Temperature-Dependent Two-Dimensional Transition Metal Dichalcogenide Heterostructures: Controlled Synthesis and Their Properties

Vertically stacked and laterally stitched heterostructures consisting of two-dimensional (2D) transition metal dichalcogenides (TMDCs) are predicted to possess novel electronic and optical properties, which offer opportunities for the development of next-generation electronic and optoelectronic devi...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 9; no. 36; pp. 30821 - 30831
Main Authors Chen, Fei, Wang, Lei, Ji, Xiaohong, Zhang, Qinyuan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 13.09.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vertically stacked and laterally stitched heterostructures consisting of two-dimensional (2D) transition metal dichalcogenides (TMDCs) are predicted to possess novel electronic and optical properties, which offer opportunities for the development of next-generation electronic and optoelectronic devices. In the present work, we report the temperature-dependent synthesis of 2D TMDC heterostructures on Si/SiO2 substrates, including MoS2–WS2, WS2–MoS2–WS2, Mo1–x W x S2–WS2, and Mo1–x W x S2 alloyed bilayer heterostructures by ambient pressure chemical vapor deposition (CVD). Raman and photoluminescence mapping studies demonstrate that the as-produced heterostructures show distinct structural and optical modulation. Our results indicate that the evolution of various 2D heterostructures originates from the competition between the adsorption and desorption of Mo atoms and the diffusion of W atoms under various growth temperatures. This work sheds light on the design and fabrication of heterostructures using controllable interfaces and junctions of diverse TMDC atomic layers.
AbstractList Vertically stacked and laterally stitched heterostructures consisting of two-dimensional (2D) transition metal dichalcogenides (TMDCs) are predicted to possess novel electronic and optical properties, which offer opportunities for the development of next-generation electronic and optoelectronic devices. In the present work, we report the temperature-dependent synthesis of 2D TMDC heterostructures on Si/SiO2 substrates, including MoS2-WS2, WS2-MoS2-WS2, Mo1-xWxS2-WS2, and Mo1-xWxS2 alloyed bilayer heterostructures by ambient pressure chemical vapor deposition (CVD). Raman and photoluminescence mapping studies demonstrate that the as-produced heterostructures show distinct structural and optical modulation. Our results indicate that the evolution of various 2D heterostructures originates from the competition between the adsorption and desorption of Mo atoms and the diffusion of W atoms under various growth temperatures. This work sheds light on the design and fabrication of heterostructures using controllable interfaces and junctions of diverse TMDC atomic layers.
Vertically stacked and laterally stitched heterostructures consisting of two-dimensional (2D) transition metal dichalcogenides (TMDCs) are predicted to possess novel electronic and optical properties, which offer opportunities for the development of next-generation electronic and optoelectronic devices. In the present work, we report the temperature-dependent synthesis of 2D TMDC heterostructures on Si/SiO substrates, including MoS -WS , WS -MoS -WS , Mo W S -WS , and Mo W S alloyed bilayer heterostructures by ambient pressure chemical vapor deposition (CVD). Raman and photoluminescence mapping studies demonstrate that the as-produced heterostructures show distinct structural and optical modulation. Our results indicate that the evolution of various 2D heterostructures originates from the competition between the adsorption and desorption of Mo atoms and the diffusion of W atoms under various growth temperatures. This work sheds light on the design and fabrication of heterostructures using controllable interfaces and junctions of diverse TMDC atomic layers.
Vertically stacked and laterally stitched heterostructures consisting of two-dimensional (2D) transition metal dichalcogenides (TMDCs) are predicted to possess novel electronic and optical properties, which offer opportunities for the development of next-generation electronic and optoelectronic devices. In the present work, we report the temperature-dependent synthesis of 2D TMDC heterostructures on Si/SiO2 substrates, including MoS2–WS2, WS2–MoS2–WS2, Mo1–x W x S2–WS2, and Mo1–x W x S2 alloyed bilayer heterostructures by ambient pressure chemical vapor deposition (CVD). Raman and photoluminescence mapping studies demonstrate that the as-produced heterostructures show distinct structural and optical modulation. Our results indicate that the evolution of various 2D heterostructures originates from the competition between the adsorption and desorption of Mo atoms and the diffusion of W atoms under various growth temperatures. This work sheds light on the design and fabrication of heterostructures using controllable interfaces and junctions of diverse TMDC atomic layers.
Author Chen, Fei
Wang, Lei
Zhang, Qinyuan
Ji, Xiaohong
AuthorAffiliation South China University of Technology
State Key Laboratory of Luminescent Materials and Devices, and Institute of Optical Communication Materials
School of Materials Science and Engineering
AuthorAffiliation_xml – name: South China University of Technology
– name: School of Materials Science and Engineering
– name: State Key Laboratory of Luminescent Materials and Devices, and Institute of Optical Communication Materials
Author_xml – sequence: 1
  givenname: Fei
  surname: Chen
  fullname: Chen, Fei
  organization: South China University of Technology
– sequence: 2
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  organization: South China University of Technology
– sequence: 3
  givenname: Xiaohong
  orcidid: 0000-0003-2083-0899
  surname: Ji
  fullname: Ji, Xiaohong
  email: jxhong@scut.edu.cn
  organization: South China University of Technology
– sequence: 4
  givenname: Qinyuan
  orcidid: 0000-0001-6544-4735
  surname: Zhang
  fullname: Zhang, Qinyuan
  organization: South China University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28814077$$D View this record in MEDLINE/PubMed
BookMark eNp1kMtLxDAQh4Movq8eJUcRuuZVk_Umu75AUbCeS5pO3UibrEmKePQ_N7KrN0-ZDN_8hvn20KbzDhA6omRCCaNn2kQ92IlsiOKUb6BdOhWiUKxkm3-1EDtoL8Y3Qs45I-U22mFKUUGk3EVfFQxLCDqNAYo5LMG14BKuPnwxtwO4aL3TPa6CzmXKH_wAKTfm1ix0b_wrONsCvoUEwccURvOTFC_wzLsUfN9Di58_XVpAtBFr1-JqATbgp-Dz2mQhHqCtTvcRDtfvPnq5vqpmt8X9483d7PK-0JyTVDCudcsVk20Jsm2klpKZqWCqI7xRhPCOqwYYE00ppaBdRxrBZGmYZqYpCef76GSVuwz-fYSY6sFGA32vHfgx1nTKiZBSnU8zOlmhJt8UA3T1MthBh8-akvpHe73SXq-154HjdfbYDND-4b-eM3C6AvJg_ebHkKXG_9K-ASLbkYM
CitedBy_id crossref_primary_10_1021_acsanm_1c01809
crossref_primary_10_1088_2515_7639_abb58d
crossref_primary_10_1007_s12678_018_0485_z
crossref_primary_10_1039_D0CE00558D
crossref_primary_10_1016_j_ijhydene_2018_10_023
crossref_primary_10_1021_acsami_9b14378
crossref_primary_10_1039_D1NR00455G
crossref_primary_10_1039_C9DT01581G
crossref_primary_10_1039_D3CE00562C
crossref_primary_10_1021_acs_jpcc_2c03609
crossref_primary_10_1039_D3CE00665D
crossref_primary_10_1021_acs_jpcc_1c10192
crossref_primary_10_1039_D1CE01289D
crossref_primary_10_1016_j_jallcom_2019_01_049
crossref_primary_10_1016_j_carbon_2019_01_008
crossref_primary_10_1016_j_apsusc_2019_144192
crossref_primary_10_1021_acs_jpcc_2c07113
crossref_primary_10_1021_acsomega_2c05151
crossref_primary_10_1021_jacs_8b04225
crossref_primary_10_2139_ssrn_4093748
crossref_primary_10_1016_j_spmi_2021_107023
crossref_primary_10_1088_2053_1591_abf3df
crossref_primary_10_1002_smtd_202300246
crossref_primary_10_1021_acs_jpcc_8b09002
crossref_primary_10_1088_1361_6528_aafe24
crossref_primary_10_3390_electronics11152401
crossref_primary_10_1016_j_solener_2020_06_067
crossref_primary_10_1039_D0CE01711F
crossref_primary_10_1038_s41598_018_31220_z
