel showed complete integration with the native tissue as confirmed by hematoxylin and eosin staining of tissue sections. HepG2 cells and primary human hepatocytes seeded in the coated cryogel scaffolds implanted in the liver failure model maintained functionality in terms of albumin synthesis and cytochrome P450 activity post 2 weeks of implantation. In addition, a 20–60% improvement in liver function parameters was observed post implantation. These results, put together, suggest a possibility of using the decellularized matrix-coated cryogel scaffolds for liver tissue engineering applications.
AbstractList Recent progress in the use of decellularized organ scaffolds as regenerative matrices for tissue engineering holds great promise in addressing the issue of donor organ shortage. Decellularization preserves the mechanical integrity, composition, and microvasculature critical for zonation of hepatocytes in the liver. Earlier studies have reported the possibility of repopulating decellularized matrices with hepatic cell lines or stem cells to improve liver regeneration. In this work, we study the versatility of the decellularized liver matrix as a substrate coating of three-dimensional cryogel scaffolds. The coated cryogels were analyzed for their ability to maintain hepatic cell growth and functionality in vitro, which was found to be significantly better than the uncoated cryogel scaffolds. The decellularized liver matrix-coated cryogel scaffolds were evaluated for their potential application as a cell-loaded bioreactor for bioartificial liver support and as an implantable liver construct. Extracorporeal connection of the coated cryogel bioreactor to a liver failure model showed improvement in liver function parameters. Additionally, offline clinical evaluation of the bioreactor using patient-derived liver failure plasma showed its efficacy in improving liver failure conditions by approximately 30-60%. Furthermore, implantation of the decellularized matrix-coated cryogel showed complete integration with the native tissue as confirmed by hematoxylin and eosin staining of tissue sections. HepG2 cells and primary human hepatocytes seeded in the coated cryogel scaffolds implanted in the liver failure model maintained functionality in terms of albumin synthesis and cytochrome P450 activity post 2 weeks of implantation. In addition, a 20-60% improvement in liver function parameters was observed post implantation. These results, put together, suggest a possibility of using the decellularized matrix-coated cryogel scaffolds for liver tissue engineering applications.
Author Damania, Apeksha
Kamihira, Masamichi
Ijima, Hiroyuki
Kumar, Anupam
Teotia, Arun K
Sarin, Shiv Kumar
Kumar, Ashok
Kimura, Haruna
AuthorAffiliation Department of Biological Sciences and Bioengineering
Kyushu University
Department of Chemical Engineering, Faculty of Engineering
AuthorAffiliation_xml – name: Kyushu University
– name: Department of Chemical Engineering, Faculty of Engineering
– name: Department of Biological Sciences and Bioengineering
Author_xml – sequence: 1
  givenname: Apeksha
  surname: Damania
  fullname: Damania, Apeksha
  organization: Department of Biological Sciences and Bioengineering
– sequence: 2
  givenname: Anupam
  surname: Kumar
  fullname: Kumar, Anupam
– sequence: 3
  givenname: Arun K
  surname: Teotia
  fullname: Teotia, Arun K
  organization: Department of Biological Sciences and Bioengineering
– sequence: 4
  givenname: Haruna
  surname: Kimura
  fullname: Kimura, Haruna
  organization: Kyushu University
– sequence: 5
  givenname: Masamichi
  surname: Kamihira
  fullname: Kamihira, Masamichi
  organization: Kyushu University
– sequence: 6
  givenname: Hiroyuki
  surname: Ijima
  fullname: Ijima, Hiroyuki
  organization: Kyushu University
– sequence: 7
  givenname: Shiv Kumar
  surname: Sarin
  fullname: Sarin, Shiv Kumar
– sequence: 8
  givenname: Ashok
  orcidid: 0000-0002-4910-9440
  surname: Kumar
  fullname: Kumar, Ashok
  email: ashokkum@iitk.ac.in
  organization: Department of Biological Sciences and Bioengineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29210278$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtr3DAURkVJaF7ddlm0LAVP9fBz2bqPBCYkMO3aXMtXRUG2XEkOnf6Z_NVo8DS7rq64nO_A1XdBTiY3ISFvOdtwJvhHUAFGs6l6LitRvSLnvMnzrBaFOHl55_kZuQjhgbFSCla8JmeiESld1efk6QsqtHax4M1fHOjWPKKntxC9-ZPdusFok7at37tfaOlOgdbODoFCoPcu4hQNWHqNM0Sn9hFpC94b9IGaiX42DnxMBnWAVvNumWfnI93tQ8QxeaaB3oyzhSlCb_FItW4K0S8qhityqsEGfHOcl-Tnt68_2utse_f9pv20zUBKFjPJdKHzHpuKA6hG6FpCjVXZF1jWXDZ6SENwEKwvhwbrHkWjuFAa8lJJUclL8n71zt79XjDEbjTh8DMwoVtCx5tK5iVnhUjoZkWVdyF41N3szQh-33HWHUrp1lK6Yykp8O7oXvoRhxf8XwsJ-LACKdg9uMVP6dT_2Z4B2U6clw
CitedBy_id crossref_primary_10_1002_jhbp_882
crossref_primary_10_1002_jbm_b_34454
crossref_primary_10_1080_07853890_2019_1693056
crossref_primary_10_1002_bit_27218
crossref_primary_10_1007_s13770_023_00576_3
crossref_primary_10_1021_acsbiomaterials_8b00233
crossref_primary_10_1007_s40204_022_00203_9
crossref_primary_10_1096_fj_202200807R
crossref_primary_10_1016_j_ijbiomac_2021_12_086
crossref_primary_10_1021_acs_biomac_9b01355
crossref_primary_10_1002_jbm_b_34506
crossref_primary_10_1016_j_jconrel_2021_10_013
crossref_primary_10_1080_00914037_2018_1452225
crossref_primary_10_1016_j_jcis_2021_10_131
crossref_primary_10_1080_15265161_2018_1478024
crossref_primary_10_1016_j_msec_2021_111983
crossref_primary_10_1002_adtp_201800114
crossref_primary_10_1016_j_joen_2020_07_008
crossref_primary_10_1080_09205063_2020_1738690
crossref_primary_10_1177_0885328220933505
crossref_primary_10_1021_acsami_1c00719
crossref_primary_10_61186_ibj_3862
crossref_primary_10_1002_adfm_202212231
crossref_primary_10_1080_17474124_2023_2172398
crossref_primary_10_3390_polym16131794
crossref_primary_10_3390_membranes13060576
crossref_primary_10_1002_adfm_201908857
crossref_primary_10_1021_acsbiomaterials_9b00991
crossref_primary_10_1177_03913988231218566
crossref_primary_10_1016_j_colsurfb_2022_112691
crossref_primary_10_3390_cells9020304
crossref_primary_10_1021_acsami_8b08920
crossref_primary_10_3390_gels4020039
crossref_primary_10_1016_j_apmt_2024_102307
crossref_primary_10_1016_j_engreg_2022_10_001
crossref_primary_10_1042_EBC20200129
crossref_primary_10_3390_jfb10020019
crossref_primary_10_1016_j_engreg_2022_02_003
crossref_primary_10_3390_bioengineering5040086
crossref_primary_10_3390_nano11020275
crossref_primary_10_1021_acsami_8b11677
crossref_primary_10_1002_macp_202200348
crossref_primary_10_1039_C9BM01879D
crossref_primary_10_1039_D2BM01632J
crossref_primary_10_1088_1748_605X_aaf375
crossref_primary_10_1016_j_fct_2020_111188
crossref_primary_10_1016_j_eurpolymj_2020_110234
crossref_primary_10_1007_s40472_021_00325_2
crossref_primary_10_1021_acsbiomaterials_9b00745
crossref_primary_10_1016_j_bioactmat_2023_11_009
