Oriented Thin Films of Electroactive Triphenylene Catecholate-Based Two-Dimensional Metal–Organic Frameworks

Two-dimensional triphenylene-based metal–organic frameworks (TP-MOFs) attract significant scientific interest due to their long-range order combined with significant electrical conductivity. The deposition of these structures as oriented films is expected to promote their incorporation into diverse...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 13; no. 6; pp. 6711 - 6719
Main Authors Mähringer, Andre, Jakowetz, Andreas C, Rotter, Julian M, Bohn, Bernhard J, Stolarczyk, Jacek K, Feldmann, Jochen, Bein, Thomas, Medina, Dana D
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two-dimensional triphenylene-based metal–organic frameworks (TP-MOFs) attract significant scientific interest due to their long-range order combined with significant electrical conductivity. The deposition of these structures as oriented films is expected to promote their incorporation into diverse optoelectronic devices. However, to date, a controlled deposition strategy applicable for the different members of this MOF family has not been reported yet. Herein, we present the synthesis of highly oriented thin films of TP-MOFs by vapor-assisted conversion (VAC). We targeted the M-CAT-1 series comprising hexahydroxytriphenylene organic ligands and metal-ions such as Ni2+, Co2+, and Cu2+. These planar organic building blocks are connected in-plane to the metal-ions through a square planar node forming extended sheets which undergo self-organization into defined stacks. Highly oriented thin Ni- and Co-CAT-1 films grown on gold substrates feature a high surface coverage with a uniform film topography and thickness ranging from 180 to 200 nm. The inclusion of acid modulators in the synthesis enabled the growth of films with a preferred orientation on quartz and on conductive substrates such as indium-doped tin oxide (ITO). The van der Pauw measurements performed across the M-CAT-1 films revealed high electrical conductivity values of up to 10–3 S cm–1 for both the Ni- and Co-CAT-1 films. Films grown on quartz allowed for a detailed photophysical characterization by means of UV–vis, photoluminescence, and transient absorption spectroscopy. The latter revealed the existence of excited states on a nanosecond time scale, sufficiently long to demonstrate a photoinduced charge generation and extraction in Ni-CAT-1 films. This was achieved by fabricating a basic photovoltaic device with an ITO/Ni-CAT-1/Al architecture, thus establishing this MOF as a photoactive material. Our results point to the intriguing capabilities of these conductive M-CAT-1 materials and an additional scope of applications as photoabsorbers enabled through VAC thin-film synthesis.
AbstractList Two-dimensional triphenylene-based metal-organic frameworks (TP-MOFs) attract significant scientific interest due to their long-range order combined with significant electrical conductivity. The deposition of these structures as oriented films is expected to promote their incorporation into diverse optoelectronic devices. However, to date, a controlled deposition strategy applicable for the different members of this MOF family has not been reported yet. Herein, we present the synthesis of highly oriented thin films of TP-MOFs by vapor-assisted conversion (VAC). We targeted the M-CAT-1 series comprising hexahydroxytriphenylene organic ligands and metal-ions such as Ni , Co , and Cu . These planar organic building blocks are connected in-plane to the metal-ions through a square planar node forming extended sheets which undergo self-organization into defined stacks. Highly oriented thin Ni- and Co-CAT-1 films grown on gold substrates feature a high surface coverage with a uniform film topography and thickness ranging from 180 to 200 nm. The inclusion of acid modulators in the synthesis enabled the growth of films with a preferred orientation on quartz and on conductive substrates such as indium-doped tin oxide (ITO). The van der Pauw measurements performed across the M-CAT-1 films revealed high electrical conductivity values of up to 10 S cm for both the Ni- and Co-CAT-1 films. Films grown on quartz allowed for a detailed photophysical characterization by means of UV-vis, photoluminescence, and transient absorption spectroscopy. The latter revealed the existence of excited states on a nanosecond time scale, sufficiently long to demonstrate a photoinduced charge generation and extraction in Ni-CAT-1 films. This was achieved by fabricating a basic photovoltaic device with an ITO/Ni-CAT-1/Al architecture, thus establishing this MOF as a photoactive material. Our results point to the intriguing capabilities of these conductive M-CAT-1 materials and an additional scope of applications as photoabsorbers enabled through VAC thin-film synthesis.
Two-dimensional triphenylene-based metal–organic frameworks (TP-MOFs) attract significant scientific interest due to their long-range order combined with significant electrical conductivity. The deposition of these structures as oriented films is expected to promote their incorporation into diverse optoelectronic devices. However, to date, a controlled deposition strategy applicable for the different members of this MOF family has not been reported yet. Herein, we present the synthesis of highly oriented thin films of TP-MOFs by vapor-assisted conversion (VAC). We targeted the M-CAT-1 series comprising hexahydroxytriphenylene organic ligands and metal-ions such as Ni2+, Co2+, and Cu2+. These planar organic building blocks are connected in-plane to the metal-ions through a square planar node forming extended sheets which undergo self-organization into defined stacks. Highly oriented thin Ni- and Co-CAT-1 films grown on gold substrates feature a high surface coverage with a uniform film topography and thickness ranging from 180 to 200 nm. The inclusion of acid modulators in the synthesis enabled the growth of films with a preferred orientation on quartz and on conductive substrates such as indium-doped tin oxide (ITO). The van der Pauw measurements performed across the M-CAT-1 films revealed high electrical conductivity values of up to 10–3 S cm–1 for both the Ni- and Co-CAT-1 films. Films grown on quartz allowed for a detailed photophysical characterization by means of UV–vis, photoluminescence, and transient absorption spectroscopy. The latter revealed the existence of excited states on a nanosecond time scale, sufficiently long to demonstrate a photoinduced charge generation and extraction in Ni-CAT-1 films. This was achieved by fabricating a basic photovoltaic device with an ITO/Ni-CAT-1/Al architecture, thus establishing this MOF as a photoactive material. Our results point to the intriguing capabilities of these conductive M-CAT-1 materials and an additional scope of applications as photoabsorbers enabled through VAC thin-film synthesis.
Two-dimensional triphenylene-based metal-organic frameworks (TP-MOFs) attract significant scientific interest due to their long-range order combined with significant electrical conductivity. The deposition of these structures as oriented films is expected to promote their incorporation into diverse optoelectronic devices. However, to date, a controlled deposition strategy applicable for the different members of this MOF family has not been reported yet. Herein, we present the synthesis of highly oriented thin films of TP-MOFs by vapor-assisted conversion (VAC). We targeted the M-CAT-1 series comprising hexahydroxytriphenylene organic ligands and metal-ions such as Ni2+, Co2+, and Cu2+. These planar organic building blocks are connected in-plane to the metal-ions through a square planar node forming extended sheets which undergo self-organization into defined stacks. Highly oriented thin Ni- and Co-CAT-1 films grown on gold substrates feature a high surface coverage with a uniform film topography and thickness ranging from 180 to 200 nm. The inclusion of acid modulators in the synthesis enabled the growth of films with a preferred orientation on quartz and on conductive substrates such as indium-doped tin oxide (ITO). The van der Pauw measurements performed across the M-CAT-1 films revealed high electrical conductivity values of up to 10-3 S cm-1 for both the Ni- and Co-CAT-1 films. Films grown on quartz allowed for a detailed photophysical characterization by means of UV-vis, photoluminescence, and transient absorption spectroscopy. The latter revealed the existence of excited states on a nanosecond time scale, sufficiently long to demonstrate a photoinduced charge generation and extraction in Ni-CAT-1 films. This was achieved by fabricating a basic photovoltaic device with an ITO/Ni-CAT-1/Al architecture, thus establishing this MOF as a photoactive material. Our results point to the intriguing capabilities of these conductive M-CAT-1 materials and an additional scope of applications as photoabsorbers enabled through VAC thin-film synthesis.Two-dimensional triphenylene-based metal-organic frameworks (TP-MOFs) attract significant scientific interest due to their long-range order combined with significant electrical conductivity. The deposition of these structures as oriented films is expected to promote their incorporation into diverse optoelectronic devices. However, to date, a controlled deposition strategy applicable for the different members of this MOF family has not been reported yet. Herein, we present the synthesis of highly oriented thin films of TP-MOFs by vapor-assisted conversion (VAC). We targeted the M-CAT-1 series comprising hexahydroxytriphenylene organic ligands and metal-ions such as Ni2+, Co2+, and Cu2+. These planar organic building blocks are connected in-plane to the metal-ions through a square planar node forming extended sheets which undergo self-organization into defined stacks. Highly oriented thin Ni- and Co-CAT-1 films grown on gold substrates feature a high surface coverage with a uniform film topography and thickness ranging from 180 to 200 nm. The inclusion of acid modulators in the synthesis enabled the growth of films with a preferred orientation on quartz and on conductive substrates such as indium-doped tin oxide (ITO). The van der Pauw measurements performed across the M-CAT-1 films revealed high electrical conductivity values of up to 10-3 S cm-1 for both the Ni- and Co-CAT-1 films. Films grown on quartz allowed for a detailed photophysical characterization by means of UV-vis, photoluminescence, and transient absorption spectroscopy. The latter revealed the existence of excited states on a nanosecond time scale, sufficiently long to demonstrate a photoinduced charge generation and extraction in Ni-CAT-1 films. This was achieved by fabricating a basic photovoltaic device with an ITO/Ni-CAT-1/Al architecture, thus establishing this MOF as a photoactive material. Our results point to the intriguing capabilities of these conductive M-CAT-1 materials and an additional scope of applications as photoabsorbers enabled through VAC thin-film synthesis.
Author Bohn, Bernhard J
Jakowetz, Andreas C
Feldmann, Jochen
Rotter, Julian M
Mähringer, Andre
Stolarczyk, Jacek K
Medina, Dana D
Bein, Thomas
AuthorAffiliation Department of Chemistry
Ludwig-Maximilians-Universität (LMU)
Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics
Nanosystems Initiative Munich (NIM) and Center for NanoScience (CeNS)
AuthorAffiliation_xml – name: Department of Chemistry
– name: Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics
– name: Nanosystems Initiative Munich (NIM) and Center for NanoScience (CeNS)
– name: Ludwig-Maximilians-Universität (LMU)
Author_xml – sequence: 1
  givenname: Andre
  orcidid: 0000-0003-0482-3672
  surname: Mähringer
  fullname: Mähringer, Andre
  organization: Nanosystems Initiative Munich (NIM) and Center for NanoScience (CeNS)
– sequence: 2
  givenname: Andreas C
  orcidid: 0000-0001-7804-7210
  surname: Jakowetz
  fullname: Jakowetz, Andreas C
  organization: Nanosystems Initiative Munich (NIM) and Center for NanoScience (CeNS)
– sequence: 3
  givenname: Julian M
  surname: Rotter
  fullname: Rotter, Julian M
  organization: Nanosystems Initiative Munich (NIM) and Center for NanoScience (CeNS)
– sequence: 4
  givenname: Bernhard J
  orcidid: 0000-0002-0344-7735
  surname: Bohn
  fullname: Bohn, Bernhard J
  organization: Nanosystems Initiative Munich (NIM) and Center for NanoScience (CeNS)
– sequence: 5
  givenname: Jacek K
  orcidid: 0000-0001-7935-4204
  surname: Stolarczyk
  fullname: Stolarczyk, Jacek K
  organization: Nanosystems Initiative Munich (NIM) and Center for NanoScience (CeNS)
– sequence: 6
  givenname: Jochen
  surname: Feldmann
  fullname: Feldmann, Jochen
  organization: Nanosystems Initiative Munich (NIM) and Center for NanoScience (CeNS)
– sequence: 7
  givenname: Thomas
  orcidid: 0000-0001-7248-5906
  surname: Bein
  fullname: Bein, Thomas
  email: tbein@cup.uni-muenchen.de
  organization: Nanosystems Initiative Munich (NIM) and Center for NanoScience (CeNS)
– sequence: 8
  givenname: Dana D
  orcidid: 0000-0003-4759-8612
  surname: Medina
  fullname: Medina, Dana D
  email: dana.medina@cup.uni-muenchen.de
  organization: Nanosystems Initiative Munich (NIM) and Center for NanoScience (CeNS)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31046244$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1PGzEQhi1EVb567q3aI1K1xF_rjY-QkhYJlEsO3Fazziwx9dqp7YC49T_0H_JL2CiBQyU4zUjzPHN43yOy74NHQr4yesYoZyMwyYMPZ7qljIl6jxwyLVRJx-p2_22v2AE5Sume0qoe1-ozORCMSsWlPCR-Fi36jItivrS-mFrXpyJ0xaVDk2MAk-0DFvNoV0v0Tw49FhPIaJbBDaO8gLRRH0P5w_bokw0eXHGDGdzz33-zeAfemmIaocfHEH-nE_KpA5fwy24ek_n0cj75VV7Pfl5Nzq9LEFznUghZSyYFB9N2laoZpwKkVJUSte40E1XX6bYWlLaaVy0DrtlYdQsEvdCtEsfkdPt2FcOfNabc9DYZdA48hnVqOOeaC6ElH9BvO3Td9rhoVtH2EJ-a14gGYLQFTAwpRezeEEabTQnNroRmV8JgVP8ZxmbIQzY5gnUfeN-33nBo7sM6Dlmmd-kXENadJw
CitedBy_id crossref_primary_10_1002_ange_202009253
crossref_primary_10_1002_ange_202401679
crossref_primary_10_1016_j_snb_2022_132290
crossref_primary_10_1016_j_jhazmat_2022_129865
crossref_primary_10_1021_acsami_0c19621
crossref_primary_10_1016_j_ccr_2022_214459
crossref_primary_10_1002_anie_202104461
crossref_primary_10_1002_anie_202405333
crossref_primary_10_1039_D0CE01651A
crossref_primary_10_1021_acssensors_4c01642
crossref_primary_10_1021_acs_chemrev_0c00033
crossref_primary_10_1021_acsami_1c12000
crossref_primary_10_1002_admi_202202031
crossref_primary_10_1002_adma_202311541
crossref_primary_10_1016_j_ccr_2021_213915
crossref_primary_10_1002_anie_202102670
crossref_primary_10_1021_acscentsci_1c00047
crossref_primary_10_1021_acs_chemrev_9b00766
crossref_primary_10_1002_ange_201914461
crossref_primary_10_1002_ange_202012428
crossref_primary_10_1002_ange_202212797
crossref_primary_10_1016_j_jhazmat_2024_134090
crossref_primary_10_1021_jacs_1c09740
crossref_primary_10_1021_jacs_2c05894
crossref_primary_10_1002_anie_202410411
crossref_primary_10_1016_j_ccr_2020_213479
crossref_primary_10_1021_jacs_3c05606
crossref_primary_10_1002_sstr_202100195
crossref_primary_10_1016_j_enchem_2021_100065
crossref_primary_10_1021_jacs_4c02326
crossref_primary_10_1039_D3CS00259D
crossref_primary_10_1002_ange_201910879
crossref_primary_10_1016_j_mtnano_2022_100278
crossref_primary_10_1002_cite_202300045
crossref_primary_10_1016_j_susc_2024_122594
crossref_primary_10_1016_j_radphyschem_2024_111580
crossref_primary_10_1002_adma_201905227
crossref_primary_10_1021_acs_nanolett_4c00194
crossref_primary_10_1021_jacs_4c17152
crossref_primary_10_1039_C9CS00594C
crossref_primary_10_1002_adfm_202422578
crossref_primary_10_1002_smsc_202100022
crossref_primary_10_1039_D4TA01820F
crossref_primary_10_1007_s42114_024_01016_z
crossref_primary_10_1039_D0TA03356A
crossref_primary_10_1002_ange_202405333
crossref_primary_10_1021_acs_chemmater_1c00743
crossref_primary_10_1021_acsnano_4c05838
crossref_primary_10_1002_chem_202100610
crossref_primary_10_1002_sstr_202200150
crossref_primary_10_1039_D0SC07073D
crossref_primary_10_1002_anie_202303111
crossref_primary_10_1016_j_ccr_2024_216405
crossref_primary_10_1039_D3TA03753C
crossref_primary_10_1002_sstr_202100210
crossref_primary_10_1039_D3TA04490D
crossref_primary_10_1016_j_enchem_2020_100029
crossref_primary_10_1039_D4TA00203B
crossref_primary_10_1002_chem_202001211
crossref_primary_10_1021_acs_chemrev_1c00528
crossref_primary_10_1016_j_trac_2024_117800
crossref_primary_10_1016_j_chempr_2022_03_027
crossref_primary_10_1002_ange_202410411
crossref_primary_10_1038_s41578_024_00740_8
crossref_primary_10_1039_D2CC03941A
crossref_primary_10_1002_ange_202303111
crossref_primary_10_1016_j_snb_2022_132786
crossref_primary_10_1002_cssc_202101587
crossref_primary_10_1002_smll_202308264
crossref_primary_10_1016_j_electacta_2024_145343
crossref_primary_10_1002_smll_202207720
crossref_primary_10_1021_acsnano_2c02529
crossref_primary_10_1021_acs_jpclett_4c01244
crossref_primary_10_1039_D2NJ04570B
crossref_primary_10_1016_j_jece_2022_107582
crossref_primary_10_1002_ange_202317413
crossref_primary_10_1038_s44160_024_00513_9
crossref_primary_10_1021_jacs_1c01673
crossref_primary_10_1002_smtd_202000396
crossref_primary_10_1016_j_talanta_2024_127489
crossref_primary_10_1002_chem_202401344
crossref_primary_10_1088_2053_1591_ab5752
crossref_primary_10_1002_aenm_201901892
crossref_primary_10_1002_anie_202012428
crossref_primary_10_1002_anie_202201725
crossref_primary_10_1016_j_trechm_2023_03_002
crossref_primary_10_1016_j_physe_2021_114905
crossref_primary_10_1039_D4GC05339G
crossref_primary_10_1002_adfm_202423539
crossref_primary_10_1038_s41467_022_34139_2
crossref_primary_10_1021_acsami_3c14401
crossref_primary_10_1021_acs_jpca_1c01978
crossref_primary_10_1016_j_flatc_2021_100287
crossref_primary_10_1039_D0TA04939E
crossref_primary_10_1021_acs_cgd_3c01162
crossref_primary_10_1002_anie_201914461
crossref_primary_10_1021_acsami_4c13269
crossref_primary_10_1039_D0CS01160F
crossref_primary_10_1002_anie_202401679
crossref_primary_10_1021_acsnano_4c14018
crossref_primary_10_1002_smll_202100505
crossref_primary_10_1021_jacs_1c05051
crossref_primary_10_1016_j_mattod_2024_07_010
crossref_primary_10_1021_acs_chemmater_3c01389
crossref_primary_10_1016_j_ccr_2023_215043
crossref_primary_10_1002_ange_202201725
crossref_primary_10_1016_j_ccr_2020_213461
crossref_primary_10_1039_C9CC08248D
crossref_primary_10_1002_ange_202104461
crossref_primary_10_1002_adma_202420043
crossref_primary_10_1002_celc_202001418
crossref_primary_10_1039_C9NR05431F
crossref_primary_10_1016_j_susmat_2021_e00354
crossref_primary_10_1039_C9TA09896H
crossref_primary_10_1021_acsmaterialslett_2c00160
crossref_primary_10_1002_anie_202009253
crossref_primary_10_1002_ejic_202000698
crossref_primary_10_1039_D3DT00876B
crossref_primary_10_1002_anie_201910879
crossref_primary_10_1021_acsnanoscienceau_3c00024
crossref_primary_10_1039_D3TA07120K
crossref_primary_10_2139_ssrn_4073318
crossref_primary_10_1021_acs_jpcc_4c07540
crossref_primary_10_6023_A22010024
crossref_primary_10_1002_anie_202317413
crossref_primary_10_1039_D1CC06440A
crossref_primary_10_1002_anie_202212797
crossref_primary_10_1002_adma_202101777
crossref_primary_10_3762_bjnano_10_196
crossref_primary_10_1002_ange_202102670
crossref_primary_10_1039_D3TA00580A
crossref_primary_10_1021_acs_jpcc_1c03418
Cites_doi 10.1039/c2dt12265k
10.1021/cr3002824
10.1002/adfm.201702067
10.1021/cm301194a
10.1021/nn5000223
10.1039/C7TA07978H
10.1002/chem.201101595
10.1021/ic802117q
10.1021/ja312380b
10.1039/B618320B
10.1023/A:1019106421183
10.1002/adma.201704291
10.1021/jacs.7b08174
10.1021/jacs.6b09889
10.1039/C7CS00315C
10.1038/ncomms8408
10.1021/acs.inorgchem.8b00493
10.1021/jp9816216
10.1002/anie.201506048
10.1039/C4CS00096J
10.1016/j.chempr.2016.06.013
10.1021/ja108698s
10.1021/acsnano.6b07692
10.1002/anie.201411854
10.1126/science.1246738
10.1002/anie.201004937
10.1016/j.nanoen.2017.08.028
10.1016/j.micromeso.2004.12.019
10.1039/C8CE01264D
10.1021/jacs.5b10666
10.1002/cplu.201500206
10.1246/cl.130882
10.1021/jacs.7b07234
10.1021/ja502765n
10.1021/jacs.6b08511
10.1038/s41560-017-0044-5
10.1002/adma.201401940
10.1126/science.1230444
10.1021/acsami.7b07410
10.1016/j.tsf.2012.09.037
10.1002/chem.201605337
10.1002/chem.201705530
10.1002/anie.201709558
10.1021/cm101238m
10.1021/ja510895m
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.9b01137
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 6719
ExternalDocumentID 31046244
10_1021_acsnano_9b01137
c216312449
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a329t-334741432acbf5671203a44656379f9135ff9b7300b925b1a29186fdea9d9b63
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Thu Jul 10 23:51:55 EDT 2025
Mon Jul 21 05:48:58 EDT 2025
Tue Jul 01 01:34:26 EDT 2025
Thu Apr 24 23:06:15 EDT 2025
Thu Aug 27 13:44:18 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords vapor-assisted conversion
triphenylene metal-catecholate
