Numerical simulation of deflagration fracturing in shale gas reservoirs considering the effect of stress wave impact and gas drive
Methane deflagration fracturing is a new reservoir stimulation method that serves the efficient development of shale gas reservoirs. However, the propagation law of deflagration fractures is still unclear. In this paper, a numerical model considering the effect of stress wave impact and gas drive of...
Saved in:
Published in | International journal of rock mechanics and mining sciences (Oxford, England : 1997) Vol. 170; p. 105478 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1365-1609 1873-4545 |
DOI | 10.1016/j.ijrmms.2023.105478 |
Cover
Loading…
Abstract | Methane deflagration fracturing is a new reservoir stimulation method that serves the efficient development of shale gas reservoirs. However, the propagation law of deflagration fractures is still unclear. In this paper, a numerical model considering the effect of stress wave impact and gas drive of deflagration fracturing was established based on the continuum–discontinuum element method (CDEM). The correctness of the numerical model was verified by comparing it with a laboratory experiment, the steady and unsteady analytical solutions of gas flow, and the approximate solution of fracture propagation. Then, numerical simulations of methane deflagration fracturing in vertical wells and horizontal wells under different factors were carried out to analyze the fracture mechanism. The results indicate that deflagration fracturing in vertical wells can break through the stress concentration around the borehole; the initial radial fractures are formed under the action of stress wave impact and then propagate substantially under the driving action of high-pressure gas. The in-situ stress difference affects the deflagration fracture propagation and makes the half-fracture length in the direction of maximum principal stress larger than that in the direction of minimum principal stress. The more significant the stress difference is, the more noticeable this deviation will be. When the deflagration peak pressure is high, the reservoir burst degree is large, which is conducive to enlarging the stimulation range of deflagration fracturing. Staged deflagration fracturing in horizontal wells can form 5–8 obvious fractures perpendicular to the horizontal borehole in each explosion section. A large cluster spacing and explosion section length are conducive to expanding the stimulation scope. Moreover, the propagation of deflagration fractures will be induced by the natural fractures, and the natural fracture with a considerable length or a slight angle between the dip angle and the propagation direction of deflagration fractures is more likely to be activated.
•The deflagration fracturing for shale gas reservoir stimulation is proposed.•The numerical model considers the effects of stress wave and gas drive.•The propagation law of deflagration fracture is revealed by numerical simulation.•Deflagration fracturing can break the stress concentration to form complex fracture. |
---|---|
AbstractList | Methane deflagration fracturing is a new reservoir stimulation method that serves the efficient development of shale gas reservoirs. However, the propagation law of deflagration fractures is still unclear. In this paper, a numerical model considering the effect of stress wave impact and gas drive of deflagration fracturing was established based on the continuum–discontinuum element method (CDEM). The correctness of the numerical model was verified by comparing it with a laboratory experiment, the steady and unsteady analytical solutions of gas flow, and the approximate solution of fracture propagation. Then, numerical simulations of methane deflagration fracturing in vertical wells and horizontal wells under different factors were carried out to analyze the fracture mechanism. The results indicate that deflagration fracturing in vertical wells can break through the stress concentration around the borehole; the initial radial fractures are formed under the action of stress wave impact and then propagate substantially under the driving action of high-pressure gas. The in-situ stress difference affects the deflagration fracture propagation and makes the half-fracture length in the direction of maximum principal stress larger than that in the direction of minimum principal stress. The more significant the stress difference is, the more noticeable this deviation will be. When the deflagration peak pressure is high, the reservoir burst degree is large, which is conducive to enlarging the stimulation range of deflagration fracturing. Staged deflagration fracturing in horizontal wells can form 5–8 obvious fractures perpendicular to the horizontal borehole in each explosion section. A large cluster spacing and explosion section length are conducive to expanding the stimulation scope. Moreover, the propagation of deflagration fractures will be induced by the natural fractures, and the natural fracture with a considerable length or a slight angle between the dip angle and the propagation direction of deflagration fractures is more likely to be activated.
•The deflagration fracturing for shale gas reservoir stimulation is proposed.•The numerical model considers the effects of stress wave and gas drive.•The propagation law of deflagration fracture is revealed by numerical simulation.•Deflagration fracturing can break the stress concentration to form complex fracture. |
ArticleNumber | 105478 |
Author | Chen, Ming Liu, Xiaoqiang Wang, Jiwei Wang, Xudong Guo, Tiankui Qu, Zhanqing |
Author_xml | – sequence: 1 givenname: Jiwei orcidid: 0000-0003-3991-2763 surname: Wang fullname: Wang, Jiwei organization: Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Qingdao, 266580, China – sequence: 2 givenname: Tiankui surname: Guo fullname: Guo, Tiankui email: guotiankui@126.com organization: Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Qingdao, 266580, China – sequence: 3 givenname: Ming surname: Chen fullname: Chen, Ming organization: Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Qingdao, 266580, China – sequence: 4 givenname: Zhanqing surname: Qu fullname: Qu, Zhanqing organization: Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Qingdao, 266580, China – sequence: 5 givenname: Xiaoqiang surname: Liu fullname: Liu, Xiaoqiang organization: School of Earth and Space Sciences, Peking University, Beijing, 100871, China – sequence: 6 givenname: Xudong surname: Wang fullname: Wang, Xudong organization: Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Qingdao, 266580, China |
BookMark | eNqFkMtOwzAQRS1UJErhD1j4B1LsxHZaFkio4iVVsIG15djjdqI8KjsNYsuXkzasWMBqHppzpTnnZNK0DRByxdmcM66uyzmWoa7jPGVpNqykyBcnZMoXeZYIKeRk6DMlE67Y8oycx1gyxlSq8in5etnXENCaikas95XpsG1o66kDX5lNGGcfjO32AZsNxYbGramAbkykASKEvsUQqW2biA6ON90WKHgPtjskxW44i_TD9ECx3g1J1DTuyLuAPVyQU2-qCJc_dUbeH-7fVk_J-vXxeXW3TkyWLrvEOiu9knlmlypnGeRceCGApS5Xnnuulsx4WRgvlPLWF1Yo6bjPDBhVFEpmMyLGXBvaGAN4vQtYm_CpOdMHj7rUo0d98KhHjwN28wuz2B21dMFg9R98O8IwPNYjBB0tQmPBYRj0aNfi3wHfCh-Xag |
CitedBy_id | crossref_primary_10_1016_j_tafmec_2024_104616 crossref_primary_10_1016_j_ijrmms_2024_105951 crossref_primary_10_1021_acs_energyfuels_4c02935 crossref_primary_10_3390_app15052612 crossref_primary_10_1007_s00603_024_03908_4 crossref_primary_10_1016_j_engfracmech_2024_110516 crossref_primary_10_1016_j_compgeo_2023_106061 crossref_primary_10_1021_acsomega_3c09992 crossref_primary_10_1063_5_0247153 crossref_primary_10_1016_j_geoen_2023_212318 crossref_primary_10_1080_12269328_2024_2417781 crossref_primary_10_1021_acsomega_4c05973 crossref_primary_10_3390_app15052307 |
Cites_doi | 10.1016/j.jngse.2019.102966 10.1016/j.compgeo.2021.104445 10.1016/j.rser.2013.08.065 10.1016/j.compgeo.2020.103453 10.2118/199351-PA 10.1016/j.fuel.2014.03.029 10.1007/s00603-018-1717-5 10.1016/j.ijsolstr.2018.05.001 10.1016/j.apenergy.2015.03.023 10.1016/j.compstruc.2016.11.006 10.1016/0148-9062(85)92589-6 10.1016/S1876-3804(17)30015-0 10.1115/1.4039324 10.1016/0148-9062(71)90018-0 10.1016/j.petrol.2018.07.031 10.1016/j.compgeo.2018.04.011 10.1016/j.ijrmms.2018.01.037 10.1016/j.fuel.2022.124741 10.1016/S1876-3804(13)60092-0 10.1016/j.fuel.2018.09.135 10.1016/j.petrol.2019.106488 10.1029/2017JB015092 10.2118/201114-PA 10.1016/j.engfracmech.2020.107278 10.1016/j.ijrmms.2020.104287 10.1007/s00603-006-0084-9 10.1016/j.engfracmech.2022.108621 10.2118/8346-PA 10.1007/BF00963386 10.1016/j.jngse.2015.11.042 10.1016/j.cma.2022.115366 10.1007/s10704-017-0192-4 10.1016/j.fuel.2022.123922 10.1016/S1876-3804(14)60079-3 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijrmms.2023.105478 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4545 |
ExternalDocumentID | 10_1016_j_ijrmms_2023_105478 S1365160923001521 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ACSBN ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE IMUCA J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSE SST SSZ T5K ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-a329t-cdc5f6573c96703e714f44e02d76f1f1690af5baf466fcfbc465d1f3aea6bb653 |
IEDL.DBID | .~1 |
ISSN | 1365-1609 |
IngestDate | Thu Apr 24 22:57:50 EDT 2025 Tue Jul 01 01:54:11 EDT 2025 Fri Feb 23 02:37:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | High-pressure gas discharge Continuum–discontinuum element method Stress wave impact Shale gas reservoirs Deflagration fracturing Fracture propagation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a329t-cdc5f6573c96703e714f44e02d76f1f1690af5baf466fcfbc465d1f3aea6bb653 |
ORCID | 0000-0003-3991-2763 |
ParticipantIDs | crossref_primary_10_1016_j_ijrmms_2023_105478 crossref_citationtrail_10_1016_j_ijrmms_2023_105478 elsevier_sciencedirect_doi_10_1016_j_ijrmms_2023_105478 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2023 2023-10-00 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
PublicationDecade | 2020 |
PublicationTitle | International journal of rock mechanics and mining sciences (Oxford, England : 1997) |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhai, Zheng, Sun, Yu (bib23) 2021 Dec 21 Wang, Li, Shao, Chen, Li (bib50) 2021; 140 He, Nie, Hu (bib11) 2020; 41 Xu, Cheng, Liu, Zhang, Shi (bib42) 2013; 40 Zhao, Huang, Xu (bib46) 2019; 236 Yu, Ting, Meng, Xiaoqi, Fangkai, Cheng (bib17) 2022; 324 Xu, Yu, Zhang (bib51) 2022; 399 Guo, Gong, Lin, Lin, Wang (bib4) 2018; 140 Zhou, Zheng, Yang (bib5) 2019; 71 Dong, Qiu, Zhang (bib12) 2021; 39 Dontsov, Zhang (bib44) 2018; 144 Zhang, Yu, Xu (bib52) 2022; 271 Wang (bib29) 2018 Liu, Rasouli, Guo, Qu, Sun, Damjanac (bib10) 2020; 238 Zhai, Xu, Liu, Qin (bib14) 2018; 103 Wang, Pan, Zhang, Wang (bib15) 2022; 320 Zhao, He, Guo, Zhu, Wang, He (bib45) 2020; 184 Zou, Ma, Zhang (bib40) 2020; 25 Lisjak, Mahabadi, He (bib53) 2018; 100 Bendezu, Romanel, Roehl (bib49) 2017; 182 Wang, Elsworth, Cao, Liu (bib30) 2020; 129 Zou, Pan, Jing (bib1) 2020; 41 Dontsov (bib43) 2017; 205 Zhu, Feng, Cheng, Wang, Li (bib33) 2021 Wang, Tang, Li, Wang, Feng (bib35) 2015; 47 Nilson, Proffer, Duff (bib22) 1985; 22 Chen, Zhang, Ma, Zhou, Zou (bib41) 2018; 171 Feng, Li, Zhou, Zhang (bib34) 2014; 36 Settgast, Vorobiev, Morris, Herbold, Homel, Annavarapu (bib27) 2017 Henrich (bib38) 1987 Zhao, Chen, Li, Fu, Xu (bib9) 2017; 44 Lin, Feng, Tang, Li, Yin, Wang (bib32) 2019; 39 Wu, Pu, Chen, Ren, Liu (bib25) 2014; 41 Schmidt, Boade, Bass (bib18) 1981; 33 McHugh (bib21) 1983; 21 Middleton, Carey, Currier (bib13) 2015; 147 Wang, Qu, Guo, Chen, Lv, Wang (bib24) 2023; 47 Li, Ma (bib39) 1992 Chen, Zhang, Zhou, Ma, Zou (bib47) 2020; 25 Tian (bib28) 2019 Li, Wang, Liu, Dong (bib31) 2007; 40 Kutter, Fairhurst (bib20) 1971; 8 Ju, Chen, Wang, Gao, Xie (bib36) 2018; 123 Zhao, Ren, Jiang (bib2) 2021; 41 Guo, Zhang, Qu, Zhou, Xiao, Gao (bib6) 2014; 128 li, dong, Hua, Li, Guo (bib8) 2020; 121 Wei, Wu, Liu, Xu, Zhang, Pu (bib16) 2018; 42 Qu, Wang, Guo (bib7) 2021 Ren, Su, Zhan, Hao, Meng, Sheng (bib48) 2016; 28 Schmidt, Warpinski, Cooper (bib19) 1980 Wu, Sun, Wong (bib37) 2019; 52 Wang, Chen, Jha, Rogers (bib3) 2014; 30 Wu, Xu, Wei, Liu, Li, Ding (bib26) 2018; 38 Zhai (10.1016/j.ijrmms.2023.105478_bib14) 2018; 103 Tian (10.1016/j.ijrmms.2023.105478_bib28) 2019 Qu (10.1016/j.ijrmms.2023.105478_bib7) 2021 Zou (10.1016/j.ijrmms.2023.105478_bib40) 2020; 25 Wu (10.1016/j.ijrmms.2023.105478_bib37) 2019; 52 Zhang (10.1016/j.ijrmms.2023.105478_bib52) 2022; 271 Xu (10.1016/j.ijrmms.2023.105478_bib51) 2022; 399 Wang (10.1016/j.ijrmms.2023.105478_bib35) 2015; 47 Feng (10.1016/j.ijrmms.2023.105478_bib34) 2014; 36 Chen (10.1016/j.ijrmms.2023.105478_bib47) 2020; 25 Guo (10.1016/j.ijrmms.2023.105478_bib4) 2018; 140 Wang (10.1016/j.ijrmms.2023.105478_bib24) 2023; 47 Zhao (10.1016/j.ijrmms.2023.105478_bib9) 2017; 44 He (10.1016/j.ijrmms.2023.105478_bib11) 2020; 41 Li (10.1016/j.ijrmms.2023.105478_bib39) 1992 Zou (10.1016/j.ijrmms.2023.105478_bib1) 2020; 41 Zhou (10.1016/j.ijrmms.2023.105478_bib5) 2019; 71 Nilson (10.1016/j.ijrmms.2023.105478_bib22) 1985; 22 Lin (10.1016/j.ijrmms.2023.105478_bib32) 2019; 39 Xu (10.1016/j.ijrmms.2023.105478_bib42) 2013; 40 Zhu (10.1016/j.ijrmms.2023.105478_bib33) 2021 Wang (10.1016/j.ijrmms.2023.105478_bib30) 2020; 129 Schmidt (10.1016/j.ijrmms.2023.105478_bib19) 1980 Li (10.1016/j.ijrmms.2023.105478_bib31) 2007; 40 Dontsov (10.1016/j.ijrmms.2023.105478_bib43) 2017; 205 Guo (10.1016/j.ijrmms.2023.105478_bib6) 2014; 128 Middleton (10.1016/j.ijrmms.2023.105478_bib13) 2015; 147 Wang (10.1016/j.ijrmms.2023.105478_bib15) 2022; 320 Chen (10.1016/j.ijrmms.2023.105478_bib41) 2018; 171 Lisjak (10.1016/j.ijrmms.2023.105478_bib53) 2018; 100 Ren (10.1016/j.ijrmms.2023.105478_bib48) 2016; 28 Wang (10.1016/j.ijrmms.2023.105478_bib50) 2021; 140 Yu (10.1016/j.ijrmms.2023.105478_bib17) 2022; 324 Wu (10.1016/j.ijrmms.2023.105478_bib26) 2018; 38 Zhao (10.1016/j.ijrmms.2023.105478_bib2) 2021; 41 Wu (10.1016/j.ijrmms.2023.105478_bib25) 2014; 41 Dontsov (10.1016/j.ijrmms.2023.105478_bib44) 2018; 144 McHugh (10.1016/j.ijrmms.2023.105478_bib21) 1983; 21 Henrich (10.1016/j.ijrmms.2023.105478_bib38) 1987 Liu (10.1016/j.ijrmms.2023.105478_bib10) 2020; 238 Kutter (10.1016/j.ijrmms.2023.105478_bib20) 1971; 8 Zhai (10.1016/j.ijrmms.2023.105478_bib23) 2021 Wang (10.1016/j.ijrmms.2023.105478_bib29) 2018 li (10.1016/j.ijrmms.2023.105478_bib8) 2020; 121 Settgast (10.1016/j.ijrmms.2023.105478_bib27) 2017 Bendezu (10.1016/j.ijrmms.2023.105478_bib49) 2017; 182 Ju (10.1016/j.ijrmms.2023.105478_bib36) 2018; 123 Wang (10.1016/j.ijrmms.2023.105478_bib3) 2014; 30 Wei (10.1016/j.ijrmms.2023.105478_bib16) 2018; 42 Zhao (10.1016/j.ijrmms.2023.105478_bib46) 2019; 236 Schmidt (10.1016/j.ijrmms.2023.105478_bib18) 1981; 33 Zhao (10.1016/j.ijrmms.2023.105478_bib45) 2020; 184 Dong (10.1016/j.ijrmms.2023.105478_bib12) 2021; 39 |
References_xml | – volume: 324 year: 2022 ident: bib17 article-title: Desorption of CH4/CO2 from kerogen during explosive fracturing publication-title: Fuel – start-page: 246 year: 1992 end-page: 253 ident: bib39 article-title: Explosion Mechanics – volume: 144 start-page: 180 year: 2018 end-page: 191 ident: bib44 article-title: Calibration of tensile strength to model fracture toughness with distinct element method publication-title: Int J Solid Struct – year: 2018 ident: bib29 article-title: Study on Crack Propagation Law of Liquid Carbon Dioxide Phase Transition Blasting and its Application [dissertation] – volume: 41 start-page: 379 year: 2020 end-page: 391 ident: bib11 article-title: Geological problems in the effective development of deep shale gas: a case study of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Sichuan Basin and its periphery publication-title: Acta Pet Sin – volume: 47 start-page: 973 year: 2015 end-page: 983 ident: bib35 article-title: Numerical simulation of hydraulic fracturing by a mixed method in two dimensions publication-title: Chin J Theor Appl Mech – volume: 100 start-page: 84 year: 2018 end-page: 96 ident: bib53 article-title: Acceleration of a 2D/3D finite-discrete element code for geomechanical simulations using General Purpose GPU computing publication-title: Comput Geotech – volume: 147 start-page: 500 year: 2015 end-page: 509 ident: bib13 article-title: Shale gas and non-aqueous fracturing fluids: opportunities and challenges for supercritical CO2 publication-title: Appl Energy – volume: 39 start-page: 29 year: 2021 end-page: 45 ident: bib12 article-title: Progress on sedimentology of transitional facies shales and new discoveries of shale gas publication-title: Acta Sedimentol Sin – volume: 47 start-page: 106 year: 2023 end-page: 115 ident: bib24 article-title: Numerical simulation on fracture propagation of methane in-situ explosion fracturing in shale gas reservoirs publication-title: Journal of China University of Petroleum(Edition of Natural Science) – volume: 71 year: 2019 ident: bib5 article-title: Optimizing the construction parameters of modified zipper fracs in multiple horizontal wells publication-title: J Nat Gas Sci Eng – volume: 28 start-page: 132 year: 2016 end-page: 141 ident: bib48 article-title: Modeling and simulation of complex fracture network propagation with SRV fracturing in unconventional shale reservoirs publication-title: J Nat Gas Sci Eng – volume: 41 start-page: 121 year: 2021 end-page: 142 ident: bib2 article-title: Ten years of gas shale fracturing in China: review and prospect publication-title: Nat Gas Ind – volume: 128 start-page: 373 year: 2014 end-page: 380 ident: bib6 article-title: Experimental study of hydraulic fracturing for shale by stimulated reservoir volume publication-title: Fuel – volume: 182 start-page: 1 year: 2017 end-page: 13 ident: bib49 article-title: Finite element analysis of blast-induced fracture propagation in hard rocks publication-title: Comput Struct – volume: 33 start-page: 1305 year: 1981 end-page: 1311 ident: bib18 article-title: A new perspective on well shooting-behavior of deeply buried explosions and deflagrations publication-title: J Petrol Technol – year: 2021 Dec 21 ident: bib23 article-title: Inventor; China university of mining and technology, assignee publication-title: A methane in situ multistage pulse shaped energy deflagration fracturing method for shale reservoir – volume: 25 start-page: 3091 year: 2020 end-page: 3110 ident: bib47 article-title: Optimization of in-stage diversion to promote uniform planar multifracture propagation: a numerical study publication-title: SPE J – volume: 40 start-page: 682 year: 2013 end-page: 686 ident: bib42 article-title: Explosive fracturing simulation experiment for low permeability reservoirs and fractal characteristics of cracks produced publication-title: Petrol Explor Dev – volume: 44 start-page: 117 year: 2017 end-page: 124 ident: bib9 article-title: Numerical simulation of multi-stage fracturing and optimization of perforation in a horizontal well publication-title: Petrol Explor Dev – volume: 39 year: 2019 ident: bib32 article-title: The settlement and damage characteristics of pavement structure under impulse load publication-title: Explos Shock Waves – volume: 271 year: 2022 ident: bib52 article-title: A hybrid numerical approach for hydraulic fracturing in a naturally fractured formation combining the XFEM and phase-field model publication-title: Eng Fract Mech – volume: 103 start-page: 145 year: 2018 end-page: 154 ident: bib14 article-title: Fracturing mechanism of coal-like rock specimens under the effect of non-explosive expansion publication-title: Int J Rock Mech Min Sci – volume: 140 year: 2021 ident: bib50 article-title: Investigating the mechanism of rock fracturing induced by high-pressure gas blasting with a hybrid continuum-discontinuum method publication-title: Comput Geotech – year: 2019 ident: bib28 article-title: Numerical Simulation Study on Crack Propagation Mode under Shale Deflagration Fracturing [dissertation] – start-page: 383 year: 2021 ident: bib33 article-title: A novel three-dimensional hydraulic fracturing model based on continuum-discontinuum element method publication-title: Comput Methods Appl Mech Eng – volume: 121 year: 2020 ident: bib8 article-title: Numerical simulation of temporarily plugging staged fracturing (TPSF) based on cohesive zone method publication-title: Comput Geotech – volume: 238 year: 2020 ident: bib10 article-title: Numerical simulation of stress shadow in multiple cluster hydraulic fracturing in horizontal wells based on lattice modelling publication-title: Eng Fract Mech – volume: 171 start-page: 1041 year: 2018 end-page: 1051 ident: bib41 article-title: A semi-analytical model for predicting fluid partitioning among multiple hydraulic fractures from a horizontal well publication-title: J Petrol Sci Eng – volume: 129 year: 2020 ident: bib30 article-title: Reach and geometry of dynamic gas-driven fractures publication-title: Int J Rock Mech Min Sci – volume: 236 start-page: 1496 year: 2019 end-page: 1504 ident: bib46 article-title: Experimental investigation on the characteristics of fractures initiation and propagation for gas fracturing by using air as fracturing fluid under true triaxial stresses publication-title: Fuel – volume: 30 start-page: 1 year: 2014 end-page: 28 ident: bib3 article-title: Natural gas from shale formation - the evolution, evidences, and challenges of shale gas revolution in United States publication-title: Renewable Sustainable Energy Rev – volume: 140 year: 2018 ident: bib4 article-title: Experimental investigation on damage mechanism of guar gum fracturing fluid to low-permeability reservoir based on nuclear magnetic resonance publication-title: J Energy Resour Technol – start-page: 63 year: 1987 end-page: 64 ident: bib38 publication-title: The Dynamics of Explosion and its Use – volume: 205 start-page: 221 year: 2017 end-page: 237 ident: bib43 article-title: An approximate solution for a plane strain hydraulic fracture that accounts for fracture toughness, fluid viscosity, and leak-off publication-title: Int J Fract – year: 1980 ident: bib19 article-title: In situ evaluation of several tailored-pulse well-shooting concepts publication-title: SPE Unconventional Gas Recovery Symposium – volume: 52 start-page: 2335 year: 2019 end-page: 2359 ident: bib37 article-title: A cohesive element-based numerical manifold method for hydraulic fracturing modelling with voronoi grains publication-title: Rock Mech Rock Eng – volume: 40 start-page: 331 year: 2007 end-page: 348 ident: bib31 article-title: Analysis of critical excavation depth for a jointed rock slope using a face-to-face discrete element method publication-title: Rock Mech Rock Eng – volume: 22 start-page: 3 year: 1985 end-page: 19 ident: bib22 article-title: Modeling of gas-driven fractures induced by propellant combustion within a borehole publication-title: Int J Rock Mech Min Sci Geomech Abstracts – volume: 399 year: 2022 ident: bib51 article-title: Phase-field method of crack branching during SC-CO publication-title: Comput Methods Appl Mech Eng – volume: 21 start-page: 163 year: 1983 end-page: 176 ident: bib21 article-title: Crack extension caused by internal gas pressure compared with extension caused by tensile stress publication-title: Int J Fract – volume: 41 start-page: 1 year: 2020 end-page: 12 ident: bib1 article-title: Shale oil and gas revolution and its impact publication-title: Acta Pet Sin – volume: 41 start-page: 605 year: 2014 end-page: 611 ident: bib25 article-title: Coupling simulation of multistage pulse conflagration compression fracturing publication-title: Petrol Explor Dev – year: 2017 ident: bib27 article-title: Modeling of fracture opening by explosive products publication-title: 51st U.S. Rock Mechanics/Geomechanics Symposium – start-page: 204 year: 2021 ident: bib7 article-title: Optimization on fracturing fluid flowback model after hydraulic fracturing in oil well publication-title: J Petrol Sci Eng – volume: 320 year: 2022 ident: bib15 article-title: Experimental study on the radial vibration characteristics of a coal briquette in each stage of its life cycle under the action of CO2 gas explosion publication-title: Fuel – volume: 42 start-page: 105 year: 2018 end-page: 112 ident: bib16 article-title: Distribution of induced stress by high energy gas fracturing in wellbore publication-title: Journal of China University of Petroleum Edition of Natural Science – volume: 38 start-page: 65 year: 2018 end-page: 72 ident: bib26 article-title: Laws of multi-fracture coupling initiation during blasting induced hydraulic fracturing publication-title: Nat Gas Ind – volume: 8 start-page: 181 year: 1971 end-page: 202 ident: bib20 article-title: On the fracture process in blasting publication-title: Int J Rock Mech Min Sci Geomech Abstracts – volume: 25 start-page: 1503 year: 2020 end-page: 1522 ident: bib40 article-title: Numerical modeling of fracture propagation during temporary-plugging fracturing publication-title: SPE J – volume: 36 start-page: 1262 year: 2014 end-page: 1270 ident: bib34 article-title: Numerical analysis of damage and crack process of rock under explosive loading publication-title: Chin J Geotech Eng – volume: 123 start-page: 3621 year: 2018 end-page: 3644 ident: bib36 article-title: Numerical analysis of hydrofracturing behaviors and mechanisms of heterogeneous reservoir glutenite, using the continuum-based discrete element method while considering hydromechanical coupling and leak-off effects publication-title: J Geophys Res Solid Earth – volume: 184 year: 2020 ident: bib45 article-title: The study of fracture propagation in pre-acidized shale reservoir during the hydraulic fracturing publication-title: J Petrol Sci Eng – volume: 71 year: 2019 ident: 10.1016/j.ijrmms.2023.105478_bib5 article-title: Optimizing the construction parameters of modified zipper fracs in multiple horizontal wells publication-title: J Nat Gas Sci Eng doi: 10.1016/j.jngse.2019.102966 – start-page: 383 year: 2021 ident: 10.1016/j.ijrmms.2023.105478_bib33 article-title: A novel three-dimensional hydraulic fracturing model based on continuum-discontinuum element method publication-title: Comput Methods Appl Mech Eng – start-page: 246 year: 1992 ident: 10.1016/j.ijrmms.2023.105478_bib39 – volume: 140 year: 2021 ident: 10.1016/j.ijrmms.2023.105478_bib50 article-title: Investigating the mechanism of rock fracturing induced by high-pressure gas blasting with a hybrid continuum-discontinuum method publication-title: Comput Geotech doi: 10.1016/j.compgeo.2021.104445 – volume: 30 start-page: 1 year: 2014 ident: 10.1016/j.ijrmms.2023.105478_bib3 article-title: Natural gas from shale formation - the evolution, evidences, and challenges of shale gas revolution in United States publication-title: Renewable Sustainable Energy Rev doi: 10.1016/j.rser.2013.08.065 – volume: 121 year: 2020 ident: 10.1016/j.ijrmms.2023.105478_bib8 article-title: Numerical simulation of temporarily plugging staged fracturing (TPSF) based on cohesive zone method publication-title: Comput Geotech doi: 10.1016/j.compgeo.2020.103453 – volume: 25 start-page: 1503 issue: 3 year: 2020 ident: 10.1016/j.ijrmms.2023.105478_bib40 article-title: Numerical modeling of fracture propagation during temporary-plugging fracturing publication-title: SPE J doi: 10.2118/199351-PA – volume: 47 start-page: 973 issue: 6 year: 2015 ident: 10.1016/j.ijrmms.2023.105478_bib35 article-title: Numerical simulation of hydraulic fracturing by a mixed method in two dimensions publication-title: Chin J Theor Appl Mech – volume: 128 start-page: 373 year: 2014 ident: 10.1016/j.ijrmms.2023.105478_bib6 article-title: Experimental study of hydraulic fracturing for shale by stimulated reservoir volume publication-title: Fuel doi: 10.1016/j.fuel.2014.03.029 – volume: 52 start-page: 2335 issue: 7 year: 2019 ident: 10.1016/j.ijrmms.2023.105478_bib37 article-title: A cohesive element-based numerical manifold method for hydraulic fracturing modelling with voronoi grains publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-018-1717-5 – volume: 144 start-page: 180 year: 2018 ident: 10.1016/j.ijrmms.2023.105478_bib44 article-title: Calibration of tensile strength to model fracture toughness with distinct element method publication-title: Int J Solid Struct doi: 10.1016/j.ijsolstr.2018.05.001 – year: 2019 ident: 10.1016/j.ijrmms.2023.105478_bib28 – volume: 147 start-page: 500 year: 2015 ident: 10.1016/j.ijrmms.2023.105478_bib13 article-title: Shale gas and non-aqueous fracturing fluids: opportunities and challenges for supercritical CO2 publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.03.023 – volume: 41 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.ijrmms.2023.105478_bib1 article-title: Shale oil and gas revolution and its impact publication-title: Acta Pet Sin – volume: 182 start-page: 1 year: 2017 ident: 10.1016/j.ijrmms.2023.105478_bib49 article-title: Finite element analysis of blast-induced fracture propagation in hard rocks publication-title: Comput Struct doi: 10.1016/j.compstruc.2016.11.006 – volume: 22 start-page: 3 issue: 1 year: 1985 ident: 10.1016/j.ijrmms.2023.105478_bib22 article-title: Modeling of gas-driven fractures induced by propellant combustion within a borehole publication-title: Int J Rock Mech Min Sci Geomech Abstracts doi: 10.1016/0148-9062(85)92589-6 – volume: 44 start-page: 117 issue: 1 year: 2017 ident: 10.1016/j.ijrmms.2023.105478_bib9 article-title: Numerical simulation of multi-stage fracturing and optimization of perforation in a horizontal well publication-title: Petrol Explor Dev doi: 10.1016/S1876-3804(17)30015-0 – volume: 140 issue: 7 year: 2018 ident: 10.1016/j.ijrmms.2023.105478_bib4 article-title: Experimental investigation on damage mechanism of guar gum fracturing fluid to low-permeability reservoir based on nuclear magnetic resonance publication-title: J Energy Resour Technol doi: 10.1115/1.4039324 – volume: 39 start-page: 29 issue: 1 year: 2021 ident: 10.1016/j.ijrmms.2023.105478_bib12 article-title: Progress on sedimentology of transitional facies shales and new discoveries of shale gas publication-title: Acta Sedimentol Sin – year: 2018 ident: 10.1016/j.ijrmms.2023.105478_bib29 – volume: 8 start-page: 181 issue: 3 year: 1971 ident: 10.1016/j.ijrmms.2023.105478_bib20 article-title: On the fracture process in blasting publication-title: Int J Rock Mech Min Sci Geomech Abstracts doi: 10.1016/0148-9062(71)90018-0 – volume: 171 start-page: 1041 year: 2018 ident: 10.1016/j.ijrmms.2023.105478_bib41 article-title: A semi-analytical model for predicting fluid partitioning among multiple hydraulic fractures from a horizontal well publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2018.07.031 – volume: 39 issue: 11 year: 2019 ident: 10.1016/j.ijrmms.2023.105478_bib32 article-title: The settlement and damage characteristics of pavement structure under impulse load publication-title: Explos Shock Waves – volume: 100 start-page: 84 year: 2018 ident: 10.1016/j.ijrmms.2023.105478_bib53 article-title: Acceleration of a 2D/3D finite-discrete element code for geomechanical simulations using General Purpose GPU computing publication-title: Comput Geotech doi: 10.1016/j.compgeo.2018.04.011 – volume: 103 start-page: 145 year: 2018 ident: 10.1016/j.ijrmms.2023.105478_bib14 article-title: Fracturing mechanism of coal-like rock specimens under the effect of non-explosive expansion publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2018.01.037 – volume: 42 start-page: 105 issue: 1 year: 2018 ident: 10.1016/j.ijrmms.2023.105478_bib16 article-title: Distribution of induced stress by high energy gas fracturing in wellbore publication-title: Journal of China University of Petroleum Edition of Natural Science – volume: 324 year: 2022 ident: 10.1016/j.ijrmms.2023.105478_bib17 article-title: Desorption of CH4/CO2 from kerogen during explosive fracturing publication-title: Fuel doi: 10.1016/j.fuel.2022.124741 – volume: 40 start-page: 682 issue: 5 year: 2013 ident: 10.1016/j.ijrmms.2023.105478_bib42 article-title: Explosive fracturing simulation experiment for low permeability reservoirs and fractal characteristics of cracks produced publication-title: Petrol Explor Dev doi: 10.1016/S1876-3804(13)60092-0 – volume: 41 start-page: 121 issue: 8 year: 2021 ident: 10.1016/j.ijrmms.2023.105478_bib2 article-title: Ten years of gas shale fracturing in China: review and prospect publication-title: Nat Gas Ind – year: 1980 ident: 10.1016/j.ijrmms.2023.105478_bib19 article-title: In situ evaluation of several tailored-pulse well-shooting concepts – volume: 236 start-page: 1496 year: 2019 ident: 10.1016/j.ijrmms.2023.105478_bib46 article-title: Experimental investigation on the characteristics of fractures initiation and propagation for gas fracturing by using air as fracturing fluid under true triaxial stresses publication-title: Fuel doi: 10.1016/j.fuel.2018.09.135 – volume: 184 year: 2020 ident: 10.1016/j.ijrmms.2023.105478_bib45 article-title: The study of fracture propagation in pre-acidized shale reservoir during the hydraulic fracturing publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2019.106488 – volume: 123 start-page: 3621 issue: 5 year: 2018 ident: 10.1016/j.ijrmms.2023.105478_bib36 article-title: Numerical analysis of hydrofracturing behaviors and mechanisms of heterogeneous reservoir glutenite, using the continuum-based discrete element method while considering hydromechanical coupling and leak-off effects publication-title: J Geophys Res Solid Earth doi: 10.1029/2017JB015092 – volume: 25 start-page: 3091 issue: 6 year: 2020 ident: 10.1016/j.ijrmms.2023.105478_bib47 article-title: Optimization of in-stage diversion to promote uniform planar multifracture propagation: a numerical study publication-title: SPE J doi: 10.2118/201114-PA – volume: 238 year: 2020 ident: 10.1016/j.ijrmms.2023.105478_bib10 article-title: Numerical simulation of stress shadow in multiple cluster hydraulic fracturing in horizontal wells based on lattice modelling publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2020.107278 – start-page: 204 year: 2021 ident: 10.1016/j.ijrmms.2023.105478_bib7 article-title: Optimization on fracturing fluid flowback model after hydraulic fracturing in oil well publication-title: J Petrol Sci Eng – volume: 38 start-page: 65 issue: 11 year: 2018 ident: 10.1016/j.ijrmms.2023.105478_bib26 article-title: Laws of multi-fracture coupling initiation during blasting induced hydraulic fracturing publication-title: Nat Gas Ind – volume: 129 year: 2020 ident: 10.1016/j.ijrmms.2023.105478_bib30 article-title: Reach and geometry of dynamic gas-driven fractures publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2020.104287 – start-page: 63 year: 1987 ident: 10.1016/j.ijrmms.2023.105478_bib38 – volume: 40 start-page: 331 issue: 4 year: 2007 ident: 10.1016/j.ijrmms.2023.105478_bib31 article-title: Analysis of critical excavation depth for a jointed rock slope using a face-to-face discrete element method publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-006-0084-9 – year: 2017 ident: 10.1016/j.ijrmms.2023.105478_bib27 article-title: Modeling of fracture opening by explosive products – volume: 271 year: 2022 ident: 10.1016/j.ijrmms.2023.105478_bib52 article-title: A hybrid numerical approach for hydraulic fracturing in a naturally fractured formation combining the XFEM and phase-field model publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2022.108621 – volume: 47 start-page: 106 issue: 1 year: 2023 ident: 10.1016/j.ijrmms.2023.105478_bib24 article-title: Numerical simulation on fracture propagation of methane in-situ explosion fracturing in shale gas reservoirs publication-title: Journal of China University of Petroleum(Edition of Natural Science) – volume: 36 start-page: 1262 issue: 7 year: 2014 ident: 10.1016/j.ijrmms.2023.105478_bib34 article-title: Numerical analysis of damage and crack process of rock under explosive loading publication-title: Chin J Geotech Eng – volume: 33 start-page: 1305 issue: 7 year: 1981 ident: 10.1016/j.ijrmms.2023.105478_bib18 article-title: A new perspective on well shooting-behavior of deeply buried explosions and deflagrations publication-title: J Petrol Technol doi: 10.2118/8346-PA – volume: 21 start-page: 163 issue: 3 year: 1983 ident: 10.1016/j.ijrmms.2023.105478_bib21 article-title: Crack extension caused by internal gas pressure compared with extension caused by tensile stress publication-title: Int J Fract doi: 10.1007/BF00963386 – volume: 28 start-page: 132 year: 2016 ident: 10.1016/j.ijrmms.2023.105478_bib48 article-title: Modeling and simulation of complex fracture network propagation with SRV fracturing in unconventional shale reservoirs publication-title: J Nat Gas Sci Eng doi: 10.1016/j.jngse.2015.11.042 – year: 2021 ident: 10.1016/j.ijrmms.2023.105478_bib23 article-title: Inventor; China university of mining and technology, assignee publication-title: A methane in situ multistage pulse shaped energy deflagration fracturing method for shale reservoir – volume: 399 year: 2022 ident: 10.1016/j.ijrmms.2023.105478_bib51 article-title: Phase-field method of crack branching during SC-CO2 fracturing: a new energy release rate criterion coupling pore pressure gradient publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2022.115366 – volume: 205 start-page: 221 issue: 2 year: 2017 ident: 10.1016/j.ijrmms.2023.105478_bib43 article-title: An approximate solution for a plane strain hydraulic fracture that accounts for fracture toughness, fluid viscosity, and leak-off publication-title: Int J Fract doi: 10.1007/s10704-017-0192-4 – volume: 320 year: 2022 ident: 10.1016/j.ijrmms.2023.105478_bib15 article-title: Experimental study on the radial vibration characteristics of a coal briquette in each stage of its life cycle under the action of CO2 gas explosion publication-title: Fuel doi: 10.1016/j.fuel.2022.123922 – volume: 41 start-page: 605 issue: 5 year: 2014 ident: 10.1016/j.ijrmms.2023.105478_bib25 article-title: Coupling simulation of multistage pulse conflagration compression fracturing publication-title: Petrol Explor Dev doi: 10.1016/S1876-3804(14)60079-3 – volume: 41 start-page: 379 issue: 4 year: 2020 ident: 10.1016/j.ijrmms.2023.105478_bib11 article-title: Geological problems in the effective development of deep shale gas: a case study of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Sichuan Basin and its periphery publication-title: Acta Pet Sin |
SSID | ssj0006267 |
Score | 2.505091 |
Snippet | Methane deflagration fracturing is a new reservoir stimulation method that serves the efficient development of shale gas reservoirs. However, the propagation... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105478 |
SubjectTerms | Continuum–discontinuum element method Deflagration fracturing Fracture propagation High-pressure gas discharge Shale gas reservoirs Stress wave impact |
Title | Numerical simulation of deflagration fracturing in shale gas reservoirs considering the effect of stress wave impact and gas drive |
URI | https://dx.doi.org/10.1016/j.ijrmms.2023.105478 |
Volume | 170 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KvehB_MT6UfbgdW2T3WzosRRLVexFC72F_cjWlDYtSVtvHvzl7mQTrSAKHhN2QsjbzDzYefMQurYcX_qBz4nl0orAAC8idTsgwnS0oZppWphNPA75YMTux8G4hnqVFgbaKsvc73J6ka3LO63ya7aWSdJ6ggYtj7ctQ4HCX4jJGQthl9-8fbV5WMIeVtorWF3J54oer2SazecwtNunYHjLwGztp_K0VXL6B2i_5Iq4617nENXi9AjtbU0QPEbvw7U7cpnhPJmXVlx4YbCOzUxMHLzYgBSq0CPiJMX5iy0KeCJyDNKjbLNIshyr0rgT1lhOiF2fBzzJqUnwq9jE2GkqsUh1Ea8zmytP0Kh_-9wbkNJWgQjqd1ZEaRUYHoRUdbj93-PQY4axuO3rkBvPwLmZMIEUhnFulJHKIqg9Q0UsuJQWzVNUTxdpfIawZYMaDK-oUj5TlEnGLdLM19QoablIA9Hqa0aqnDkO1hezqGoum0YOgwgwiBwGDUQ-o5Zu5sYf68MKqOjb3olsWfg18vzfkRdoF65cW98lqq-ydXxl6clKNov910Q73buHwfAD7XXnsA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPagH8Ylv9-B1aZvdbOixFKVa24sVvIV9akqbSvrw7i93J7uRCqLgNdkJId9m5oOdbz6Erh3Hl1EcceK4tCIwwItI3YyJsG1tqWaalmYTgyHvPbH75_i5hrqVFgbaKkPu9zm9zNbhSiN8zcZbljUeoUGrxZuOoUDhBzH5Bkyniutoo3PX7w2_ErLj7Eklv4KASkFXtnll42I6hbndEQXPWwZ-az9VqLWqc7uLdgJdxB3_RnuoZvJ9tL02RPAAfQyX_tRlgufZNLhx4ZnF2tiJePEIYwtqqFKSiLMcz19dXcAvYo5BfVSsZlkxxyp4d8IaRwuxb_WAJ3lBCX4XK4O9rBKLXJfxunDp8hA93d6Muj0SnBWIoFF7QZRWseVxQlWbu1_eJC1mGTPNSCfctiwcnQkbS2EZ51ZZqRyIumWpMIJL6QA9QvV8lptjhB0h1OB5RZWKmKJMMu7AZpGmVklHR04Qrb5mqsLYcXC_mKRVf9k49RikgEHqMThB5CvqzY_d-GN9UgGVfts-qasMv0ae_jvyCm32RoOH9OFu2D9DW3DHd_mdo_qiWJoLx1YW8jLsxk_bleph |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+deflagration+fracturing+in+shale+gas+reservoirs+considering+the+effect+of+stress+wave+impact+and+gas+drive&rft.jtitle=International+journal+of+rock+mechanics+and+mining+sciences+%28Oxford%2C+England+%3A+1997%29&rft.au=Wang%2C+Jiwei&rft.au=Guo%2C+Tiankui&rft.au=Chen%2C+Ming&rft.au=Qu%2C+Zhanqing&rft.date=2023-10-01&rft.pub=Elsevier+Ltd&rft.issn=1365-1609&rft.eissn=1873-4545&rft.volume=170&rft_id=info:doi/10.1016%2Fj.ijrmms.2023.105478&rft.externalDocID=S1365160923001521 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-1609&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-1609&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-1609&client=summon |