Toughening of Cocontinuous Polylactide/Polyethylene Blends via an Interfacially Percolated Intermediate Phase
It will be shown that an interfacially percolated rubbery phase in a cocontinuous polylactide (PLA)/linear low-density polyethylene (LLDPE) blend results in a significant increase in the impact strength. All blends possess a tricontinuous phase morphology in which poly(ε-caprolactone) (PCL), poly(...
Saved in:
Published in | Macromolecules Vol. 51; no. 10; pp. 3572 - 3581 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
22.05.2018
|
Online Access | Get full text |
Cover
Loading…
Abstract | It will be shown that an interfacially percolated rubbery phase in a cocontinuous polylactide (PLA)/linear low-density polyethylene (LLDPE) blend results in a significant increase in the impact strength. All blends possess a tricontinuous phase morphology in which poly(ε-caprolactone) (PCL), poly(ethylene–methyl acrylate) (EMA), and ethylene–methyl acrylate–glycidyl methacrylate (EMA-GMA) percolate at the interface of PLA/LLDPE but offer different toughening and compatibilization effects. Among these components, the addition of EMA-GMA to the binary PLA/LLDPE blend reduces the cocontinuous PLA/LLDPE phase thickness from about 25 to 5 μm and yields a very tough material with an impact strength of about 515 J/m, which is approximately 13 times greater than the original cocontinuous PLA/LLDPE blend and more than 32 times that of PLA. The ternary blends show significant improvements in the impact strength within the tricontinuous region; however, the principal differences in the toughening effects are attributed to interfacial interactions between the phases. The interconnected network of the rubbery phase is expected to percolate the stress field throughout the tricontinuous system and reduce the detrimental dilatational stress in the bulk blend. |
---|---|
AbstractList | It will be shown that an interfacially percolated rubbery phase in a cocontinuous polylactide (PLA)/linear low-density polyethylene (LLDPE) blend results in a significant increase in the impact strength. All blends possess a tricontinuous phase morphology in which poly(ε-caprolactone) (PCL), poly(ethylene–methyl acrylate) (EMA), and ethylene–methyl acrylate–glycidyl methacrylate (EMA-GMA) percolate at the interface of PLA/LLDPE but offer different toughening and compatibilization effects. Among these components, the addition of EMA-GMA to the binary PLA/LLDPE blend reduces the cocontinuous PLA/LLDPE phase thickness from about 25 to 5 μm and yields a very tough material with an impact strength of about 515 J/m, which is approximately 13 times greater than the original cocontinuous PLA/LLDPE blend and more than 32 times that of PLA. The ternary blends show significant improvements in the impact strength within the tricontinuous region; however, the principal differences in the toughening effects are attributed to interfacial interactions between the phases. The interconnected network of the rubbery phase is expected to percolate the stress field throughout the tricontinuous system and reduce the detrimental dilatational stress in the bulk blend. |
Author | Zolali, Ali M Favis, Basil D |
AuthorAffiliation | CREPEC, Department of Chemical Engineering École Polytechnique de Montréal |
AuthorAffiliation_xml | – name: École Polytechnique de Montréal – name: CREPEC, Department of Chemical Engineering |
Author_xml | – sequence: 1 givenname: Ali M orcidid: 0000-0002-8459-068X surname: Zolali fullname: Zolali, Ali M – sequence: 2 givenname: Basil D orcidid: 0000-0002-7980-3740 surname: Favis fullname: Favis, Basil D email: basil.favis@polymtl.ca |
BookMark | eNp9kMlqwzAQhkVJoUnaN-hBL-BUq5djG7oEAs0hPZuxPE4UZKlYdsFvX4ek115m4ecbhm9BZj54JOSRsxVngj-BiasWTBfa4FZ5xZhK1Q2Zcy1YonOpZ2TOmFBJIYrsjixiPDHGuVZyTtp9GA5H9NYfaGjoOpjge-uHMES6C250YHpb49N5xv44OvRIX6ZaR_pjgYKnG99j14Cx4NxId9iZ4KDH-hK0WNtpo7sjRLwntw24iA_XviRfb6_79Uey_XzfrJ-3CUhR9EnFJCLkWuua81wjL2SKVZoZk4sq07IALgTTecYbUxuosKkKXqicK5OlqWzkkqjL3clJjB025XdnW-jGkrPyrKyclJV_ysqrsgljF-ycnsLQ-enJ_5FfoU133Q |
CitedBy_id | crossref_primary_10_1016_j_polymer_2018_11_013 crossref_primary_10_1016_j_polymer_2021_124269 crossref_primary_10_1002_pol_20190006 crossref_primary_10_3390_polym11101583 crossref_primary_10_1002_macp_202100012 crossref_primary_10_1016_j_compositesb_2020_107930 crossref_primary_10_1021_acs_iecr_3c00239 crossref_primary_10_3390_polym15132807 crossref_primary_10_1021_acs_macromol_2c01868 crossref_primary_10_1002_pcr2_10145 crossref_primary_10_3390_polym12010106 crossref_primary_10_1038_s44222_023_00142_5 crossref_primary_10_1021_acs_macromol_0c01804 crossref_primary_10_1016_j_polymertesting_2020_106521 crossref_primary_10_1016_j_ijbiomac_2018_12_002 crossref_primary_10_1016_j_indcrop_2022_114707 crossref_primary_10_1021_acsomega_9b02639 crossref_primary_10_3390_molecules27206819 crossref_primary_10_1016_j_mtsust_2022_100314 crossref_primary_10_1039_D0TB02971H crossref_primary_10_1016_j_polymer_2022_125620 crossref_primary_10_3390_su132112157 crossref_primary_10_1002_app_50623 crossref_primary_10_1021_acs_iecr_0c01556 crossref_primary_10_1016_j_polymertesting_2020_106918 crossref_primary_10_1021_acs_langmuir_1c03221 crossref_primary_10_1016_j_coco_2023_101680 crossref_primary_10_1021_acs_iecr_0c00988 crossref_primary_10_1002_pol_20210175 crossref_primary_10_3390_ma14061523 crossref_primary_10_1016_j_polymer_2022_125336 crossref_primary_10_1016_j_ijbiomac_2024_129975 crossref_primary_10_1007_s13726_021_00912_1 crossref_primary_10_1007_s10924_019_01466_3 crossref_primary_10_1016_j_mtcomm_2021_102215 crossref_primary_10_1007_s10118_021_2565_4 crossref_primary_10_1016_j_polymer_2023_126186 crossref_primary_10_1016_j_tca_2022_179272 crossref_primary_10_1002_adfm_201807434 crossref_primary_10_1002_pen_25755 crossref_primary_10_1016_j_polymer_2020_122384 crossref_primary_10_1002_mame_202100122 crossref_primary_10_3390_polym16131906 crossref_primary_10_1177_08927057221128189 crossref_primary_10_1016_j_compscitech_2023_109979 crossref_primary_10_1016_j_compscitech_2022_109611 crossref_primary_10_1021_acs_macromol_8b02626 crossref_primary_10_1016_j_ijbiomac_2019_01_068 crossref_primary_10_1122_8_0000234 crossref_primary_10_1021_acs_macromol_9b02295 crossref_primary_10_1016_j_ijbiomac_2021_10_154 crossref_primary_10_1016_j_polymer_2022_124710 crossref_primary_10_1016_j_compositesb_2020_108155 crossref_primary_10_1016_j_ijbiomac_2024_132936 crossref_primary_10_1016_j_polymer_2022_125324 crossref_primary_10_1016_j_synthmet_2024_117592 crossref_primary_10_1007_s10118_023_2945_z crossref_primary_10_1021_acsapm_0c01095 crossref_primary_10_1016_j_cej_2021_129603 crossref_primary_10_1016_j_compositesb_2021_108930 crossref_primary_10_1016_j_polymer_2022_125165 crossref_primary_10_3390_polym12061344 crossref_primary_10_3390_ma17030662 crossref_primary_10_1016_j_surfin_2020_100879 crossref_primary_10_1021_acsami_2c21722 crossref_primary_10_1002_app_51413 crossref_primary_10_1021_acssuschemeng_9b01657 crossref_primary_10_1007_s10965_024_04054_9 crossref_primary_10_1021_acs_macromol_9b01398 crossref_primary_10_3390_jcs6090255 crossref_primary_10_1002_pi_5767 crossref_primary_10_1021_acsomega_3c01738 crossref_primary_10_1080_15583724_2024_2310105 |
Cites_doi | 10.1016/S0032-3861(98)00445-5 10.1016/S0032-3861(02)00282-3 10.1016/0021-9797(70)90073-1 10.1002/pola.1254 10.1021/ma1026719 10.1088/1742-6596/184/1/012029 10.1002/pi.4632 10.1021/ma9007303 10.1021/acs.jpcb.6b08800 10.1016/j.polymer.2017.05.056 10.1021/ma901547a 10.1007/s00289-014-1266-3 10.1021/ma052571n 10.1021/am3007577 10.1080/15583720701834216 10.1016/S0014-3057(98)00112-8 10.1016/j.polymer.2004.10.047 10.1122/1.550087 10.1021/ma034013j 10.1016/j.polymer.2005.10.022 10.1021/am502337u 10.1021/acs.iecr.5b00882 10.1021/ma101108g 10.1016/0032-3861(88)90269-8 10.1021/ma1026934 10.1016/j.polymer.2004.02.070 10.1021/mz500770y 10.1016/j.polymer.2017.02.093 10.1002/app.12462 10.1021/acs.macromol.6b02310 10.1590/S0104-14282012005000072 10.1016/S0032-3861(98)00182-7 10.1023/A:1020200822435 10.1016/0032-3861(84)90025-9 10.1016/j.polymer.2010.06.045 10.1016/0032-3861(95)93590-I 10.1016/S0032-3861(00)00785-0 10.1002/macp.200900552 10.1002/aic.14495 10.1021/ma902805x 10.1016/j.polymer.2008.12.025 10.1002/aic.10281 10.1021/am301842e 10.1039/b926191e 10.1007/978-94-007-6064-6_13 10.1021/am3004522 10.1016/j.polymer.2009.09.059 10.1126/science.288.5474.2187 10.1002/polb.22283 10.1021/ma020789t |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1021/acs.macromol.8b00464 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5835 |
EndPage | 3581 |
ExternalDocumentID | 10_1021_acs_macromol_8b00464 b831734941 |
GroupedDBID | .K2 53G 55A 5GY 5VS 7~N AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 P2P ROL TN5 TWZ UI2 VF5 VG9 W1F WH7 X YZZ -~X 4.4 AAHBH AAYXX ABJNI ABQRX ACBEA ACGFO ADHLV AGXLV AHGAQ CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a329t-b03eea8555d1185e1936eb67cc82b7539a12205871fcdcabefb9194814c7663f3 |
IEDL.DBID | ACS |
ISSN | 0024-9297 |
IngestDate | Fri Aug 23 02:20:02 EDT 2024 Thu Aug 27 13:42:21 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a329t-b03eea8555d1185e1936eb67cc82b7539a12205871fcdcabefb9194814c7663f3 |
ORCID | 0000-0002-8459-068X 0000-0002-7980-3740 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1021_acs_macromol_8b00464 acs_journals_10_1021_acs_macromol_8b00464 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2018-05-22 |
PublicationDateYYYYMMDD | 2018-05-22 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-22 day: 22 |
PublicationDecade | 2010 |
PublicationTitle | Macromolecules |
PublicationTitleAlternate | Macromolecules |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 Bartczak Z. (ref33/cit33) 2014 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref45/cit45 doi: 10.1016/S0032-3861(98)00445-5 – ident: ref21/cit21 doi: 10.1016/S0032-3861(02)00282-3 – ident: ref27/cit27 doi: 10.1016/0021-9797(70)90073-1 – ident: ref6/cit6 doi: 10.1002/pola.1254 – ident: ref32/cit32 doi: 10.1021/ma1026719 – ident: ref41/cit41 doi: 10.1088/1742-6596/184/1/012029 – ident: ref19/cit19 doi: 10.1002/pi.4632 – ident: ref28/cit28 doi: 10.1021/ma9007303 – ident: ref7/cit7 doi: 10.1021/acs.jpcb.6b08800 – ident: ref11/cit11 doi: 10.1016/j.polymer.2017.05.056 – ident: ref43/cit43 doi: 10.1021/ma901547a – ident: ref18/cit18 doi: 10.1007/s00289-014-1266-3 – ident: ref26/cit26 doi: 10.1021/ma052571n – ident: ref38/cit38 doi: 10.1021/am3007577 – ident: ref1/cit1 doi: 10.1080/15583720701834216 – ident: ref39/cit39 doi: 10.1016/S0014-3057(98)00112-8 – ident: ref8/cit8 doi: 10.1016/j.polymer.2004.10.047 – ident: ref20/cit20 doi: 10.1122/1.550087 – ident: ref48/cit48 doi: 10.1021/ma034013j – ident: ref29/cit29 doi: 10.1016/j.polymer.2005.10.022 – ident: ref17/cit17 doi: 10.1021/am502337u – ident: ref9/cit9 doi: 10.1021/acs.iecr.5b00882 – ident: ref13/cit13 doi: 10.1021/ma101108g – ident: ref25/cit25 doi: 10.1016/0032-3861(88)90269-8 – ident: ref14/cit14 doi: 10.1021/ma1026934 – ident: ref15/cit15 doi: 10.1016/j.polymer.2004.02.070 – ident: ref5/cit5 doi: 10.1021/mz500770y – ident: ref35/cit35 doi: 10.1016/j.polymer.2017.02.093 – ident: ref3/cit3 doi: 10.1002/app.12462 – ident: ref10/cit10 doi: 10.1021/acs.macromol.6b02310 – ident: ref4/cit4 doi: 10.1590/S0104-14282012005000072 – ident: ref36/cit36 doi: 10.1016/S0032-3861(98)00182-7 – ident: ref23/cit23 doi: 10.1023/A:1020200822435 – ident: ref24/cit24 doi: 10.1016/0032-3861(84)90025-9 – ident: ref12/cit12 doi: 10.1016/j.polymer.2010.06.045 – ident: ref44/cit44 doi: 10.1016/0032-3861(95)93590-I – ident: ref22/cit22 doi: 10.1016/S0032-3861(00)00785-0 – ident: ref31/cit31 doi: 10.1002/macp.200900552 – ident: ref46/cit46 doi: 10.1002/aic.14495 – ident: ref30/cit30 doi: 10.1021/ma902805x – ident: ref37/cit37 doi: 10.1016/j.polymer.2008.12.025 – ident: ref40/cit40 doi: 10.1002/aic.10281 – ident: ref34/cit34 doi: 10.1021/am301842e – ident: ref42/cit42 doi: 10.1039/b926191e – start-page: 1203 volume-title: Polymer Blends Handbook year: 2014 ident: ref33/cit33 doi: 10.1007/978-94-007-6064-6_13 contributor: fullname: Bartczak Z. – ident: ref16/cit16 doi: 10.1021/am3004522 – ident: ref50/cit50 doi: 10.1016/j.polymer.2009.09.059 – ident: ref49/cit49 doi: 10.1126/science.288.5474.2187 – ident: ref2/cit2 doi: 10.1002/polb.22283 – ident: ref47/cit47 doi: 10.1021/ma020789t |
SSID | ssj0011543 |
Score | 2.568824 |
Snippet | It will be shown that an interfacially percolated rubbery phase in a cocontinuous polylactide (PLA)/linear low-density polyethylene (LLDPE) blend results in a... |
SourceID | crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 3572 |
Title | Toughening of Cocontinuous Polylactide/Polyethylene Blends via an Interfacially Percolated Intermediate Phase |
URI | http://dx.doi.org/10.1021/acs.macromol.8b00464 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60HvTiW6wv9uDFQ9pk89jkqMVSBLVgC72F3c0ExTSRJhHqr3c2abQoit5Csixhdpb5vnkScm5Fgas8T5OcQBoOCNMQpgWGCzFzOItsXk1ruL3zBmPnZuJOPoni1wg-s7pC5Z2pqJLTko5fx-JWyRrjeD80FOo9fEQNEA7UEWXmGGj2eVMq98Mu2iCpfMkgLVmW_ha5b-pz6oSS505ZyI56-96u8Y8_vU02FyCTXtZasUNWIN0l671mttsemY70cB7QPhGaxbSX6Yz1p7TMypwOs2Se6HKHCLr6GfAo0TQBvUp0-ix9fRJUpLRyJcZCe9yTOR3CDDUKcWtUf6gKUgqgw0e0kvtk3L8e9QbGYvCCIWwWFIY0bQDhu64bIf9wAUGeB9LjSvlMIr8JhKXrc5FrxSpSQkIsA0u3fXEURwQT2weklWYpHBJqxgI5poxNDogVTB5w01WB7wWRqRi3oja5QFmFi4uTh1VMnFmhftkIMFwIsE2M5qTCl7oXx6_rj_6x9zHZQCjk67wAxk5Iq5iVcIpwo5BnlY69Awlc0zE |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58HPTiW3ybgxcPXdts07RHXZT1yYKreCtJOkWxtmK7gv56J-1WRVDwVtISwmTK980bYM9LImGCwBo5kXZ8VK6jXA8dgSn3JU-6sp7WcHkV9G_8sztxNwGirYWhQ5S0U1kH8b-6C3gHdu1J1TlqWSdsQnKTMC0kYaZlRL3rz-ABsYImsMx9h9BfthVzv-xiccmU33DpG8CczMPt59HqvJLHzqjSHfP-o2vjv8--AHNjyskOGx1ZhAnMl2Cm1056W4anoR3Vg9ZDwoqU9Qqbv_6Qj4pRyQZF9pbZ4ocED-wz0sUSUCE7ymwyLXt9UEzlrHYspsr637M3NsAX0i9isUnzoi5PqZAN7gkzV-Dm5HjY6zvjMQyO6vKocrTbRVShECIha0QgUb4AdSCNCbkmaydSnq3WJcsrNYlRGlMdebYJjG8k8Zm0uwpTeZHjGjA3VWRx6tSVSMzBlZF0hYnCIEpcw6WXrMM-ySoe_0ZlXEfIuRfbxVaA8ViA6-C0FxY_N505_vx-4x9778JMf3h5EV-cXp1vwiyRpNBmDHC-BVPVywi3iYhUeqdWuw_lC9uW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-QwFA-uwq4XddcVv83Byx46tpmmaY86OvixysAqiJeSjxcUayu2I-hf70vakWFhhfVW0vB4JC-83_smZDcyGddJ4oycTAUxyDCQYQQBB8tiwUxf-GkN5xfJ8VV8es2vp0Z9IRM1Uqp9EN-96kdjuw4D0Z5bf5A-T63opW1Y7guZ4yLyEdr9wZ_3AAIigza4zOIAEYCYVM39g4rTTbqe0k1TSma4SG7e2fO5Jfe9caN6-vWvzo2f4n-JLHTQk-63svKdzED5g3wbTCa-LZOHSzeyB5ynhFaWDiqXx35XjqtxTUdV8VK4IggDe-4b8IJRYQE9KFxSLX2-k1SW1DsYrXR--OKFjuAJ5QzRrGl_-DKVBujoFnXnT3I1PLocHAfdOIZA9lnWBCrsA8iUc27QKuGA0C8BlQitU6bQ6slk5Kp20QKz2mipwKoscs1gYi0Q19j-CpktqxJWCQ2tRMtT2VAAIohQZCLkOkuTzISaiciskV94Vnn3nOrcR8pZlLvFyQHm3QGukWByaflj26Hjw_3r_0F7h3wdHQ7z3ycXZxtkHrFS6hIHGNsks83TGLYQjzRq20veG-th3hA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toughening+of+Cocontinuous+Polylactide%2FPolyethylene+Blends+via+an+Interfacially+Percolated+Intermediate+Phase&rft.jtitle=Macromolecules&rft.au=Zolali%2C+Ali+M&rft.au=Favis%2C+Basil+D&rft.date=2018-05-22&rft.pub=American+Chemical+Society&rft.issn=0024-9297&rft.eissn=1520-5835&rft.volume=51&rft.issue=10&rft.spage=3572&rft.epage=3581&rft_id=info:doi/10.1021%2Facs.macromol.8b00464&rft.externalDocID=b831734941 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-9297&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-9297&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-9297&client=summon |