Toughening of Cocontinuous Polylactide/Polyethylene Blends via an Interfacially Percolated Intermediate Phase

It will be shown that an interfacially percolated rubbery phase in a cocontinuous polylactide (PLA)/linear low-density polyethylene (LLDPE) blend results in a significant increase in the impact strength. All blends possess a tricontinuous phase morphology in which poly­(ε-caprolactone) (PCL), poly­(...

Full description

Saved in:
Bibliographic Details
Published inMacromolecules Vol. 51; no. 10; pp. 3572 - 3581
Main Authors Zolali, Ali M, Favis, Basil D
Format Journal Article
LanguageEnglish
Published American Chemical Society 22.05.2018
Online AccessGet full text

Cover

Loading…
Abstract It will be shown that an interfacially percolated rubbery phase in a cocontinuous polylactide (PLA)/linear low-density polyethylene (LLDPE) blend results in a significant increase in the impact strength. All blends possess a tricontinuous phase morphology in which poly­(ε-caprolactone) (PCL), poly­(ethylene–methyl acrylate) (EMA), and ethylene–methyl acrylate–glycidyl methacrylate (EMA-GMA) percolate at the interface of PLA/LLDPE but offer different toughening and compatibilization effects. Among these components, the addition of EMA-GMA to the binary PLA/LLDPE blend reduces the cocontinuous PLA/LLDPE phase thickness from about 25 to 5 μm and yields a very tough material with an impact strength of about 515 J/m, which is approximately 13 times greater than the original cocontinuous PLA/LLDPE blend and more than 32 times that of PLA. The ternary blends show significant improvements in the impact strength within the tricontinuous region; however, the principal differences in the toughening effects are attributed to interfacial interactions between the phases. The interconnected network of the rubbery phase is expected to percolate the stress field throughout the tricontinuous system and reduce the detrimental dilatational stress in the bulk blend.
AbstractList It will be shown that an interfacially percolated rubbery phase in a cocontinuous polylactide (PLA)/linear low-density polyethylene (LLDPE) blend results in a significant increase in the impact strength. All blends possess a tricontinuous phase morphology in which poly­(ε-caprolactone) (PCL), poly­(ethylene–methyl acrylate) (EMA), and ethylene–methyl acrylate–glycidyl methacrylate (EMA-GMA) percolate at the interface of PLA/LLDPE but offer different toughening and compatibilization effects. Among these components, the addition of EMA-GMA to the binary PLA/LLDPE blend reduces the cocontinuous PLA/LLDPE phase thickness from about 25 to 5 μm and yields a very tough material with an impact strength of about 515 J/m, which is approximately 13 times greater than the original cocontinuous PLA/LLDPE blend and more than 32 times that of PLA. The ternary blends show significant improvements in the impact strength within the tricontinuous region; however, the principal differences in the toughening effects are attributed to interfacial interactions between the phases. The interconnected network of the rubbery phase is expected to percolate the stress field throughout the tricontinuous system and reduce the detrimental dilatational stress in the bulk blend.
Author Zolali, Ali M
Favis, Basil D
AuthorAffiliation CREPEC, Department of Chemical Engineering
École Polytechnique de Montréal
AuthorAffiliation_xml – name: École Polytechnique de Montréal
– name: CREPEC, Department of Chemical Engineering
Author_xml – sequence: 1
  givenname: Ali M
  orcidid: 0000-0002-8459-068X
  surname: Zolali
  fullname: Zolali, Ali M
– sequence: 2
  givenname: Basil D
  orcidid: 0000-0002-7980-3740
  surname: Favis
  fullname: Favis, Basil D
  email: basil.favis@polymtl.ca
BookMark eNp9kMlqwzAQhkVJoUnaN-hBL-BUq5djG7oEAs0hPZuxPE4UZKlYdsFvX4ek115m4ecbhm9BZj54JOSRsxVngj-BiasWTBfa4FZ5xZhK1Q2Zcy1YonOpZ2TOmFBJIYrsjixiPDHGuVZyTtp9GA5H9NYfaGjoOpjge-uHMES6C250YHpb49N5xv44OvRIX6ZaR_pjgYKnG99j14Cx4NxId9iZ4KDH-hK0WNtpo7sjRLwntw24iA_XviRfb6_79Uey_XzfrJ-3CUhR9EnFJCLkWuua81wjL2SKVZoZk4sq07IALgTTecYbUxuosKkKXqicK5OlqWzkkqjL3clJjB025XdnW-jGkrPyrKyclJV_ysqrsgljF-ycnsLQ-enJ_5FfoU133Q
CitedBy_id crossref_primary_10_1016_j_polymer_2018_11_013
crossref_primary_10_1016_j_polymer_2021_124269
crossref_primary_10_1002_pol_20190006
crossref_primary_10_3390_polym11101583
crossref_primary_10_1002_macp_202100012
crossref_primary_10_1016_j_compositesb_2020_107930
crossref_primary_10_1021_acs_iecr_3c00239
crossref_primary_10_3390_polym15132807
crossref_primary_10_1021_acs_macromol_2c01868
crossref_primary_10_1002_pcr2_10145
crossref_primary_10_3390_polym12010106
crossref_primary_10_1038_s44222_023_00142_5
crossref_primary_10_1021_acs_macromol_0c01804
crossref_primary_10_1016_j_polymertesting_2020_106521
crossref_primary_10_1016_j_ijbiomac_2018_12_002
crossref_primary_10_1016_j_indcrop_2022_114707
crossref_primary_10_1021_acsomega_9b02639
crossref_primary_10_3390_molecules27206819
crossref_primary_10_1016_j_mtsust_2022_100314
crossref_primary_10_1039_D0TB02971H
crossref_primary_10_1016_j_polymer_2022_125620
crossref_primary_10_3390_su132112157
crossref_primary_10_1002_app_50623
crossref_primary_10_1021_acs_iecr_0c01556
crossref_primary_10_1016_j_polymertesting_2020_106918
crossref_primary_10_1021_acs_langmuir_1c03221
crossref_primary_10_1016_j_coco_2023_101680
crossref_primary_10_1021_acs_iecr_0c00988
crossref_primary_10_1002_pol_20210175
crossref_primary_10_3390_ma14061523
crossref_primary_10_1016_j_polymer_2022_125336
crossref_primary_10_1016_j_ijbiomac_2024_129975
crossref_primary_10_1007_s13726_021_00912_1
crossref_primary_10_1007_s10924_019_01466_3
crossref_primary_10_1016_j_mtcomm_2021_102215
crossref_primary_10_1007_s10118_021_2565_4
crossref_primary_10_1016_j_polymer_2023_126186
crossref_primary_10_1016_j_tca_2022_179272
crossref_primary_10_1002_adfm_201807434
crossref_primary_10_1002_pen_25755
crossref_primary_10_1016_j_polymer_2020_122384
crossref_primary_10_1002_mame_202100122
crossref_primary_10_3390_polym16131906
crossref_primary_10_1177_08927057221128189
crossref_primary_10_1016_j_compscitech_2023_109979
crossref_primary_10_1016_j_compscitech_2022_109611
crossref_primary_10_1021_acs_macromol_8b02626
crossref_primary_10_1016_j_ijbiomac_2019_01_068
crossref_primary_10_1122_8_0000234
crossref_primary_10_1021_acs_macromol_9b02295
crossref_primary_10_1016_j_ijbiomac_2021_10_154
crossref_primary_10_1016_j_polymer_2022_124710
crossref_primary_10_1016_j_compositesb_2020_108155
crossref_primary_10_1016_j_ijbiomac_2024_132936
crossref_primary_10_1016_j_polymer_2022_125324
crossref_primary_10_1016_j_synthmet_2024_117592
crossref_primary_10_1007_s10118_023_2945_z
crossref_primary_10_1021_acsapm_0c01095
crossref_primary_10_1016_j_cej_2021_129603
crossref_primary_10_1016_j_compositesb_2021_108930
crossref_primary_10_1016_j_polymer_2022_125165
crossref_primary_10_3390_polym12061344
crossref_primary_10_3390_ma17030662
crossref_primary_10_1016_j_surfin_2020_100879
crossref_primary_10_1021_acsami_2c21722
crossref_primary_10_1002_app_51413
crossref_primary_10_1021_acssuschemeng_9b01657
crossref_primary_10_1007_s10965_024_04054_9
crossref_primary_10_1021_acs_macromol_9b01398
crossref_primary_10_3390_jcs6090255
crossref_primary_10_1002_pi_5767
crossref_primary_10_1021_acsomega_3c01738
crossref_primary_10_1080_15583724_2024_2310105
Cites_doi 10.1016/S0032-3861(98)00445-5
10.1016/S0032-3861(02)00282-3
10.1016/0021-9797(70)90073-1
10.1002/pola.1254
10.1021/ma1026719
10.1088/1742-6596/184/1/012029
10.1002/pi.4632
10.1021/ma9007303
10.1021/acs.jpcb.6b08800
10.1016/j.polymer.2017.05.056
10.1021/ma901547a
10.1007/s00289-014-1266-3
10.1021/ma052571n
10.1021/am3007577
10.1080/15583720701834216
10.1016/S0014-3057(98)00112-8
10.1016/j.polymer.2004.10.047
10.1122/1.550087
10.1021/ma034013j
10.1016/j.polymer.2005.10.022
10.1021/am502337u
10.1021/acs.iecr.5b00882
10.1021/ma101108g
10.1016/0032-3861(88)90269-8
10.1021/ma1026934
10.1016/j.polymer.2004.02.070
10.1021/mz500770y
10.1016/j.polymer.2017.02.093
10.1002/app.12462
10.1021/acs.macromol.6b02310
10.1590/S0104-14282012005000072
10.1016/S0032-3861(98)00182-7
10.1023/A:1020200822435
10.1016/0032-3861(84)90025-9
10.1016/j.polymer.2010.06.045
10.1016/0032-3861(95)93590-I
10.1016/S0032-3861(00)00785-0
10.1002/macp.200900552
10.1002/aic.14495
10.1021/ma902805x
10.1016/j.polymer.2008.12.025
10.1002/aic.10281
10.1021/am301842e
10.1039/b926191e
10.1007/978-94-007-6064-6_13
10.1021/am3004522
10.1016/j.polymer.2009.09.059
10.1126/science.288.5474.2187
10.1002/polb.22283
10.1021/ma020789t
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1021/acs.macromol.8b00464
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5835
EndPage 3581
ExternalDocumentID 10_1021_acs_macromol_8b00464
b831734941
GroupedDBID .K2
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
P2P
ROL
TN5
TWZ
UI2
VF5
VG9
W1F
WH7
X
YZZ
-~X
4.4
AAHBH
AAYXX
ABJNI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a329t-b03eea8555d1185e1936eb67cc82b7539a12205871fcdcabefb9194814c7663f3
IEDL.DBID ACS
ISSN 0024-9297
IngestDate Fri Aug 23 02:20:02 EDT 2024
Thu Aug 27 13:42:21 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a329t-b03eea8555d1185e1936eb67cc82b7539a12205871fcdcabefb9194814c7663f3
ORCID 0000-0002-8459-068X
0000-0002-7980-3740
PageCount 10
ParticipantIDs crossref_primary_10_1021_acs_macromol_8b00464
acs_journals_10_1021_acs_macromol_8b00464
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2018-05-22
PublicationDateYYYYMMDD 2018-05-22
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-22
  day: 22
PublicationDecade 2010
PublicationTitle Macromolecules
PublicationTitleAlternate Macromolecules
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
Bartczak Z. (ref33/cit33) 2014
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref45/cit45
  doi: 10.1016/S0032-3861(98)00445-5
– ident: ref21/cit21
  doi: 10.1016/S0032-3861(02)00282-3
– ident: ref27/cit27
  doi: 10.1016/0021-9797(70)90073-1
– ident: ref6/cit6
  doi: 10.1002/pola.1254
– ident: ref32/cit32
  doi: 10.1021/ma1026719
– ident: ref41/cit41
  doi: 10.1088/1742-6596/184/1/012029
– ident: ref19/cit19
  doi: 10.1002/pi.4632
– ident: ref28/cit28
  doi: 10.1021/ma9007303
– ident: ref7/cit7
  doi: 10.1021/acs.jpcb.6b08800
– ident: ref11/cit11
  doi: 10.1016/j.polymer.2017.05.056
– ident: ref43/cit43
  doi: 10.1021/ma901547a
– ident: ref18/cit18
  doi: 10.1007/s00289-014-1266-3
– ident: ref26/cit26
  doi: 10.1021/ma052571n
– ident: ref38/cit38
  doi: 10.1021/am3007577
– ident: ref1/cit1
  doi: 10.1080/15583720701834216
– ident: ref39/cit39
  doi: 10.1016/S0014-3057(98)00112-8
– ident: ref8/cit8
  doi: 10.1016/j.polymer.2004.10.047
– ident: ref20/cit20
  doi: 10.1122/1.550087
– ident: ref48/cit48
  doi: 10.1021/ma034013j
– ident: ref29/cit29
  doi: 10.1016/j.polymer.2005.10.022
– ident: ref17/cit17
  doi: 10.1021/am502337u
– ident: ref9/cit9
  doi: 10.1021/acs.iecr.5b00882
– ident: ref13/cit13
  doi: 10.1021/ma101108g
– ident: ref25/cit25
  doi: 10.1016/0032-3861(88)90269-8
– ident: ref14/cit14
  doi: 10.1021/ma1026934
– ident: ref15/cit15
  doi: 10.1016/j.polymer.2004.02.070
– ident: ref5/cit5
  doi: 10.1021/mz500770y
– ident: ref35/cit35
  doi: 10.1016/j.polymer.2017.02.093
– ident: ref3/cit3
  doi: 10.1002/app.12462
– ident: ref10/cit10
  doi: 10.1021/acs.macromol.6b02310
– ident: ref4/cit4
  doi: 10.1590/S0104-14282012005000072
– ident: ref36/cit36
  doi: 10.1016/S0032-3861(98)00182-7
– ident: ref23/cit23
  doi: 10.1023/A:1020200822435
– ident: ref24/cit24
  doi: 10.1016/0032-3861(84)90025-9
– ident: ref12/cit12
  doi: 10.1016/j.polymer.2010.06.045
– ident: ref44/cit44
  doi: 10.1016/0032-3861(95)93590-I
– ident: ref22/cit22
  doi: 10.1016/S0032-3861(00)00785-0
– ident: ref31/cit31
  doi: 10.1002/macp.200900552
– ident: ref46/cit46
  doi: 10.1002/aic.14495
– ident: ref30/cit30
  doi: 10.1021/ma902805x
– ident: ref37/cit37
  doi: 10.1016/j.polymer.2008.12.025
– ident: ref40/cit40
  doi: 10.1002/aic.10281
– ident: ref34/cit34
  doi: 10.1021/am301842e
– ident: ref42/cit42
  doi: 10.1039/b926191e
– start-page: 1203
  volume-title: Polymer Blends Handbook
  year: 2014
  ident: ref33/cit33
  doi: 10.1007/978-94-007-6064-6_13
  contributor:
    fullname: Bartczak Z.
– ident: ref16/cit16
  doi: 10.1021/am3004522
– ident: ref50/cit50
  doi: 10.1016/j.polymer.2009.09.059
– ident: ref49/cit49
  doi: 10.1126/science.288.5474.2187
– ident: ref2/cit2
  doi: 10.1002/polb.22283
– ident: ref47/cit47
  doi: 10.1021/ma020789t
SSID ssj0011543
Score 2.568824
Snippet It will be shown that an interfacially percolated rubbery phase in a cocontinuous polylactide (PLA)/linear low-density polyethylene (LLDPE) blend results in a...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 3572
Title Toughening of Cocontinuous Polylactide/Polyethylene Blends via an Interfacially Percolated Intermediate Phase
URI http://dx.doi.org/10.1021/acs.macromol.8b00464
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60HvTiW6wv9uDFQ9pk89jkqMVSBLVgC72F3c0ExTSRJhHqr3c2abQoit5Csixhdpb5vnkScm5Fgas8T5OcQBoOCNMQpgWGCzFzOItsXk1ruL3zBmPnZuJOPoni1wg-s7pC5Z2pqJLTko5fx-JWyRrjeD80FOo9fEQNEA7UEWXmGGj2eVMq98Mu2iCpfMkgLVmW_ha5b-pz6oSS505ZyI56-96u8Y8_vU02FyCTXtZasUNWIN0l671mttsemY70cB7QPhGaxbSX6Yz1p7TMypwOs2Se6HKHCLr6GfAo0TQBvUp0-ix9fRJUpLRyJcZCe9yTOR3CDDUKcWtUf6gKUgqgw0e0kvtk3L8e9QbGYvCCIWwWFIY0bQDhu64bIf9wAUGeB9LjSvlMIr8JhKXrc5FrxSpSQkIsA0u3fXEURwQT2weklWYpHBJqxgI5poxNDogVTB5w01WB7wWRqRi3oja5QFmFi4uTh1VMnFmhftkIMFwIsE2M5qTCl7oXx6_rj_6x9zHZQCjk67wAxk5Iq5iVcIpwo5BnlY69Awlc0zE
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58HPTiW3ybgxcPXdts07RHXZT1yYKreCtJOkWxtmK7gv56J-1WRVDwVtISwmTK980bYM9LImGCwBo5kXZ8VK6jXA8dgSn3JU-6sp7WcHkV9G_8sztxNwGirYWhQ5S0U1kH8b-6C3gHdu1J1TlqWSdsQnKTMC0kYaZlRL3rz-ABsYImsMx9h9BfthVzv-xiccmU33DpG8CczMPt59HqvJLHzqjSHfP-o2vjv8--AHNjyskOGx1ZhAnMl2Cm1056W4anoR3Vg9ZDwoqU9Qqbv_6Qj4pRyQZF9pbZ4ocED-wz0sUSUCE7ymwyLXt9UEzlrHYspsr637M3NsAX0i9isUnzoi5PqZAN7gkzV-Dm5HjY6zvjMQyO6vKocrTbRVShECIha0QgUb4AdSCNCbkmaydSnq3WJcsrNYlRGlMdebYJjG8k8Zm0uwpTeZHjGjA3VWRx6tSVSMzBlZF0hYnCIEpcw6WXrMM-ySoe_0ZlXEfIuRfbxVaA8ViA6-C0FxY_N505_vx-4x9778JMf3h5EV-cXp1vwiyRpNBmDHC-BVPVywi3iYhUeqdWuw_lC9uW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-QwFA-uwq4XddcVv83Byx46tpmmaY86OvixysAqiJeSjxcUayu2I-hf70vakWFhhfVW0vB4JC-83_smZDcyGddJ4oycTAUxyDCQYQQBB8tiwUxf-GkN5xfJ8VV8es2vp0Z9IRM1Uqp9EN-96kdjuw4D0Z5bf5A-T63opW1Y7guZ4yLyEdr9wZ_3AAIigza4zOIAEYCYVM39g4rTTbqe0k1TSma4SG7e2fO5Jfe9caN6-vWvzo2f4n-JLHTQk-63svKdzED5g3wbTCa-LZOHSzeyB5ynhFaWDiqXx35XjqtxTUdV8VK4IggDe-4b8IJRYQE9KFxSLX2-k1SW1DsYrXR--OKFjuAJ5QzRrGl_-DKVBujoFnXnT3I1PLocHAfdOIZA9lnWBCrsA8iUc27QKuGA0C8BlQitU6bQ6slk5Kp20QKz2mipwKoscs1gYi0Q19j-CpktqxJWCQ2tRMtT2VAAIohQZCLkOkuTzISaiciskV94Vnn3nOrcR8pZlLvFyQHm3QGukWByaflj26Hjw_3r_0F7h3wdHQ7z3ycXZxtkHrFS6hIHGNsks83TGLYQjzRq20veG-th3hA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toughening+of+Cocontinuous+Polylactide%2FPolyethylene+Blends+via+an+Interfacially+Percolated+Intermediate+Phase&rft.jtitle=Macromolecules&rft.au=Zolali%2C+Ali+M&rft.au=Favis%2C+Basil+D&rft.date=2018-05-22&rft.pub=American+Chemical+Society&rft.issn=0024-9297&rft.eissn=1520-5835&rft.volume=51&rft.issue=10&rft.spage=3572&rft.epage=3581&rft_id=info:doi/10.1021%2Facs.macromol.8b00464&rft.externalDocID=b831734941
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-9297&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-9297&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-9297&client=summon