crossref_primary_10_1002_jbm_a_36920
crossref_primary_10_1017_erm_2021_22
Cites_doi 10.1146/annurev-bioeng-071910-124743
10.1089/ten.tea.2008.0587
10.1002/hep.27753
10.1002/biot.200700228
10.1097/00000658-190810000-00005
10.1016/s0168-8278(99)80078-6
10.1111/j.1478-3231.2007.01628.x
10.1111/aor.12838
10.1371/journal.pone.0113609
10.1016/0009-8981(80)90407-6
10.1016/0304-4165(86)90306-5
10.1201/b19676-10
10.1016/s0300-483x(99)00200-0
10.1002/stem.2500
10.1038/nm.2193
10.1016/j.biomaterials.2012.03.034
10.1007/s12072-013-9503-7
10.1038/srep40323
10.1371/journal.pone.0155324
10.1016/j.biomaterials.2009.04.005
10.1007/s12072-013-9490-8
10.1111/j.1432-2277.2005.00156.x
10.1038/nm.2170
10.1002/jor.20932
10.1098/rsif.2015.0254
10.1038/srep13079
10.1002/jbm.b.33851
10.1016/j.jbiosc.2013.05.031
10.1155/2016/6397820
10.1016/j.copbio.2013.05.008
10.1007/s00586-008-0745-3
10.1002/jbm.a.35013
10.1016/0003-9861(92)90115-d
10.1016/j.biomaterials.2011.06.005
10.1021/bm4015039
10.1016/j.colsurfb.2015.10.012
10.1007/s00428-014-1547-0
10.1007/7651_2014_75
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1021/acsami.7b13727
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 126
ExternalDocumentID 10_1021_acsami_7b13727
29210278
g13457948
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
ABJNI
ABQRX
ADHLV
AHGAQ
BAANH
CGR
CUPRZ
CUY
CVF
ECM
EIF
GGK
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a330t-30f5f4be971aac92f83a8e76b5e68139fd68121a20b6d9e8be29c12cfa46c3273
IEDL.DBID ACS
ISSN 1944-8244
IngestDate Fri Aug 16 23:26:32 EDT 2024
Fri Aug 23 00:53:57 EDT 2024
Tue Aug 27 13:46:14 EDT 2024
Thu Aug 27 13:42:43 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords implantable liver construct
liver failure
decellularized liver
bioartificial liver
regeneration
cryogel
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a330t-30f5f4be971aac92f83a8e76b5e68139fd68121a20b6d9e8be29c12cfa46c3273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4910-9440
PMID 29210278
PQID 1973461052
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_1973461052
crossref_primary_10_1021_acsami_7b13727
pubmed_primary_29210278
acs_journals_10_1021_acsami_7b13727
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20180110
2018-Jan-10
2018-01-10
PublicationDateYYYYMMDD 2018-01-10
PublicationDate_xml – month: 01
  year: 2018
  text: 20180110
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
Abu-Hakmeh A. E. (ref12/cit12) 2014
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref15/cit15
Shakya A. K. (ref34/cit34) 2016
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref26/cit26
  doi: 10.1146/annurev-bioeng-071910-124743
– ident: ref3/cit3
  doi: 10.1089/ten.tea.2008.0587
– ident: ref16/cit16
  doi: 10.1002/hep.27753
– ident: ref30/cit30
  doi: 10.1002/biot.200700228
– ident: ref32/cit32
  doi: 10.1097/00000658-190810000-00005
– ident: ref22/cit22
  doi: 10.1016/s0168-8278(99)80078-6
– ident: ref31/cit31
  doi: 10.1111/j.1478-3231.2007.01628.x
– ident: ref14/cit14
  doi: 10.1111/aor.12838
– ident: ref17/cit17
  doi: 10.1371/journal.pone.0113609
– ident: ref18/cit18
  doi: 10.1016/0009-8981(80)90407-6
– ident: ref13/cit13
  doi: 10.1016/0304-4165(86)90306-5
– start-page: 199
  volume-title: Supermacroporous Cryogels: Biomedical and Biotechnological Applications
  year: 2016
  ident: ref34/cit34
  doi: 10.1201/b19676-10
  contributor:
    fullname: Shakya A. K.
– ident: ref36/cit36
  doi: 10.1016/s0300-483x(99)00200-0
– ident: ref9/cit9
  doi: 10.1002/stem.2500
– ident: ref23/cit23
  doi: 10.1038/nm.2193
– ident: ref28/cit28
  doi: 10.1016/j.biomaterials.2012.03.034
– ident: ref10/cit10
  doi: 10.1007/s12072-013-9503-7
– ident: ref21/cit21
  doi: 10.1038/srep40323
– ident: ref25/cit25
  doi: 10.1371/journal.pone.0155324
– ident: ref2/cit2
  doi: 10.1016/j.biomaterials.2009.04.005
– ident: ref7/cit7
  doi: 10.1007/s12072-013-9490-8
– ident: ref38/cit38
  doi: 10.1111/j.1432-2277.2005.00156.x
– ident: ref5/cit5
  doi: 10.1038/nm.2170
– ident: ref27/cit27
  doi: 10.1002/jor.20932
– ident: ref29/cit29
  doi: 10.1098/rsif.2015.0254
– ident: ref6/cit6
  doi: 10.1038/srep13079
– ident: ref19/cit19
  doi: 10.1002/jbm.b.33851
– ident: ref11/cit11
  doi: 10.1016/j.jbiosc.2013.05.031
– ident: ref33/cit33
  doi: 10.1155/2016/6397820
– ident: ref8/cit8
  doi: 10.1016/j.copbio.2013.05.008
– ident: ref1/cit1
  doi: 10.1007/s00586-008-0745-3
– ident: ref35/cit35
  doi: 10.1002/jbm.a.35013
– ident: ref37/cit37
  doi: 10.1016/0003-9861(92)90115-d
– ident: ref4/cit4
  doi: 10.1016/j.biomaterials.2011.06.005
– ident: ref24/cit24
  doi: 10.1021/bm4015039
– ident: ref15/cit15
  doi: 10.1016/j.colsurfb.2015.10.012
– ident: ref20/cit20
  doi: 10.1007/s00428-014-1547-0
– start-page: 11
  volume-title: Biomimetics and Stem Cells: Methods and Protocols
  year: 2014
  ident: ref12/cit12
  doi: 10.1007/7651_2014_75
  contributor:
    fullname: Abu-Hakmeh A. E.
SSID ssj0063205
Score 2.495861
Snippet Recent progress in the use of decellularized organ scaffolds as regenerative matrices for tissue engineering holds great promise in addressing the issue of...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 114
SubjectTerms Cryogels
Extracellular Matrix
Hepatocytes
Humans
Liver
Liver, Artificial
Tissue Engineering
Tissue Scaffolds
Title Decellularized Liver Matrix-Modified Cryogel Scaffolds as Potential Hepatocyte Carriers in Bioartificial Liver Support Systems and Implantable Liver Constructs
URI http://dx.doi.org/10.1021/acsami.7b13727
https://www.ncbi.nlm.nih.gov/pubmed/29210278
https://search.proquest.com/docview/1973461052
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoXNoD9N0tbeWKSj2Zxo7jx5Fui1aIRZUAiVtkOzZaFSUVCRLwZ_pXmUmy9IFQe3ccazyT7_N48g0hH7QBVPbeMu-1YrJwgdmkLeNRxCzxypuIqYH5gZody72T4uRXvuPvG3zBP7nQYisc7XkOWPuArAkNkYEkaHq4_OaqXPTFinAil8wAYi3lGe88jyAU2j9B6B5m2SPM7sYgd9T2woRYWPJ9-6Lz2-H6rmzjPxf_mKyPNJPuDH7xhKzE-il59Jv44DPy80vErD2WoS6uY0X3sUKDzlGy_5LNm2qRgJ3S6flVcxrP6GFwKTVnVUtdS781HRYZwQtmgGZdE666SKfuHLvftXRR08-LBl1yUKcYZ8b-ocD16aiRTl1dUdQmhq3F37fGUdhAtJe0bZ-T492vR9MZG9s1MJfnWcfyLBVJ-mg1dy5YkUzuTNTKF1EZIJqpQq0z7kTmVWWj8VHYwEVITqqQA416QVbrpo6vCPVSe7wC5TJ46ZRxKjjJXRasN-BYfkK2wLLlGG5t2d-kC14O5i5Hc0_Ix-Uulz8G7Y57R75fOkEJ4YXWd3VsLmBmq3OUpC_EhLwcvON2LmHxvKzN6_9azSZ5CGQLKwcB-t6QVbBlfAuEpvPvel--AcMw8-Q
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKOUAPlFfLlpcRSJzcxonjx7EsVAvsVpXaSr1FtmOjFVWCmlSi_TP9q8zkUV6qBNfImTjjcb4v9vgbQt4oDajsnGHOKclEbj0zURnGQxqSyEunAy4NLPbl7Fh8OslPVsjOeBYGOtGApabbxP-pLsB34BpWxFGOZwC5t8jtXAFaIheaHo6fXpmlXc4i_JgLpgG4RpXGv-5HLPLN71h0A8HsgGZvnRxcd7HLL_m6fd66bX_5h3rjf7zDfXJvIJ10t4-SB2QlVA_J2i9ShI_I1fuAa_iYlLq8DCWdY74GXaCA_3e2qMtlBK5Kp2cX9ZdwSg-9jbE-LRtqG3pQt5hyBA-YAba1tb9oA53aM6yF19BlRd8tawzQXqtisIzVRIH500ExndqqpKhUDAONh7mGVlhOtBO4bR6T470PR9MZG4o3MJtlScuyJOZRuGAUt9abNOrM6qCky4PUQDtjicpn3KaJk6UJ2oXUeJ76aIX0GZCqDbJa1VV4QqgTyuGGKBfeCSu1ld4KbhNvnIYwcxPyGjxbDJOvKbp99ZQXvbuLwd0T8nYc7OJbr-RxY8tXYywUMNnQ-7YK9TlYNipDgfo8nZDNPkiubaUG_56V3vqn3rwkd2ZHi3kx_7j_-Sm5CzQMcwoBFJ-RVfBreA5Up3UvuvD-AT47_Ek
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSIgeeEOXpxFInNzGjuPHsWxZLdCtKrWVeotsx0YrqqRqUon2z_BXmUmyFQ9VgmvkjJ3xON_YM_6GkHfaACp7b5n3WjFZuMBs0pbxKGKWeOVNxKOBxZ6aH8nPx8XxeI8b78LAIFqQ1PZBfFzVp1UaGQb4FjzHqjja8xxg9ya5VWjex2a3pwer36_KRZ-3CJtzyQyA14qp8a_3EY9C-zseXeNk9mAzu0cOr4bZ55h82zzv_Ga4_IPB8T-_4z65OzqfdHuwlgfkRqwfkvVfKAkfkR87Ec_yMTl1eRkruot5G3SBRP7f2aKplgl8Vjo9u2i-xhN6EFxKzUnVUtfS_abD1CPoYA4Y1zXhoot06s6wJl5LlzX9sGzQUAfOilEyVhWFHQAdmdOpqyuKjMUw4Xipa2yFZUV7otv2MTmafTycztlYxIG5PM86lmepSNJHq7lzwYpkcmeiVr6IyoD7mSpkQONOZF5VNhofhQ1chOSkCjk4V0_IWt3UcYNQL7XHwCiXwUunjFPBSe6yYL0Bc_MT8hY0W46LsC37-Lrg5aDuclT3hLxfTXh5OjB6XNvyzcoeSlh0qH1Xx-YcJFudI1F9ISbk6WAoV7KExV20Ns_-aTSvye39nVm5-2nvy3NyB7wxTC0EbHxB1kCt8SV4PJ1_1Vv4TzlO_sM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decellularized+Liver+Matrix-Modified+Cryogel+Scaffolds+as+Potential+Hepatocyte+Carriers+in+Bioartificial+Liver+Support+Systems+and+Implantable+Liver+Constructs&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Damania%2C+Apeksha&rft.au=Kumar%2C+Anupam&rft.au=Teotia%2C+Arun+K.&rft.au=Kimura%2C+Haruna&rft.date=2018-01-10&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=10&rft.issue=1&rft.spage=114&rft.epage=126&rft_id=info:doi/10.1021%2Facsami.7b13727&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_7b13727
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon