Recent Progress in Nanostructured Smart Drug Delivery Systems for Cancer Therapy: A Review
Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several limitations such as nonspecific targeting, poor biodistribution, and buildup of drug resistances. However, significant technological advancemen...
Saved in:
Published in | ACS applied bio materials Vol. 5; no. 3; pp. 971 - 1012 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
21.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several limitations such as nonspecific targeting, poor biodistribution, and buildup of drug resistances. However, significant technological advancements have been made in terms of superior modes of drug delivery over the last few decades. Technical capability in analyzing the molecular mechanisms of tumor biology, nanotechnologyparticularly the development of biocompatible nanoparticles, surface modification techniques, microelectronics, and material scienceshas increased. As a result, a significant number of nanostructured carriers that can deliver drugs to specific cancerous sites with high efficiency have been developed. This particular maneuver that enables the introduction of a therapeutic nanostructured substance in the body by controlling the rate, time, and place is defined as the nanostructured drug delivery system (NDDS). Because of their versatility and ability to incorporate features such as specific targeting, water solubility, stability, biocompatibility, degradability, and ability to reverse drug resistance, they have attracted the interest of the scientific community, in general, and nanotechnologists as well as biomedical scientists. To keep pace with the rapid advancement of nanotechnology, specific technical aspects of the recent NDDSs and their prospects need to be reported coherently. To address these ongoing issues, this review article provides an overview of different NDDSs such as lipids, polymers, and inorganic nanoparticles. In addition, this review also reports the challenges of current NDDSs and points out the prospective research directions of these nanocarriers. From our focused review, we conclude that still now the most advanced and potent field of application for NDDSs is lipid-based, while other significantly potential fields include polymer-based and inorganic NDDSs. However, despite the promises, challenges remain in practical implementations of such NDDSs in terms of dosage and stability, and caution should be exercised regarding biocompatibility of materials. Considering these aspects objectively, this review on NDDSs will be particularly of interest for small-to-large scale industrial researchers and academicians with expertise in drug delivery, cancer research, and nanotechnology. |
---|---|
AbstractList | Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several limitations such as nonspecific targeting, poor biodistribution, and buildup of drug resistances. However, significant technological advancements have been made in terms of superior modes of drug delivery over the last few decades. Technical capability in analyzing the molecular mechanisms of tumor biology, nanotechnology─particularly the development of biocompatible nanoparticles, surface modification techniques, microelectronics, and material sciences─has increased. As a result, a significant number of nanostructured carriers that can deliver drugs to specific cancerous sites with high efficiency have been developed. This particular maneuver that enables the introduction of a therapeutic nanostructured substance in the body by controlling the rate, time, and place is defined as the nanostructured drug delivery system (NDDS). Because of their versatility and ability to incorporate features such as specific targeting, water solubility, stability, biocompatibility, degradability, and ability to reverse drug resistance, they have attracted the interest of the scientific community, in general, and nanotechnologists as well as biomedical scientists. To keep pace with the rapid advancement of nanotechnology, specific technical aspects of the recent NDDSs and their prospects need to be reported coherently. To address these ongoing issues, this review article provides an overview of different NDDSs such as lipids, polymers, and inorganic nanoparticles. In addition, this review also reports the challenges of current NDDSs and points out the prospective research directions of these nanocarriers. From our focused review, we conclude that still now the most advanced and potent field of application for NDDSs is lipid-based, while other significantly potential fields include polymer-based and inorganic NDDSs. However, despite the promises, challenges remain in practical implementations of such NDDSs in terms of dosage and stability, and caution should be exercised regarding biocompatibility of materials. Considering these aspects objectively, this review on NDDSs will be particularly of interest for small-to-large scale industrial researchers and academicians with expertise in drug delivery, cancer research, and nanotechnology. Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several limitations such as nonspecific targeting, poor biodistribution, and buildup of drug resistances. However, significant technological advancements have been made in terms of superior modes of drug delivery over the last few decades. Technical capability in analyzing the molecular mechanisms of tumor biology, nanotechnology─particularly the development of biocompatible nanoparticles, surface modification techniques, microelectronics, and material sciences─has increased. As a result, a significant number of nanostructured carriers that can deliver drugs to specific cancerous sites with high efficiency have been developed. This particular maneuver that enables the introduction of a therapeutic nanostructured substance in the body by controlling the rate, time, and place is defined as the nanostructured drug delivery system (NDDS). Because of their versatility and ability to incorporate features such as specific targeting, water solubility, stability, biocompatibility, degradability, and ability to reverse drug resistance, they have attracted the interest of the scientific community, in general, and nanotechnologists as well as biomedical scientists. To keep pace with the rapid advancement of nanotechnology, specific technical aspects of the recent NDDSs and their prospects need to be reported coherently. To address these ongoing issues, this review article provides an overview of different NDDSs such as lipids, polymers, and inorganic nanoparticles. In addition, this review also reports the challenges of current NDDSs and points out the prospective research directions of these nanocarriers. From our focused review, we conclude that still now the most advanced and potent field of application for NDDSs is lipid-based, while other significantly potential fields include polymer-based and inorganic NDDSs. However, despite the promises, challenges remain in practical implementations of such NDDSs in terms of dosage and stability, and caution should be exercised regarding biocompatibility of materials. Considering these aspects objectively, this review on NDDSs will be particularly of interest for small-to-large scale industrial researchers and academicians with expertise in drug delivery, cancer research, and nanotechnology.Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several limitations such as nonspecific targeting, poor biodistribution, and buildup of drug resistances. However, significant technological advancements have been made in terms of superior modes of drug delivery over the last few decades. Technical capability in analyzing the molecular mechanisms of tumor biology, nanotechnology─particularly the development of biocompatible nanoparticles, surface modification techniques, microelectronics, and material sciences─has increased. As a result, a significant number of nanostructured carriers that can deliver drugs to specific cancerous sites with high efficiency have been developed. This particular maneuver that enables the introduction of a therapeutic nanostructured substance in the body by controlling the rate, time, and place is defined as the nanostructured drug delivery system (NDDS). Because of their versatility and ability to incorporate features such as specific targeting, water solubility, stability, biocompatibility, degradability, and ability to reverse drug resistance, they have attracted the interest of the scientific community, in general, and nanotechnologists as well as biomedical scientists. To keep pace with the rapid advancement of nanotechnology, specific technical aspects of the recent NDDSs and their prospects need to be reported coherently. To address these ongoing issues, this review article provides an overview of different NDDSs such as lipids, polymers, and inorganic nanoparticles. In addition, this review also reports the challenges of current NDDSs and points out the prospective research directions of these nanocarriers. From our focused review, we conclude that still now the most advanced and potent field of application for NDDSs is lipid-based, while other significantly potential fields include polymer-based and inorganic NDDSs. However, despite the promises, challenges remain in practical implementations of such NDDSs in terms of dosage and stability, and caution should be exercised regarding biocompatibility of materials. Considering these aspects objectively, this review on NDDSs will be particularly of interest for small-to-large scale industrial researchers and academicians with expertise in drug delivery, cancer research, and nanotechnology. Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several limitations such as nonspecific targeting, poor biodistribution, and buildup of drug resistances. However, significant technological advancements have been made in terms of superior modes of drug delivery over the last few decades. Technical capability in analyzing the molecular mechanisms of tumor biology, nanotechnologyparticularly the development of biocompatible nanoparticles, surface modification techniques, microelectronics, and material scienceshas increased. As a result, a significant number of nanostructured carriers that can deliver drugs to specific cancerous sites with high efficiency have been developed. This particular maneuver that enables the introduction of a therapeutic nanostructured substance in the body by controlling the rate, time, and place is defined as the nanostructured drug delivery system (NDDS). Because of their versatility and ability to incorporate features such as specific targeting, water solubility, stability, biocompatibility, degradability, and ability to reverse drug resistance, they have attracted the interest of the scientific community, in general, and nanotechnologists as well as biomedical scientists. To keep pace with the rapid advancement of nanotechnology, specific technical aspects of the recent NDDSs and their prospects need to be reported coherently. To address these ongoing issues, this review article provides an overview of different NDDSs such as lipids, polymers, and inorganic nanoparticles. In addition, this review also reports the challenges of current NDDSs and points out the prospective research directions of these nanocarriers. From our focused review, we conclude that still now the most advanced and potent field of application for NDDSs is lipid-based, while other significantly potential fields include polymer-based and inorganic NDDSs. However, despite the promises, challenges remain in practical implementations of such NDDSs in terms of dosage and stability, and caution should be exercised regarding biocompatibility of materials. Considering these aspects objectively, this review on NDDSs will be particularly of interest for small-to-large scale industrial researchers and academicians with expertise in drug delivery, cancer research, and nanotechnology. |
Author | Anik, Muzahidul I Hossain, M. Imran Khan, Md Ishak Rubel, M. H. K Hossain, M. Khalid Mahfuz, A. M. U. B Hossain, K. M |
AuthorAffiliation | Interdisciplinary Graduate School of Engineering Science Department of Biotechnology and Genetic Engineering Department of Neurosurgery Institute for Micromanufacturing Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission Department of Chemical Engineering Department of Materials Science and Engineering |
AuthorAffiliation_xml | – name: Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission – name: Department of Chemical Engineering – name: Institute for Micromanufacturing – name: Interdisciplinary Graduate School of Engineering Science – name: Department of Biotechnology and Genetic Engineering – name: Department of Neurosurgery – name: Department of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Md Ishak orcidid: 0000-0001-7680-9613 surname: Khan fullname: Khan, Md Ishak organization: Department of Neurosurgery – sequence: 2 givenname: M. Imran orcidid: 0000-0002-0308-6052 surname: Hossain fullname: Hossain, M. Imran organization: Institute for Micromanufacturing – sequence: 3 givenname: M. Khalid orcidid: 0000-0003-4595-6367 surname: Hossain fullname: Hossain, M. Khalid email: khalid.baec@gmail.com, khalid@kyudai.jp organization: Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission – sequence: 4 givenname: M. H. K orcidid: 0000-0001-9420-4335 surname: Rubel fullname: Rubel, M. H. K organization: Department of Materials Science and Engineering – sequence: 5 givenname: K. M surname: Hossain fullname: Hossain, K. M organization: Department of Materials Science and Engineering – sequence: 6 givenname: A. M. U. B orcidid: 0000-0001-9592-430X surname: Mahfuz fullname: Mahfuz, A. M. U. B organization: Department of Biotechnology and Genetic Engineering – sequence: 7 givenname: Muzahidul I orcidid: 0000-0002-5054-4175 surname: Anik fullname: Anik, Muzahidul I organization: Department of Chemical Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35226465$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kMtLw0AQhxdRfNRePcoeRWjdZ5J6k9YXiEpbL17CZjOtkWS37m4q-e9NSRURnMsMw_cbmO8I7RprAKETSoaUMHqhtFdZNWSatMV20CGTcTSIBGO7v-YD1Pf-fUMQwmky2kcHXDIWiUgeotcpaDABPzu7dOA9Lgx-VMb64Godagc5nlXKBTxx9RJPoCzW4Bo8a3yAyuOFdXisjAaH52_g1Kq5xFd4CusCPo_R3kKVHvrb3kMvN9fz8d3g4en2fnz1MFCckzCgkAiSESmUTnKlKKNCcUmSWMVkFGcLoQnNRxpaTkPCYyoFizLOM54kOSMZ76Gz7u7K2Y8afEirwmsoS2XA1j5lEReJJFzKFj3donVWQZ6uXNE-16TfPlpg2AHaWe8dLH4QStKN87Rznm6dtwHxJ6CLoEJhTXCqKP-PnXexdp--29qZ1tB_8BdAmJM3 |
CitedBy_id | crossref_primary_10_1021_acsami_3c08608 crossref_primary_10_1080_1061186X_2023_2300690 crossref_primary_10_1016_j_aca_2023_341375 crossref_primary_10_1680_jsuin_24_00085 crossref_primary_10_1021_acs_chas_3c00069 crossref_primary_10_1016_j_jconrel_2024_04_035 crossref_primary_10_32628_IJSRST2512126 crossref_primary_10_1016_j_molliq_2023_123632 crossref_primary_10_1016_j_ejpb_2024_114560 crossref_primary_10_3390_cryst13071067 crossref_primary_10_1080_10837450_2024_2448333 crossref_primary_10_1021_acsabm_2c00123 crossref_primary_10_1016_j_ijbiomac_2023_124697 crossref_primary_10_1016_j_apsb_2022_08_013 crossref_primary_10_3389_fchem_2022_1042038 crossref_primary_10_1016_j_bios_2023_115688 crossref_primary_10_1007_s12032_025_02650_3 crossref_primary_10_1039_D2CC03603G crossref_primary_10_1016_j_jconrel_2022_12_017 crossref_primary_10_22159_ijap_2023v15i3_46976 crossref_primary_10_1002_adhm_202304576 crossref_primary_10_1016_j_colsurfa_2024_135201 crossref_primary_10_1007_s12668_023_01183_1 crossref_primary_10_1016_j_onano_2022_100091 crossref_primary_10_61186_jcc_5_4_3 crossref_primary_10_1021_acsmeasuresciau_4c00062 crossref_primary_10_1016_j_bios_2022_115017 crossref_primary_10_1016_j_bios_2023_115411 crossref_primary_10_1016_j_molliq_2024_126767 crossref_primary_10_1016_j_bios_2023_115416 crossref_primary_10_1016_j_molliq_2023_123774 crossref_primary_10_1080_1061186X_2024_2309661 crossref_primary_10_3390_polym14235134 crossref_primary_10_1002_adhm_202303579 crossref_primary_10_1007_s41779_023_00853_3 crossref_primary_10_1016_j_prp_2023_154993 crossref_primary_10_3390_pharmaceutics15092361 crossref_primary_10_1016_j_bios_2024_117103 crossref_primary_10_3390_ddc3040046 crossref_primary_10_1007_s11696_025_03984_y crossref_primary_10_1016_j_ijpharm_2024_125108 crossref_primary_10_1016_j_colsurfa_2023_133070 crossref_primary_10_1016_j_jconrel_2024_12_004 crossref_primary_10_1039_D3TB01753B crossref_primary_10_1002_advs_202306230 crossref_primary_10_1016_j_drup_2022_100865 crossref_primary_10_1016_j_nanoso_2024_101117 crossref_primary_10_1016_j_bios_2023_115358 crossref_primary_10_1002_app_53044 crossref_primary_10_3390_vaccines12121335 crossref_primary_10_1186_s13040_024_00362_4 crossref_primary_10_1039_D4SM00993B crossref_primary_10_1016_j_colsurfa_2024_135083 crossref_primary_10_1016_j_ipha_2023_10_006 crossref_primary_10_1016_j_colsurfb_2024_114411 crossref_primary_10_1016_j_jare_2022_09_002 crossref_primary_10_1016_j_cinorg_2024_100035 crossref_primary_10_2174_0113852728304647240426201554 crossref_primary_10_1039_D2NJ04612A crossref_primary_10_1016_j_jconrel_2024_09_044 crossref_primary_10_1039_D4NA00086B crossref_primary_10_2174_0113816128304018240415095912 crossref_primary_10_1021_acsabm_4c01438 crossref_primary_10_3390_nano12224080 crossref_primary_10_1002_mabi_202400084 crossref_primary_10_2147_IJN_S415968 crossref_primary_10_1080_1061186X_2024_2428966 crossref_primary_10_1039_D4MA00425F crossref_primary_10_1016_j_ccr_2023_215507 crossref_primary_10_1016_j_ejmech_2023_115676 crossref_primary_10_1016_j_jddst_2024_106545 crossref_primary_10_1016_j_comptc_2025_115168 crossref_primary_10_3390_ma16010064 crossref_primary_10_1039_D3TB00209H crossref_primary_10_1021_acsabm_5c00224 crossref_primary_10_1002_pi_6474 crossref_primary_10_3390_pharmaceutics14071522 crossref_primary_10_1016_j_actbio_2024_03_019 crossref_primary_10_3390_ph17101296 crossref_primary_10_1039_D2NR03941A crossref_primary_10_1016_j_molstruc_2024_139149 crossref_primary_10_1016_j_jallcom_2023_172416 crossref_primary_10_1016_j_molliq_2024_126293 crossref_primary_10_1002_agt2_282 crossref_primary_10_1016_j_eurpolymj_2023_112352 crossref_primary_10_1016_j_lfs_2024_122899 crossref_primary_10_1080_1061186X_2023_2193358 crossref_primary_10_1016_j_ijbiomac_2024_131328 crossref_primary_10_1021_acsabm_4c01337 crossref_primary_10_1016_j_eurpolymj_2022_111645 crossref_primary_10_1016_j_rechem_2022_100387 crossref_primary_10_3390_pharmaceutics15051379 crossref_primary_10_1021_acsami_4c14615 crossref_primary_10_1021_acsabm_3c00936 crossref_primary_10_1016_j_flatc_2024_100607 crossref_primary_10_3390_polym14214755 crossref_primary_10_1016_j_jddst_2023_105015 crossref_primary_10_1016_j_bios_2023_115398 crossref_primary_10_1016_j_jcis_2022_11_151 crossref_primary_10_1016_j_bios_2023_115155 crossref_primary_10_1016_j_jiec_2024_02_031 crossref_primary_10_3390_su15021362 crossref_primary_10_1016_j_bios_2023_115714 crossref_primary_10_1007_s12551_023_01093_2 crossref_primary_10_1007_s12668_023_01240_9 crossref_primary_10_1021_acs_chemrev_3c00705 crossref_primary_10_1039_D2TA08841J crossref_primary_10_1021_acsapm_3c00890 crossref_primary_10_1016_j_actbio_2024_11_024 crossref_primary_10_3390_ijms252312946 crossref_primary_10_1021_acsanm_4c00826 crossref_primary_10_1007_s00277_023_05383_3 crossref_primary_10_1016_j_jddst_2023_104678 crossref_primary_10_1016_j_aej_2025_02_023 crossref_primary_10_1016_j_vaccine_2023_09_033 crossref_primary_10_1016_j_bios_2023_115725 crossref_primary_10_3390_pharmaceutics15030830 crossref_primary_10_3390_jfb15010014 crossref_primary_10_1080_00222348_2025_2476852 crossref_primary_10_3390_pharmaceutics15102434 crossref_primary_10_3390_antibiotics12071110 crossref_primary_10_1007_s13233_024_00262_w crossref_primary_10_1002_mco2_163 crossref_primary_10_1007_s43440_023_00462_8 crossref_primary_10_3390_pharmaceutics15071977 crossref_primary_10_3390_nano13192709 crossref_primary_10_1080_09205063_2022_2121589 crossref_primary_10_1016_j_ceja_2024_100638 crossref_primary_10_1016_j_jddst_2023_104537 crossref_primary_10_3390_ijms232214162 crossref_primary_10_2174_0113894501294136240610061328 crossref_primary_10_1016_j_eurpolymj_2023_112032 crossref_primary_10_1002_jbt_23325 crossref_primary_10_1007_s12088_024_01202_z crossref_primary_10_1002_slct_202402736 crossref_primary_10_1016_j_hybadv_2024_100311 crossref_primary_10_1016_j_ijbiomac_2022_12_129 crossref_primary_10_1016_j_bios_2024_117071 crossref_primary_10_1016_j_ipha_2024_01_011 crossref_primary_10_1021_acsami_4c13445 crossref_primary_10_1038_s41598_022_25587_3 crossref_primary_10_1002_adfm_202208316 crossref_primary_10_1016_j_jddst_2023_105179 crossref_primary_10_1016_j_mtcomm_2024_109451 crossref_primary_10_1016_j_matchemphys_2024_129775 crossref_primary_10_1016_j_mtbio_2024_101319 crossref_primary_10_1021_acsanm_3c01598 crossref_primary_10_3390_molecules28186624 crossref_primary_10_26565_2312_4334_2023_4_42 crossref_primary_10_3389_fbioe_2023_1253048 crossref_primary_10_1016_j_eurpolymj_2023_112548 crossref_primary_10_1021_acsomega_3c09135 crossref_primary_10_1038_s41598_024_75042_8 crossref_primary_10_1039_D4DT00087K crossref_primary_10_1021_acs_biomac_4c00310 crossref_primary_10_1038_s41598_024_62676_x crossref_primary_10_1080_1061186X_2022_2092741 crossref_primary_10_3390_pharmaceutics14112292 crossref_primary_10_1016_j_chphi_2023_100365 crossref_primary_10_1080_14686996_2023_2250705 crossref_primary_10_1186_s12951_025_03209_0 crossref_primary_10_3389_fonc_2024_1296091 crossref_primary_10_1039_D4NR05298F crossref_primary_10_1016_j_jddst_2024_106025 crossref_primary_10_1021_acsami_4c19123 crossref_primary_10_2147_IJN_S453958 crossref_primary_10_1016_j_bios_2022_114939 crossref_primary_10_3390_reactions5010010 crossref_primary_10_1016_j_drudis_2023_103602 crossref_primary_10_1016_j_jallcom_2023_172601 crossref_primary_10_1039_D2NR02066A crossref_primary_10_1002_mco2_775 crossref_primary_10_3389_fimmu_2022_984252 crossref_primary_10_70749_ijbr_v3i1_507 crossref_primary_10_1039_D4NJ02992E crossref_primary_10_1002_adma_202409522 crossref_primary_10_3390_polym15081835 crossref_primary_10_1016_j_molliq_2022_120427 crossref_primary_10_1155_2022_7798919 crossref_primary_10_1002_anbr_202400026 crossref_primary_10_1039_D4AN01082E crossref_primary_10_1016_j_hsr_2025_100212 crossref_primary_10_1016_j_matdes_2023_112243 crossref_primary_10_1039_D3CE01033C crossref_primary_10_3389_fphar_2023_1174330 crossref_primary_10_1016_j_prp_2024_155546 crossref_primary_10_1007_s10853_023_08209_9 crossref_primary_10_1016_j_rechem_2023_101252 crossref_primary_10_1016_j_ijbiomac_2023_127728 crossref_primary_10_1007_s12032_023_02258_5 crossref_primary_10_1039_D3RA04987F crossref_primary_10_1039_D3NA00218G crossref_primary_10_1016_j_ccr_2024_215750 crossref_primary_10_1186_s12951_025_03113_7 crossref_primary_10_1016_j_mtcomm_2022_105139 crossref_primary_10_1016_j_colsurfa_2024_135465 crossref_primary_10_1016_j_tet_2023_133293 crossref_primary_10_1002_marc_202400890 crossref_primary_10_1016_j_snb_2023_133455 |
Cites_doi | 10.1016/j.msec.2017.05.049 10.1021/acs.nanolett.0c03671 10.3390/pharmaceutics12050406 10.1016/j.matlet.2021.131240 10.3389/fnins.2018.00500 10.1039/C5PY00024F 10.1016/j.colsurfb.2018.10.007 10.1021/ja077398k 10.1016/j.jconrel.2013.04.018 10.1016/j.jiec.2021.08.012 10.2147/IJN.S132780 10.7150/thno.42564 10.1016/j.ijbiomac.2021.12.189 10.1016/j.jddst.2022.103109 10.1016/j.jconrel.2021.05.032 10.3390/bioengineering4010003 10.1021/mp800051m 10.1039/b516053g 10.4155/tde-2018-0062 10.1038/s41392-017-0004-3 10.1016/j.actbio.2017.04.017 10.1080/21691401.2016.1178130 10.1021/la4021383 10.1021/mp800240j 10.1016/j.jddst.2021.103085 10.1002/cmdc.202000456 10.3322/caac.21660 10.1080/17518253.2017.1385856 10.1021/bm301583s 10.1039/D0RA03491F 10.1080/10717544.2017.1333170 10.1080/21691401.2018.1511573 10.1016/j.colsurfb.2011.02.038 10.1016/j.ejps.2017.02.016 10.1016/j.supflu.2021.105423 10.1002/jps.21182 10.3390/molecules22122167 10.1016/j.ejps.2013.10.003 10.1021/acsami.8b14009 10.2174/1381612825666190215121148 10.1016/j.ijpharm.2019.02.045 10.3390/pharmaceutics13020152 10.1021/am503998x 10.1016/j.rinp.2018.06.010 10.1002/adma.200700941 10.1016/B978-0-12-814033-8.00001-1 10.3390/molecules23010047 10.1016/S0378-5173(02)00245-4 10.2147/IJN.S163929 10.1039/C6BM00011H 10.1021/acsbiomaterials.0c00042 10.5772/58422 10.1007/s10529-015-1965-3 10.1021/acsnano.1c08485 10.1111/j.1349-7006.2012.02310.x 10.1038/s41580-021-00404-3 10.1208/s12249-011-9733-8 10.1097/CAD.0b013e328346c7d6 10.1007/978-3-030-46923-8_5 10.1021/bm500296n 10.1021/acs.molpharmaceut.8b00810 10.1016/j.carbpol.2019.115682 10.1021/acsnano.6b04695 10.1016/j.bbrc.2018.03.069 10.1007/s11095-018-2370-0 10.3390/ijms18102029 10.1016/j.biomaterials.2011.08.036 10.1002/anie.201802351 10.1016/j.carbpol.2019.02.084 10.3390/jnt2010005 10.1002/pat.821 10.1021/bm070085x 10.1016/j.colcom.2020.100244 10.1002/chem.201700060 10.3109/21691401.2014.955106 10.3109/02652048.2013.788088 10.1039/C9BM00831D 10.1016/j.matdes.2020.108805 10.1016/j.colsurfb.2021.112254 10.1002/jbm.a.36755 10.4236/msa.2015.612108 10.1016/j.ijpharm.2021.120645 10.1016/j.eurpolymj.2020.110200 10.1016/B978-0-12-824272-8.00013-0 10.1016/j.lfs.2021.120294 10.7150/thno.29746 10.1002/adhm.202001974 10.7555/JBR.31.20160146 10.1038/s41598-020-69636-1 10.2147/IJN.S211844 10.1016/j.ijbiomac.2017.05.127 10.3390/nano9020282 10.1021/mp200426h 10.1016/j.jconrel.2021.11.010 10.1021/acs.langmuir.7b01072 10.1016/j.ijpharm.2013.09.011 10.1515/msp-2017-0086 10.1080/10717544.2022.2027573 10.2147/IJN.S198848 10.1002/adma.200601019 10.1007/s00604-015-1504-x 10.1016/j.jddst.2021.102958 10.1007/s10989-022-10363-8 10.1039/C5TB00994D 10.1002/adfm.201902634 10.1016/j.jcis.2021.08.129 10.1016/j.ijpharm.2020.119088 10.1038/natrevmats.2016.14 10.2147/DDDT.S195493 10.7150/thno.23804 10.1016/j.eurpolymj.2021.110683 10.1016/j.ejpb.2014.01.006 10.1021/jp0524274 10.1016/j.ejpb.2017.01.020 10.1016/j.drudis.2019.09.020 10.1016/j.jare.2018.06.005 10.1155/2012/936041 10.1080/17425247.2021.1912008 10.1016/j.colsurfb.2013.10.018 10.1016/j.ejps.2021.105777 10.1016/j.ijpharm.2020.119321 10.1002/bit.26536 10.3390/ijms17091534 10.1016/j.ijpharm.2016.11.051 10.1002/smll.201201390 10.1002/ppsc.201600371 10.1007/s00432-014-1767-3 10.1016/j.ijpharm.2007.11.037 10.3109/10717544.2015.1048491 10.1016/j.jphotobiol.2015.12.014 10.3390/nano9101423 10.1016/j.cclet.2019.12.001 10.1016/j.apsb.2015.11.005 10.1016/j.matchemphys.2018.03.015 10.1002/chem.201502756 10.1021/acsami.7b19549 10.1007/s11060-008-9759-2 10.1080/17435390.2017.1314036 10.1016/j.jpba.2022.114628 10.1021/acs.accounts.9b00116 10.1016/j.jmmm.2017.09.018 10.1080/10717544.2017.1399300 10.1016/j.cej.2022.134569 10.1016/j.msec.2017.02.008 10.1016/j.actbio.2019.11.027 10.1021/la4009625 10.1007/s11095-013-1290-2 10.1155/2016/6365295 10.1016/j.msec.2017.03.196 10.1089/cbr.2000.15.605 10.1016/j.jcis.2021.07.080 10.2147/IJN.S244712 10.1016/j.actamat.2012.10.039 10.1016/j.nano.2018.09.012 10.3390/ma12091481 10.1111/odi.13751 10.1007/s11596-017-1783-z 10.1080/10837450.2021.1920037 10.1038/srep02162 10.2217/nnm.16.5 10.1038/nmat1081 10.5812/jjnpp.82793 10.1039/D0PY01328E 10.3390/molecules23020288 10.1021/ja5030832 10.1016/j.ccr.2019.02.025 10.1039/C8NR04657C 10.2147/IJN.S152474 10.1021/am404696u 10.22034/APJCP.2017.18.2.365 10.1007/s11095-012-0793-6 10.1093/annonc/mdl104 10.2174/1871520620666200811124013 10.3390/polym10111272 10.1016/j.jconrel.2008.09.005 10.1186/s12951-020-00756-6 10.1016/j.ejps.2021.106052 10.1002/nano.202000162 10.3390/pharmaceutics13070929 10.1016/j.colsurfb.2021.111955 10.3390/molecules23020378 10.1002/adma.200400599 10.1039/D0BM01729A 10.1007/s13346-018-0575-8 10.1038/aps.2017.45 10.1016/B978-0-08-102985-5.00015-2 10.1038/labinvest.2017.25 10.7150/thno.38069 10.1021/acs.bioconjchem.6b00085 10.1016/B978-0-12-823688-8.00002-8 10.1016/j.freeradbiomed.2018.10.429 10.1007/978-1-4939-9798-5 10.1016/j.ijpharm.2013.03.036 10.1016/j.carbpol.2021.119013 10.1088/1361-6528/aa5e86 10.1080/00202967.2021.2004744 10.4155/tde-2019-0054 10.2147/IJN.S161163 10.1259/bjr/59448833 10.1186/s12951-017-0281-6 10.17179/excli2013-609 10.1021/nn102762f 10.1021/la0357054 10.1016/j.jconrel.2020.03.013 10.1016/j.ijbiomac.2017.11.146 10.1016/j.nano.2015.07.010 10.1016/j.colsurfa.2022.128407 10.1021/ja1027502 10.1080/1061186X.2017.1419360 10.1021/acs.nanolett.6b02786 10.3390/nano9040638 10.1038/s41598-020-75017-5 10.3390/polym12061397 10.1080/10717544.2017.1309475 10.1021/acsomega.9b01924 10.1016/j.ijpharm.2015.07.041 10.1021/acsanm.8b00444 10.1186/s13046-018-0700-z 10.1021/acsami.0c06614 10.1186/s12951-018-0392-8 10.2147/IJN.S121262 10.1016/j.xphs.2020.11.005 10.1208/s12249-019-1304-4 10.15171/bi.2015.23 10.1021/am402860v 10.2147/IJN.S83211 10.2147/IJN.S132369 10.4172/2161-0525.1000384 10.3389/fphar.2019.00220 10.1002/anie.200602168 10.1016/j.jconrel.2016.04.001 10.1155/2014/323046 10.1016/j.actbio.2017.02.012 10.1073/pnas.1411499111 10.1016/j.ygyno.2008.10.018 10.1016/j.smaim.2020.04.001 10.1039/C4NR03748K 10.1021/acsami.8b04962 10.1186/s13065-017-0248-6 10.3390/pharmaceutics12070665 10.1016/j.jddst.2022.103125 10.1016/j.actbio.2016.02.027 10.1007/s12274-012-0200-y 10.3748/wjg.v9.i9.1968 10.3390/pharmaceutics13081183 10.1039/C4TB00690A 10.1021/acsami.9b03559 10.3109/10717544.2015.1030715 10.1016/j.colsurfb.2014.09.062 10.3389/fphar.2021.679610 10.1038/s41578-021-00358-0 10.1021/ja054755n 10.1039/C7CS00399D 10.3109/10611860903244199 10.1021/acsami.9b15896 10.1016/j.chemphyslip.2019.03.016 10.1016/j.colsurfb.2022.112350 10.1016/j.snb.2017.11.189 10.3390/nano10071403 10.1002/wnan.1483 10.1002/jcp.26899 10.1016/j.jddst.2022.103141 10.1088/2043-6254/aa5e33 10.1016/j.drudis.2018.02.005 10.1021/la060227t 10.1016/j.reactfunctpolym.2013.05.009 10.1021/la200882f 10.1248/bpb.34.278 10.1007/s40005-020-00497-6 10.2147/IJN.S133787 10.1016/j.smaim.2020.05.002 10.1166/jnn.2015.10614 10.1016/j.actbio.2017.06.003 10.1515/ejnm-2015-0015 10.1111/cbdd.13309 10.1016/j.chempr.2017.02.005 10.1007/s10311-018-00841-1 10.1021/mp700091j 10.1080/10717544.2016.1217954 10.1007/s11596-017-1742-8 10.1016/j.pmatsci.2019.03.003 10.3109/10717544.2015.1055619 10.1039/B913732G 10.4314/tjpr.v12i2.19 10.1021/la0484016 10.1016/j.impact.2020.100253 10.1016/j.ejps.2011.04.005 10.1002/pat.5199 10.1021/nn500085k 10.3390/cancers12102783 10.3109/02652049809008242 10.1021/acs.chemmater.5b05016 10.1016/j.actbio.2016.10.012 10.3390/nano7070189 10.1515/dmpt-2018-0032 10.1088/1468-6996/14/4/044407 10.3390/pharmaceutics12060533 10.1021/ja1022267 10.21873/anticanres.13040 10.1021/ma062562u 10.1155/2018/9035452 10.1016/j.ajps.2020.07.005 10.1016/j.jiec.2020.01.018 10.1016/j.cej.2021.130590 10.1186/s11671-018-2782-0 10.1016/j.biomaterials.2019.01.002 10.1016/j.ijpharm.2013.04.021 10.1016/j.addr.2009.11.007 10.4236/wjnse.2015.54013 10.1016/j.snb.2021.129795 10.1002/ejic.202101084 10.1021/acsaelm.1c00703 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acsabm.2c00002 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2576-6422 |
EndPage | 1012 |
ExternalDocumentID | 35226465 10_1021_acsabm_2c00002 c591310318 |
Genre | Journal Article Review |
GroupedDBID | ABFRP ABUCX ACS AHGAQ ALMA_UNASSIGNED_HOLDINGS EBS GGK VF5 VG9 53G AAYXX ABBLG ABJNI ABLBI ABQRX BAANH CITATION CUPRZ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a330t-1e840b054ac8daa1214a35087a7097bf4c01d9ce1e8ce83715426b33b388d20b3 |
IEDL.DBID | ACS |
ISSN | 2576-6422 |
IngestDate | Fri Jul 11 07:26:00 EDT 2025 Wed Feb 19 02:27:01 EST 2025 Thu Apr 24 23:01:50 EDT 2025 Tue Jul 01 04:25:43 EDT 2025 Wed Mar 23 03:37:43 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | smart drug delivery nanotechnology cancer therapy nanoparticles biocompatibility cytotoxicity evaluation |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a330t-1e840b054ac8daa1214a35087a7097bf4c01d9ce1e8ce83715426b33b388d20b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0308-6052 0000-0001-9592-430X 0000-0002-5054-4175 0000-0003-4595-6367 0000-0001-7680-9613 0000-0001-9420-4335 |
PMID | 35226465 |
PQID | 2634850355 |
PQPubID | 23479 |
PageCount | 42 |
ParticipantIDs | proquest_miscellaneous_2634850355 pubmed_primary_35226465 crossref_primary_10_1021_acsabm_2c00002 crossref_citationtrail_10_1021_acsabm_2c00002 acs_journals_10_1021_acsabm_2c00002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220321 2022-03-21 |
PublicationDateYYYYMMDD | 2022-03-21 |
PublicationDate_xml | – month: 03 year: 2022 text: 20220321 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied bio materials |
PublicationTitleAlternate | ACS Appl. Bio Mater |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref185/cit185 ref115/cit115 ref259/cit259 ref187/cit187 ref181/cit181 ref111/cit111 ref255/cit255 ref113/cit113 ref183/cit183 ref257/cit257 ref117/cit117 ref48/cit48 ref74/cit74 ref189/cit189 ref119/cit119 ref10/cit10 ref35/cit35 ref93/cit93 ref251/cit251 ref253/cit253 ref42/cit42 ref120/cit120 ref178/cit178 ref248/cit248 ref61/cit61 ref176/cit176 ref67/cit67 ref128/cit128 ref126/cit126 ref54/cit54 ref240/cit240 ref137/cit137 ref310/cit310 ref318/cit318 ref11/cit11 ref102/cit102 ref29/cit29 ref174/cit174 ref314/cit314 ref86/cit86 ref170/cit170 ref244/cit244 ref271/cit271 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref207/cit207 ref28/cit28 ref279/cit279 ref203/cit203 ref275/cit275 ref233/cit233 ref148/cit148 ref307/cit307 ref55/cit55 ref144/cit144 ref303/cit303 ref218/cit218 ref167/cit167 ref163/cit163 ref237/cit237 ref66/cit66 ref264/cit264 ref22/cit22 ref260/cit260 ref87/cit87 ref106/cit106 ref190/cit190 ref140/cit140 ref198/cit198 ref214/cit214 ref194/cit194 ref98/cit98 ref210/cit210 ref268/cit268 Parvej M. S. (ref123/cit123) 2022 ref153/cit153 ref297/cit297 ref227/cit227 ref222/cit222 ref150/cit150 ref294/cit294 ref63/cit63 ref224/cit224 ref295/cit295 ref155/cit155 ref229/cit229 ref156/cit156 ref158/cit158 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref221/cit221 ref292/cit292 ref60/cit60 ref17/cit17 ref219/cit219 ref82/cit82 ref147/cit147 ref232/cit232 ref306/cit306 ref230/cit230 ref145/cit145 ref304/cit304 ref238/cit238 ref21/cit21 ref166/cit166 ref164/cit164 ref213/cit213 ref284/cit284 ref286/cit286 ref78/cit78 ref211/cit211 ref312/cit312 ref36/cit36 ref83/cit83 ref79/cit79 ref139/cit139 Rubel M. H. K. (ref23/cit23) 2022 ref172/cit172 ref246/cit246 ref243/cit243 ref317/cit317 ref270/cit270 ref200/cit200 ref14/cit14 ref57/cit57 ref169/cit169 ref278/cit278 ref134/cit134 ref208/cit208 ref40/cit40 ref273/cit273 ref131/cit131 ref205/cit205 ref161/cit161 ref320/cit320 ref142/cit142 ref216/cit216 ref301/cit301 ref289/cit289 ref15/cit15 ref180/cit180 ref235/cit235 ref309/cit309 ref62/cit62 ref41/cit41 ref58/cit58 ref104/cit104 ref262/cit262 ref177/cit177 ref84/cit84 ref1/cit1 ref196/cit196 ref281/cit281 ref7/cit7 ref45/cit45 Mahfuz A. M. U. (ref8/cit8) 2022 ref52/cit52 ref184/cit184 ref114/cit114 ref258/cit258 ref186/cit186 ref116/cit116 ref110/cit110 ref254/cit254 ref182/cit182 ref2/cit2 ref112/cit112 ref256/cit256 ref77/cit77 ref71/cit71 ref188/cit188 ref20/cit20 ref118/cit118 ref89/cit89 ref19/cit19 ref96/cit96 ref107/cit107 ref191/cit191 ref265/cit265 ref109/cit109 ref13/cit13 ref193/cit193 ref105/cit105 ref261/cit261 ref263/cit263 ref197/cit197 ref38/cit38 ref199/cit199 ref90/cit90 ref267/cit267 ref195/cit195 ref269/cit269 ref64/cit64 ref311/cit311 ref6/cit6 ref18/cit18 ref136/cit136 ref65/cit65 ref171/cit171 ref97/cit97 ref101/cit101 ref245/cit245 ref319/cit319 ref241/cit241 ref315/cit315 ref76/cit76 ref32/cit32 ref39/cit39 ref272/cit272 ref202/cit202 ref168/cit168 ref206/cit206 ref132/cit132 ref276/cit276 ref91/cit91 ref287/cit287 ref252/cit252 ref12/cit12 ref179/cit179 ref121/cit121 Khan S. (ref122/cit122) 2022 