crossref_primary_10_1021_acsami_1c02913
crossref_primary_10_1007_s11433_021_1745_6
crossref_primary_10_1016_j_ceramint_2020_02_251
crossref_primary_10_1039_C8NR06430J
crossref_primary_10_1063_5_0102277
crossref_primary_10_1002_adma_202304171
crossref_primary_10_1016_j_apsusc_2020_146262
crossref_primary_10_1021_acsami_9b06425
crossref_primary_10_1063_1_5011326
crossref_primary_10_1007_s00339_021_05188_z
crossref_primary_10_1088_2053_1591_aad26d
crossref_primary_10_1007_s40820_023_01315_y
crossref_primary_10_1088_1361_648X_ac6309
crossref_primary_10_1016_j_mtcomm_2024_109136
crossref_primary_10_3390_coatings9040227
crossref_primary_10_1016_j_commatsci_2021_111041
crossref_primary_10_1021_acsanm_1c00890
crossref_primary_10_1021_acs_jpcc_9b08059
Cites_doi 10.1021/nn502776h
10.1021/nn405685j
10.1021/nn401420h
10.1038/nphoton.2015.282
10.1021/acs.nanolett.6b03801
10.1021/jacs.5b06643
10.1038/nmat3505
10.1021/nl503897h
10.1002/smll.201301542
10.1002/adma.201605043
10.1103/PhysRevLett.108.196802
10.1021/acsami.6b11768
10.1039/B919869E
10.1039/C3NR05630A
10.1021/ja500069b
10.1002/adma.201600032
10.1103/PhysRevLett.105.136805
10.1088/2053-1583/3/2/022001
10.1126/science.1102896
10.1021/jp212558p
10.1021/nl501988y
10.1021/nn505736z
10.1021/acsnano.5b01529
10.1021/acs.nanolett.6b02057
10.1039/C5CS00517E
10.1021/nn400280c
10.1039/C7NR00844A
10.1038/nnano.2014.222
10.1021/am508535x
10.1016/j.jallcom.2010.07.120
10.1039/C6NH00075D
10.1002/adfm.201603884
10.1038/ncomms8666
10.1038/nmat4091
10.1038/nnano.2014.167
10.1002/adma.201500846
10.1038/nmat2710
10.1007/s12274-017-1480-z
10.1002/adfm.201401504
10.1002/smll.201202982
10.1002/adom.201300428
10.1103/PhysRevB.86.241201
10.1038/nnano.2012.193
10.1039/C4CS00258J
10.1088/0022-3727/41/18/185406
10.1021/acsnano.6b01486
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/acsami.7b08313
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 30831
ExternalDocumentID 10_1021_acsami_7b08313
28814077
c974122138
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
ABFRP
ABJNI
ABQRX
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
AAHBH
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a330t-23aad3827d5e7db7a772c9428f03b8003f38be224b57741ff0b4275c2a2cb5033
IEDL.DBID ACS
ISSN 1944-8244
IngestDate Fri Aug 16 11:18:37 EDT 2024
Fri Aug 23 00:53:50 EDT 2024
Fri May 24 00:01:50 EDT 2024
Thu Aug 27 13:42:07 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 36
Keywords Mo1−x W x S2
growth mechanism
MoS2
magnetron sputtering and CVD synthesis
WS2
two-dimensional semiconductor
2D heterosructures
Mo1−xWxS2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a330t-23aad3827d5e7db7a772c9428f03b8003f38be224b57741ff0b4275c2a2cb5033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2083-0899
0000-0001-6544-4735
PMID 28814077
PQID 1930477869
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1930477869
crossref_primary_10_1021_acsami_7b08313
pubmed_primary_28814077
acs_journals_10_1021_acsami_7b08313
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20170913
2017-Sep-13
2017-09-13
PublicationDateYYYYMMDD 2017-09-13
PublicationDate_xml – month: 09
  year: 2017
  text: 20170913
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref22/cit22
  doi: 10.1021/nn502776h
– ident: ref27/cit27
  doi: 10.1021/nn405685j
– ident: ref38/cit38
  doi: 10.1021/nn401420h
– ident: ref4/cit4
  doi: 10.1038/nphoton.2015.282
– ident: ref20/cit20
  doi: 10.1021/acs.nanolett.6b03801
– ident: ref45/cit45
  doi: 10.1021/jacs.5b06643
– ident: ref8/cit8
  doi: 10.1038/nmat3505
– ident: ref31/cit31
  doi: 10.1021/nl503897h
– ident: ref42/cit42
  doi: 10.1002/smll.201301542
– ident: ref44/cit44
  doi: 10.1002/adma.201605043
– ident: ref23/cit23
  doi: 10.1103/PhysRevLett.108.196802
– ident: ref14/cit14
  doi: 10.1021/acsami.6b11768
– ident: ref39/cit39
  doi: 10.1039/B919869E
– ident: ref36/cit36
  doi: 10.1039/C3NR05630A
– ident: ref13/cit13
  doi: 10.1021/ja500069b
– ident: ref21/cit21
  doi: 10.1002/adma.201600032
– ident: ref6/cit6
  doi: 10.1103/PhysRevLett.105.136805
– ident: ref12/cit12
  doi: 10.1088/2053-1583/3/2/022001
– ident: ref1/cit1
  doi: 10.1126/science.1102896
– ident: ref41/cit41
  doi: 10.1021/jp212558p
– ident: ref16/cit16
  doi: 10.1021/nl501988y
– ident: ref25/cit25
  doi: 10.1021/nn505736z
– ident: ref35/cit35
  doi: 10.1021/acsnano.5b01529
– ident: ref46/cit46
  doi: 10.1021/acs.nanolett.6b02057
– ident: ref2/cit2
  doi: 10.1039/C5CS00517E
– ident: ref9/cit9
  doi: 10.1021/nn400280c
– ident: ref19/cit19
  doi: 10.1039/C7NR00844A
– ident: ref43/cit43
  doi: 10.1038/nnano.2014.222
– ident: ref5/cit5
  doi: 10.1021/am508535x
– ident: ref37/cit37
  doi: 10.1016/j.jallcom.2010.07.120
– ident: ref29/cit29
  doi: 10.1039/C6NH00075D
– ident: ref10/cit10
  doi: 10.1002/adfm.201603884
– ident: ref26/cit26
  doi: 10.1038/ncomms8666
– ident: ref28/cit28
  doi: 10.1038/nmat4091
– ident: ref18/cit18
  doi: 10.1038/nnano.2014.167
– ident: ref34/cit34
  doi: 10.1002/adma.201500846
– ident: ref17/cit17
  doi: 10.1038/nmat2710
– ident: ref30/cit30
  doi: 10.1007/s12274-017-1480-z
– ident: ref24/cit24
  doi: 10.1002/adfm.201401504
– ident: ref15/cit15
  doi: 10.1002/smll.201202982
– ident: ref33/cit33
  doi: 10.1002/adom.201300428
– ident: ref7/cit7
  doi: 10.1103/PhysRevB.86.241201
– ident: ref3/cit3
  doi: 10.1038/nnano.2012.193
– ident: ref11/cit11
  doi: 10.1039/C4CS00258J
– ident: ref40/cit40
  doi: 10.1088/0022-3727/41/18/185406
– ident: ref32/cit32
  doi: 10.1021/acsnano.6b01486
SSID ssj0063205
Score 2.4635346
Snippet Vertically stacked and laterally stitched heterostructures consisting of two-dimensional (2D) transition metal dichalcogenides (TMDCs) are predicted to possess...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 30821
Title Temperature-Dependent Two-Dimensional Transition Metal Dichalcogenide Heterostructures: Controlled Synthesis and Their Properties
URI http://dx.doi.org/10.1021/acsami.7b08313
https://www.ncbi.nlm.nih.gov/pubmed/28814077
https://search.proquest.com/docview/1930477869
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5eXvTB-2XeiCj4FF2Ttml9k80xBEVwwt5KkqYwHK3Yieib_9xzms7bGPrehnBOku9Lzsd3CDmWYQa4FPjMWCOYD0lnOpMxErk0Ck3miaxSW9yE3Xv_qh_0v947flfwuXemTImtcKTGnlhilsxzlA8iCWrdjc_cUPBKrAg3cp9FgFhje8aJ_xGETPkThKYwywphOsvO7qisjAlRWPJw-jzSp-Zt0rbxz8mvkKWaZtILty5WyYzN18jiN_PBdfLes0CZnaUya9e9cEe091KwNlr-O7sOWoFZpeui1xaYOm2j0H5oClh5g9TSLuppCmdDCyOV57Tl1O9Dm9K71xwIZjkoqcpT2sOiBL3F5_8n9HHdIPedy16ry-qGDEwJ0RwxLpRKRcRlGliZaqkgoyaGC0zWFBqYp8hEpC2QAh0Aq_SyrKl9LgPDFTca66WbZC4vcrtNaOhZL46A7qCdjdZch0Z5qUK-J0PTtA1yBLFL6g1VJlWtnHuJC2hSB7RBTsZ5TB6dO8fULw_HaU5gA2FVROW2eIaRY6w8yiiMG2TL5f9zLB6hIZiUO_-azS5Z4Aj62GBC7JE5iLzdB8oy0gfVav0ASzPnbw
link.rule.ids 315,786,790,2782,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS91AEB78cdAeWrW2PlvbLQo9rb7sJtmkt_Ke8mpVBCN4C7ubDUglEfNE2lv_c2c2iVpFsNeQDJOd2cy3fJNvALZUXGJdikJunZU8xKBzU6qUgFyRxLYMZOm7LY7iyWm4fxadzcBO_y8MOtGgpcaT-PfqAsEOXqOJOMrQaCw5C_ORwsM4YaHRSf_pjaXwPYt4MA95goWrV2l88jzVItv8W4ueAZi-0Oy9geM7F31_ya_t66nZtn8eqTf-xzsswesOdLLvbZYsw4yrVuDVAynCt_A3cwigW4FlPu4m405ZdlPzMQ0AaMU7mC9tvsuLHTrE7WxMbfcXtsY8PC8cm1B3Td2K0qKl5hsbtb3wF65gJ78rhJvNecN0VbCMKAp2TGTAFam6rsLp3m42mvBuPAPXUg6nXEitC5kIVUROFUZpjK9N8ThTDqVBHCpLmRiHEMFEiDGDshyaUKjICi2sIfb0HcxVdeXWgMWBC9IEwQ-J2xgjTGx1UGhCfyq2QzeATVy7vNteTe6ZcxHk7YLm3YIO4Gsfzvyy1ep49s4vfbRz3E7EkejK1ddoOSUeUiVxOoD3bRrc2RIJyYMptf4ibz7DwiQ7PMgPfhz9_ACLguAAjZ6QH2EOo-A2EMxMzSefwLeTye_a
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6aFEpz6DNttk-VFnJSaku2ZfdWdrtsXyEQB3IzekJosEO8ITS3_vPMyN7QB4HmauxB1ow0n_hG3wC8U0XAvJRn3HoreYZO5yaoioCcKwsbUhlitcVusTjIvhzmh-M9broLg4Po0VIfSXxa1ScujAoD6Xt8Tl1xlKH2WHINbufUvZvw0HR_tf0WUsS6RTycZ7zE5LVSavzne8pHtv8zH10DMmOymd-H-mqYscbkx87Z0uzYi78UHG_4Hw_g3gg-2cchWh7CLd8-go3fJAkfw6_aI5AehJb5bOyQu2T1ecdn1AhgEPFgMcXFai_23SN-ZzMqvz-2HcbjkfNsQVU23SBOi5b6D2w61MQfe8f2f7YIO_ujnunWsZqoCrZHpMApqbtuwsH8Uz1d8LFNA9dSJksupNZOlkK53CtnlEY_2wqPNSGRBvGoDLI0HqGCyRFrpiEkJhMqt0ILa4hFfQLrbdf6LWBF6tOqRBBEIjfGCFNYnTpNKFAVNvETeItz14zLrG8igy7SZpjQZpzQCWyvXNqcDJod1775ZuXxBpcVcSW69d0ZWq6Ij1RlUU3g6RAKV7ZESTJhSj37r9G8hjt7s3nz7fPu1-dwVxAqID4qeQHr6AT_EjHN0ryKMXwJQRDyUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature-Dependent+Two-Dimensional+Transition+Metal+Dichalcogenide+Heterostructures%3A+Controlled+Synthesis+and+Their+Properties&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Chen%2C+Fei&rft.au=Wang%2C+Lei&rft.au=Ji%2C+Xiaohong&rft.au=Zhang%2C+Qinyuan&rft.date=2017-09-13&rft.eissn=1944-8252&rft.volume=9&rft.issue=36&rft.spage=30821&rft.epage=30831&rft_id=info:doi/10.1021%2Facsami.7b08313&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon