Oriented Thin Films of Electroactive Triphenylene Catecholate-Based Two-Dimensional Metal–Organic Frameworks
Two-dimensional triphenylene-based metal–organic frameworks (TP-MOFs) attract significant scientific interest due to their long-range order combined with significant electrical conductivity. The deposition of these structures as oriented films is expected to promote their incorporation into diverse...
Saved in:
Published in | ACS nano Vol. 13; no. 6; pp. 6711 - 6719 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
25.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two-dimensional triphenylene-based metal–organic frameworks (TP-MOFs) attract significant scientific interest due to their long-range order combined with significant electrical conductivity. The deposition of these structures as oriented films is expected to promote their incorporation into diverse optoelectronic devices. However, to date, a controlled deposition strategy applicable for the different members of this MOF family has not been reported yet. Herein, we present the synthesis of highly oriented thin films of TP-MOFs by vapor-assisted conversion (VAC). We targeted the M-CAT-1 series comprising hexahydroxytriphenylene organic ligands and metal-ions such as Ni2+, Co2+, and Cu2+. These planar organic building blocks are connected in-plane to the metal-ions through a square planar node forming extended sheets which undergo self-organization into defined stacks. Highly oriented thin Ni- and Co-CAT-1 films grown on gold substrates feature a high surface coverage with a uniform film topography and thickness ranging from 180 to 200 nm. The inclusion of acid modulators in the synthesis enabled the growth of films with a preferred orientation on quartz and on conductive substrates such as indium-doped tin oxide (ITO). The van der Pauw measurements performed across the M-CAT-1 films revealed high electrical conductivity values of up to 10–3 S cm–1 for both the Ni- and Co-CAT-1 films. Films grown on quartz allowed for a detailed photophysical characterization by means of UV–vis, photoluminescence, and transient absorption spectroscopy. The latter revealed the existence of excited states on a nanosecond time scale, sufficiently long to demonstrate a photoinduced charge generation and extraction in Ni-CAT-1 films. This was achieved by fabricating a basic photovoltaic device with an ITO/Ni-CAT-1/Al architecture, thus establishing this MOF as a photoactive material. Our results point to the intriguing capabilities of these conductive M-CAT-1 materials and an additional scope of applications as photoabsorbers enabled through VAC thin-film synthesis. |
---|---|
AbstractList | Two-dimensional triphenylene-based metal-organic frameworks (TP-MOFs) attract significant scientific interest due to their long-range order combined with significant electrical conductivity. The deposition of these structures as oriented films is expected to promote their incorporation into diverse optoelectronic devices. However, to date, a controlled deposition strategy applicable for the different members of this MOF family has not been reported yet. Herein, we present the synthesis of highly oriented thin films of TP-MOFs by vapor-assisted conversion (VAC). We targeted the M-CAT-1 series comprising hexahydroxytriphenylene organic ligands and metal-ions such as Ni
, Co
, and Cu
. These planar organic building blocks are connected in-plane to the metal-ions through a square planar node forming extended sheets which undergo self-organization into defined stacks. Highly oriented thin Ni- and Co-CAT-1 films grown on gold substrates feature a high surface coverage with a uniform film topography and thickness ranging from 180 to 200 nm. The inclusion of acid modulators in the synthesis enabled the growth of films with a preferred orientation on quartz and on conductive substrates such as indium-doped tin oxide (ITO). The van der Pauw measurements performed across the M-CAT-1 films revealed high electrical conductivity values of up to 10
S cm
for both the Ni- and Co-CAT-1 films. Films grown on quartz allowed for a detailed photophysical characterization by means of UV-vis, photoluminescence, and transient absorption spectroscopy. The latter revealed the existence of excited states on a nanosecond time scale, sufficiently long to demonstrate a photoinduced charge generation and extraction in Ni-CAT-1 films. This was achieved by fabricating a basic photovoltaic device with an ITO/Ni-CAT-1/Al architecture, thus establishing this MOF as a photoactive material. Our results point to the intriguing capabilities of these conductive M-CAT-1 materials and an additional scope of applications as photoabsorbers enabled through VAC thin-film synthesis. Two-dimensional triphenylene-based metal–organic frameworks (TP-MOFs) attract significant scientific interest due to their long-range order combined with significant electrical conductivity. The deposition of these structures as oriented films is expected to promote their incorporation into diverse optoelectronic devices. However, to date, a controlled deposition strategy applicable for the different members of this MOF family has not been reported yet. Herein, we present the synthesis of highly oriented thin films of TP-MOFs by vapor-assisted conversion (VAC). We targeted the M-CAT-1 series comprising hexahydroxytriphenylene organic ligands and metal-ions such as Ni2+, Co2+, and Cu2+. These planar organic building blocks are connected in-plane to the metal-ions through a square planar node forming extended sheets which undergo self-organization into defined stacks. Highly oriented thin Ni- and Co-CAT-1 films grown on gold substrates feature a high surface coverage with a uniform film topography and thickness ranging from 180 to 200 nm. The inclusion of acid modulators in the synthesis enabled the growth of films with a preferred orientation on quartz and on conductive substrates such as indium-doped tin oxide (ITO). The van der Pauw measurements performed across the M-CAT-1 films revealed high electrical conductivity values of up to 10–3 S cm–1 for both the Ni- and Co-CAT-1 films. Films grown on quartz allowed for a detailed photophysical characterization by means of UV–vis, photoluminescence, and transient absorption spectroscopy. The latter revealed the existence of excited states on a nanosecond time scale, sufficiently long to demonstrate a photoinduced charge generation and extraction in Ni-CAT-1 films. This was achieved by fabricating a basic photovoltaic device with an ITO/Ni-CAT-1/Al architecture, thus establishing this MOF as a photoactive material. Our results point to the intriguing capabilities of these conductive M-CAT-1 materials and an additional scope of applications as photoabsorbers enabled through VAC thin-film synthesis. Two-dimensional triphenylene-based metal-organic frameworks (TP-MOFs) attract significant scientific interest due to their long-range order combined with significant electrical conductivity. The deposition of these structures as oriented films is expected to promote their incorporation into diverse optoelectronic devices. However, to date, a controlled deposition strategy applicable for the different members of this MOF family has not been reported yet. Herein, we present the synthesis of highly oriented thin films of TP-MOFs by vapor-assisted conversion (VAC). We targeted the M-CAT-1 series comprising hexahydroxytriphenylene organic ligands and metal-ions such as Ni2+, Co2+, and Cu2+. These planar organic building blocks are connected in-plane to the metal-ions through a square planar node forming extended sheets which undergo self-organization into defined stacks. Highly oriented thin Ni- and Co-CAT-1 films grown on gold substrates feature a high surface coverage with a uniform film topography and thickness ranging from 180 to 200 nm. The inclusion of acid modulators in the synthesis enabled the growth of films with a preferred orientation on quartz and on conductive substrates such as indium-doped tin oxide (ITO). The van der Pauw measurements performed across the M-CAT-1 films revealed high electrical conductivity values of up to 10-3 S cm-1 for both the Ni- and Co-CAT-1 films. Films grown on quartz allowed for a detailed photophysical characterization by means of UV-vis, photoluminescence, and transient absorption spectroscopy. The latter revealed the existence of excited states on a nanosecond time scale, sufficiently long to demonstrate a photoinduced charge generation and extraction in Ni-CAT-1 films. This was achieved by fabricating a basic photovoltaic device with an ITO/Ni-CAT-1/Al architecture, thus establishing this MOF as a photoactive material. Our results point to the intriguing capabilities of these conductive M-CAT-1 materials and an additional scope of applications as photoabsorbers enabled through VAC thin-film synthesis.Two-dimensional triphenylene-based metal-organic frameworks (TP-MOFs) attract significant scientific interest due to their long-range order combined with significant electrical conductivity. The deposition of these structures as oriented films is expected to promote their incorporation into diverse optoelectronic devices. However, to date, a controlled deposition strategy applicable for the different members of this MOF family has not been reported yet. Herein, we present the synthesis of highly oriented thin films of TP-MOFs by vapor-assisted conversion (VAC). We targeted the M-CAT-1 series comprising hexahydroxytriphenylene organic ligands and metal-ions such as Ni2+, Co2+, and Cu2+. These planar organic building blocks are connected in-plane to the metal-ions through a square planar node forming extended sheets which undergo self-organization into defined stacks. Highly oriented thin Ni- and Co-CAT-1 films grown on gold substrates feature a high surface coverage with a uniform film topography and thickness ranging from 180 to 200 nm. The inclusion of acid modulators in the synthesis enabled the growth of films with a preferred orientation on quartz and on conductive substrates such as indium-doped tin oxide (ITO). The van der Pauw measurements performed across the M-CAT-1 films revealed high electrical conductivity values of up to 10-3 S cm-1 for both the Ni- and Co-CAT-1 films. Films grown on quartz allowed for a detailed photophysical characterization by means of UV-vis, photoluminescence, and transient absorption spectroscopy. The latter revealed the existence of excited states on a nanosecond time scale, sufficiently long to demonstrate a photoinduced charge generation and extraction in Ni-CAT-1 films. This was achieved by fabricating a basic photovoltaic device with an ITO/Ni-CAT-1/Al architecture, thus establishing this MOF as a photoactive material. Our results point to the intriguing capabilities of these conductive M-CAT-1 materials and an additional scope of applications as photoabsorbers enabled through VAC thin-film synthesis. |
Author | Bohn, Bernhard J Jakowetz, Andreas C Feldmann, Jochen Rotter, Julian M Mähringer, Andre Stolarczyk, Jacek K Medina, Dana D Bein, Thomas |
AuthorAffiliation | Department of Chemistry Ludwig-Maximilians-Universität (LMU) Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics Nanosystems Initiative Munich (NIM) and Center for NanoScience (CeNS) |
AuthorAffiliation_xml | – name: Department of Chemistry – name: Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics – name: Nanosystems Initiative Munich (NIM) and Center for NanoScience (CeNS) – name: Ludwig-Maximilians-Universität (LMU) |
Author_xml | – sequence: 1 givenname: Andre orcidid: 0000-0003-0482-3672 surname: Mähringer fullname: Mähringer, Andre organization: Nanosystems Initiative Munich (NIM) and Center for NanoScience (CeNS) – sequence: 2 givenname: Andreas C orcidid: 0000-0001-7804-7210 surname: Jakowetz fullname: Jakowetz, Andreas C organization: Nanosystems Initiative Munich (NIM) and Center for NanoScience (CeNS) – sequence: 3 givenname: Julian M surname: Rotter fullname: Rotter, Julian M organization: Nanosystems Initiative Munich (NIM) and Center for NanoScience (CeNS) – sequence: 4 givenname: Bernhard J orcidid: 0000-0002-0344-7735 surname: Bohn fullname: Bohn, Bernhard J organization: Nanosystems Initiative Munich (NIM) and Center for NanoScience (CeNS) – sequence: 5 givenname: Jacek K orcidid: 0000-0001-7935-4204 surname: Stolarczyk fullname: Stolarczyk, Jacek K organization: Nanosystems Initiative Munich (NIM) and Center for NanoScience (CeNS) – sequence: 6 givenname: Jochen surname: Feldmann fullname: Feldmann, Jochen organization: Nanosystems Initiative Munich (NIM) and Center for NanoScience (CeNS) – sequence: 7 givenname: Thomas orcidid: 0000-0001-7248-5906 surname: Bein fullname: Bein, Thomas email: tbein@cup.uni-muenchen.de organization: Nanosystems Initiative Munich (NIM) and Center for NanoScience (CeNS) – sequence: 8 givenname: Dana D orcidid: 0000-0003-4759-8612 surname: Medina fullname: Medina, Dana D email: dana.medina@cup.uni-muenchen.de organization: Nanosystems Initiative Munich (NIM) and Center for NanoScience (CeNS) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31046244$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1PGzEQhi1EVb567q3aI1K1xF_rjY-QkhYJlEsO3Fazziwx9dqp7YC49T_0H_JL2CiBQyU4zUjzPHN43yOy74NHQr4yesYoZyMwyYMPZ7qljIl6jxwyLVRJx-p2_22v2AE5Sume0qoe1-ozORCMSsWlPCR-Fi36jItivrS-mFrXpyJ0xaVDk2MAk-0DFvNoV0v0Tw49FhPIaJbBDaO8gLRRH0P5w_bokw0eXHGDGdzz33-zeAfemmIaocfHEH-nE_KpA5fwy24ek_n0cj75VV7Pfl5Nzq9LEFznUghZSyYFB9N2laoZpwKkVJUSte40E1XX6bYWlLaaVy0DrtlYdQsEvdCtEsfkdPt2FcOfNabc9DYZdA48hnVqOOeaC6ElH9BvO3Td9rhoVtH2EJ-a14gGYLQFTAwpRezeEEabTQnNroRmV8JgVP8ZxmbIQzY5gnUfeN-33nBo7sM6Dlmmd-kXENadJw |
CitedBy_id | crossref_primary_10_1002_ange_202009253 crossref_primary_10_1002_ange_202401679 crossref_primary_10_1016_j_snb_2022_132290 crossref_primary_10_1016_j_jhazmat_2022_129865 crossref_primary_10_1021_acsami_0c19621 crossref_primary_10_1016_j_ccr_2022_214459 crossref_primary_10_1002_anie_202104461 crossref_primary_10_1002_anie_202405333 crossref_primary_10_1039_D0CE01651A crossref_primary_10_1021_acssensors_4c01642 crossref_primary_10_1021_acs_chemrev_0c00033 crossref_primary_10_1021_acsami_1c12000 crossref_primary_10_1002_admi_202202031 crossref_primary_10_1002_adma_202311541 crossref_primary_10_1016_j_ccr_2021_213915 crossref_primary_10_1002_anie_202102670 crossref_primary_10_1021_acscentsci_1c00047 crossref_primary_10_1021_acs_chemrev_9b00766 crossref_primary_10_1002_ange_201914461 crossref_primary_10_1002_ange_202012428 crossref_primary_10_1002_ange_202212797 crossref_primary_10_1016_j_jhazmat_2024_134090 crossref_primary_10_1021_jacs_1c09740 crossref_primary_10_1021_jacs_2c05894 crossref_primary_10_1002_anie_202410411 crossref_primary_10_1016_j_ccr_2020_213479 crossref_primary_10_1021_jacs_3c05606 crossref_primary_10_1002_sstr_202100195 crossref_primary_10_1016_j_enchem_2021_100065 crossref_primary_10_1021_jacs_4c02326 crossref_primary_10_1039_D3CS00259D crossref_primary_10_1002_ange_201910879 crossref_primary_10_1016_j_mtnano_2022_100278 crossref_primary_10_1002_cite_202300045 crossref_primary_10_1016_j_susc_2024_122594 crossref_primary_10_1016_j_radphyschem_2024_111580 crossref_primary_10_1002_adma_201905227 crossref_primary_10_1021_acs_nanolett_4c00194 crossref_primary_10_1021_jacs_4c17152 crossref_primary_10_1039_C9CS00594C crossref_primary_10_1002_adfm_202422578 crossref_primary_10_1002_smsc_202100022 crossref_primary_10_1039_D4TA01820F crossref_primary_10_1007_s42114_024_01016_z crossref_primary_10_1039_D0TA03356A crossref_primary_10_1002_ange_202405333 crossref_primary_10_1021_acs_chemmater_1c00743 crossref_primary_10_1021_acsnano_4c05838 crossref_primary_10_1002_chem_202100610 crossref_primary_10_1002_sstr_202200150 crossref_primary_10_1039_D0SC07073D crossref_primary_10_1002_anie_202303111 crossref_primary_10_1016_j_ccr_2024_216405 crossref_primary_10_1039_D3TA03753C crossref_primary_10_1002_sstr_202100210 crossref_primary_10_1039_D3TA04490D crossref_primary_10_1016_j_enchem_2020_100029 crossref_primary_10_1039_D4TA00203B crossref_primary_10_1002_chem_202001211 crossref_primary_10_1021_acs_chemrev_1c00528 crossref_primary_10_1016_j_trac_2024_117800 crossref_primary_10_1016_j_chempr_2022_03_027 crossref_primary_10_1002_ange_202410411 crossref_primary_10_1038_s41578_024_00740_8 crossref_primary_10_1039_D2CC03941A crossref_primary_10_1002_ange_202303111 crossref_primary_10_1016_j_snb_2022_132786 crossref_primary_10_1002_cssc_202101587 crossref_primary_10_1002_smll_202308264 crossref_primary_10_1016_j_electacta_2024_145343 crossref_primary_10_1002_smll_202207720 crossref_primary_10_1021_acsnano_2c02529 crossref_primary_10_1021_acs_jpclett_4c01244 crossref_primary_10_1039_D2NJ04570B crossref_primary_10_1016_j_jece_2022_107582 crossref_primary_10_1002_ange_202317413 crossref_primary_10_1038_s44160_024_00513_9 crossref_primary_10_1021_jacs_1c01673 crossref_primary_10_1002_smtd_202000396 crossref_primary_10_1016_j_talanta_2024_127489 crossref_primary_10_1002_chem_202401344 crossref_primary_10_1088_2053_1591_ab5752 crossref_primary_10_1002_aenm_201901892 crossref_primary_10_1002_anie_202012428 crossref_primary_10_1002_anie_202201725 crossref_primary_10_1016_j_trechm_2023_03_002 crossref_primary_10_1016_j_physe_2021_114905 crossref_primary_10_1039_D4GC05339G crossref_primary_10_1002_adfm_202423539 crossref_primary_10_1038_s41467_022_34139_2 crossref_primary_10_1021_acsami_3c14401 crossref_primary_10_1021_acs_jpca_1c01978 crossref_primary_10_1016_j_flatc_2021_100287 crossref_primary_10_1039_D0TA04939E crossref_primary_10_1021_acs_cgd_3c01162 crossref_primary_10_1002_anie_201914461 crossref_primary_10_1021_acsami_4c13269 crossref_primary_10_1039_D0CS01160F crossref_primary_10_1002_anie_202401679 crossref_primary_10_1021_acsnano_4c14018 crossref_primary_10_1002_smll_202100505 crossref_primary_10_1021_jacs_1c05051 crossref_primary_10_1016_j_mattod_2024_07_010 crossref_primary_10_1021_acs_chemmater_3c01389 crossref_primary_10_1016_j_ccr_2023_215043 crossref_primary_10_1002_ange_202201725 crossref_primary_10_1016_j_ccr_2020_213461 crossref_primary_10_1039_C9CC08248D crossref_primary_10_1002_ange_202104461 crossref_primary_10_1002_adma_202420043 crossref_primary_10_1002_celc_202001418 crossref_primary_10_1039_C9NR05431F crossref_primary_10_1016_j_susmat_2021_e00354 crossref_primary_10_1039_C9TA09896H crossref_primary_10_1021_acsmaterialslett_2c00160 crossref_primary_10_1002_anie_202009253 crossref_primary_10_1002_ejic_202000698 crossref_primary_10_1039_D3DT00876B crossref_primary_10_1002_anie_201910879 crossref_primary_10_1021_acsnanoscienceau_3c00024 crossref_primary_10_1039_D3TA07120K crossref_primary_10_2139_ssrn_4073318 crossref_primary_10_1021_acs_jpcc_4c07540 crossref_primary_10_6023_A22010024 crossref_primary_10_1002_anie_202317413 crossref_primary_10_1039_D1CC06440A crossref_primary_10_1002_anie_202212797 crossref_primary_10_1002_adma_202101777 crossref_primary_10_3762_bjnano_10_196 crossref_primary_10_1002_ange_202102670 crossref_primary_10_1039_D3TA00580A crossref_primary_10_1021_acs_jpcc_1c03418 |
Cites_doi | 10.1039/c2dt12265k 10.1021/cr3002824 10.1002/adfm.201702067 10.1021/cm301194a 10.1021/nn5000223 10.1039/C7TA07978H 10.1002/chem.201101595 10.1021/ic802117q 10.1021/ja312380b 10.1039/B618320B 10.1023/A:1019106421183 10.1002/adma.201704291 10.1021/jacs.7b08174 10.1021/jacs.6b09889 10.1039/C7CS00315C 10.1038/ncomms8408 10.1021/acs.inorgchem.8b00493 10.1021/jp9816216 10.1002/anie.201506048 10.1039/C4CS00096J 10.1016/j.chempr.2016.06.013 10.1021/ja108698s 10.1021/acsnano.6b07692 10.1002/anie.201411854 10.1126/science.1246738 10.1002/anie.201004937 10.1016/j.nanoen.2017.08.028 10.1016/j.micromeso.2004.12.019 10.1039/C8CE01264D 10.1021/jacs.5b10666 10.1002/cplu.201500206 10.1246/cl.130882 10.1021/jacs.7b07234 10.1021/ja502765n 10.1021/jacs.6b08511 10.1038/s41560-017-0044-5 10.1002/adma.201401940 10.1126/science.1230444 10.1021/acsami.7b07410 10.1016/j.tsf.2012.09.037 10.1002/chem.201605337 10.1002/chem.201705530 10.1002/anie.201709558 10.1021/cm101238m 10.1021/ja510895m |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsnano.9b01137 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 6719 |
ExternalDocumentID | 31046244 10_1021_acsnano_9b01137 c216312449 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a329t-334741432acbf5671203a44656379f9135ff9b7300b925b1a29186fdea9d9b63 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Thu Jul 10 23:51:55 EDT 2025 Mon Jul 21 05:48:58 EDT 2025 Tue Jul 01 01:34:26 EDT 2025 Thu Apr 24 23:06:15 EDT 2025 Thu Aug 27 13:44:18 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | vapor-assisted conversion triphenylene metal-catecholate time-resolved absorption spectroscopy metal−organic framework thin films |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a329t-334741432acbf5671203a44656379f9135ff9b7300b925b1a29186fdea9d9b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4759-8612 0000-0001-7248-5906 0000-0003-0482-3672 0000-0002-0344-7735 0000-0001-7804-7210 0000-0001-7935-4204 |
PMID | 31046244 |
PQID | 2229233942 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2229233942 pubmed_primary_31046244 crossref_primary_10_1021_acsnano_9b01137 crossref_citationtrail_10_1021_acsnano_9b01137 acs_journals_10_1021_acsnano_9b01137 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190625 |
PublicationDateYYYYMMDD | 2019-06-25 |
PublicationDate_xml | – month: 06 year: 2019 text: 20190625 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref45/cit45 doi: 10.1039/c2dt12265k – ident: ref4/cit4 doi: 10.1021/cr3002824 – ident: ref25/cit25 doi: 10.1002/adfm.201702067 – ident: ref19/cit19 doi: 10.1021/cm301194a – ident: ref41/cit41 doi: 10.1021/nn5000223 – ident: ref28/cit28 doi: 10.1039/C7TA07978H – ident: ref31/cit31 doi: 10.1002/chem.201101595 – ident: ref5/cit5 doi: 10.1021/ic802117q – ident: ref13/cit13 doi: 10.1021/ja312380b – ident: ref2/cit2 doi: 10.1039/B618320B – ident: ref37/cit37 doi: 10.1023/A:1019106421183 – ident: ref26/cit26 doi: 10.1002/adma.201704291 – ident: ref33/cit33 doi: 10.1021/jacs.7b08174 – ident: ref44/cit44 doi: 10.1021/jacs.6b09889 – ident: ref27/cit27 doi: 10.1039/C7CS00315C – ident: ref12/cit12 doi: 10.1038/ncomms8408 – ident: ref24/cit24 doi: 10.1021/acs.inorgchem.8b00493 – ident: ref40/cit40 doi: 10.1021/jp9816216 – ident: ref17/cit17 doi: 10.1002/anie.201506048 – ident: ref6/cit6 doi: 10.1039/C4CS00096J – ident: ref29/cit29 doi: 10.1016/j.chempr.2016.06.013 – ident: ref35/cit35 doi: 10.1021/ja108698s – ident: ref42/cit42 doi: 10.1021/acsnano.6b07692 – ident: ref16/cit16 doi: 10.1002/anie.201411854 – ident: ref30/cit30 doi: 10.1126/science.1246738 – ident: ref39/cit39 doi: 10.1002/anie.201004937 – ident: ref14/cit14 doi: 10.1016/j.nanoen.2017.08.028 – ident: ref38/cit38 doi: 10.1016/j.micromeso.2004.12.019 – ident: ref21/cit21 doi: 10.1039/C8CE01264D – ident: ref3/cit3 doi: 10.1021/jacs.5b10666 – ident: ref11/cit11 doi: 10.1002/cplu.201500206 – ident: ref15/cit15 doi: 10.1246/cl.130882 – ident: ref9/cit9 doi: 10.1021/jacs.7b07234 – ident: ref20/cit20 doi: 10.1021/ja502765n – ident: ref43/cit43 doi: 10.1021/jacs.6b08511 – ident: ref10/cit10 doi: 10.1038/s41560-017-0044-5 – ident: ref32/cit32 doi: 10.1002/adma.201401940 – ident: ref1/cit1 doi: 10.1126/science.1230444 – ident: ref23/cit23 doi: 10.1021/acsami.7b07410 – ident: ref36/cit36 doi: 10.1016/j.tsf.2012.09.037 – ident: ref18/cit18 doi: 10.1002/chem.201605337 – ident: ref8/cit8 doi: 10.1002/chem.201705530 – ident: ref22/cit22 doi: 10.1002/anie.201709558 – ident: ref7/cit7 doi: 10.1021/cm101238m – ident: ref34/cit34 doi: 10.1021/ja510895m |
SSID | ssj0057876 |
Score | 2.6012707 |
Snippet | Two-dimensional triphenylene-based metal–organic frameworks (TP-MOFs) attract significant scientific interest due to their long-range order combined with... Two-dimensional triphenylene-based metal-organic frameworks (TP-MOFs) attract significant scientific interest due to their long-range order combined with... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6711 |
Title | Oriented Thin Films of Electroactive Triphenylene Catecholate-Based Two-Dimensional Metal–Organic Frameworks |
URI | http://dx.doi.org/10.1021/acsnano.9b01137 https://www.ncbi.nlm.nih.gov/pubmed/31046244 https://www.proquest.com/docview/2229233942 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NbtNAEMdXkF7gQFs-SkqpFikHLhvi_XL2WNJEEVLgQJBys2a9a4FobYQdVe2p79A37JN01nYCJYrK3bOyx7M7_9Xs_oaQnvdeAoTbONJ4JqOBY2AhZtJFAfFjMltzCmaf9fSb_LRQiz-w6H8r-Dz6AGmZQ170jcVQFPFjssM1TuGggkZfV4tuiDvdFJBxg4wqYk3x2RggpKG0vJ-GtmjLOsdMdpvTWWWNJgxHS372l5Xtp1eb4MaHX3-PPGuVJj1pQmOfPPL5c_L0L_7gC5J_CZRj1Jw0tO-kkx9n5yUtMjpueuNAvRbSOa4r331-ifnJ0xEE6ivuhyvPPmIGRNOLgp2GHgEN34POPOr52-ub5pZnSier41_lSzKfjOejKWsbMDAQ3FRMCImCQwoOqc2UjiM-EFAT1kRsMhMJlWXGBuK9NVzZCLiJhjpzHowzVotXpJMXuX9NqNZOAyjpsqFFgabAYlp0Tg-tjb1Tqkt66KiknT9lUpfGeZS03kta73VJf_XXkrRlmIdWGmfbDd6vDX41-I7tj75bhUGCUyzUTSD3xbJMQstzLoSRvEsOmvhYDyZCjRwl0uH_fcAb8gQVV-A-MK6OSKf6vfRvUdVU9riO5zui4vPy |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lb9QwEMdHbTkUDpRHgYVSjNQDF283fmV9bLddbaHbqupW6i2yY0cgSoJIVghOfAe-IZ-EcR5LKVqJXqPY8mPs-Vtj_wZgx3svjAmvcYT2VEQDR401MRUuCogfndmaUzA9UZML8fZSXq7AoHsLg40osaayDuL_oQtEu_gtN3nR1xYtksercAelCAs2vTc67_beYH6qiSPjORnFxALm808FwRul5d_eaInErF3NeAPOFo2sb5h87M8r20-_3-A33qYXD-B-qzvJXmMoD2HF54_g3jUa4WPITwPzGBUoCck8yfjD1aeSFBk5bDLlmHpnJDPcZd77_Bt6K09GJjBg8XRcebqP_hCLfi3oQcgY0NA-yNSjuv_142fz5jMl4-4yWLkJs_HhbDShbToGajjTFeVcoPwQnJnUZlLFERtwU_PWeKwzHXGZZdoG_r3VTNrIMB0NVea80U5bxZ_AWl7k_hkQpZwyRgqXDS3KNWksOknn1NDa2Dspe7CDA5W0q6lM6kA5i5J29JJ29HrQ7yYvSVuieUiscbW8wJtFgc8NzGP5r687a0hwwYUoisl9MS-TkACdca4F68HTxkwWlfEQMUfB9Pz_OvAK1iez6XFyfHTy7gXcRS0WiBCUyS1Yq77M_UvUO5Xdrk38Ny24_FM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lb9QwEMctKBKiB0qBlm0LNVIPXLxt_Mr62G4blUcLElupt8iObRVRkopkheiJ78A37CfpTJJd8dBKcI1iy3bGnn80nt8QshNCkNZiNo40gclkzzPrbMqkTxDxY6JrOQUnp_r4TL45V-d9UhjmwsAgauipboP4uKuvfOwJA8kuPC9tWQ2NA6sU6V1yD4N2aNf744-z8xdNUHexZPhXBkExB_r81QF6pKL-3SMtkJmtu8lWyNl8oO0tk8_DaeOGxfUfDMf_nckj8rDXn3S_M5hVcieUj8nyL1TCJ6R8j-xjUKIUi3rS7NPll5pWkR51FXNse0LSCZw2F6H8Dl4r0LFFFiz8JTeBHYBfhKbfKnaIlQM66gc9CaDyb3787HI_C5rNLoXVT8kkO5qMj1lfloFZwU3DhJAgQ6TgtnBR6TThe8K23DWRmmgSoWI0Djn4znDlEstNMtLRB2u8cVqskaWyKsMzQrX22lolfRw5kG3KOnCW3uuRc2nwSg3IDixU3u-qOm8D5jzJ-9XL-9UbkOHsA-ZFTzbHAhuXixu8mje46qAei199ObOIHDYeRlNsGappnWMhdC6EkXxA1jtTmXcmMHIOwmnj3yawTe5_OMzyd69P326SByDJEAzBuNoiS83XaXgOsqdxL1orvwVRkv7W |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oriented+Thin+Films+of+Electroactive+Triphenylene+Catecholate-Based+Two-Dimensional+Metal-Organic+Frameworks&rft.jtitle=ACS+nano&rft.au=M%C3%A4hringer%2C+Andre&rft.au=Jakowetz%2C+Andreas+C&rft.au=Rotter%2C+Julian+M&rft.au=Bohn%2C+Bernhard+J&rft.date=2019-06-25&rft.eissn=1936-086X&rft_id=info:doi/10.1021%2Facsnano.9b01137&rft_id=info%3Apmid%2F31046244&rft.externalDocID=31046244 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |