Numerical simulation of deflagration fracturing in shale gas reservoirs considering the effect of stress wave impact and gas drive

Methane deflagration fracturing is a new reservoir stimulation method that serves the efficient development of shale gas reservoirs. However, the propagation law of deflagration fractures is still unclear. In this paper, a numerical model considering the effect of stress wave impact and gas drive of...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of rock mechanics and mining sciences (Oxford, England : 1997) Vol. 170; p. 105478
Main Authors Wang, Jiwei, Guo, Tiankui, Chen, Ming, Qu, Zhanqing, Liu, Xiaoqiang, Wang, Xudong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2023
Subjects
Online AccessGet full text
ISSN1365-1609
1873-4545
DOI10.1016/j.ijrmms.2023.105478

Cover

Loading…
Abstract Methane deflagration fracturing is a new reservoir stimulation method that serves the efficient development of shale gas reservoirs. However, the propagation law of deflagration fractures is still unclear. In this paper, a numerical model considering the effect of stress wave impact and gas drive of deflagration fracturing was established based on the continuum–discontinuum element method (CDEM). The correctness of the numerical model was verified by comparing it with a laboratory experiment, the steady and unsteady analytical solutions of gas flow, and the approximate solution of fracture propagation. Then, numerical simulations of methane deflagration fracturing in vertical wells and horizontal wells under different factors were carried out to analyze the fracture mechanism. The results indicate that deflagration fracturing in vertical wells can break through the stress concentration around the borehole; the initial radial fractures are formed under the action of stress wave impact and then propagate substantially under the driving action of high-pressure gas. The in-situ stress difference affects the deflagration fracture propagation and makes the half-fracture length in the direction of maximum principal stress larger than that in the direction of minimum principal stress. The more significant the stress difference is, the more noticeable this deviation will be. When the deflagration peak pressure is high, the reservoir burst degree is large, which is conducive to enlarging the stimulation range of deflagration fracturing. Staged deflagration fracturing in horizontal wells can form 5–8 obvious fractures perpendicular to the horizontal borehole in each explosion section. A large cluster spacing and explosion section length are conducive to expanding the stimulation scope. Moreover, the propagation of deflagration fractures will be induced by the natural fractures, and the natural fracture with a considerable length or a slight angle between the dip angle and the propagation direction of deflagration fractures is more likely to be activated. •The deflagration fracturing for shale gas reservoir stimulation is proposed.•The numerical model considers the effects of stress wave and gas drive.•The propagation law of deflagration fracture is revealed by numerical simulation.•Deflagration fracturing can break the stress concentration to form complex fracture.
AbstractList Methane deflagration fracturing is a new reservoir stimulation method that serves the efficient development of shale gas reservoirs. However, the propagation law of deflagration fractures is still unclear. In this paper, a numerical model considering the effect of stress wave impact and gas drive of deflagration fracturing was established based on the continuum–discontinuum element method (CDEM). The correctness of the numerical model was verified by comparing it with a laboratory experiment, the steady and unsteady analytical solutions of gas flow, and the approximate solution of fracture propagation. Then, numerical simulations of methane deflagration fracturing in vertical wells and horizontal wells under different factors were carried out to analyze the fracture mechanism. The results indicate that deflagration fracturing in vertical wells can break through the stress concentration around the borehole; the initial radial fractures are formed under the action of stress wave impact and then propagate substantially under the driving action of high-pressure gas. The in-situ stress difference affects the deflagration fracture propagation and makes the half-fracture length in the direction of maximum principal stress larger than that in the direction of minimum principal stress. The more significant the stress difference is, the more noticeable this deviation will be. When the deflagration peak pressure is high, the reservoir burst degree is large, which is conducive to enlarging the stimulation range of deflagration fracturing. Staged deflagration fracturing in horizontal wells can form 5–8 obvious fractures perpendicular to the horizontal borehole in each explosion section. A large cluster spacing and explosion section length are conducive to expanding the stimulation scope. Moreover, the propagation of deflagration fractures will be induced by the natural fractures, and the natural fracture with a considerable length or a slight angle between the dip angle and the propagation direction of deflagration fractures is more likely to be activated. •The deflagration fracturing for shale gas reservoir stimulation is proposed.•The numerical model considers the effects of stress wave and gas drive.•The propagation law of deflagration fracture is revealed by numerical simulation.•Deflagration fracturing can break the stress concentration to form complex fracture.
ArticleNumber 105478
Author Chen, Ming
Liu, Xiaoqiang
Wang, Jiwei
Wang, Xudong
Guo, Tiankui
Qu, Zhanqing
Author_xml – sequence: 1
  givenname: Jiwei
  orcidid: 0000-0003-3991-2763
  surname: Wang
  fullname: Wang, Jiwei
  organization: Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Qingdao, 266580, China
– sequence: 2
  givenname: Tiankui
  surname: Guo
  fullname: Guo, Tiankui
  email: guotiankui@126.com
  organization: Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Qingdao, 266580, China
– sequence: 3
  givenname: Ming
  surname: Chen
  fullname: Chen, Ming
  organization: Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Qingdao, 266580, China
– sequence: 4
  givenname: Zhanqing
  surname: Qu
  fullname: Qu, Zhanqing
  organization: Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Qingdao, 266580, China
– sequence: 5
  givenname: Xiaoqiang
  surname: Liu
  fullname: Liu, Xiaoqiang
  organization: School of Earth and Space Sciences, Peking University, Beijing, 100871, China
– sequence: 6
  givenname: Xudong
  surname: Wang
  fullname: Wang, Xudong
  organization: Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Qingdao, 266580, China
BookMark eNqFkMtOwzAQRS1UJErhD1j4B1LsxHZaFkio4iVVsIG15djjdqI8KjsNYsuXkzasWMBqHppzpTnnZNK0DRByxdmcM66uyzmWoa7jPGVpNqykyBcnZMoXeZYIKeRk6DMlE67Y8oycx1gyxlSq8in5etnXENCaikas95XpsG1o66kDX5lNGGcfjO32AZsNxYbGramAbkykASKEvsUQqW2biA6ON90WKHgPtjskxW44i_TD9ECx3g1J1DTuyLuAPVyQU2-qCJc_dUbeH-7fVk_J-vXxeXW3TkyWLrvEOiu9knlmlypnGeRceCGApS5Xnnuulsx4WRgvlPLWF1Yo6bjPDBhVFEpmMyLGXBvaGAN4vQtYm_CpOdMHj7rUo0d98KhHjwN28wuz2B21dMFg9R98O8IwPNYjBB0tQmPBYRj0aNfi3wHfCh-Xag
CitedBy_id crossref_primary_10_1016_j_tafmec_2024_104616
crossref_primary_10_1016_j_ijrmms_2024_105951
crossref_primary_10_1021_acs_energyfuels_4c02935
crossref_primary_10_3390_app15052612
crossref_primary_10_1007_s00603_024_03908_4
crossref_primary_10_1016_j_engfracmech_2024_110516
crossref_primary_10_1016_j_compgeo_2023_106061
crossref_primary_10_1021_acsomega_3c09992
crossref_primary_10_1063_5_0247153
crossref_primary_10_1016_j_geoen_2023_212318
crossref_primary_10_1080_12269328_2024_2417781
crossref_primary_10_1021_acsomega_4c05973
crossref_primary_10_3390_app15052307
Cites_doi 10.1016/j.jngse.2019.102966
10.1016/j.compgeo.2021.104445
10.1016/j.rser.2013.08.065
10.1016/j.compgeo.2020.103453
10.2118/199351-PA
10.1016/j.fuel.2014.03.029
10.1007/s00603-018-1717-5
10.1016/j.ijsolstr.2018.05.001
10.1016/j.apenergy.2015.03.023
10.1016/j.compstruc.2016.11.006
10.1016/0148-9062(85)92589-6
10.1016/S1876-3804(17)30015-0
10.1115/1.4039324
10.1016/0148-9062(71)90018-0
10.1016/j.petrol.2018.07.031
10.1016/j.compgeo.2018.04.011
10.1016/j.ijrmms.2018.01.037
10.1016/j.fuel.2022.124741
10.1016/S1876-3804(13)60092-0
10.1016/j.fuel.2018.09.135
10.1016/j.petrol.2019.106488
10.1029/2017JB015092
10.2118/201114-PA
10.1016/j.engfracmech.2020.107278
10.1016/j.ijrmms.2020.104287
10.1007/s00603-006-0084-9
10.1016/j.engfracmech.2022.108621
10.2118/8346-PA
10.1007/BF00963386
10.1016/j.jngse.2015.11.042
10.1016/j.cma.2022.115366
10.1007/s10704-017-0192-4
10.1016/j.fuel.2022.123922
10.1016/S1876-3804(14)60079-3
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.ijrmms.2023.105478
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4545
ExternalDocumentID 10_1016_j_ijrmms_2023_105478
S1365160923001521
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-a329t-cdc5f6573c96703e714f44e02d76f1f1690af5baf466fcfbc465d1f3aea6bb653
IEDL.DBID .~1
ISSN 1365-1609
IngestDate Thu Apr 24 22:57:50 EDT 2025
Tue Jul 01 01:54:11 EDT 2025
Fri Feb 23 02:37:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords High-pressure gas discharge
Continuum–discontinuum element method
Stress wave impact
Shale gas reservoirs
Deflagration fracturing
Fracture propagation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a329t-cdc5f6573c96703e714f44e02d76f1f1690af5baf466fcfbc465d1f3aea6bb653
ORCID 0000-0003-3991-2763
ParticipantIDs crossref_primary_10_1016_j_ijrmms_2023_105478
crossref_citationtrail_10_1016_j_ijrmms_2023_105478
elsevier_sciencedirect_doi_10_1016_j_ijrmms_2023_105478
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle International journal of rock mechanics and mining sciences (Oxford, England : 1997)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhai, Zheng, Sun, Yu (bib23) 2021 Dec 21
Wang, Li, Shao, Chen, Li (bib50) 2021; 140
He, Nie, Hu (bib11) 2020; 41
Xu, Cheng, Liu, Zhang, Shi (bib42) 2013; 40
Zhao, Huang, Xu (bib46) 2019; 236
Yu, Ting, Meng, Xiaoqi, Fangkai, Cheng (bib17) 2022; 324
Xu, Yu, Zhang (bib51) 2022; 399
Guo, Gong, Lin, Lin, Wang (bib4) 2018; 140
Zhou, Zheng, Yang (bib5) 2019; 71
Dong, Qiu, Zhang (bib12) 2021; 39
Dontsov, Zhang (bib44) 2018; 144
Zhang, Yu, Xu (bib52) 2022; 271
Wang (bib29) 2018
Liu, Rasouli, Guo, Qu, Sun, Damjanac (bib10) 2020; 238
Zhai, Xu, Liu, Qin (bib14) 2018; 103
Wang, Pan, Zhang, Wang (bib15) 2022; 320
Zhao, He, Guo, Zhu, Wang, He (bib45) 2020; 184
Zou, Ma, Zhang (bib40) 2020; 25
Lisjak, Mahabadi, He (bib53) 2018; 100
Bendezu, Romanel, Roehl (bib49) 2017; 182
Wang, Elsworth, Cao, Liu (bib30) 2020; 129
Zou, Pan, Jing (bib1) 2020; 41
Dontsov (bib43) 2017; 205
Zhu, Feng, Cheng, Wang, Li (bib33) 2021
Wang, Tang, Li, Wang, Feng (bib35) 2015; 47
Nilson, Proffer, Duff (bib22) 1985; 22
Chen, Zhang, Ma, Zhou, Zou (bib41) 2018; 171
Feng, Li, Zhou, Zhang (bib34) 2014; 36
Settgast, Vorobiev, Morris, Herbold, Homel, Annavarapu (bib27) 2017
Henrich (bib38) 1987
Zhao, Chen, Li, Fu, Xu (bib9) 2017; 44
Lin, Feng, Tang, Li, Yin, Wang (bib32) 2019; 39
Wu, Pu, Chen, Ren, Liu (bib25) 2014; 41
Schmidt, Boade, Bass (bib18) 1981; 33
McHugh (bib21) 1983; 21
Middleton, Carey, Currier (bib13) 2015; 147
Wang, Qu, Guo, Chen, Lv, Wang (bib24) 2023; 47
Li, Ma (bib39) 1992
Chen, Zhang, Zhou, Ma, Zou (bib47) 2020; 25
Tian (bib28) 2019
Li, Wang, Liu, Dong (bib31) 2007; 40
Kutter, Fairhurst (bib20) 1971; 8
Ju, Chen, Wang, Gao, Xie (bib36) 2018; 123
Zhao, Ren, Jiang (bib2) 2021; 41
Guo, Zhang, Qu, Zhou, Xiao, Gao (bib6) 2014; 128
li, dong, Hua, Li, Guo (bib8) 2020; 121
Wei, Wu, Liu, Xu, Zhang, Pu (bib16) 2018; 42
Qu, Wang, Guo (bib7) 2021
Ren, Su, Zhan, Hao, Meng, Sheng (bib48) 2016; 28
Schmidt, Warpinski, Cooper (bib19) 1980
Wu, Sun, Wong (bib37) 2019; 52
Wang, Chen, Jha, Rogers (bib3) 2014; 30
Wu, Xu, Wei, Liu, Li, Ding (bib26) 2018; 38
Zhai (10.1016/j.ijrmms.2023.105478_bib14) 2018; 103
Tian (10.1016/j.ijrmms.2023.105478_bib28) 2019
Qu (10.1016/j.ijrmms.2023.105478_bib7) 2021
Zou (10.1016/j.ijrmms.2023.105478_bib40) 2020; 25
Wu (10.1016/j.ijrmms.2023.105478_bib37) 2019; 52
Zhang (10.1016/j.ijrmms.2023.105478_bib52) 2022; 271
Xu (10.1016/j.ijrmms.2023.105478_bib51) 2022; 399
Wang (10.1016/j.ijrmms.2023.105478_bib35) 2015; 47
Feng (10.1016/j.ijrmms.2023.105478_bib34) 2014; 36
Chen (10.1016/j.ijrmms.2023.105478_bib47) 2020; 25
Guo (10.1016/j.ijrmms.2023.105478_bib4) 2018; 140
Wang (10.1016/j.ijrmms.2023.105478_bib24) 2023; 47
Zhao (10.1016/j.ijrmms.2023.105478_bib9) 2017; 44
He (10.1016/j.ijrmms.2023.105478_bib11) 2020; 41
Li (10.1016/j.ijrmms.2023.105478_bib39) 1992
Zou (10.1016/j.ijrmms.2023.105478_bib1) 2020; 41
Zhou (10.1016/j.ijrmms.2023.105478_bib5) 2019; 71
Nilson (10.1016/j.ijrmms.2023.105478_bib22) 1985; 22
Lin (10.1016/j.ijrmms.2023.105478_bib32) 2019; 39
Xu (10.1016/j.ijrmms.2023.105478_bib42) 2013; 40
Zhu (10.1016/j.ijrmms.2023.105478_bib33) 2021
Wang (10.1016/j.ijrmms.2023.105478_bib30) 2020; 129
Schmidt (10.1016/j.ijrmms.2023.105478_bib19) 1980
Li (10.1016/j.ijrmms.2023.105478_bib31) 2007; 40
Dontsov (10.1016/j.ijrmms.2023.105478_bib43) 2017; 205
Guo (10.1016/j.ijrmms.2023.105478_bib6) 2014; 128
Middleton (10.1016/j.ijrmms.2023.105478_bib13) 2015; 147
Wang (10.1016/j.ijrmms.2023.105478_bib15) 2022; 320
Chen (10.1016/j.ijrmms.2023.105478_bib41) 2018; 171
Lisjak (10.1016/j.ijrmms.2023.105478_bib53) 2018; 100
Ren (10.1016/j.ijrmms.2023.105478_bib48) 2016; 28
Wang (10.1016/j.ijrmms.2023.105478_bib50) 2021; 140
Yu (10.1016/j.ijrmms.2023.105478_bib17) 2022; 324
Wu (10.1016/j.ijrmms.2023.105478_bib26) 2018; 38
Zhao (10.1016/j.ijrmms.2023.105478_bib2) 2021; 41
Wu (10.1016/j.ijrmms.2023.105478_bib25) 2014; 41
Dontsov (10.1016/j.ijrmms.2023.105478_bib44) 2018; 144
McHugh (10.1016/j.ijrmms.2023.105478_bib21) 1983; 21
Henrich (10.1016/j.ijrmms.2023.105478_bib38) 1987
Liu (10.1016/j.ijrmms.2023.105478_bib10) 2020; 238
Kutter (10.1016/j.ijrmms.2023.105478_bib20) 1971; 8
Zhai (10.1016/j.ijrmms.2023.105478_bib23) 2021
Wang (10.1016/j.ijrmms.2023.105478_bib29) 2018
li (10.1016/j.ijrmms.2023.105478_bib8) 2020; 121
Settgast (10.1016/j.ijrmms.2023.105478_bib27) 2017
Bendezu (10.1016/j.ijrmms.2023.105478_bib49) 2017; 182
Ju (10.1016/j.ijrmms.2023.105478_bib36) 2018; 123
Wang (10.1016/j.ijrmms.2023.105478_bib3) 2014; 30
Wei (10.1016/j.ijrmms.2023.105478_bib16) 2018; 42
Zhao (10.1016/j.ijrmms.2023.105478_bib46) 2019; 236
Schmidt (10.1016/j.ijrmms.2023.105478_bib18) 1981; 33
Zhao (10.1016/j.ijrmms.2023.105478_bib45) 2020; 184
Dong (10.1016/j.ijrmms.2023.105478_bib12) 2021; 39
References_xml – volume: 324
  year: 2022
  ident: bib17
  article-title: Desorption of CH4/CO2 from kerogen during explosive fracturing
  publication-title: Fuel
– start-page: 246
  year: 1992
  end-page: 253
  ident: bib39
  article-title: Explosion Mechanics
– volume: 144
  start-page: 180
  year: 2018
  end-page: 191
  ident: bib44
  article-title: Calibration of tensile strength to model fracture toughness with distinct element method
  publication-title: Int J Solid Struct
– year: 2018
  ident: bib29
  article-title: Study on Crack Propagation Law of Liquid Carbon Dioxide Phase Transition Blasting and its Application [dissertation]
– volume: 41
  start-page: 379
  year: 2020
  end-page: 391
  ident: bib11
  article-title: Geological problems in the effective development of deep shale gas: a case study of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Sichuan Basin and its periphery
  publication-title: Acta Pet Sin
– volume: 47
  start-page: 973
  year: 2015
  end-page: 983
  ident: bib35
  article-title: Numerical simulation of hydraulic fracturing by a mixed method in two dimensions
  publication-title: Chin J Theor Appl Mech
– volume: 100
  start-page: 84
  year: 2018
  end-page: 96
  ident: bib53
  article-title: Acceleration of a 2D/3D finite-discrete element code for geomechanical simulations using General Purpose GPU computing
  publication-title: Comput Geotech
– volume: 147
  start-page: 500
  year: 2015
  end-page: 509
  ident: bib13
  article-title: Shale gas and non-aqueous fracturing fluids: opportunities and challenges for supercritical CO2
  publication-title: Appl Energy
– volume: 39
  start-page: 29
  year: 2021
  end-page: 45
  ident: bib12
  article-title: Progress on sedimentology of transitional facies shales and new discoveries of shale gas
  publication-title: Acta Sedimentol Sin
– volume: 47
  start-page: 106
  year: 2023
  end-page: 115
  ident: bib24
  article-title: Numerical simulation on fracture propagation of methane in-situ explosion fracturing in shale gas reservoirs
  publication-title: Journal of China University of Petroleum(Edition of Natural Science)
– volume: 71
  year: 2019
  ident: bib5
  article-title: Optimizing the construction parameters of modified zipper fracs in multiple horizontal wells
  publication-title: J Nat Gas Sci Eng
– volume: 28
  start-page: 132
  year: 2016
  end-page: 141
  ident: bib48
  article-title: Modeling and simulation of complex fracture network propagation with SRV fracturing in unconventional shale reservoirs
  publication-title: J Nat Gas Sci Eng
– volume: 41
  start-page: 121
  year: 2021
  end-page: 142
  ident: bib2
  article-title: Ten years of gas shale fracturing in China: review and prospect
  publication-title: Nat Gas Ind
– volume: 128
  start-page: 373
  year: 2014
  end-page: 380
  ident: bib6
  article-title: Experimental study of hydraulic fracturing for shale by stimulated reservoir volume
  publication-title: Fuel
– volume: 182
  start-page: 1
  year: 2017
  end-page: 13
  ident: bib49
  article-title: Finite element analysis of blast-induced fracture propagation in hard rocks
  publication-title: Comput Struct
– volume: 33
  start-page: 1305
  year: 1981
  end-page: 1311
  ident: bib18
  article-title: A new perspective on well shooting-behavior of deeply buried explosions and deflagrations
  publication-title: J Petrol Technol
– year: 2021 Dec 21
  ident: bib23
  article-title: Inventor; China university of mining and technology, assignee
  publication-title: A methane in situ multistage pulse shaped energy deflagration fracturing method for shale reservoir
– volume: 25
  start-page: 3091
  year: 2020
  end-page: 3110
  ident: bib47
  article-title: Optimization of in-stage diversion to promote uniform planar multifracture propagation: a numerical study
  publication-title: SPE J
– volume: 40
  start-page: 682
  year: 2013
  end-page: 686
  ident: bib42
  article-title: Explosive fracturing simulation experiment for low permeability reservoirs and fractal characteristics of cracks produced
  publication-title: Petrol Explor Dev
– volume: 44
  start-page: 117
  year: 2017
  end-page: 124
  ident: bib9
  article-title: Numerical simulation of multi-stage fracturing and optimization of perforation in a horizontal well
  publication-title: Petrol Explor Dev
– volume: 39
  year: 2019
  ident: bib32
  article-title: The settlement and damage characteristics of pavement structure under impulse load
  publication-title: Explos Shock Waves
– volume: 271
  year: 2022
  ident: bib52
  article-title: A hybrid numerical approach for hydraulic fracturing in a naturally fractured formation combining the XFEM and phase-field model
  publication-title: Eng Fract Mech
– volume: 103
  start-page: 145
  year: 2018
  end-page: 154
  ident: bib14
  article-title: Fracturing mechanism of coal-like rock specimens under the effect of non-explosive expansion
  publication-title: Int J Rock Mech Min Sci
– volume: 140
  year: 2021
  ident: bib50
  article-title: Investigating the mechanism of rock fracturing induced by high-pressure gas blasting with a hybrid continuum-discontinuum method
  publication-title: Comput Geotech
– year: 2019
  ident: bib28
  article-title: Numerical Simulation Study on Crack Propagation Mode under Shale Deflagration Fracturing [dissertation]
– start-page: 383
  year: 2021
  ident: bib33
  article-title: A novel three-dimensional hydraulic fracturing model based on continuum-discontinuum element method
  publication-title: Comput Methods Appl Mech Eng
– volume: 121
  year: 2020
  ident: bib8
  article-title: Numerical simulation of temporarily plugging staged fracturing (TPSF) based on cohesive zone method
  publication-title: Comput Geotech
– volume: 238
  year: 2020
  ident: bib10
  article-title: Numerical simulation of stress shadow in multiple cluster hydraulic fracturing in horizontal wells based on lattice modelling
  publication-title: Eng Fract Mech
– volume: 171
  start-page: 1041
  year: 2018
  end-page: 1051
  ident: bib41
  article-title: A semi-analytical model for predicting fluid partitioning among multiple hydraulic fractures from a horizontal well
  publication-title: J Petrol Sci Eng
– volume: 129
  year: 2020
  ident: bib30
  article-title: Reach and geometry of dynamic gas-driven fractures
  publication-title: Int J Rock Mech Min Sci
– volume: 236
  start-page: 1496
  year: 2019
  end-page: 1504
  ident: bib46
  article-title: Experimental investigation on the characteristics of fractures initiation and propagation for gas fracturing by using air as fracturing fluid under true triaxial stresses
  publication-title: Fuel
– volume: 30
  start-page: 1
  year: 2014
  end-page: 28
  ident: bib3
  article-title: Natural gas from shale formation - the evolution, evidences, and challenges of shale gas revolution in United States
  publication-title: Renewable Sustainable Energy Rev
– volume: 140
  year: 2018
  ident: bib4
  article-title: Experimental investigation on damage mechanism of guar gum fracturing fluid to low-permeability reservoir based on nuclear magnetic resonance
  publication-title: J Energy Resour Technol
– start-page: 63
  year: 1987
  end-page: 64
  ident: bib38
  publication-title: The Dynamics of Explosion and its Use
– volume: 205
  start-page: 221
  year: 2017
  end-page: 237
  ident: bib43
  article-title: An approximate solution for a plane strain hydraulic fracture that accounts for fracture toughness, fluid viscosity, and leak-off
  publication-title: Int J Fract
– year: 1980
  ident: bib19
  article-title: In situ evaluation of several tailored-pulse well-shooting concepts
  publication-title: SPE Unconventional Gas Recovery Symposium
– volume: 52
  start-page: 2335
  year: 2019
  end-page: 2359
  ident: bib37
  article-title: A cohesive element-based numerical manifold method for hydraulic fracturing modelling with voronoi grains
  publication-title: Rock Mech Rock Eng
– volume: 40
  start-page: 331
  year: 2007
  end-page: 348
  ident: bib31
  article-title: Analysis of critical excavation depth for a jointed rock slope using a face-to-face discrete element method
  publication-title: Rock Mech Rock Eng
– volume: 22
  start-page: 3
  year: 1985
  end-page: 19
  ident: bib22
  article-title: Modeling of gas-driven fractures induced by propellant combustion within a borehole
  publication-title: Int J Rock Mech Min Sci Geomech Abstracts
– volume: 399
  year: 2022
  ident: bib51
  article-title: Phase-field method of crack branching during SC-CO
  publication-title: Comput Methods Appl Mech Eng
– volume: 21
  start-page: 163
  year: 1983
  end-page: 176
  ident: bib21
  article-title: Crack extension caused by internal gas pressure compared with extension caused by tensile stress
  publication-title: Int J Fract
– volume: 41
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib1
  article-title: Shale oil and gas revolution and its impact
  publication-title: Acta Pet Sin
– volume: 41
  start-page: 605
  year: 2014
  end-page: 611
  ident: bib25
  article-title: Coupling simulation of multistage pulse conflagration compression fracturing
  publication-title: Petrol Explor Dev
– year: 2017
  ident: bib27
  article-title: Modeling of fracture opening by explosive products
  publication-title: 51st U.S. Rock Mechanics/Geomechanics Symposium
– start-page: 204
  year: 2021
  ident: bib7
  article-title: Optimization on fracturing fluid flowback model after hydraulic fracturing in oil well
  publication-title: J Petrol Sci Eng
– volume: 320
  year: 2022
  ident: bib15
  article-title: Experimental study on the radial vibration characteristics of a coal briquette in each stage of its life cycle under the action of CO2 gas explosion
  publication-title: Fuel
– volume: 42
  start-page: 105
  year: 2018
  end-page: 112
  ident: bib16
  article-title: Distribution of induced stress by high energy gas fracturing in wellbore
  publication-title: Journal of China University of Petroleum Edition of Natural Science
– volume: 38
  start-page: 65
  year: 2018
  end-page: 72
  ident: bib26
  article-title: Laws of multi-fracture coupling initiation during blasting induced hydraulic fracturing
  publication-title: Nat Gas Ind
– volume: 8
  start-page: 181
  year: 1971
  end-page: 202
  ident: bib20
  article-title: On the fracture process in blasting
  publication-title: Int J Rock Mech Min Sci Geomech Abstracts
– volume: 25
  start-page: 1503
  year: 2020
  end-page: 1522
  ident: bib40
  article-title: Numerical modeling of fracture propagation during temporary-plugging fracturing
  publication-title: SPE J
– volume: 36
  start-page: 1262
  year: 2014
  end-page: 1270
  ident: bib34
  article-title: Numerical analysis of damage and crack process of rock under explosive loading
  publication-title: Chin J Geotech Eng
– volume: 123
  start-page: 3621
  year: 2018
  end-page: 3644
  ident: bib36
  article-title: Numerical analysis of hydrofracturing behaviors and mechanisms of heterogeneous reservoir glutenite, using the continuum-based discrete element method while considering hydromechanical coupling and leak-off effects
  publication-title: J Geophys Res Solid Earth
– volume: 184
  year: 2020
  ident: bib45
  article-title: The study of fracture propagation in pre-acidized shale reservoir during the hydraulic fracturing
  publication-title: J Petrol Sci Eng
– volume: 71
  year: 2019
  ident: 10.1016/j.ijrmms.2023.105478_bib5
  article-title: Optimizing the construction parameters of modified zipper fracs in multiple horizontal wells
  publication-title: J Nat Gas Sci Eng
  doi: 10.1016/j.jngse.2019.102966
– start-page: 383
  year: 2021
  ident: 10.1016/j.ijrmms.2023.105478_bib33
  article-title: A novel three-dimensional hydraulic fracturing model based on continuum-discontinuum element method
  publication-title: Comput Methods Appl Mech Eng
– start-page: 246
  year: 1992
  ident: 10.1016/j.ijrmms.2023.105478_bib39
– volume: 140
  year: 2021
  ident: 10.1016/j.ijrmms.2023.105478_bib50
  article-title: Investigating the mechanism of rock fracturing induced by high-pressure gas blasting with a hybrid continuum-discontinuum method
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2021.104445
– volume: 30
  start-page: 1
  year: 2014
  ident: 10.1016/j.ijrmms.2023.105478_bib3
  article-title: Natural gas from shale formation - the evolution, evidences, and challenges of shale gas revolution in United States
  publication-title: Renewable Sustainable Energy Rev
  doi: 10.1016/j.rser.2013.08.065
– volume: 121
  year: 2020
  ident: 10.1016/j.ijrmms.2023.105478_bib8
  article-title: Numerical simulation of temporarily plugging staged fracturing (TPSF) based on cohesive zone method
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2020.103453
– volume: 25
  start-page: 1503
  issue: 3
  year: 2020
  ident: 10.1016/j.ijrmms.2023.105478_bib40
  article-title: Numerical modeling of fracture propagation during temporary-plugging fracturing
  publication-title: SPE J
  doi: 10.2118/199351-PA
– volume: 47
  start-page: 973
  issue: 6
  year: 2015
  ident: 10.1016/j.ijrmms.2023.105478_bib35
  article-title: Numerical simulation of hydraulic fracturing by a mixed method in two dimensions
  publication-title: Chin J Theor Appl Mech
– volume: 128
  start-page: 373
  year: 2014
  ident: 10.1016/j.ijrmms.2023.105478_bib6
  article-title: Experimental study of hydraulic fracturing for shale by stimulated reservoir volume
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.03.029
– volume: 52
  start-page: 2335
  issue: 7
  year: 2019
  ident: 10.1016/j.ijrmms.2023.105478_bib37
  article-title: A cohesive element-based numerical manifold method for hydraulic fracturing modelling with voronoi grains
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-018-1717-5
– volume: 144
  start-page: 180
  year: 2018
  ident: 10.1016/j.ijrmms.2023.105478_bib44
  article-title: Calibration of tensile strength to model fracture toughness with distinct element method
  publication-title: Int J Solid Struct
  doi: 10.1016/j.ijsolstr.2018.05.001
– year: 2019
  ident: 10.1016/j.ijrmms.2023.105478_bib28
– volume: 147
  start-page: 500
  year: 2015
  ident: 10.1016/j.ijrmms.2023.105478_bib13
  article-title: Shale gas and non-aqueous fracturing fluids: opportunities and challenges for supercritical CO2
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.03.023
– volume: 41
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.ijrmms.2023.105478_bib1
  article-title: Shale oil and gas revolution and its impact
  publication-title: Acta Pet Sin
– volume: 182
  start-page: 1
  year: 2017
  ident: 10.1016/j.ijrmms.2023.105478_bib49
  article-title: Finite element analysis of blast-induced fracture propagation in hard rocks
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2016.11.006
– volume: 22
  start-page: 3
  issue: 1
  year: 1985
  ident: 10.1016/j.ijrmms.2023.105478_bib22
  article-title: Modeling of gas-driven fractures induced by propellant combustion within a borehole
  publication-title: Int J Rock Mech Min Sci Geomech Abstracts
  doi: 10.1016/0148-9062(85)92589-6
– volume: 44
  start-page: 117
  issue: 1
  year: 2017
  ident: 10.1016/j.ijrmms.2023.105478_bib9
  article-title: Numerical simulation of multi-stage fracturing and optimization of perforation in a horizontal well
  publication-title: Petrol Explor Dev
  doi: 10.1016/S1876-3804(17)30015-0
– volume: 140
  issue: 7
  year: 2018
  ident: 10.1016/j.ijrmms.2023.105478_bib4
  article-title: Experimental investigation on damage mechanism of guar gum fracturing fluid to low-permeability reservoir based on nuclear magnetic resonance
  publication-title: J Energy Resour Technol
  doi: 10.1115/1.4039324
– volume: 39
  start-page: 29
  issue: 1
  year: 2021
  ident: 10.1016/j.ijrmms.2023.105478_bib12
  article-title: Progress on sedimentology of transitional facies shales and new discoveries of shale gas
  publication-title: Acta Sedimentol Sin
– year: 2018
  ident: 10.1016/j.ijrmms.2023.105478_bib29
– volume: 8
  start-page: 181
  issue: 3
  year: 1971
  ident: 10.1016/j.ijrmms.2023.105478_bib20
  article-title: On the fracture process in blasting
  publication-title: Int J Rock Mech Min Sci Geomech Abstracts
  doi: 10.1016/0148-9062(71)90018-0
– volume: 171
  start-page: 1041
  year: 2018
  ident: 10.1016/j.ijrmms.2023.105478_bib41
  article-title: A semi-analytical model for predicting fluid partitioning among multiple hydraulic fractures from a horizontal well
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2018.07.031
– volume: 39
  issue: 11
  year: 2019
  ident: 10.1016/j.ijrmms.2023.105478_bib32
  article-title: The settlement and damage characteristics of pavement structure under impulse load
  publication-title: Explos Shock Waves
– volume: 100
  start-page: 84
  year: 2018
  ident: 10.1016/j.ijrmms.2023.105478_bib53
  article-title: Acceleration of a 2D/3D finite-discrete element code for geomechanical simulations using General Purpose GPU computing
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2018.04.011
– volume: 103
  start-page: 145
  year: 2018
  ident: 10.1016/j.ijrmms.2023.105478_bib14
  article-title: Fracturing mechanism of coal-like rock specimens under the effect of non-explosive expansion
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2018.01.037
– volume: 42
  start-page: 105
  issue: 1
  year: 2018
  ident: 10.1016/j.ijrmms.2023.105478_bib16
  article-title: Distribution of induced stress by high energy gas fracturing in wellbore
  publication-title: Journal of China University of Petroleum Edition of Natural Science
– volume: 324
  year: 2022
  ident: 10.1016/j.ijrmms.2023.105478_bib17
  article-title: Desorption of CH4/CO2 from kerogen during explosive fracturing
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.124741
– volume: 40
  start-page: 682
  issue: 5
  year: 2013
  ident: 10.1016/j.ijrmms.2023.105478_bib42
  article-title: Explosive fracturing simulation experiment for low permeability reservoirs and fractal characteristics of cracks produced
  publication-title: Petrol Explor Dev
  doi: 10.1016/S1876-3804(13)60092-0
– volume: 41
  start-page: 121
  issue: 8
  year: 2021
  ident: 10.1016/j.ijrmms.2023.105478_bib2
  article-title: Ten years of gas shale fracturing in China: review and prospect
  publication-title: Nat Gas Ind
– year: 1980
  ident: 10.1016/j.ijrmms.2023.105478_bib19
  article-title: In situ evaluation of several tailored-pulse well-shooting concepts
– volume: 236
  start-page: 1496
  year: 2019
  ident: 10.1016/j.ijrmms.2023.105478_bib46
  article-title: Experimental investigation on the characteristics of fractures initiation and propagation for gas fracturing by using air as fracturing fluid under true triaxial stresses
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.09.135
– volume: 184
  year: 2020
  ident: 10.1016/j.ijrmms.2023.105478_bib45
  article-title: The study of fracture propagation in pre-acidized shale reservoir during the hydraulic fracturing
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2019.106488
– volume: 123
  start-page: 3621
  issue: 5
  year: 2018
  ident: 10.1016/j.ijrmms.2023.105478_bib36
  article-title: Numerical analysis of hydrofracturing behaviors and mechanisms of heterogeneous reservoir glutenite, using the continuum-based discrete element method while considering hydromechanical coupling and leak-off effects
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2017JB015092
– volume: 25
  start-page: 3091
  issue: 6
  year: 2020
  ident: 10.1016/j.ijrmms.2023.105478_bib47
  article-title: Optimization of in-stage diversion to promote uniform planar multifracture propagation: a numerical study
  publication-title: SPE J
  doi: 10.2118/201114-PA
– volume: 238
  year: 2020
  ident: 10.1016/j.ijrmms.2023.105478_bib10
  article-title: Numerical simulation of stress shadow in multiple cluster hydraulic fracturing in horizontal wells based on lattice modelling
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2020.107278
– start-page: 204
  year: 2021
  ident: 10.1016/j.ijrmms.2023.105478_bib7
  article-title: Optimization on fracturing fluid flowback model after hydraulic fracturing in oil well
  publication-title: J Petrol Sci Eng
– volume: 38
  start-page: 65
  issue: 11
  year: 2018
  ident: 10.1016/j.ijrmms.2023.105478_bib26
  article-title: Laws of multi-fracture coupling initiation during blasting induced hydraulic fracturing
  publication-title: Nat Gas Ind
– volume: 129
  year: 2020
  ident: 10.1016/j.ijrmms.2023.105478_bib30
  article-title: Reach and geometry of dynamic gas-driven fractures
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2020.104287
– start-page: 63
  year: 1987
  ident: 10.1016/j.ijrmms.2023.105478_bib38
– volume: 40
  start-page: 331
  issue: 4
  year: 2007
  ident: 10.1016/j.ijrmms.2023.105478_bib31
  article-title: Analysis of critical excavation depth for a jointed rock slope using a face-to-face discrete element method
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-006-0084-9
– year: 2017
  ident: 10.1016/j.ijrmms.2023.105478_bib27
  article-title: Modeling of fracture opening by explosive products
– volume: 271
  year: 2022
  ident: 10.1016/j.ijrmms.2023.105478_bib52
  article-title: A hybrid numerical approach for hydraulic fracturing in a naturally fractured formation combining the XFEM and phase-field model
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2022.108621
– volume: 47
  start-page: 106
  issue: 1
  year: 2023
  ident: 10.1016/j.ijrmms.2023.105478_bib24
  article-title: Numerical simulation on fracture propagation of methane in-situ explosion fracturing in shale gas reservoirs
  publication-title: Journal of China University of Petroleum(Edition of Natural Science)
– volume: 36
  start-page: 1262
  issue: 7
  year: 2014
  ident: 10.1016/j.ijrmms.2023.105478_bib34
  article-title: Numerical analysis of damage and crack process of rock under explosive loading
  publication-title: Chin J Geotech Eng
– volume: 33
  start-page: 1305
  issue: 7
  year: 1981
  ident: 10.1016/j.ijrmms.2023.105478_bib18
  article-title: A new perspective on well shooting-behavior of deeply buried explosions and deflagrations
  publication-title: J Petrol Technol
  doi: 10.2118/8346-PA
– volume: 21
  start-page: 163
  issue: 3
  year: 1983
  ident: 10.1016/j.ijrmms.2023.105478_bib21
  article-title: Crack extension caused by internal gas pressure compared with extension caused by tensile stress
  publication-title: Int J Fract
  doi: 10.1007/BF00963386
– volume: 28
  start-page: 132
  year: 2016
  ident: 10.1016/j.ijrmms.2023.105478_bib48
  article-title: Modeling and simulation of complex fracture network propagation with SRV fracturing in unconventional shale reservoirs
  publication-title: J Nat Gas Sci Eng
  doi: 10.1016/j.jngse.2015.11.042
– year: 2021
  ident: 10.1016/j.ijrmms.2023.105478_bib23
  article-title: Inventor; China university of mining and technology, assignee
  publication-title: A methane in situ multistage pulse shaped energy deflagration fracturing method for shale reservoir
– volume: 399
  year: 2022
  ident: 10.1016/j.ijrmms.2023.105478_bib51
  article-title: Phase-field method of crack branching during SC-CO2 fracturing: a new energy release rate criterion coupling pore pressure gradient
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2022.115366
– volume: 205
  start-page: 221
  issue: 2
  year: 2017
  ident: 10.1016/j.ijrmms.2023.105478_bib43
  article-title: An approximate solution for a plane strain hydraulic fracture that accounts for fracture toughness, fluid viscosity, and leak-off
  publication-title: Int J Fract
  doi: 10.1007/s10704-017-0192-4
– volume: 320
  year: 2022
  ident: 10.1016/j.ijrmms.2023.105478_bib15
  article-title: Experimental study on the radial vibration characteristics of a coal briquette in each stage of its life cycle under the action of CO2 gas explosion
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.123922
– volume: 41
  start-page: 605
  issue: 5
  year: 2014
  ident: 10.1016/j.ijrmms.2023.105478_bib25
  article-title: Coupling simulation of multistage pulse conflagration compression fracturing
  publication-title: Petrol Explor Dev
  doi: 10.1016/S1876-3804(14)60079-3
– volume: 41
  start-page: 379
  issue: 4
  year: 2020
  ident: 10.1016/j.ijrmms.2023.105478_bib11
  article-title: Geological problems in the effective development of deep shale gas: a case study of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Sichuan Basin and its periphery
  publication-title: Acta Pet Sin
SSID ssj0006267
Score 2.505091
Snippet Methane deflagration fracturing is a new reservoir stimulation method that serves the efficient development of shale gas reservoirs. However, the propagation...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105478
SubjectTerms Continuum–discontinuum element method
Deflagration fracturing
Fracture propagation
High-pressure gas discharge
Shale gas reservoirs
Stress wave impact
Title Numerical simulation of deflagration fracturing in shale gas reservoirs considering the effect of stress wave impact and gas drive
URI https://dx.doi.org/10.1016/j.ijrmms.2023.105478
Volume 170
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KvehB_MT6UfbgdW2T3WzosRRLVexFC72F_cjWlDYtSVtvHvzl7mQTrSAKHhN2QsjbzDzYefMQurYcX_qBz4nl0orAAC8idTsgwnS0oZppWphNPA75YMTux8G4hnqVFgbaKsvc73J6ka3LO63ya7aWSdJ6ggYtj7ctQ4HCX4jJGQthl9-8fbV5WMIeVtorWF3J54oer2SazecwtNunYHjLwGztp_K0VXL6B2i_5Iq4617nENXi9AjtbU0QPEbvw7U7cpnhPJmXVlx4YbCOzUxMHLzYgBSq0CPiJMX5iy0KeCJyDNKjbLNIshyr0rgT1lhOiF2fBzzJqUnwq9jE2GkqsUh1Ea8zmytP0Kh_-9wbkNJWgQjqd1ZEaRUYHoRUdbj93-PQY4axuO3rkBvPwLmZMIEUhnFulJHKIqg9Q0UsuJQWzVNUTxdpfIawZYMaDK-oUj5TlEnGLdLM19QoablIA9Hqa0aqnDkO1hezqGoum0YOgwgwiBwGDUQ-o5Zu5sYf68MKqOjb3olsWfg18vzfkRdoF65cW98lqq-ydXxl6clKNov910Q73buHwfAD7XXnsA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPagH8Ylv9-B1aZvdbOixFKVa24sVvIV9akqbSvrw7i93J7uRCqLgNdkJId9m5oOdbz6Erh3Hl1EcceK4tCIwwItI3YyJsG1tqWaalmYTgyHvPbH75_i5hrqVFgbaKkPu9zm9zNbhSiN8zcZbljUeoUGrxZuOoUDhBzH5Bkyniutoo3PX7w2_ErLj7Eklv4KASkFXtnll42I6hbndEQXPWwZ-az9VqLWqc7uLdgJdxB3_RnuoZvJ9tL02RPAAfQyX_tRlgufZNLhx4ZnF2tiJePEIYwtqqFKSiLMcz19dXcAvYo5BfVSsZlkxxyp4d8IaRwuxb_WAJ3lBCX4XK4O9rBKLXJfxunDp8hA93d6Muj0SnBWIoFF7QZRWseVxQlWbu1_eJC1mGTPNSCfctiwcnQkbS2EZ51ZZqRyIumWpMIJL6QA9QvV8lptjhB0h1OB5RZWKmKJMMu7AZpGmVklHR04Qrb5mqsLYcXC_mKRVf9k49RikgEHqMThB5CvqzY_d-GN9UgGVfts-qasMv0ae_jvyCm32RoOH9OFu2D9DW3DHd_mdo_qiWJoLx1YW8jLsxk_bleph
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+deflagration+fracturing+in+shale+gas+reservoirs+considering+the+effect+of+stress+wave+impact+and+gas+drive&rft.jtitle=International+journal+of+rock+mechanics+and+mining+sciences+%28Oxford%2C+England+%3A+1997%29&rft.au=Wang%2C+Jiwei&rft.au=Guo%2C+Tiankui&rft.au=Chen%2C+Ming&rft.au=Qu%2C+Zhanqing&rft.date=2023-10-01&rft.pub=Elsevier+Ltd&rft.issn=1365-1609&rft.eissn=1873-4545&rft.volume=170&rft_id=info:doi/10.1016%2Fj.ijrmms.2023.105478&rft.externalDocID=S1365160923001521
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-1609&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-1609&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-1609&client=summon