Recent Progress in Nanostructured Smart Drug Delivery Systems for Cancer Therapy: A Review

Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several limitations such as nonspecific targeting, poor biodistribution, and buildup of drug resistances. However, significant technological advancemen...

Full description

Saved in:
Bibliographic Details
Published inACS applied bio materials Vol. 5; no. 3; pp. 971 - 1012
Main Authors Khan, Md Ishak, Hossain, M. Imran, Hossain, M. Khalid, Rubel, M. H. K, Hossain, K. M, Mahfuz, A. M. U. B, Anik, Muzahidul I
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several limitations such as nonspecific targeting, poor biodistribution, and buildup of drug resistances. However, significant technological advancements have been made in terms of superior modes of drug delivery over the last few decades. Technical capability in analyzing the molecular mechanisms of tumor biology, nanotechnologyparticularly the development of biocompatible nanoparticles, surface modification techniques, microelectronics, and material scienceshas increased. As a result, a significant number of nanostructured carriers that can deliver drugs to specific cancerous sites with high efficiency have been developed. This particular maneuver that enables the introduction of a therapeutic nanostructured substance in the body by controlling the rate, time, and place is defined as the nanostructured drug delivery system (NDDS). Because of their versatility and ability to incorporate features such as specific targeting, water solubility, stability, biocompatibility, degradability, and ability to reverse drug resistance, they have attracted the interest of the scientific community, in general, and nanotechnologists as well as biomedical scientists. To keep pace with the rapid advancement of nanotechnology, specific technical aspects of the recent NDDSs and their prospects need to be reported coherently. To address these ongoing issues, this review article provides an overview of different NDDSs such as lipids, polymers, and inorganic nanoparticles. In addition, this review also reports the challenges of current NDDSs and points out the prospective research directions of these nanocarriers. From our focused review, we conclude that still now the most advanced and potent field of application for NDDSs is lipid-based, while other significantly potential fields include polymer-based and inorganic NDDSs. However, despite the promises, challenges remain in practical implementations of such NDDSs in terms of dosage and stability, and caution should be exercised regarding biocompatibility of materials. Considering these aspects objectively, this review on NDDSs will be particularly of interest for small-to-large scale industrial researchers and academicians with expertise in drug delivery, cancer research, and nanotechnology.
AbstractList Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several limitations such as nonspecific targeting, poor biodistribution, and buildup of drug resistances. However, significant technological advancements have been made in terms of superior modes of drug delivery over the last few decades. Technical capability in analyzing the molecular mechanisms of tumor biology, nanotechnology─particularly the development of biocompatible nanoparticles, surface modification techniques, microelectronics, and material sciences─has increased. As a result, a significant number of nanostructured carriers that can deliver drugs to specific cancerous sites with high efficiency have been developed. This particular maneuver that enables the introduction of a therapeutic nanostructured substance in the body by controlling the rate, time, and place is defined as the nanostructured drug delivery system (NDDS). Because of their versatility and ability to incorporate features such as specific targeting, water solubility, stability, biocompatibility, degradability, and ability to reverse drug resistance, they have attracted the interest of the scientific community, in general, and nanotechnologists as well as biomedical scientists. To keep pace with the rapid advancement of nanotechnology, specific technical aspects of the recent NDDSs and their prospects need to be reported coherently. To address these ongoing issues, this review article provides an overview of different NDDSs such as lipids, polymers, and inorganic nanoparticles. In addition, this review also reports the challenges of current NDDSs and points out the prospective research directions of these nanocarriers. From our focused review, we conclude that still now the most advanced and potent field of application for NDDSs is lipid-based, while other significantly potential fields include polymer-based and inorganic NDDSs. However, despite the promises, challenges remain in practical implementations of such NDDSs in terms of dosage and stability, and caution should be exercised regarding biocompatibility of materials. Considering these aspects objectively, this review on NDDSs will be particularly of interest for small-to-large scale industrial researchers and academicians with expertise in drug delivery, cancer research, and nanotechnology.
Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several limitations such as nonspecific targeting, poor biodistribution, and buildup of drug resistances. However, significant technological advancements have been made in terms of superior modes of drug delivery over the last few decades. Technical capability in analyzing the molecular mechanisms of tumor biology, nanotechnology─particularly the development of biocompatible nanoparticles, surface modification techniques, microelectronics, and material sciences─has increased. As a result, a significant number of nanostructured carriers that can deliver drugs to specific cancerous sites with high efficiency have been developed. This particular maneuver that enables the introduction of a therapeutic nanostructured substance in the body by controlling the rate, time, and place is defined as the nanostructured drug delivery system (NDDS). Because of their versatility and ability to incorporate features such as specific targeting, water solubility, stability, biocompatibility, degradability, and ability to reverse drug resistance, they have attracted the interest of the scientific community, in general, and nanotechnologists as well as biomedical scientists. To keep pace with the rapid advancement of nanotechnology, specific technical aspects of the recent NDDSs and their prospects need to be reported coherently. To address these ongoing issues, this review article provides an overview of different NDDSs such as lipids, polymers, and inorganic nanoparticles. In addition, this review also reports the challenges of current NDDSs and points out the prospective research directions of these nanocarriers. From our focused review, we conclude that still now the most advanced and potent field of application for NDDSs is lipid-based, while other significantly potential fields include polymer-based and inorganic NDDSs. However, despite the promises, challenges remain in practical implementations of such NDDSs in terms of dosage and stability, and caution should be exercised regarding biocompatibility of materials. Considering these aspects objectively, this review on NDDSs will be particularly of interest for small-to-large scale industrial researchers and academicians with expertise in drug delivery, cancer research, and nanotechnology.Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several limitations such as nonspecific targeting, poor biodistribution, and buildup of drug resistances. However, significant technological advancements have been made in terms of superior modes of drug delivery over the last few decades. Technical capability in analyzing the molecular mechanisms of tumor biology, nanotechnology─particularly the development of biocompatible nanoparticles, surface modification techniques, microelectronics, and material sciences─has increased. As a result, a significant number of nanostructured carriers that can deliver drugs to specific cancerous sites with high efficiency have been developed. This particular maneuver that enables the introduction of a therapeutic nanostructured substance in the body by controlling the rate, time, and place is defined as the nanostructured drug delivery system (NDDS). Because of their versatility and ability to incorporate features such as specific targeting, water solubility, stability, biocompatibility, degradability, and ability to reverse drug resistance, they have attracted the interest of the scientific community, in general, and nanotechnologists as well as biomedical scientists. To keep pace with the rapid advancement of nanotechnology, specific technical aspects of the recent NDDSs and their prospects need to be reported coherently. To address these ongoing issues, this review article provides an overview of different NDDSs such as lipids, polymers, and inorganic nanoparticles. In addition, this review also reports the challenges of current NDDSs and points out the prospective research directions of these nanocarriers. From our focused review, we conclude that still now the most advanced and potent field of application for NDDSs is lipid-based, while other significantly potential fields include polymer-based and inorganic NDDSs. However, despite the promises, challenges remain in practical implementations of such NDDSs in terms of dosage and stability, and caution should be exercised regarding biocompatibility of materials. Considering these aspects objectively, this review on NDDSs will be particularly of interest for small-to-large scale industrial researchers and academicians with expertise in drug delivery, cancer research, and nanotechnology.
Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several limitations such as nonspecific targeting, poor biodistribution, and buildup of drug resistances. However, significant technological advancements have been made in terms of superior modes of drug delivery over the last few decades. Technical capability in analyzing the molecular mechanisms of tumor biology, nanotechnologyparticularly the development of biocompatible nanoparticles, surface modification techniques, microelectronics, and material scienceshas increased. As a result, a significant number of nanostructured carriers that can deliver drugs to specific cancerous sites with high efficiency have been developed. This particular maneuver that enables the introduction of a therapeutic nanostructured substance in the body by controlling the rate, time, and place is defined as the nanostructured drug delivery system (NDDS). Because of their versatility and ability to incorporate features such as specific targeting, water solubility, stability, biocompatibility, degradability, and ability to reverse drug resistance, they have attracted the interest of the scientific community, in general, and nanotechnologists as well as biomedical scientists. To keep pace with the rapid advancement of nanotechnology, specific technical aspects of the recent NDDSs and their prospects need to be reported coherently. To address these ongoing issues, this review article provides an overview of different NDDSs such as lipids, polymers, and inorganic nanoparticles. In addition, this review also reports the challenges of current NDDSs and points out the prospective research directions of these nanocarriers. From our focused review, we conclude that still now the most advanced and potent field of application for NDDSs is lipid-based, while other significantly potential fields include polymer-based and inorganic NDDSs. However, despite the promises, challenges remain in practical implementations of such NDDSs in terms of dosage and stability, and caution should be exercised regarding biocompatibility of materials. Considering these aspects objectively, this review on NDDSs will be particularly of interest for small-to-large scale industrial researchers and academicians with expertise in drug delivery, cancer research, and nanotechnology.
Author Anik, Muzahidul I
Hossain, M. Imran
Khan, Md Ishak
Rubel, M. H. K
Hossain, M. Khalid
Mahfuz, A. M. U. B
Hossain, K. M
AuthorAffiliation Interdisciplinary Graduate School of Engineering Science
Department of Biotechnology and Genetic Engineering
Department of Neurosurgery
Institute for Micromanufacturing
Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission
Department of Chemical Engineering
Department of Materials Science and Engineering
AuthorAffiliation_xml – name: Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission
– name: Department of Chemical Engineering
– name: Institute for Micromanufacturing
– name: Interdisciplinary Graduate School of Engineering Science
– name: Department of Biotechnology and Genetic Engineering
– name: Department of Neurosurgery
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Md Ishak
  orcidid: 0000-0001-7680-9613
  surname: Khan
  fullname: Khan, Md Ishak
  organization: Department of Neurosurgery
– sequence: 2
  givenname: M. Imran
  orcidid: 0000-0002-0308-6052
  surname: Hossain
  fullname: Hossain, M. Imran
  organization: Institute for Micromanufacturing
– sequence: 3
  givenname: M. Khalid
  orcidid: 0000-0003-4595-6367
  surname: Hossain
  fullname: Hossain, M. Khalid
  email: khalid.baec@gmail.com, khalid@kyudai.jp
  organization: Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission
– sequence: 4
  givenname: M. H. K
  orcidid: 0000-0001-9420-4335
  surname: Rubel
  fullname: Rubel, M. H. K
  organization: Department of Materials Science and Engineering
– sequence: 5
  givenname: K. M
  surname: Hossain
  fullname: Hossain, K. M
  organization: Department of Materials Science and Engineering
– sequence: 6
  givenname: A. M. U. B
  orcidid: 0000-0001-9592-430X
  surname: Mahfuz
  fullname: Mahfuz, A. M. U. B
  organization: Department of Biotechnology and Genetic Engineering
– sequence: 7
  givenname: Muzahidul I
  orcidid: 0000-0002-5054-4175
  surname: Anik
  fullname: Anik, Muzahidul I
  organization: Department of Chemical Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35226465$$D View this record in MEDLINE/PubMed
BookMark eNp1kMtLw0AQhxdRfNRePcoeRWjdZ5J6k9YXiEpbL17CZjOtkWS37m4q-e9NSRURnMsMw_cbmO8I7RprAKETSoaUMHqhtFdZNWSatMV20CGTcTSIBGO7v-YD1Pf-fUMQwmky2kcHXDIWiUgeotcpaDABPzu7dOA9Lgx-VMb64Godagc5nlXKBTxx9RJPoCzW4Bo8a3yAyuOFdXisjAaH52_g1Kq5xFd4CusCPo_R3kKVHvrb3kMvN9fz8d3g4en2fnz1MFCckzCgkAiSESmUTnKlKKNCcUmSWMVkFGcLoQnNRxpaTkPCYyoFizLOM54kOSMZ76Gz7u7K2Y8afEirwmsoS2XA1j5lEReJJFzKFj3donVWQZ6uXNE-16TfPlpg2AHaWe8dLH4QStKN87Rznm6dtwHxJ6CLoEJhTXCqKP-PnXexdp--29qZ1tB_8BdAmJM3
CitedBy_id crossref_primary_10_1021_acsami_3c08608
crossref_primary_10_1080_1061186X_2023_2300690
crossref_primary_10_1016_j_aca_2023_341375
crossref_primary_10_1680_jsuin_24_00085
crossref_primary_10_1021_acs_chas_3c00069
crossref_primary_10_1016_j_jconrel_2024_04_035
crossref_primary_10_32628_IJSRST2512126
crossref_primary_10_1016_j_molliq_2023_123632
crossref_primary_10_1016_j_ejpb_2024_114560
crossref_primary_10_3390_cryst13071067
crossref_primary_10_1080_10837450_2024_2448333
crossref_primary_10_1021_acsabm_2c00123
crossref_primary_10_1016_j_ijbiomac_2023_124697
crossref_primary_10_1016_j_apsb_2022_08_013
crossref_primary_10_3389_fchem_2022_1042038
crossref_primary_10_1016_j_bios_2023_115688
crossref_primary_10_1007_s12032_025_02650_3
crossref_primary_10_1039_D2CC03603G
crossref_primary_10_1016_j_jconrel_2022_12_017
crossref_primary_10_22159_ijap_2023v15i3_46976
crossref_primary_10_1002_adhm_202304576
crossref_primary_10_1016_j_colsurfa_2024_135201
crossref_primary_10_1007_s12668_023_01183_1
crossref_primary_10_1016_j_onano_2022_100091
crossref_primary_10_61186_jcc_5_4_3
crossref_primary_10_1021_acsmeasuresciau_4c00062
crossref_primary_10_1016_j_bios_2022_115017
crossref_primary_10_1016_j_bios_2023_115411
crossref_primary_10_1016_j_molliq_2024_126767
crossref_primary_10_1016_j_bios_2023_115416
crossref_primary_10_1016_j_molliq_2023_123774
crossref_primary_10_1080_1061186X_2024_2309661
crossref_primary_10_3390_polym14235134
crossref_primary_10_1002_adhm_202303579
crossref_primary_10_1007_s41779_023_00853_3
crossref_primary_10_1016_j_prp_2023_154993
crossref_primary_10_3390_pharmaceutics15092361
crossref_primary_10_1016_j_bios_2024_117103
crossref_primary_10_3390_ddc3040046
crossref_primary_10_1007_s11696_025_03984_y
crossref_primary_10_1016_j_ijpharm_2024_125108
crossref_primary_10_1016_j_colsurfa_2023_133070
crossref_primary_10_1016_j_jconrel_2024_12_004
crossref_primary_10_1039_D3TB01753B
crossref_primary_10_1002_advs_202306230
crossref_primary_10_1016_j_drup_2022_100865
crossref_primary_10_1016_j_nanoso_2024_101117
crossref_primary_10_1016_j_bios_2023_115358
crossref_primary_10_1002_app_53044
crossref_primary_10_3390_vaccines12121335
crossref_primary_10_1186_s13040_024_00362_4
crossref_primary_10_1039_D4SM00993B
crossref_primary_10_1016_j_colsurfa_2024_135083
crossref_primary_10_1016_j_ipha_2023_10_006
crossref_primary_10_1016_j_colsurfb_2024_114411
crossref_primary_10_1016_j_jare_2022_09_002
crossref_primary_10_1016_j_cinorg_2024_100035
crossref_primary_10_2174_0113852728304647240426201554
crossref_primary_10_1039_D2NJ04612A
crossref_primary_10_1016_j_jconrel_2024_09_044
crossref_primary_10_1039_D4NA00086B
crossref_primary_10_2174_0113816128304018240415095912
crossref_primary_10_1021_acsabm_4c01438
crossref_primary_10_3390_nano12224080
crossref_primary_10_1002_mabi_202400084
crossref_primary_10_2147_IJN_S415968
crossref_primary_10_1080_1061186X_2024_2428966
crossref_primary_10_1039_D4MA00425F
crossref_primary_10_1016_j_ccr_2023_215507
crossref_primary_10_1016_j_ejmech_2023_115676
crossref_primary_10_1016_j_jddst_2024_106545
crossref_primary_10_1016_j_comptc_2025_115168
crossref_primary_10_3390_ma16010064
crossref_primary_10_1039_D3TB00209H
crossref_primary_10_1021_acsabm_5c00224
crossref_primary_10_1002_pi_6474
crossref_primary_10_3390_pharmaceutics14071522
crossref_primary_10_1016_j_actbio_2024_03_019
crossref_primary_10_3390_ph17101296
crossref_primary_10_1039_D2NR03941A
crossref_primary_10_1016_j_molstruc_2024_139149
crossref_primary_10_1016_j_jallcom_2023_172416
crossref_primary_10_1016_j_molliq_2024_126293
crossref_primary_10_1002_agt2_282
crossref_primary_10_1016_j_eurpolymj_2023_112352
crossref_primary_10_1016_j_lfs_2024_122899
crossref_primary_10_1080_1061186X_2023_2193358
crossref_primary_10_1016_j_ijbiomac_2024_131328
crossref_primary_10_1021_acsabm_4c01337
crossref_primary_10_1016_j_eurpolymj_2022_111645
crossref_primary_10_1016_j_rechem_2022_100387
crossref_primary_10_3390_pharmaceutics15051379
crossref_primary_10_1021_acsami_4c14615
crossref_primary_10_1021_acsabm_3c00936
crossref_primary_10_1016_j_flatc_2024_100607
crossref_primary_10_3390_polym14214755
crossref_primary_10_1016_j_jddst_2023_105015
crossref_primary_10_1016_j_bios_2023_115398
crossref_primary_10_1016_j_jcis_2022_11_151
crossref_primary_10_1016_j_bios_2023_115155
crossref_primary_10_1016_j_jiec_2024_02_031
crossref_primary_10_3390_su15021362
crossref_primary_10_1016_j_bios_2023_115714
crossref_primary_10_1007_s12551_023_01093_2
crossref_primary_10_1007_s12668_023_01240_9
crossref_primary_10_1021_acs_chemrev_3c00705
crossref_primary_10_1039_D2TA08841J
crossref_primary_10_1021_acsapm_3c00890
crossref_primary_10_1016_j_actbio_2024_11_024
crossref_primary_10_3390_ijms252312946
crossref_primary_10_1021_acsanm_4c00826
crossref_primary_10_1007_s00277_023_05383_3
crossref_primary_10_1016_j_jddst_2023_104678
crossref_primary_10_1016_j_aej_2025_02_023
crossref_primary_10_1016_j_vaccine_2023_09_033
crossref_primary_10_1016_j_bios_2023_115725
crossref_primary_10_3390_pharmaceutics15030830
crossref_primary_10_3390_jfb15010014
crossref_primary_10_1080_00222348_2025_2476852
crossref_primary_10_3390_pharmaceutics15102434
crossref_primary_10_3390_antibiotics12071110
crossref_primary_10_1007_s13233_024_00262_w
crossref_primary_10_1002_mco2_163
crossref_primary_10_1007_s43440_023_00462_8
crossref_primary_10_3390_pharmaceutics15071977
crossref_primary_10_3390_nano13192709
crossref_primary_10_1080_09205063_2022_2121589
crossref_primary_10_1016_j_ceja_2024_100638
crossref_primary_10_1016_j_jddst_2023_104537
crossref_primary_10_3390_ijms232214162
crossref_primary_10_2174_0113894501294136240610061328
crossref_primary_10_1016_j_eurpolymj_2023_112032
crossref_primary_10_1002_jbt_23325
crossref_primary_10_1007_s12088_024_01202_z
crossref_primary_10_1002_slct_202402736
crossref_primary_10_1016_j_hybadv_2024_100311
crossref_primary_10_1016_j_ijbiomac_2022_12_129
crossref_primary_10_1016_j_bios_2024_117071
crossref_primary_10_1016_j_ipha_2024_01_011
crossref_primary_10_1021_acsami_4c13445
crossref_primary_10_1038_s41598_022_25587_3
crossref_primary_10_1002_adfm_202208316
crossref_primary_10_1016_j_jddst_2023_105179
crossref_primary_10_1016_j_mtcomm_2024_109451
crossref_primary_10_1016_j_matchemphys_2024_129775
crossref_primary_10_1016_j_mtbio_2024_101319
crossref_primary_10_1021_acsanm_3c01598
crossref_primary_10_3390_molecules28186624
crossref_primary_10_26565_2312_4334_2023_4_42
crossref_primary_10_3389_fbioe_2023_1253048
crossref_primary_10_1016_j_eurpolymj_2023_112548
crossref_primary_10_1021_acsomega_3c09135
crossref_primary_10_1038_s41598_024_75042_8
crossref_primary_10_1039_D4DT00087K
crossref_primary_10_1021_acs_biomac_4c00310
crossref_primary_10_1038_s41598_024_62676_x
crossref_primary_10_1080_1061186X_2022_2092741
crossref_primary_10_3390_pharmaceutics14112292
crossref_primary_10_1016_j_chphi_2023_100365
crossref_primary_10_1080_14686996_2023_2250705
crossref_primary_10_1186_s12951_025_03209_0
crossref_primary_10_3389_fonc_2024_1296091
crossref_primary_10_1039_D4NR05298F
crossref_primary_10_1016_j_jddst_2024_106025
crossref_primary_10_1021_acsami_4c19123
crossref_primary_10_2147_IJN_S453958
crossref_primary_10_1016_j_bios_2022_114939
crossref_primary_10_3390_reactions5010010
crossref_primary_10_1016_j_drudis_2023_103602
crossref_primary_10_1016_j_jallcom_2023_172601
crossref_primary_10_1039_D2NR02066A
crossref_primary_10_1002_mco2_775
crossref_primary_10_3389_fimmu_2022_984252
crossref_primary_10_70749_ijbr_v3i1_507
crossref_primary_10_1039_D4NJ02992E
crossref_primary_10_1002_adma_202409522
crossref_primary_10_3390_polym15081835
crossref_primary_10_1016_j_molliq_2022_120427
crossref_primary_10_1155_2022_7798919
crossref_primary_10_1002_anbr_202400026
crossref_primary_10_1039_D4AN01082E
crossref_primary_10_1016_j_hsr_2025_100212
crossref_primary_10_1016_j_matdes_2023_112243
crossref_primary_10_1039_D3CE01033C
crossref_primary_10_3389_fphar_2023_1174330
crossref_primary_10_1016_j_prp_2024_155546
crossref_primary_10_1007_s10853_023_08209_9
crossref_primary_10_1016_j_rechem_2023_101252
crossref_primary_10_1016_j_ijbiomac_2023_127728
crossref_primary_10_1007_s12032_023_02258_5
crossref_primary_10_1039_D3RA04987F
crossref_primary_10_1039_D3NA00218G
crossref_primary_10_1016_j_ccr_2024_215750
crossref_primary_10_1186_s12951_025_03113_7
crossref_primary_10_1016_j_mtcomm_2022_105139
crossref_primary_10_1016_j_colsurfa_2024_135465
crossref_primary_10_1016_j_tet_2023_133293
crossref_primary_10_1002_marc_202400890
crossref_primary_10_1016_j_snb_2023_133455
Cites_doi 10.1016/j.msec.2017.05.049
10.1021/acs.nanolett.0c03671
10.3390/pharmaceutics12050406
10.1016/j.matlet.2021.131240
10.3389/fnins.2018.00500
10.1039/C5PY00024F
10.1016/j.colsurfb.2018.10.007
10.1021/ja077398k
10.1016/j.jconrel.2013.04.018
10.1016/j.jiec.2021.08.012
10.2147/IJN.S132780
10.7150/thno.42564
10.1016/j.ijbiomac.2021.12.189
10.1016/j.jddst.2022.103109
10.1016/j.jconrel.2021.05.032
10.3390/bioengineering4010003
10.1021/mp800051m
10.1039/b516053g
10.4155/tde-2018-0062
10.1038/s41392-017-0004-3
10.1016/j.actbio.2017.04.017
10.1080/21691401.2016.1178130
10.1021/la4021383
10.1021/mp800240j
10.1016/j.jddst.2021.103085
10.1002/cmdc.202000456
10.3322/caac.21660
10.1080/17518253.2017.1385856
10.1021/bm301583s
10.1039/D0RA03491F
10.1080/10717544.2017.1333170
10.1080/21691401.2018.1511573
10.1016/j.colsurfb.2011.02.038
10.1016/j.ejps.2017.02.016
10.1016/j.supflu.2021.105423
10.1002/jps.21182
10.3390/molecules22122167
10.1016/j.ejps.2013.10.003
10.1021/acsami.8b14009
10.2174/1381612825666190215121148
10.1016/j.ijpharm.2019.02.045
10.3390/pharmaceutics13020152
10.1021/am503998x
10.1016/j.rinp.2018.06.010
10.1002/adma.200700941
10.1016/B978-0-12-814033-8.00001-1
10.3390/molecules23010047
10.1016/S0378-5173(02)00245-4
10.2147/IJN.S163929
10.1039/C6BM00011H
10.1021/acsbiomaterials.0c00042
10.5772/58422
10.1007/s10529-015-1965-3
10.1021/acsnano.1c08485
10.1111/j.1349-7006.2012.02310.x
10.1038/s41580-021-00404-3
10.1208/s12249-011-9733-8
10.1097/CAD.0b013e328346c7d6
10.1007/978-3-030-46923-8_5
10.1021/bm500296n
10.1021/acs.molpharmaceut.8b00810
10.1016/j.carbpol.2019.115682
10.1021/acsnano.6b04695
10.1016/j.bbrc.2018.03.069
10.1007/s11095-018-2370-0
10.3390/ijms18102029
10.1016/j.biomaterials.2011.08.036
10.1002/anie.201802351
10.1016/j.carbpol.2019.02.084
10.3390/jnt2010005
10.1002/pat.821
10.1021/bm070085x
10.1016/j.colcom.2020.100244
10.1002/chem.201700060
10.3109/21691401.2014.955106
10.3109/02652048.2013.788088
10.1039/C9BM00831D
10.1016/j.matdes.2020.108805
10.1016/j.colsurfb.2021.112254
10.1002/jbm.a.36755
10.4236/msa.2015.612108
10.1016/j.ijpharm.2021.120645
10.1016/j.eurpolymj.2020.110200
10.1016/B978-0-12-824272-8.00013-0
10.1016/j.lfs.2021.120294
10.7150/thno.29746
10.1002/adhm.202001974
10.7555/JBR.31.20160146
10.1038/s41598-020-69636-1
10.2147/IJN.S211844
10.1016/j.ijbiomac.2017.05.127
10.3390/nano9020282
10.1021/mp200426h
10.1016/j.jconrel.2021.11.010
10.1021/acs.langmuir.7b01072
10.1016/j.ijpharm.2013.09.011
10.1515/msp-2017-0086
10.1080/10717544.2022.2027573
10.2147/IJN.S198848
10.1002/adma.200601019
10.1007/s00604-015-1504-x
10.1016/j.jddst.2021.102958
10.1007/s10989-022-10363-8
10.1039/C5TB00994D
10.1002/adfm.201902634
10.1016/j.jcis.2021.08.129
10.1016/j.ijpharm.2020.119088
10.1038/natrevmats.2016.14
10.2147/DDDT.S195493
10.7150/thno.23804
10.1016/j.eurpolymj.2021.110683
10.1016/j.ejpb.2014.01.006
10.1021/jp0524274
10.1016/j.ejpb.2017.01.020
10.1016/j.drudis.2019.09.020
10.1016/j.jare.2018.06.005
10.1155/2012/936041
10.1080/17425247.2021.1912008
10.1016/j.colsurfb.2013.10.018
10.1016/j.ejps.2021.105777
10.1016/j.ijpharm.2020.119321
10.1002/bit.26536
10.3390/ijms17091534
10.1016/j.ijpharm.2016.11.051
10.1002/smll.201201390
10.1002/ppsc.201600371
10.1007/s00432-014-1767-3
10.1016/j.ijpharm.2007.11.037
10.3109/10717544.2015.1048491
10.1016/j.jphotobiol.2015.12.014
10.3390/nano9101423
10.1016/j.cclet.2019.12.001
10.1016/j.apsb.2015.11.005
10.1016/j.matchemphys.2018.03.015
10.1002/chem.201502756
10.1021/acsami.7b19549
10.1007/s11060-008-9759-2
10.1080/17435390.2017.1314036
10.1016/j.jpba.2022.114628
10.1021/acs.accounts.9b00116
10.1016/j.jmmm.2017.09.018
10.1080/10717544.2017.1399300
10.1016/j.cej.2022.134569
10.1016/j.msec.2017.02.008
10.1016/j.actbio.2019.11.027
10.1021/la4009625
10.1007/s11095-013-1290-2
10.1155/2016/6365295
10.1016/j.msec.2017.03.196
10.1089/cbr.2000.15.605
10.1016/j.jcis.2021.07.080
10.2147/IJN.S244712
10.1016/j.actamat.2012.10.039
10.1016/j.nano.2018.09.012
10.3390/ma12091481
10.1111/odi.13751
10.1007/s11596-017-1783-z
10.1080/10837450.2021.1920037
10.1038/srep02162
10.2217/nnm.16.5
10.1038/nmat1081
10.5812/jjnpp.82793
10.1039/D0PY01328E
10.3390/molecules23020288
10.1021/ja5030832
10.1016/j.ccr.2019.02.025
10.1039/C8NR04657C
10.2147/IJN.S152474
10.1021/am404696u
10.22034/APJCP.2017.18.2.365
10.1007/s11095-012-0793-6
10.1093/annonc/mdl104
10.2174/1871520620666200811124013
10.3390/polym10111272
10.1016/j.jconrel.2008.09.005
10.1186/s12951-020-00756-6
10.1016/j.ejps.2021.106052
10.1002/nano.202000162
10.3390/pharmaceutics13070929
10.1016/j.colsurfb.2021.111955
10.3390/molecules23020378
10.1002/adma.200400599
10.1039/D0BM01729A
10.1007/s13346-018-0575-8
10.1038/aps.2017.45
10.1016/B978-0-08-102985-5.00015-2
10.1038/labinvest.2017.25
10.7150/thno.38069
10.1021/acs.bioconjchem.6b00085
10.1016/B978-0-12-823688-8.00002-8
10.1016/j.freeradbiomed.2018.10.429
10.1007/978-1-4939-9798-5
10.1016/j.ijpharm.2013.03.036
10.1016/j.carbpol.2021.119013
10.1088/1361-6528/aa5e86
10.1080/00202967.2021.2004744
10.4155/tde-2019-0054
10.2147/IJN.S161163
10.1259/bjr/59448833
10.1186/s12951-017-0281-6
10.17179/excli2013-609
10.1021/nn102762f
10.1021/la0357054
10.1016/j.jconrel.2020.03.013
10.1016/j.ijbiomac.2017.11.146
10.1016/j.nano.2015.07.010
10.1016/j.colsurfa.2022.128407
10.1021/ja1027502
10.1080/1061186X.2017.1419360
10.1021/acs.nanolett.6b02786
10.3390/nano9040638
10.1038/s41598-020-75017-5
10.3390/polym12061397
10.1080/10717544.2017.1309475
10.1021/acsomega.9b01924
10.1016/j.ijpharm.2015.07.041
10.1021/acsanm.8b00444
10.1186/s13046-018-0700-z
10.1021/acsami.0c06614
10.1186/s12951-018-0392-8
10.2147/IJN.S121262
10.1016/j.xphs.2020.11.005
10.1208/s12249-019-1304-4
10.15171/bi.2015.23
10.1021/am402860v
10.2147/IJN.S83211
10.2147/IJN.S132369
10.4172/2161-0525.1000384
10.3389/fphar.2019.00220
10.1002/anie.200602168
10.1016/j.jconrel.2016.04.001
10.1155/2014/323046
10.1016/j.actbio.2017.02.012
10.1073/pnas.1411499111
10.1016/j.ygyno.2008.10.018
10.1016/j.smaim.2020.04.001
10.1039/C4NR03748K
10.1021/acsami.8b04962
10.1186/s13065-017-0248-6
10.3390/pharmaceutics12070665
10.1016/j.jddst.2022.103125
10.1016/j.actbio.2016.02.027
10.1007/s12274-012-0200-y
10.3748/wjg.v9.i9.1968
10.3390/pharmaceutics13081183
10.1039/C4TB00690A
10.1021/acsami.9b03559
10.3109/10717544.2015.1030715
10.1016/j.colsurfb.2014.09.062
10.3389/fphar.2021.679610
10.1038/s41578-021-00358-0
10.1021/ja054755n
10.1039/C7CS00399D
10.3109/10611860903244199
10.1021/acsami.9b15896
10.1016/j.chemphyslip.2019.03.016
10.1016/j.colsurfb.2022.112350
10.1016/j.snb.2017.11.189
10.3390/nano10071403
10.1002/wnan.1483
10.1002/jcp.26899
10.1016/j.jddst.2022.103141
10.1088/2043-6254/aa5e33
10.1016/j.drudis.2018.02.005
10.1021/la060227t
10.1016/j.reactfunctpolym.2013.05.009
10.1021/la200882f
10.1248/bpb.34.278
10.1007/s40005-020-00497-6
10.2147/IJN.S133787
10.1016/j.smaim.2020.05.002
10.1166/jnn.2015.10614
10.1016/j.actbio.2017.06.003
10.1515/ejnm-2015-0015
10.1111/cbdd.13309
10.1016/j.chempr.2017.02.005
10.1007/s10311-018-00841-1
10.1021/mp700091j
10.1080/10717544.2016.1217954
10.1007/s11596-017-1742-8
10.1016/j.pmatsci.2019.03.003
10.3109/10717544.2015.1055619
10.1039/B913732G
10.4314/tjpr.v12i2.19
10.1021/la0484016
10.1016/j.impact.2020.100253
10.1016/j.ejps.2011.04.005
10.1002/pat.5199
10.1021/nn500085k
10.3390/cancers12102783
10.3109/02652049809008242
10.1021/acs.chemmater.5b05016
10.1016/j.actbio.2016.10.012
10.3390/nano7070189
10.1515/dmpt-2018-0032
10.1088/1468-6996/14/4/044407
10.3390/pharmaceutics12060533
10.1021/ja1022267
10.21873/anticanres.13040
10.1021/ma062562u
10.1155/2018/9035452
10.1016/j.ajps.2020.07.005
10.1016/j.jiec.2020.01.018
10.1016/j.cej.2021.130590
10.1186/s11671-018-2782-0
10.1016/j.biomaterials.2019.01.002
10.1016/j.ijpharm.2013.04.021
10.1016/j.addr.2009.11.007
10.4236/wjnse.2015.54013
10.1016/j.snb.2021.129795
10.1002/ejic.202101084
10.1021/acsaelm.1c00703
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acsabm.2c00002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2576-6422
EndPage 1012
ExternalDocumentID 35226465
10_1021_acsabm_2c00002
c591310318
Genre Journal Article
Review
GroupedDBID ABFRP
ABUCX
ACS
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
EBS
GGK
VF5
VG9
53G
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
BAANH
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a330t-1e840b054ac8daa1214a35087a7097bf4c01d9ce1e8ce83715426b33b388d20b3
IEDL.DBID ACS
ISSN 2576-6422
IngestDate Fri Jul 11 07:26:00 EDT 2025
Wed Feb 19 02:27:01 EST 2025
Thu Apr 24 23:01:50 EDT 2025
Tue Jul 01 04:25:43 EDT 2025
Wed Mar 23 03:37:43 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords smart drug delivery
nanotechnology
cancer therapy
nanoparticles
biocompatibility
cytotoxicity evaluation
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a330t-1e840b054ac8daa1214a35087a7097bf4c01d9ce1e8ce83715426b33b388d20b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0308-6052
0000-0001-9592-430X
0000-0002-5054-4175
0000-0003-4595-6367
0000-0001-7680-9613
0000-0001-9420-4335
PMID 35226465
PQID 2634850355
PQPubID 23479
PageCount 42
ParticipantIDs proquest_miscellaneous_2634850355
pubmed_primary_35226465
crossref_primary_10_1021_acsabm_2c00002
crossref_citationtrail_10_1021_acsabm_2c00002
acs_journals_10_1021_acsabm_2c00002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220321
2022-03-21
PublicationDateYYYYMMDD 2022-03-21
PublicationDate_xml – month: 03
  year: 2022
  text: 20220321
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied bio materials
PublicationTitleAlternate ACS Appl. Bio Mater
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref185/cit185
ref115/cit115
ref259/cit259
ref187/cit187
ref181/cit181
ref111/cit111
ref255/cit255
ref113/cit113
ref183/cit183
ref257/cit257
ref117/cit117
ref48/cit48
ref74/cit74
ref189/cit189
ref119/cit119
ref10/cit10
ref35/cit35
ref93/cit93
ref251/cit251
ref253/cit253
ref42/cit42
ref120/cit120
ref178/cit178
ref248/cit248
ref61/cit61
ref176/cit176
ref67/cit67
ref128/cit128
ref126/cit126
ref54/cit54
ref240/cit240
ref137/cit137
ref310/cit310
ref318/cit318
ref11/cit11
ref102/cit102
ref29/cit29
ref174/cit174
ref314/cit314
ref86/cit86
ref170/cit170
ref244/cit244
ref271/cit271
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref207/cit207
ref28/cit28
ref279/cit279
ref203/cit203
ref275/cit275
ref233/cit233
ref148/cit148
ref307/cit307
ref55/cit55
ref144/cit144
ref303/cit303
ref218/cit218
ref167/cit167
ref163/cit163
ref237/cit237
ref66/cit66
ref264/cit264
ref22/cit22
ref260/cit260
ref87/cit87
ref106/cit106
ref190/cit190
ref140/cit140
ref198/cit198
ref214/cit214
ref194/cit194
ref98/cit98
ref210/cit210
ref268/cit268
Parvej M. S. (ref123/cit123) 2022
ref153/cit153
ref297/cit297
ref227/cit227
ref222/cit222
ref150/cit150
ref294/cit294
ref63/cit63
ref224/cit224
ref295/cit295
ref155/cit155
ref229/cit229
ref156/cit156
ref158/cit158
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref221/cit221
ref292/cit292
ref60/cit60
ref17/cit17
ref219/cit219
ref82/cit82
ref147/cit147
ref232/cit232
ref306/cit306
ref230/cit230
ref145/cit145
ref304/cit304
ref238/cit238
ref21/cit21
ref166/cit166
ref164/cit164
ref213/cit213
ref284/cit284
ref286/cit286
ref78/cit78
ref211/cit211
ref312/cit312
ref36/cit36
ref83/cit83
ref79/cit79
ref139/cit139
Rubel M. H. K. (ref23/cit23) 2022
ref172/cit172
ref246/cit246
ref243/cit243
ref317/cit317
ref270/cit270
ref200/cit200
ref14/cit14
ref57/cit57
ref169/cit169
ref278/cit278
ref134/cit134
ref208/cit208
ref40/cit40
ref273/cit273
ref131/cit131
ref205/cit205
ref161/cit161
ref320/cit320
ref142/cit142
ref216/cit216
ref301/cit301
ref289/cit289
ref15/cit15
ref180/cit180
ref235/cit235
ref309/cit309
ref62/cit62
ref41/cit41
ref58/cit58
ref104/cit104
ref262/cit262
ref177/cit177
ref84/cit84
ref1/cit1
ref196/cit196
ref281/cit281
ref7/cit7
ref45/cit45
Mahfuz A. M. U. (ref8/cit8) 2022
ref52/cit52
ref184/cit184
ref114/cit114
ref258/cit258
ref186/cit186
ref116/cit116
ref110/cit110
ref254/cit254
ref182/cit182
ref2/cit2
ref112/cit112
ref256/cit256
ref77/cit77
ref71/cit71
ref188/cit188
ref20/cit20
ref118/cit118
ref89/cit89
ref19/cit19
ref96/cit96
ref107/cit107
ref191/cit191
ref265/cit265
ref109/cit109
ref13/cit13
ref193/cit193
ref105/cit105
ref261/cit261
ref263/cit263
ref197/cit197
ref38/cit38
ref199/cit199
ref90/cit90
ref267/cit267
ref195/cit195
ref269/cit269
ref64/cit64
ref311/cit311
ref6/cit6
ref18/cit18
ref136/cit136
ref65/cit65
ref171/cit171
ref97/cit97
ref101/cit101
ref245/cit245
ref319/cit319
ref241/cit241
ref315/cit315
ref76/cit76
ref32/cit32
ref39/cit39
ref272/cit272
ref202/cit202
ref168/cit168
ref206/cit206
ref132/cit132
ref276/cit276
ref91/cit91
ref287/cit287
ref252/cit252
ref12/cit12
ref179/cit179
ref121/cit121
Khan S. (ref122/cit122) 2022
ref175/cit175
ref33/cit33
ref249/cit249
ref283/cit283
Biswas M. C. (ref124/cit124) 2022
ref129/cit129
ref44/cit44
ref70/cit70
ref125/cit125
ref9/cit9
ref152/cit152
ref225/cit225
ref296/cit296
ref226/cit226
ref154/cit154
ref298/cit298
ref27/cit27
ref228/cit228
ref299/cit299
ref293/cit293
ref223/cit223
ref151/cit151
ref159/cit159
ref92/cit92
ref157/cit157
ref31/cit31
ref290/cit290
ref220/cit220
ref291/cit291
ref88/cit88
ref160/cit160
ref234/cit234
ref143/cit143
ref302/cit302
ref217/cit217
ref288/cit288
ref53/cit53
ref149/cit149
ref162/cit162
ref308/cit308
ref46/cit46
ref236/cit236
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
ref300/cit300
ref215/cit215
ref280/cit280
ref50/cit50
ref282/cit282
ref313/cit313
ref209/cit209
ref138/cit138
ref100/cit100
ref25/cit25
ref173/cit173
ref103/cit103
ref247/cit247
ref72/cit72
ref242/cit242
ref316/cit316
ref201/cit201
ref51/cit51
ref277/cit277
ref135/cit135
ref68/cit68
ref94/cit94
ref130/cit130
ref274/cit274
ref204/cit204
ref146/cit146
ref305/cit305
ref26/cit26
ref73/cit73
ref231/cit231
ref69/cit69
ref165/cit165
ref239/cit239
Luan L. (ref56/cit56) 2002; 37
ref250/cit250
ref95/cit95
ref108/cit108
ref192/cit192
ref266/cit266
ref4/cit4
ref30/cit30
ref212/cit212
ref47/cit47
ref127/cit127
ref285/cit285
References_xml – ident: ref285/cit285
  doi: 10.1016/j.msec.2017.05.049
– ident: ref191/cit191
  doi: 10.1021/acs.nanolett.0c03671
– ident: ref200/cit200
  doi: 10.3390/pharmaceutics12050406
– ident: ref12/cit12
  doi: 10.1016/j.matlet.2021.131240
– ident: ref206/cit206
  doi: 10.3389/fnins.2018.00500
– ident: ref165/cit165
  doi: 10.1039/C5PY00024F
– ident: ref181/cit181
  doi: 10.1016/j.colsurfb.2018.10.007
– ident: ref146/cit146
  doi: 10.1021/ja077398k
– ident: ref97/cit97
  doi: 10.1016/j.jconrel.2013.04.018
– ident: ref190/cit190
  doi: 10.1016/j.jiec.2021.08.012
– ident: ref316/cit316
  doi: 10.2147/IJN.S132780
– ident: ref237/cit237
  doi: 10.7150/thno.42564
– ident: ref303/cit303
  doi: 10.1016/j.ijbiomac.2021.12.189
– ident: ref188/cit188
  doi: 10.1016/j.jddst.2022.103109
– ident: ref69/cit69
  doi: 10.1016/j.jconrel.2021.05.032
– ident: ref260/cit260
  doi: 10.3390/bioengineering4010003
– ident: ref16/cit16
  doi: 10.1021/mp800051m
– ident: ref143/cit143
  doi: 10.1039/b516053g
– ident: ref6/cit6
  doi: 10.4155/tde-2018-0062
– ident: ref35/cit35
  doi: 10.1038/s41392-017-0004-3
– ident: ref308/cit308
  doi: 10.1016/j.actbio.2017.04.017
– ident: ref169/cit169
  doi: 10.1080/21691401.2016.1178130
– ident: ref63/cit63
  doi: 10.1021/la4021383
– ident: ref86/cit86
  doi: 10.1021/mp800240j
– ident: ref80/cit80
  doi: 10.1016/j.jddst.2021.103085
– ident: ref209/cit209
  doi: 10.1002/cmdc.202000456
– ident: ref1/cit1
  doi: 10.3322/caac.21660
– ident: ref319/cit319
  doi: 10.1080/17518253.2017.1385856
– ident: ref137/cit137
  doi: 10.1021/bm301583s
– ident: ref75/cit75
  doi: 10.1039/D0RA03491F
– ident: ref64/cit64
  doi: 10.1080/10717544.2017.1333170
– ident: ref314/cit314
  doi: 10.1080/21691401.2018.1511573
– ident: ref98/cit98
  doi: 10.1016/j.colsurfb.2011.02.038
– ident: ref184/cit184
  doi: 10.1016/j.ejps.2017.02.016
– ident: ref90/cit90
  doi: 10.1016/j.supflu.2021.105423
– ident: ref84/cit84
  doi: 10.1002/jps.21182
– ident: ref47/cit47
  doi: 10.3390/molecules22122167
– ident: ref106/cit106
  doi: 10.1016/j.ejps.2013.10.003
– ident: ref113/cit113
  doi: 10.1021/acsami.8b14009
– ident: ref306/cit306
  doi: 10.2174/1381612825666190215121148
– ident: ref309/cit309
  doi: 10.1016/j.ijpharm.2019.02.045
– ident: ref274/cit274
  doi: 10.3390/pharmaceutics13020152
– ident: ref290/cit290
  doi: 10.1021/am503998x
– ident: ref24/cit24
  doi: 10.1016/j.rinp.2018.06.010
– ident: ref151/cit151
  doi: 10.1002/adma.200700941
– ident: ref36/cit36
  doi: 10.1016/B978-0-12-814033-8.00001-1
– ident: ref276/cit276
  doi: 10.3390/molecules23010047
– ident: ref57/cit57
  doi: 10.1016/S0378-5173(02)00245-4
– ident: ref102/cit102
  doi: 10.2147/IJN.S163929
– ident: ref259/cit259
  doi: 10.1039/C6BM00011H
– ident: ref224/cit224
  doi: 10.1021/acsbiomaterials.0c00042
– ident: ref121/cit121
  doi: 10.5772/58422
– ident: ref269/cit269
  doi: 10.1007/s10529-015-1965-3
– ident: ref214/cit214
  doi: 10.1021/acsnano.1c08485
– ident: ref135/cit135
  doi: 10.1111/j.1349-7006.2012.02310.x
– ident: ref3/cit3
  doi: 10.1038/s41580-021-00404-3
– ident: ref99/cit99
  doi: 10.1208/s12249-011-9733-8
– ident: ref59/cit59
  doi: 10.1097/CAD.0b013e328346c7d6
– ident: ref126/cit126
  doi: 10.1007/978-3-030-46923-8_5
– ident: ref139/cit139
  doi: 10.1021/bm500296n
– ident: ref215/cit215
  doi: 10.1021/acs.molpharmaceut.8b00810
– ident: ref73/cit73
  doi: 10.1016/j.carbpol.2019.115682
– ident: ref243/cit243
  doi: 10.1021/acsnano.6b04695
– ident: ref172/cit172
  doi: 10.1016/j.bbrc.2018.03.069
– ident: ref183/cit183
  doi: 10.1007/s11095-018-2370-0
– ident: ref222/cit222
  doi: 10.3390/ijms18102029
– ident: ref138/cit138
  doi: 10.1016/j.biomaterials.2011.08.036
– ident: ref162/cit162
  doi: 10.1002/anie.201802351
– ident: ref170/cit170
  doi: 10.1016/j.carbpol.2019.02.084
– ident: ref199/cit199
  doi: 10.3390/jnt2010005
– ident: ref152/cit152
  doi: 10.1002/pat.821
– ident: ref156/cit156
  doi: 10.1021/bm070085x
– ident: ref230/cit230
  doi: 10.1016/j.colcom.2020.100244
– ident: ref249/cit249
  doi: 10.1002/chem.201700060
– ident: ref291/cit291
  doi: 10.3109/21691401.2014.955106
– ident: ref66/cit66
  doi: 10.3109/02652048.2013.788088
– ident: ref253/cit253
  doi: 10.1039/C9BM00831D
– ident: ref125/cit125
  doi: 10.1016/j.matdes.2020.108805
– ident: ref229/cit229
  doi: 10.1016/j.colsurfb.2021.112254
– ident: ref242/cit242
  doi: 10.1002/jbm.a.36755
– ident: ref21/cit21
  doi: 10.4236/msa.2015.612108
– ident: ref44/cit44
  doi: 10.1016/j.ijpharm.2021.120645
– ident: ref192/cit192
  doi: 10.1016/j.eurpolymj.2020.110200
– volume-title: Nanoparticle-Based Polymer Composites
  year: 2022
  ident: ref123/cit123
  doi: 10.1016/B978-0-12-824272-8.00013-0
– ident: ref115/cit115
  doi: 10.1016/j.lfs.2021.120294
– ident: ref238/cit238
  doi: 10.7150/thno.29746
– ident: ref119/cit119
  doi: 10.1002/adhm.202001974
– ident: ref289/cit289
  doi: 10.7555/JBR.31.20160146
– ident: ref207/cit207
  doi: 10.1038/s41598-020-69636-1
– ident: ref52/cit52
  doi: 10.2147/IJN.S211844
– ident: ref83/cit83
  doi: 10.1016/j.ijbiomac.2017.05.127
– ident: ref282/cit282
  doi: 10.3390/nano9020282
– ident: ref68/cit68
  doi: 10.1021/mp200426h
– ident: ref147/cit147
  doi: 10.1016/j.jconrel.2021.11.010
– ident: ref221/cit221
  doi: 10.1021/acs.langmuir.7b01072
– ident: ref48/cit48
  doi: 10.1016/j.ijpharm.2013.09.011
– ident: ref211/cit211
  doi: 10.1515/msp-2017-0086
– ident: ref100/cit100
  doi: 10.1080/10717544.2022.2027573
– ident: ref275/cit275
  doi: 10.2147/IJN.S198848
– ident: ref144/cit144
  doi: 10.1002/adma.200601019
– ident: ref297/cit297
  doi: 10.1007/s00604-015-1504-x
– ident: ref193/cit193
  doi: 10.1016/j.jddst.2021.102958
– volume-title: Low Dimensional Magnets
  year: 2022
  ident: ref23/cit23
– volume: 37
  start-page: 59
  issue: 1
  year: 2002
  ident: ref56/cit56
  publication-title: Yao Xue Xue Bao
– ident: ref197/cit197
  doi: 10.1007/s10989-022-10363-8
– ident: ref232/cit232
  doi: 10.1039/C5TB00994D
– ident: ref273/cit273
  doi: 10.1002/adfm.201902634
– ident: ref127/cit127
  doi: 10.1016/j.jcis.2021.08.129
– ident: ref74/cit74
  doi: 10.1016/j.ijpharm.2020.119088
– ident: ref15/cit15
  doi: 10.1038/natrevmats.2016.14
– ident: ref177/cit177
  doi: 10.2147/DDDT.S195493
– ident: ref304/cit304
  doi: 10.7150/thno.23804
– ident: ref133/cit133
  doi: 10.1016/j.eurpolymj.2021.110683
– ident: ref65/cit65
  doi: 10.1016/j.ejpb.2014.01.006
– ident: ref145/cit145
  doi: 10.1021/jp0524274
– ident: ref307/cit307
  doi: 10.1016/j.ejpb.2017.01.020
– ident: ref245/cit245
  doi: 10.1016/j.drudis.2019.09.020
– ident: ref9/cit9
  doi: 10.1016/j.jare.2018.06.005
– ident: ref301/cit301
  doi: 10.1155/2012/936041
– ident: ref212/cit212
  doi: 10.1080/17425247.2021.1912008
– ident: ref108/cit108
  doi: 10.1016/j.colsurfb.2013.10.018
– ident: ref114/cit114
  doi: 10.1016/j.ejps.2021.105777
– ident: ref117/cit117
  doi: 10.1016/j.ijpharm.2020.119321
– ident: ref227/cit227
  doi: 10.1002/bit.26536
– ident: ref233/cit233
  doi: 10.3390/ijms17091534
– ident: ref251/cit251
  doi: 10.1016/j.ijpharm.2016.11.051
– ident: ref17/cit17
  doi: 10.1002/smll.201201390
– ident: ref310/cit310
  doi: 10.1002/ppsc.201600371
– ident: ref10/cit10
  doi: 10.1007/s00432-014-1767-3
– ident: ref60/cit60
  doi: 10.1016/j.ijpharm.2007.11.037
– ident: ref101/cit101
  doi: 10.3109/10717544.2015.1048491
– ident: ref136/cit136
  doi: 10.1016/j.jphotobiol.2015.12.014
– ident: ref228/cit228
  doi: 10.3390/nano9101423
– ident: ref131/cit131
  doi: 10.1016/j.cclet.2019.12.001
– ident: ref302/cit302
  doi: 10.1016/j.apsb.2015.11.005
– ident: ref248/cit248
  doi: 10.1016/j.matchemphys.2018.03.015
– ident: ref254/cit254
  doi: 10.1002/chem.201502756
– ident: ref284/cit284
  doi: 10.1021/acsami.7b19549
– ident: ref318/cit318
  doi: 10.1007/s11060-008-9759-2
– ident: ref30/cit30
  doi: 10.1080/17435390.2017.1314036
– ident: ref283/cit283
  doi: 10.1016/j.jpba.2022.114628
– ident: ref277/cit277
  doi: 10.1021/acs.accounts.9b00116
– ident: ref246/cit246
  doi: 10.1016/j.jmmm.2017.09.018
– ident: ref262/cit262
  doi: 10.1080/10717544.2017.1399300
– ident: ref14/cit14
  doi: 10.1016/j.cej.2022.134569
– ident: ref180/cit180
  doi: 10.1016/j.msec.2017.02.008
– ident: ref235/cit235
  doi: 10.1016/j.actbio.2019.11.027
– ident: ref159/cit159
  doi: 10.1021/la4009625
– ident: ref111/cit111
  doi: 10.1007/s11095-013-1290-2
– ident: ref50/cit50
  doi: 10.1155/2016/6365295
– ident: ref266/cit266
  doi: 10.1016/j.msec.2017.03.196
– ident: ref51/cit51
  doi: 10.1089/cbr.2000.15.605
– ident: ref250/cit250
  doi: 10.1016/j.jcis.2021.07.080
– ident: ref204/cit204
  doi: 10.2147/IJN.S244712
– ident: ref296/cit296
  doi: 10.1016/j.actamat.2012.10.039
– ident: ref187/cit187
  doi: 10.1016/j.nano.2018.09.012
– ident: ref312/cit312
  doi: 10.3390/ma12091481
– ident: ref70/cit70
  doi: 10.1111/odi.13751
– ident: ref264/cit264
  doi: 10.1007/s11596-017-1783-z
– ident: ref116/cit116
  doi: 10.1080/10837450.2021.1920037
– ident: ref160/cit160
  doi: 10.1038/srep02162
– ident: ref18/cit18
  doi: 10.2217/nnm.16.5
– ident: ref154/cit154
  doi: 10.1038/nmat1081
– ident: ref305/cit305
  doi: 10.1007/s11095-018-2370-0
– ident: ref54/cit54
  doi: 10.5812/jjnpp.82793
– ident: ref129/cit129
  doi: 10.1039/D0PY01328E
– ident: ref40/cit40
  doi: 10.3390/molecules23020288
– ident: ref167/cit167
  doi: 10.1021/ja5030832
– ident: ref216/cit216
  doi: 10.1016/j.ccr.2019.02.025
– ident: ref182/cit182
  doi: 10.1039/C8NR04657C
– ident: ref178/cit178
  doi: 10.2147/IJN.S152474
– ident: ref166/cit166
  doi: 10.1021/am404696u
– ident: ref58/cit58
  doi: 10.22034/APJCP.2017.18.2.365
– ident: ref87/cit87
  doi: 10.1007/s11095-012-0793-6
– ident: ref118/cit118
  doi: 10.1093/annonc/mdl104
– ident: ref201/cit201
  doi: 10.2174/1871520620666200811124013
– ident: ref286/cit286
  doi: 10.3390/polym10111272
– ident: ref62/cit62
  doi: 10.1016/j.jconrel.2008.09.005
– ident: ref130/cit130
  doi: 10.1186/s12951-020-00756-6
– ident: ref53/cit53
  doi: 10.1016/j.ejps.2021.106052
– ident: ref19/cit19
  doi: 10.1002/nano.202000162
– ident: ref203/cit203
  doi: 10.3390/pharmaceutics13070929
– ident: ref194/cit194
  doi: 10.1016/j.colsurfb.2021.111955
– ident: ref268/cit268
  doi: 10.3390/molecules23020378
– ident: ref140/cit140
  doi: 10.1002/adma.200400599
– ident: ref189/cit189
  doi: 10.1039/D0BM01729A
– ident: ref174/cit174
  doi: 10.1007/s13346-018-0575-8
– ident: ref186/cit186
  doi: 10.1038/aps.2017.45
– ident: ref234/cit234
  doi: 10.1016/B978-0-08-102985-5.00015-2
– ident: ref120/cit120
  doi: 10.1038/labinvest.2017.25
– ident: ref13/cit13
  doi: 10.7150/thno.38069
– ident: ref202/cit202
  doi: 10.1021/acs.bioconjchem.6b00085
– ident: ref20/cit20
  doi: 10.1016/B978-0-12-823688-8.00002-8
– ident: ref239/cit239
  doi: 10.1016/j.freeradbiomed.2018.10.429
– ident: ref315/cit315
  doi: 10.1007/978-1-4939-9798-5
– ident: ref11/cit11
  doi: 10.1039/C9BM00831D
– ident: ref112/cit112
  doi: 10.1016/j.ijpharm.2013.03.036
– ident: ref4/cit4
  doi: 10.1016/j.carbpol.2021.119013
– volume-title: Nanoparticle-Based Polymer Composites
  year: 2022
  ident: ref124/cit124
– ident: ref85/cit85
  doi: 10.1088/1361-6528/aa5e86
– ident: ref292/cit292
  doi: 10.1080/00202967.2021.2004744
– ident: ref93/cit93
  doi: 10.4155/tde-2019-0054
– ident: ref109/cit109
  doi: 10.2147/IJN.S161163
– ident: ref220/cit220
  doi: 10.1259/bjr/59448833
– ident: ref33/cit33
  doi: 10.1186/s12951-017-0281-6
– ident: ref49/cit49
  doi: 10.17179/excli2013-609
– ident: ref153/cit153
  doi: 10.1021/nn102762f
– ident: ref155/cit155
  doi: 10.1021/la0357054
– ident: ref161/cit161
  doi: 10.1016/j.jconrel.2020.03.013
– ident: ref293/cit293
  doi: 10.1016/j.ijbiomac.2017.11.146
– ident: ref55/cit55
  doi: 10.1016/j.nano.2015.07.010
– ident: ref236/cit236
  doi: 10.1016/j.colsurfa.2022.128407
– ident: ref168/cit168
  doi: 10.1021/ja1027502
– ident: ref252/cit252
  doi: 10.1080/1061186X.2017.1419360
– ident: ref244/cit244
  doi: 10.1021/acs.nanolett.6b02786
– ident: ref38/cit38
  doi: 10.3390/nano9040638
– ident: ref88/cit88
  doi: 10.1038/s41598-020-75017-5
– ident: ref198/cit198
  doi: 10.3390/polym12061397
– ident: ref278/cit278
  doi: 10.1080/10717544.2017.1309475
– volume-title: New trends in smart nanostructured biomaterials in health sciences
  year: 2022
  ident: ref8/cit8
– ident: ref45/cit45
  doi: 10.1021/acsomega.9b01924
– ident: ref61/cit61
  doi: 10.1016/j.ijpharm.2015.07.041
– ident: ref231/cit231
  doi: 10.1021/acsanm.8b00444
– ident: ref171/cit171
  doi: 10.1186/s13046-018-0700-z
– ident: ref195/cit195
  doi: 10.1021/acsami.0c06614
– ident: ref7/cit7
  doi: 10.1186/s12951-018-0392-8
– ident: ref110/cit110
  doi: 10.2147/IJN.S121262
– ident: ref258/cit258
  doi: 10.1016/j.xphs.2020.11.005
– ident: ref105/cit105
  doi: 10.1208/s12249-019-1304-4
– ident: ref25/cit25
  doi: 10.15171/bi.2015.23
– ident: ref157/cit157
  doi: 10.1021/am402860v
– ident: ref95/cit95
  doi: 10.2147/IJN.S83211
– ident: ref241/cit241
  doi: 10.2147/IJN.S132369
– ident: ref213/cit213
  doi: 10.4172/2161-0525.1000384
– ident: ref41/cit41
  doi: 10.3389/fphar.2019.00220
– ident: ref141/cit141
  doi: 10.1002/anie.200602168
– ident: ref218/cit218
  doi: 10.1016/j.jconrel.2016.04.001
– ident: ref300/cit300
  doi: 10.1155/2014/323046
– ident: ref179/cit179
  doi: 10.1016/j.actbio.2017.02.012
– ident: ref26/cit26
  doi: 10.1073/pnas.1411499111
– ident: ref77/cit77
  doi: 10.1016/j.ygyno.2008.10.018
– ident: ref320/cit320
  doi: 10.1016/j.smaim.2020.04.001
– ident: ref270/cit270
  doi: 10.1039/C4NR03748K
– ident: ref46/cit46
  doi: 10.1021/acsami.8b04962
– ident: ref81/cit81
  doi: 10.1186/s13065-017-0248-6
– ident: ref317/cit317
  doi: 10.3390/pharmaceutics12070665
– ident: ref175/cit175
  doi: 10.1016/j.jddst.2022.103125
– ident: ref294/cit294
  doi: 10.1016/j.actbio.2016.02.027
– ident: ref247/cit247
  doi: 10.1007/s12274-012-0200-y
– ident: ref299/cit299
  doi: 10.3748/wjg.v9.i9.1968
– ident: ref72/cit72
  doi: 10.3390/pharmaceutics13081183
– ident: ref295/cit295
  doi: 10.1039/C4TB00690A
– ident: ref185/cit185
  doi: 10.1021/acsami.9b03559
– ident: ref89/cit89
  doi: 10.3109/10717544.2015.1030715
– ident: ref104/cit104
  doi: 10.1016/j.colsurfb.2014.09.062
– ident: ref128/cit128
  doi: 10.3389/fphar.2021.679610
– ident: ref71/cit71
  doi: 10.1038/s41578-021-00358-0
– ident: ref150/cit150
  doi: 10.1021/ja054755n
– ident: ref267/cit267
  doi: 10.1039/C7CS00399D
– ident: ref82/cit82
  doi: 10.3109/10611860903244199
– ident: ref311/cit311
  doi: 10.1021/acsami.9b15896
– ident: ref257/cit257
  doi: 10.1016/j.chemphyslip.2019.03.016
– ident: ref272/cit272
  doi: 10.1016/j.colsurfb.2022.112350
– ident: ref31/cit31
  doi: 10.1016/j.snb.2017.11.189
– ident: ref5/cit5
  doi: 10.3390/nano10071403
– ident: ref288/cit288
  doi: 10.1002/wnan.1483
– ident: ref265/cit265
  doi: 10.1002/jcp.26899
– ident: ref39/cit39
  doi: 10.1016/j.jddst.2022.103141
– ident: ref240/cit240
  doi: 10.1088/2043-6254/aa5e33
– ident: ref217/cit217
  doi: 10.1016/j.drudis.2018.02.005
– ident: ref148/cit148
  doi: 10.1021/la060227t
– ident: ref163/cit163
  doi: 10.1016/j.reactfunctpolym.2013.05.009
– ident: ref158/cit158
  doi: 10.1021/la200882f
– ident: ref91/cit91
  doi: 10.1248/bpb.34.278
– ident: ref92/cit92
  doi: 10.1007/s40005-020-00497-6
– ident: ref173/cit173
  doi: 10.2147/IJN.S133787
– ident: ref205/cit205
  doi: 10.1016/j.smaim.2020.05.002
– ident: ref263/cit263
  doi: 10.1166/jnn.2015.10614
– ident: ref223/cit223
  doi: 10.1016/j.actbio.2017.06.003
– ident: ref28/cit28
  doi: 10.1515/ejnm-2015-0015
– ident: ref279/cit279
  doi: 10.1111/cbdd.13309
– ident: ref32/cit32
  doi: 10.1016/j.chempr.2017.02.005
– ident: ref281/cit281
  doi: 10.1007/s10311-018-00841-1
– ident: ref76/cit76
  doi: 10.1021/mp700091j
– ident: ref103/cit103
  doi: 10.1080/10717544.2016.1217954
– ident: ref78/cit78
  doi: 10.1007/s11596-017-1742-8
– ident: ref225/cit225
  doi: 10.1016/j.pmatsci.2019.03.003
– ident: ref96/cit96
  doi: 10.3109/10717544.2015.1055619
– ident: ref256/cit256
  doi: 10.1039/B913732G
– ident: ref29/cit29
  doi: 10.4314/tjpr.v12i2.19
– ident: ref142/cit142
  doi: 10.1021/la0484016
– ident: ref2/cit2
  doi: 10.1016/j.impact.2020.100253
– ident: ref94/cit94
  doi: 10.1016/j.ejps.2011.04.005
– ident: ref134/cit134
  doi: 10.1002/pat.5199
– ident: ref255/cit255
  doi: 10.1021/nn500085k
– ident: ref37/cit37
  doi: 10.3390/cancers12102783
– ident: ref67/cit67
  doi: 10.3109/02652049809008242
– ident: ref164/cit164
  doi: 10.1021/acs.chemmater.5b05016
– ident: ref176/cit176
  doi: 10.1016/j.actbio.2016.10.012
– ident: ref271/cit271
  doi: 10.3390/nano7070189
– ident: ref43/cit43
  doi: 10.1515/dmpt-2018-0032
– ident: ref261/cit261
  doi: 10.1088/1468-6996/14/4/044407
– ident: ref42/cit42
  doi: 10.3390/pharmaceutics12060533
– ident: ref280/cit280
  doi: 10.1021/ja1022267
– ident: ref298/cit298
  doi: 10.21873/anticanres.13040
– ident: ref149/cit149
  doi: 10.1021/ma062562u
– ident: ref79/cit79
  doi: 10.1155/2018/9035452
– ident: ref27/cit27
  doi: 10.1016/j.ajps.2020.07.005
– ident: ref226/cit226
  doi: 10.1016/j.jiec.2020.01.018
– ident: ref196/cit196
  doi: 10.1016/j.cej.2021.130590
– volume-title: Nanoparticle-Based Polymer Composites
  year: 2022
  ident: ref122/cit122
– ident: ref287/cit287
  doi: 10.1186/s11671-018-2782-0
– ident: ref313/cit313
– ident: ref34/cit34
  doi: 10.1016/j.biomaterials.2019.01.002
– ident: ref107/cit107
  doi: 10.1016/j.ijpharm.2013.04.021
– ident: ref219/cit219
  doi: 10.1016/j.addr.2009.11.007
– ident: ref22/cit22
  doi: 10.4236/wjnse.2015.54013
– ident: ref208/cit208
  doi: 10.1016/j.snb.2021.129795
– ident: ref132/cit132
  doi: 10.1002/ejic.202101084
– ident: ref210/cit210
  doi: 10.1021/acsaelm.1c00703
SSID ssj0002003189
Score 2.5922418
SecondaryResourceType review_article
Snippet Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 971
SubjectTerms Drug Delivery Systems - methods
Nanoparticles
Nanostructures - therapeutic use
Neoplasms - drug therapy
Prospective Studies
Tissue Distribution
Title Recent Progress in Nanostructured Smart Drug Delivery Systems for Cancer Therapy: A Review
URI http://dx.doi.org/10.1021/acsabm.2c00002
https://www.ncbi.nlm.nih.gov/pubmed/35226465
https://www.proquest.com/docview/2634850355
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA5SL3pwX-pGRMHT1GyzeSutpQiK0BaKlyHJpCK2U-l0DvrrfZmZ1qUUvT9CeOv38pIvCF36SroKjOu4UGyhQfG4o1Q8gIjXIQ8HSiljHzjfP3jtnrjru_2v847fE3xGr6VOpRrVmLapFZLtKvMggi0IanTmpyksd06LdS2AdgBUsxlD48IStg7p9GcdWgIu8yLT2iwYj9Kcm9DeLXmtZVNV0x-LzI1_7n8LbZRIE9cL19hGKybZQevf-Ad30ROARig6-NFe0oKUh18SDOl2XJDKZhMT484IfAs3J9kzbpqhvcTxjkuWcwx4Fzes10xwtyAnuMF1XEwb9lCvddtttJ3yswVHck6mDjXQ6oHVhNRBLCVlVEgO6M2XPgl9NRCa0DjUBuS0ga4WoBfzFOeKB0HMiOL7qJKME3OIsA41ZSzWUigiFB2EHGCdKz1NA8OIcavoApQSlcGSRvkcnNGo0FRUaqqKnJmBIl3yldtvM4ZL5a_m8m8FU8dSyfOZvSMIJjshkYkZZ2nEPC4ClwAGq6KDwhHma-VIVXju0b92f4zWmH0oQbjD6AmqgN3MKcCXqTrLPfcTncLoHg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB0hOAAH9qWsRiBxShvbSZpwq1qqsrRCopUQl8h2XIRoU9S0B_h6xklaNlWCazSybM_zzHPGfgY4K0vhSnSu5WKyxQ2Kxy0poy6ueBXwoCul1OaCc7PlNTrO9YP7MAelyV0Y7ESCLSVpEf9TXYCW8JuQ_SJTJsJizF1AJsIMpCvV--lPFZZi1FBew6Mt5NZsItT4qwmTjlTyPR3N4Jhprqmvwt20l-kRk5fieCSL6v2HgOM_hrEGKznvJJUMKOswp-MNWP6iRrgJj0ghMQWRO3NkCwMgeY4JBt9BJjE7HuqI3PcRaaQ2HD-Rmu6ZIx1vJNc8J8h-SdVgaEjamVTBBamQrPawBZ36ZbvasPKnFyzBuT2yqMaNH_rQEcqPhKCMOoIjlyuLsh2UZddRNo0CpdFOadzjIhFjnuRcct-PmC35NszHg1jvAlGBooxFSjjSdiTtBhxJnis8RX3NbO0W4BQnJcyXThKmVXFGw2ymwnymCmBN_BSqXL3cPKLRm2l_PrV_zXQ7ZlqeTNwe4tIy9RIR68E4CZnHHd-1kZEVYCfDw7StlLc6nrv3p94fw2Kj3bwNb69aN_uwxMwVCptbjB7APPpQHyKxGcmjFMwfGR3wfw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yQfTB-2VeIwo-dTZJr76NzTFvY7ANhi8lSVMRt26s64P-ek_abnhhoK_lEJKc25eenC8IXbqC2wKUa9iQbOGA4jBDiDACj5c-8yMhhNINzk8tp9mz7vt2v-jj1r0wMIkERkqyIr726nEYFQwD5Bq-czGsUKmjLMTdZV2z02ZdrXXmP1ZoZqca9mosbQC-pjOyxl9D6JQkk-8paQHOzPJNYwN15zPNrpm8VdKpqMiPHySO_1zKJlov8Ceu5gazhZZUvI3WvrAS7qBngJKQinBbX92CQIhfYwxBeJRTzaYTFeLOECwO1yfpC66rgb7a8Y4L7nMMKBjXtC1NcDenLLjBVZzXIHZRr3HbrTWN4gkGgzNmTg2i4AAIurS49ELOCSUWZ4DpXO6avisiS5ok9KUCOangrAuAjDqCMcE8L6SmYHuoFI9idYCw9CWhNJTcEqYlSOQzAHs2dyTxFDWVXUYXsClB4UJJkFXHKQnynQqKnSojY6arQBYs5voxjcFC-au5_Djn71goeT5TfQAupusmPFajNAmowyzPNgGZldF-bhPzsTL8ajn24Z9mf4ZW2vVG8HjXejhCq1R3UpjMoOQYlUCF6gTwzVScZvb8CQRd8wI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+in+Nanostructured+Smart+Drug+Delivery+Systems+for+Cancer+Therapy%3A+A+Review&rft.jtitle=ACS+applied+bio+materials&rft.au=Khan%2C+Md+Ishak&rft.au=Hossain%2C+M.+Imran&rft.au=Hossain%2C+M.+Khalid&rft.au=Rubel%2C+M.+H.+K.&rft.date=2022-03-21&rft.issn=2576-6422&rft.eissn=2576-6422&rft.volume=5&rft.issue=3&rft.spage=971&rft.epage=1012&rft_id=info:doi/10.1021%2Facsabm.2c00002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsabm_2c00002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-6422&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-6422&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-6422&client=summon