ref175/cit175 ref33/cit33 ref249/cit249 ref283/cit283 Biswas M. C. (ref124/cit124) 2022 ref129/cit129 ref44/cit44 ref70/cit70 ref125/cit125 ref9/cit9 ref152/cit152 ref225/cit225 ref296/cit296 ref226/cit226 ref154/cit154 ref298/cit298 ref27/cit27 ref228/cit228 ref299/cit299 ref293/cit293 ref223/cit223 ref151/cit151 ref159/cit159 ref92/cit92 ref157/cit157 ref31/cit31 ref290/cit290 ref220/cit220 ref291/cit291 ref88/cit88 ref160/cit160 ref234/cit234 ref143/cit143 ref302/cit302 ref217/cit217 ref288/cit288 ref53/cit53 ref149/cit149 ref162/cit162 ref308/cit308 ref46/cit46 ref236/cit236 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref300/cit300 ref215/cit215 ref280/cit280 ref50/cit50 ref282/cit282 ref313/cit313 ref209/cit209 ref138/cit138 ref100/cit100 ref25/cit25 ref173/cit173 ref103/cit103 ref247/cit247 ref72/cit72 ref242/cit242 ref316/cit316 ref201/cit201 ref51/cit51 ref277/cit277 ref135/cit135 ref68/cit68 ref94/cit94 ref130/cit130 ref274/cit274 ref204/cit204 ref146/cit146 ref305/cit305 ref26/cit26 ref73/cit73 ref231/cit231 ref69/cit69 ref165/cit165 ref239/cit239 Luan L. (ref56/cit56) 2002; 37 ref250/cit250 ref95/cit95 ref108/cit108 ref192/cit192 ref266/cit266 ref4/cit4 ref30/cit30 ref212/cit212 ref47/cit47 ref127/cit127 ref285/cit285 |
References_xml | – ident: ref285/cit285 doi: 10.1016/j.msec.2017.05.049 – ident: ref191/cit191 doi: 10.1021/acs.nanolett.0c03671 – ident: ref200/cit200 doi: 10.3390/pharmaceutics12050406 – ident: ref12/cit12 doi: 10.1016/j.matlet.2021.131240 – ident: ref206/cit206 doi: 10.3389/fnins.2018.00500 – ident: ref165/cit165 doi: 10.1039/C5PY00024F – ident: ref181/cit181 doi: 10.1016/j.colsurfb.2018.10.007 – ident: ref146/cit146 doi: 10.1021/ja077398k – ident: ref97/cit97 doi: 10.1016/j.jconrel.2013.04.018 – ident: ref190/cit190 doi: 10.1016/j.jiec.2021.08.012 – ident: ref316/cit316 doi: 10.2147/IJN.S132780 – ident: ref237/cit237 doi: 10.7150/thno.42564 – ident: ref303/cit303 doi: 10.1016/j.ijbiomac.2021.12.189 – ident: ref188/cit188 doi: 10.1016/j.jddst.2022.103109 – ident: ref69/cit69 doi: 10.1016/j.jconrel.2021.05.032 – ident: ref260/cit260 doi: 10.3390/bioengineering4010003 – ident: ref16/cit16 doi: 10.1021/mp800051m – ident: ref143/cit143 doi: 10.1039/b516053g – ident: ref6/cit6 doi: 10.4155/tde-2018-0062 – ident: ref35/cit35 doi: 10.1038/s41392-017-0004-3 – ident: ref308/cit308 doi: 10.1016/j.actbio.2017.04.017 – ident: ref169/cit169 doi: 10.1080/21691401.2016.1178130 – ident: ref63/cit63 doi: 10.1021/la4021383 – ident: ref86/cit86 doi: 10.1021/mp800240j – ident: ref80/cit80 doi: 10.1016/j.jddst.2021.103085 – ident: ref209/cit209 doi: 10.1002/cmdc.202000456 – ident: ref1/cit1 doi: 10.3322/caac.21660 – ident: ref319/cit319 doi: 10.1080/17518253.2017.1385856 – ident: ref137/cit137 doi: 10.1021/bm301583s – ident: ref75/cit75 doi: 10.1039/D0RA03491F – ident: ref64/cit64 doi: 10.1080/10717544.2017.1333170 – ident: ref314/cit314 doi: 10.1080/21691401.2018.1511573 – ident: ref98/cit98 doi: 10.1016/j.colsurfb.2011.02.038 – ident: ref184/cit184 doi: 10.1016/j.ejps.2017.02.016 – ident: ref90/cit90 doi: 10.1016/j.supflu.2021.105423 – ident: ref84/cit84 doi: 10.1002/jps.21182 – ident: ref47/cit47 doi: 10.3390/molecules22122167 – ident: ref106/cit106 doi: 10.1016/j.ejps.2013.10.003 – ident: ref113/cit113 doi: 10.1021/acsami.8b14009 – ident: ref306/cit306 doi: 10.2174/1381612825666190215121148 – ident: ref309/cit309 doi: 10.1016/j.ijpharm.2019.02.045 – ident: ref274/cit274 doi: 10.3390/pharmaceutics13020152 – ident: ref290/cit290 doi: 10.1021/am503998x – ident: ref24/cit24 doi: 10.1016/j.rinp.2018.06.010 – ident: ref151/cit151 doi: 10.1002/adma.200700941 – ident: ref36/cit36 doi: 10.1016/B978-0-12-814033-8.00001-1 – ident: ref276/cit276 doi: 10.3390/molecules23010047 – ident: ref57/cit57 doi: 10.1016/S0378-5173(02)00245-4 – ident: ref102/cit102 doi: 10.2147/IJN.S163929 – ident: ref259/cit259 doi: 10.1039/C6BM00011H – ident: ref224/cit224 doi: 10.1021/acsbiomaterials.0c00042 – ident: ref121/cit121 doi: 10.5772/58422 – ident: ref269/cit269 doi: 10.1007/s10529-015-1965-3 – ident: ref214/cit214 doi: 10.1021/acsnano.1c08485 – ident: ref135/cit135 doi: 10.1111/j.1349-7006.2012.02310.x – ident: ref3/cit3 doi: 10.1038/s41580-021-00404-3 – ident: ref99/cit99 doi: 10.1208/s12249-011-9733-8 – ident: ref59/cit59 doi: 10.1097/CAD.0b013e328346c7d6 – ident: ref126/cit126 doi: 10.1007/978-3-030-46923-8_5 – ident: ref139/cit139 doi: 10.1021/bm500296n – ident: ref215/cit215 doi: 10.1021/acs.molpharmaceut.8b00810 – ident: ref73/cit73 doi: 10.1016/j.carbpol.2019.115682 – ident: ref243/cit243 doi: 10.1021/acsnano.6b04695 – ident: ref172/cit172 doi: 10.1016/j.bbrc.2018.03.069 – ident: ref183/cit183 doi: 10.1007/s11095-018-2370-0 – ident: ref222/cit222 doi: 10.3390/ijms18102029 – ident: ref138/cit138 doi: 10.1016/j.biomaterials.2011.08.036 – ident: ref162/cit162 doi: 10.1002/anie.201802351 – ident: ref170/cit170 doi: 10.1016/j.carbpol.2019.02.084 – ident: ref199/cit199 doi: 10.3390/jnt2010005 – ident: ref152/cit152 doi: 10.1002/pat.821 – ident: ref156/cit156 doi: 10.1021/bm070085x – ident: ref230/cit230 doi: 10.1016/j.colcom.2020.100244 – ident: ref249/cit249 doi: 10.1002/chem.201700060 – ident: ref291/cit291 doi: 10.3109/21691401.2014.955106 – ident: ref66/cit66 doi: 10.3109/02652048.2013.788088 – ident: ref253/cit253 doi: 10.1039/C9BM00831D – ident: ref125/cit125 doi: 10.1016/j.matdes.2020.108805 – ident: ref229/cit229 doi: 10.1016/j.colsurfb.2021.112254 – ident: ref242/cit242 doi: 10.1002/jbm.a.36755 – ident: ref21/cit21 doi: 10.4236/msa.2015.612108 – ident: ref44/cit44 doi: 10.1016/j.ijpharm.2021.120645 – ident: ref192/cit192 doi: 10.1016/j.eurpolymj.2020.110200 – volume-title: Nanoparticle-Based Polymer Composites year: 2022 ident: ref123/cit123 doi: 10.1016/B978-0-12-824272-8.00013-0 – ident: ref115/cit115 doi: 10.1016/j.lfs.2021.120294 – ident: ref238/cit238 doi: 10.7150/thno.29746 – ident: ref119/cit119 doi: 10.1002/adhm.202001974 – ident: ref289/cit289 doi: 10.7555/JBR.31.20160146 – ident: ref207/cit207 doi: 10.1038/s41598-020-69636-1 – ident: ref52/cit52 doi: 10.2147/IJN.S211844 – ident: ref83/cit83 doi: 10.1016/j.ijbiomac.2017.05.127 – ident: ref282/cit282 doi: 10.3390/nano9020282 – ident: ref68/cit68 doi: 10.1021/mp200426h – ident: ref147/cit147 doi: 10.1016/j.jconrel.2021.11.010 – ident: ref221/cit221 doi: 10.1021/acs.langmuir.7b01072 – ident: ref48/cit48 doi: 10.1016/j.ijpharm.2013.09.011 – ident: ref211/cit211 doi: 10.1515/msp-2017-0086 – ident: ref100/cit100 doi: 10.1080/10717544.2022.2027573 – ident: ref275/cit275 doi: 10.2147/IJN.S198848 – ident: ref144/cit144 doi: 10.1002/adma.200601019 – ident: ref297/cit297 doi: 10.1007/s00604-015-1504-x – ident: ref193/cit193 doi: 10.1016/j.jddst.2021.102958 – volume-title: Low Dimensional Magnets year: 2022 ident: ref23/cit23 – volume: 37 start-page: 59 issue: 1 year: 2002 ident: ref56/cit56 publication-title: Yao Xue Xue Bao – ident: ref197/cit197 doi: 10.1007/s10989-022-10363-8 – ident: ref232/cit232 doi: 10.1039/C5TB00994D – ident: ref273/cit273 doi: 10.1002/adfm.201902634 – ident: ref127/cit127 doi: 10.1016/j.jcis.2021.08.129 – ident: ref74/cit74 doi: 10.1016/j.ijpharm.2020.119088 – ident: ref15/cit15 doi: 10.1038/natrevmats.2016.14 – ident: ref177/cit177 doi: 10.2147/DDDT.S195493 – ident: ref304/cit304 doi: 10.7150/thno.23804 – ident: ref133/cit133 doi: 10.1016/j.eurpolymj.2021.110683 – ident: ref65/cit65 doi: 10.1016/j.ejpb.2014.01.006 – ident: ref145/cit145 doi: 10.1021/jp0524274 – ident: ref307/cit307 doi: 10.1016/j.ejpb.2017.01.020 – ident: ref245/cit245 doi: 10.1016/j.drudis.2019.09.020 – ident: ref9/cit9 doi: 10.1016/j.jare.2018.06.005 – ident: ref301/cit301 doi: 10.1155/2012/936041 – ident: ref212/cit212 doi: 10.1080/17425247.2021.1912008 – ident: ref108/cit108 doi: 10.1016/j.colsurfb.2013.10.018 – ident: ref114/cit114 doi: 10.1016/j.ejps.2021.105777 – ident: ref117/cit117 doi: 10.1016/j.ijpharm.2020.119321 – ident: ref227/cit227 doi: 10.1002/bit.26536 – ident: ref233/cit233 doi: 10.3390/ijms17091534 – ident: ref251/cit251 doi: 10.1016/j.ijpharm.2016.11.051 – ident: ref17/cit17 doi: 10.1002/smll.201201390 – ident: ref310/cit310 doi: 10.1002/ppsc.201600371 – ident: ref10/cit10 doi: 10.1007/s00432-014-1767-3 – ident: ref60/cit60 doi: 10.1016/j.ijpharm.2007.11.037 – ident: ref101/cit101 doi: 10.3109/10717544.2015.1048491 – ident: ref136/cit136 doi: 10.1016/j.jphotobiol.2015.12.014 – ident: ref228/cit228 doi: 10.3390/nano9101423 – ident: ref131/cit131 doi: 10.1016/j.cclet.2019.12.001 – ident: ref302/cit302 doi: 10.1016/j.apsb.2015.11.005 – ident: ref248/cit248 doi: 10.1016/j.matchemphys.2018.03.015 – ident: ref254/cit254 doi: 10.1002/chem.201502756 – ident: ref284/cit284 doi: 10.1021/acsami.7b19549 – ident: ref318/cit318 doi: 10.1007/s11060-008-9759-2 – ident: ref30/cit30 doi: 10.1080/17435390.2017.1314036 – ident: ref283/cit283 doi: 10.1016/j.jpba.2022.114628 – ident: ref277/cit277 doi: 10.1021/acs.accounts.9b00116 – ident: ref246/cit246 doi: 10.1016/j.jmmm.2017.09.018 – ident: ref262/cit262 doi: 10.1080/10717544.2017.1399300 – ident: ref14/cit14 doi: 10.1016/j.cej.2022.134569 – ident: ref180/cit180 doi: 10.1016/j.msec.2017.02.008 – ident: ref235/cit235 doi: 10.1016/j.actbio.2019.11.027 – ident: ref159/cit159 doi: 10.1021/la4009625 – ident: ref111/cit111 doi: 10.1007/s11095-013-1290-2 – ident: ref50/cit50 doi: 10.1155/2016/6365295 – ident: ref266/cit266 doi: 10.1016/j.msec.2017.03.196 – ident: ref51/cit51 doi: 10.1089/cbr.2000.15.605 – ident: ref250/cit250 doi: 10.1016/j.jcis.2021.07.080 – ident: ref204/cit204 doi: 10.2147/IJN.S244712 – ident: ref296/cit296 doi: 10.1016/j.actamat.2012.10.039 – ident: ref187/cit187 doi: 10.1016/j.nano.2018.09.012 – ident: ref312/cit312 doi: 10.3390/ma12091481 – ident: ref70/cit70 doi: 10.1111/odi.13751 – ident: ref264/cit264 doi: 10.1007/s11596-017-1783-z – ident: ref116/cit116 doi: 10.1080/10837450.2021.1920037 – ident: ref160/cit160 doi: 10.1038/srep02162 – ident: ref18/cit18 doi: 10.2217/nnm.16.5 – ident: ref154/cit154 doi: 10.1038/nmat1081 – ident: ref305/cit305 doi: 10.1007/s11095-018-2370-0 – ident: ref54/cit54 doi: 10.5812/jjnpp.82793 – ident: ref129/cit129 doi: 10.1039/D0PY01328E – ident: ref40/cit40 doi: 10.3390/molecules23020288 – ident: ref167/cit167 doi: 10.1021/ja5030832 – ident: ref216/cit216 doi: 10.1016/j.ccr.2019.02.025 – ident: ref182/cit182 doi: 10.1039/C8NR04657C – ident: ref178/cit178 doi: 10.2147/IJN.S152474 – ident: ref166/cit166 doi: 10.1021/am404696u – ident: ref58/cit58 doi: 10.22034/APJCP.2017.18.2.365 – ident: ref87/cit87 doi: 10.1007/s11095-012-0793-6 – ident: ref118/cit118 doi: 10.1093/annonc/mdl104 – ident: ref201/cit201 doi: 10.2174/1871520620666200811124013 – ident: ref286/cit286 doi: 10.3390/polym10111272 – ident: ref62/cit62 doi: 10.1016/j.jconrel.2008.09.005 – ident: ref130/cit130 doi: 10.1186/s12951-020-00756-6 – ident: ref53/cit53 doi: 10.1016/j.ejps.2021.106052 – ident: ref19/cit19 doi: 10.1002/nano.202000162 – ident: ref203/cit203 doi: 10.3390/pharmaceutics13070929 – ident: ref194/cit194 doi: 10.1016/j.colsurfb.2021.111955 – ident: ref268/cit268 doi: 10.3390/molecules23020378 – ident: ref140/cit140 doi: 10.1002/adma.200400599 – ident: ref189/cit189 doi: 10.1039/D0BM01729A – ident: ref174/cit174 doi: 10.1007/s13346-018-0575-8 – ident: ref186/cit186 doi: 10.1038/aps.2017.45 – ident: ref234/cit234 doi: 10.1016/B978-0-08-102985-5.00015-2 – ident: ref120/cit120 doi: 10.1038/labinvest.2017.25 – ident: ref13/cit13 doi: 10.7150/thno.38069 – ident: ref202/cit202 doi: 10.1021/acs.bioconjchem.6b00085 – ident: ref20/cit20 doi: 10.1016/B978-0-12-823688-8.00002-8 – ident: ref239/cit239 doi: 10.1016/j.freeradbiomed.2018.10.429 – ident: ref315/cit315 doi: 10.1007/978-1-4939-9798-5 – ident: ref11/cit11 doi: 10.1039/C9BM00831D – ident: ref112/cit112 doi: 10.1016/j.ijpharm.2013.03.036 – ident: ref4/cit4 doi: 10.1016/j.carbpol.2021.119013 – volume-title: Nanoparticle-Based Polymer Composites year: 2022 ident: ref124/cit124 – ident: ref85/cit85 doi: 10.1088/1361-6528/aa5e86 – ident: ref292/cit292 doi: 10.1080/00202967.2021.2004744 – ident: ref93/cit93 doi: 10.4155/tde-2019-0054 – ident: ref109/cit109 doi: 10.2147/IJN.S161163 – ident: ref220/cit220 doi: 10.1259/bjr/59448833 – ident: ref33/cit33 doi: 10.1186/s12951-017-0281-6 – ident: ref49/cit49 doi: 10.17179/excli2013-609 – ident: ref153/cit153 doi: 10.1021/nn102762f – ident: ref155/cit155 doi: 10.1021/la0357054 – ident: ref161/cit161 doi: 10.1016/j.jconrel.2020.03.013 – ident: ref293/cit293 doi: 10.1016/j.ijbiomac.2017.11.146 – ident: ref55/cit55 doi: 10.1016/j.nano.2015.07.010 – ident: ref236/cit236 doi: 10.1016/j.colsurfa.2022.128407 – ident: ref168/cit168 doi: 10.1021/ja1027502 – ident: ref252/cit252 doi: 10.1080/1061186X.2017.1419360 – ident: ref244/cit244 doi: 10.1021/acs.nanolett.6b02786 – ident: ref38/cit38 doi: 10.3390/nano9040638 – ident: ref88/cit88 doi: 10.1038/s41598-020-75017-5 – ident: ref198/cit198 doi: 10.3390/polym12061397 – ident: ref278/cit278 doi: 10.1080/10717544.2017.1309475 – volume-title: New trends in smart nanostructured biomaterials in health sciences year: 2022 ident: ref8/cit8 – ident: ref45/cit45 doi: 10.1021/acsomega.9b01924 – ident: ref61/cit61 doi: 10.1016/j.ijpharm.2015.07.041 – ident: ref231/cit231 doi: 10.1021/acsanm.8b00444 – ident: ref171/cit171 doi: 10.1186/s13046-018-0700-z – ident: ref195/cit195 doi: 10.1021/acsami.0c06614 – ident: ref7/cit7 doi: 10.1186/s12951-018-0392-8 – ident: ref110/cit110 doi: 10.2147/IJN.S121262 – ident: ref258/cit258 doi: 10.1016/j.xphs.2020.11.005 – ident: ref105/cit105 doi: 10.1208/s12249-019-1304-4 – ident: ref25/cit25 doi: 10.15171/bi.2015.23 – ident: ref157/cit157 doi: 10.1021/am402860v – ident: ref95/cit95 doi: 10.2147/IJN.S83211 – ident: ref241/cit241 doi: 10.2147/IJN.S132369 – ident: ref213/cit213 doi: 10.4172/2161-0525.1000384 – ident: ref41/cit41 doi: 10.3389/fphar.2019.00220 – ident: ref141/cit141 doi: 10.1002/anie.200602168 – ident: ref218/cit218 doi: 10.1016/j.jconrel.2016.04.001 – ident: ref300/cit300 doi: 10.1155/2014/323046 – ident: ref179/cit179 doi: 10.1016/j.actbio.2017.02.012 – ident: ref26/cit26 doi: 10.1073/pnas.1411499111 – ident: ref77/cit77 doi: 10.1016/j.ygyno.2008.10.018 – ident: ref320/cit320 doi: 10.1016/j.smaim.2020.04.001 – ident: ref270/cit270 doi: 10.1039/C4NR03748K – ident: ref46/cit46 doi: 10.1021/acsami.8b04962 – ident: ref81/cit81 doi: 10.1186/s13065-017-0248-6 – ident: ref317/cit317 doi: 10.3390/pharmaceutics12070665 – ident: ref175/cit175 doi: 10.1016/j.jddst.2022.103125 – ident: ref294/cit294 doi: 10.1016/j.actbio.2016.02.027 – ident: ref247/cit247 doi: 10.1007/s12274-012-0200-y – ident: ref299/cit299 doi: 10.3748/wjg.v9.i9.1968 – ident: ref72/cit72 doi: 10.3390/pharmaceutics13081183 – ident: ref295/cit295 doi: 10.1039/C4TB00690A – ident: ref185/cit185 doi: 10.1021/acsami.9b03559 – ident: ref89/cit89 doi: 10.3109/10717544.2015.1030715 – ident: ref104/cit104 doi: 10.1016/j.colsurfb.2014.09.062 – ident: ref128/cit128 doi: 10.3389/fphar.2021.679610 – ident: ref71/cit71 doi: 10.1038/s41578-021-00358-0 – ident: ref150/cit150 doi: 10.1021/ja054755n – ident: ref267/cit267 doi: 10.1039/C7CS00399D – ident: ref82/cit82 doi: 10.3109/10611860903244199 – ident: ref311/cit311 doi: 10.1021/acsami.9b15896 – ident: ref257/cit257 doi: 10.1016/j.chemphyslip.2019.03.016 – ident: ref272/cit272 doi: 10.1016/j.colsurfb.2022.112350 – ident: ref31/cit31 doi: 10.1016/j.snb.2017.11.189 – ident: ref5/cit5 doi: 10.3390/nano10071403 – ident: ref288/cit288 doi: 10.1002/wnan.1483 – ident: ref265/cit265 doi: 10.1002/jcp.26899 – ident: ref39/cit39 doi: 10.1016/j.jddst.2022.103141 – ident: ref240/cit240 doi: 10.1088/2043-6254/aa5e33 – ident: ref217/cit217 doi: 10.1016/j.drudis.2018.02.005 – ident: ref148/cit148 doi: 10.1021/la060227t – ident: ref163/cit163 doi: 10.1016/j.reactfunctpolym.2013.05.009 – ident: ref158/cit158 doi: 10.1021/la200882f – ident: ref91/cit91 doi: 10.1248/bpb.34.278 – ident: ref92/cit92 doi: 10.1007/s40005-020-00497-6 – ident: ref173/cit173 doi: 10.2147/IJN.S133787 – ident: ref205/cit205 doi: 10.1016/j.smaim.2020.05.002 – ident: ref263/cit263 doi: 10.1166/jnn.2015.10614 – ident: ref223/cit223 doi: 10.1016/j.actbio.2017.06.003 – ident: ref28/cit28 doi: 10.1515/ejnm-2015-0015 – ident: ref279/cit279 doi: 10.1111/cbdd.13309 – ident: ref32/cit32 doi: 10.1016/j.chempr.2017.02.005 – ident: ref281/cit281 doi: 10.1007/s10311-018-00841-1 – ident: ref76/cit76 doi: 10.1021/mp700091j – ident: ref103/cit103 doi: 10.1080/10717544.2016.1217954 – ident: ref78/cit78 doi: 10.1007/s11596-017-1742-8 – ident: ref225/cit225 doi: 10.1016/j.pmatsci.2019.03.003 – ident: ref96/cit96 doi: 10.3109/10717544.2015.1055619 – ident: ref256/cit256 doi: 10.1039/B913732G – ident: ref29/cit29 doi: 10.4314/tjpr.v12i2.19 – ident: ref142/cit142 doi: 10.1021/la0484016 – ident: ref2/cit2 doi: 10.1016/j.impact.2020.100253 – ident: ref94/cit94 doi: 10.1016/j.ejps.2011.04.005 – ident: ref134/cit134 doi: 10.1002/pat.5199 – ident: ref255/cit255 doi: 10.1021/nn500085k – ident: ref37/cit37 doi: 10.3390/cancers12102783 – ident: ref67/cit67 doi: 10.3109/02652049809008242 – ident: ref164/cit164 doi: 10.1021/acs.chemmater.5b05016 – ident: ref176/cit176 doi: 10.1016/j.actbio.2016.10.012 – ident: ref271/cit271 doi: 10.3390/nano7070189 – ident: ref43/cit43 doi: 10.1515/dmpt-2018-0032 – ident: ref261/cit261 doi: 10.1088/1468-6996/14/4/044407 – ident: ref42/cit42 doi: 10.3390/pharmaceutics12060533 – ident: ref280/cit280 doi: 10.1021/ja1022267 – ident: ref298/cit298 doi: 10.21873/anticanres.13040 – ident: ref149/cit149 doi: 10.1021/ma062562u – ident: ref79/cit79 doi: 10.1155/2018/9035452 – ident: ref27/cit27 doi: 10.1016/j.ajps.2020.07.005 – ident: ref226/cit226 doi: 10.1016/j.jiec.2020.01.018 – ident: ref196/cit196 doi: 10.1016/j.cej.2021.130590 – volume-title: Nanoparticle-Based Polymer Composites year: 2022 ident: ref122/cit122 – ident: ref287/cit287 doi: 10.1186/s11671-018-2782-0 – ident: ref313/cit313 – ident: ref34/cit34 doi: 10.1016/j.biomaterials.2019.01.002 – ident: ref107/cit107 doi: 10.1016/j.ijpharm.2013.04.021 – ident: ref219/cit219 doi: 10.1016/j.addr.2009.11.007 – ident: ref22/cit22 doi: 10.4236/wjnse.2015.54013 – ident: ref208/cit208 doi: 10.1016/j.snb.2021.129795 – ident: ref132/cit132 doi: 10.1002/ejic.202101084 – ident: ref210/cit210 doi: 10.1021/acsaelm.1c00703 |
SSID | ssj0002003189 |
Score | 2.5922418 |
SecondaryResourceType | review_article |
Snippet | Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 971 |
SubjectTerms | Drug Delivery Systems - methods Nanoparticles Nanostructures - therapeutic use Neoplasms - drug therapy Prospective Studies Tissue Distribution |
Title | Recent Progress in Nanostructured Smart Drug Delivery Systems for Cancer Therapy: A Review |
URI | http://dx.doi.org/10.1021/acsabm.2c00002 https://www.ncbi.nlm.nih.gov/pubmed/35226465 https://www.proquest.com/docview/2634850355 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA5SL3pwX-pGRMHT1GyzeSutpQiK0BaKlyHJpCK2U-l0DvrrfZmZ1qUUvT9CeOv38pIvCF36SroKjOu4UGyhQfG4o1Q8gIjXIQ8HSiljHzjfP3jtnrjru_2v847fE3xGr6VOpRrVmLapFZLtKvMggi0IanTmpyksd06LdS2AdgBUsxlD48IStg7p9GcdWgIu8yLT2iwYj9Kcm9DeLXmtZVNV0x-LzI1_7n8LbZRIE9cL19hGKybZQevf-Ad30ROARig6-NFe0oKUh18SDOl2XJDKZhMT484IfAs3J9kzbpqhvcTxjkuWcwx4Fzes10xwtyAnuMF1XEwb9lCvddtttJ3yswVHck6mDjXQ6oHVhNRBLCVlVEgO6M2XPgl9NRCa0DjUBuS0ga4WoBfzFOeKB0HMiOL7qJKME3OIsA41ZSzWUigiFB2EHGCdKz1NA8OIcavoApQSlcGSRvkcnNGo0FRUaqqKnJmBIl3yldtvM4ZL5a_m8m8FU8dSyfOZvSMIJjshkYkZZ2nEPC4ClwAGq6KDwhHma-VIVXju0b92f4zWmH0oQbjD6AmqgN3MKcCXqTrLPfcTncLoHg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB0hOAAH9qWsRiBxShvbSZpwq1qqsrRCopUQl8h2XIRoU9S0B_h6xklaNlWCazSybM_zzHPGfgY4K0vhSnSu5WKyxQ2Kxy0poy6ueBXwoCul1OaCc7PlNTrO9YP7MAelyV0Y7ESCLSVpEf9TXYCW8JuQ_SJTJsJizF1AJsIMpCvV--lPFZZi1FBew6Mt5NZsItT4qwmTjlTyPR3N4Jhprqmvwt20l-kRk5fieCSL6v2HgOM_hrEGKznvJJUMKOswp-MNWP6iRrgJj0ghMQWRO3NkCwMgeY4JBt9BJjE7HuqI3PcRaaQ2HD-Rmu6ZIx1vJNc8J8h-SdVgaEjamVTBBamQrPawBZ36ZbvasPKnFyzBuT2yqMaNH_rQEcqPhKCMOoIjlyuLsh2UZddRNo0CpdFOadzjIhFjnuRcct-PmC35NszHg1jvAlGBooxFSjjSdiTtBhxJnis8RX3NbO0W4BQnJcyXThKmVXFGw2ymwnymCmBN_BSqXL3cPKLRm2l_PrV_zXQ7ZlqeTNwe4tIy9RIR68E4CZnHHd-1kZEVYCfDw7StlLc6nrv3p94fw2Kj3bwNb69aN_uwxMwVCptbjB7APPpQHyKxGcmjFMwfGR3wfw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yQfTB-2VeIwo-dTZJr76NzTFvY7ANhi8lSVMRt26s64P-ek_abnhhoK_lEJKc25eenC8IXbqC2wKUa9iQbOGA4jBDiDACj5c-8yMhhNINzk8tp9mz7vt2v-jj1r0wMIkERkqyIr726nEYFQwD5Bq-czGsUKmjLMTdZV2z02ZdrXXmP1ZoZqca9mosbQC-pjOyxl9D6JQkk-8paQHOzPJNYwN15zPNrpm8VdKpqMiPHySO_1zKJlov8Ceu5gazhZZUvI3WvrAS7qBngJKQinBbX92CQIhfYwxBeJRTzaYTFeLOECwO1yfpC66rgb7a8Y4L7nMMKBjXtC1NcDenLLjBVZzXIHZRr3HbrTWN4gkGgzNmTg2i4AAIurS49ELOCSUWZ4DpXO6avisiS5ok9KUCOangrAuAjDqCMcE8L6SmYHuoFI9idYCw9CWhNJTcEqYlSOQzAHs2dyTxFDWVXUYXsClB4UJJkFXHKQnynQqKnSojY6arQBYs5voxjcFC-au5_Djn71goeT5TfQAupusmPFajNAmowyzPNgGZldF-bhPzsTL8ajn24Z9mf4ZW2vVG8HjXejhCq1R3UpjMoOQYlUCF6gTwzVScZvb8CQRd8wI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+in+Nanostructured+Smart+Drug+Delivery+Systems+for+Cancer+Therapy%3A+A+Review&rft.jtitle=ACS+applied+bio+materials&rft.au=Khan%2C+Md+Ishak&rft.au=Hossain%2C+M.+Imran&rft.au=Hossain%2C+M.+Khalid&rft.au=Rubel%2C+M.+H.+K.&rft.date=2022-03-21&rft.issn=2576-6422&rft.eissn=2576-6422&rft.volume=5&rft.issue=3&rft.spage=971&rft.epage=1012&rft_id=info:doi/10.1021%2Facsabm.2c00002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsabm_2c00002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-6422&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-6422&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-6422&client=summon |