time-resolved absorption spectroscopy
metal−organic framework
thin films
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a329t-334741432acbf5671203a44656379f9135ff9b7300b925b1a29186fdea9d9b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4759-8612
0000-0001-7248-5906
0000-0003-0482-3672
0000-0002-0344-7735
0000-0001-7804-7210
0000-0001-7935-4204
PMID 31046244
PQID 2229233942
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2229233942
pubmed_primary_31046244
crossref_primary_10_1021_acsnano_9b01137
crossref_citationtrail_10_1021_acsnano_9b01137
acs_journals_10_1021_acsnano_9b01137
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190625
PublicationDateYYYYMMDD 2019-06-25
PublicationDate_xml – month: 06
  year: 2019
  text: 20190625
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref45/cit45
  doi: 10.1039/c2dt12265k
– ident: ref4/cit4
  doi: 10.1021/cr3002824
– ident: ref25/cit25
  doi: 10.1002/adfm.201702067
– ident: ref19/cit19
  doi: 10.1021/cm301194a
– ident: ref41/cit41
  doi: 10.1021/nn5000223
– ident: ref28/cit28
  doi: 10.1039/C7TA07978H
– ident: ref31/cit31
  doi: 10.1002/chem.201101595
– ident: ref5/cit5
  doi: 10.1021/ic802117q
– ident: ref13/cit13
  doi: 10.1021/ja312380b
– ident: ref2/cit2
  doi: 10.1039/B618320B
– ident: ref37/cit37
  doi: 10.1023/A:1019106421183
– ident: ref26/cit26
  doi: 10.1002/adma.201704291
– ident: ref33/cit33
  doi: 10.1021/jacs.7b08174
– ident: ref44/cit44
  doi: 10.1021/jacs.6b09889
– ident: ref27/cit27
  doi: 10.1039/C7CS00315C
– ident: ref12/cit12
  doi: 10.1038/ncomms8408
– ident: ref24/cit24
  doi: 10.1021/acs.inorgchem.8b00493
– ident: ref40/cit40
  doi: 10.1021/jp9816216
– ident: ref17/cit17
  doi: 10.1002/anie.201506048
– ident: ref6/cit6
  doi: 10.1039/C4CS00096J
– ident: ref29/cit29
  doi: 10.1016/j.chempr.2016.06.013
– ident: ref35/cit35
  doi: 10.1021/ja108698s
– ident: ref42/cit42
  doi: 10.1021/acsnano.6b07692
– ident: ref16/cit16
  doi: 10.1002/anie.201411854
– ident: ref30/cit30
  doi: 10.1126/science.1246738
– ident: ref39/cit39
  doi: 10.1002/anie.201004937
– ident: ref14/cit14
  doi: 10.1016/j.nanoen.2017.08.028
– ident: ref38/cit38
  doi: 10.1016/j.micromeso.2004.12.019
– ident: ref21/cit21
  doi: 10.1039/C8CE01264D
– ident: ref3/cit3
  doi: 10.1021/jacs.5b10666
– ident: ref11/cit11
  doi: 10.1002/cplu.201500206
– ident: ref15/cit15
  doi: 10.1246/cl.130882
– ident: ref9/cit9
  doi: 10.1021/jacs.7b07234
– ident: ref20/cit20
  doi: 10.1021/ja502765n
– ident: ref43/cit43
  doi: 10.1021/jacs.6b08511
– ident: ref10/cit10
  doi: 10.1038/s41560-017-0044-5
– ident: ref32/cit32
  doi: 10.1002/adma.201401940
– ident: ref1/cit1
  doi: 10.1126/science.1230444
– ident: ref23/cit23
  doi: 10.1021/acsami.7b07410
– ident: ref36/cit36
  doi: 10.1016/j.tsf.2012.09.037
– ident: ref18/cit18
  doi: 10.1002/chem.201605337
– ident: ref8/cit8
  doi: 10.1002/chem.201705530
– ident: ref22/cit22
  doi: 10.1002/anie.201709558
– ident: ref7/cit7
  doi: 10.1021/cm101238m
– ident: ref34/cit34
  doi: 10.1021/ja510895m
SSID ssj0057876
Score 2.6012707
Snippet Two-dimensional triphenylene-based metal–organic frameworks (TP-MOFs) attract significant scientific interest due to their long-range order combined with...
Two-dimensional triphenylene-based metal-organic frameworks (TP-MOFs) attract significant scientific interest due to their long-range order combined with...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6711
Title Oriented Thin Films of Electroactive Triphenylene Catecholate-Based Two-Dimensional Metal–Organic Frameworks
URI http://dx.doi.org/10.1021/acsnano.9b01137
https://www.ncbi.nlm.nih.gov/pubmed/31046244
https://www.proquest.com/docview/2229233942
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NbtNAEMdXkF7gQFs-SkqpFikHLhvi_XL2WNJEEVLgQJBys2a9a4FobYQdVe2p79A37JN01nYCJYrK3bOyx7M7_9Xs_oaQnvdeAoTbONJ4JqOBY2AhZtJFAfFjMltzCmaf9fSb_LRQiz-w6H8r-Dz6AGmZQ170jcVQFPFjssM1TuGggkZfV4tuiDvdFJBxg4wqYk3x2RggpKG0vJ-GtmjLOsdMdpvTWWWNJgxHS372l5Xtp1eb4MaHX3-PPGuVJj1pQmOfPPL5c_L0L_7gC5J_CZRj1Jw0tO-kkx9n5yUtMjpueuNAvRbSOa4r331-ifnJ0xEE6ivuhyvPPmIGRNOLgp2GHgEN34POPOr52-ub5pZnSier41_lSzKfjOejKWsbMDAQ3FRMCImCQwoOqc2UjiM-EFAT1kRsMhMJlWXGBuK9NVzZCLiJhjpzHowzVotXpJMXuX9NqNZOAyjpsqFFgabAYlp0Tg-tjb1Tqkt66KiknT9lUpfGeZS03kta73VJf_XXkrRlmIdWGmfbDd6vDX41-I7tj75bhUGCUyzUTSD3xbJMQstzLoSRvEsOmvhYDyZCjRwl0uH_fcAb8gQVV-A-MK6OSKf6vfRvUdVU9riO5zui4vPy
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lb9QwEMdHbTkUDpRHgYVSjNQDF283fmV9bLddbaHbqupW6i2yY0cgSoJIVghOfAe-IZ-EcR5LKVqJXqPY8mPs-Vtj_wZgx3svjAmvcYT2VEQDR401MRUuCogfndmaUzA9UZML8fZSXq7AoHsLg40osaayDuL_oQtEu_gtN3nR1xYtksercAelCAs2vTc67_beYH6qiSPjORnFxALm808FwRul5d_eaInErF3NeAPOFo2sb5h87M8r20-_3-A33qYXD-B-qzvJXmMoD2HF54_g3jUa4WPITwPzGBUoCck8yfjD1aeSFBk5bDLlmHpnJDPcZd77_Bt6K09GJjBg8XRcebqP_hCLfi3oQcgY0NA-yNSjuv_142fz5jMl4-4yWLkJs_HhbDShbToGajjTFeVcoPwQnJnUZlLFERtwU_PWeKwzHXGZZdoG_r3VTNrIMB0NVea80U5bxZ_AWl7k_hkQpZwyRgqXDS3KNWksOknn1NDa2Dspe7CDA5W0q6lM6kA5i5J29JJ29HrQ7yYvSVuieUiscbW8wJtFgc8NzGP5r687a0hwwYUoisl9MS-TkACdca4F68HTxkwWlfEQMUfB9Pz_OvAK1iez6XFyfHTy7gXcRS0WiBCUyS1Yq77M_UvUO5Xdrk38Ny24_FM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lb9QwEMctKBKiB0qBlm0LNVIPXLxt_Mr62G4blUcLElupt8iObRVRkopkheiJ78A37CfpTJJd8dBKcI1iy3bGnn80nt8QshNCkNZiNo40gclkzzPrbMqkTxDxY6JrOQUnp_r4TL45V-d9UhjmwsAgauipboP4uKuvfOwJA8kuPC9tWQ2NA6sU6V1yD4N2aNf744-z8xdNUHexZPhXBkExB_r81QF6pKL-3SMtkJmtu8lWyNl8oO0tk8_DaeOGxfUfDMf_nckj8rDXn3S_M5hVcieUj8nyL1TCJ6R8j-xjUKIUi3rS7NPll5pWkR51FXNse0LSCZw2F6H8Dl4r0LFFFiz8JTeBHYBfhKbfKnaIlQM66gc9CaDyb3787HI_C5rNLoXVT8kkO5qMj1lfloFZwU3DhJAgQ6TgtnBR6TThe8K23DWRmmgSoWI0Djn4znDlEstNMtLRB2u8cVqskaWyKsMzQrX22lolfRw5kG3KOnCW3uuRc2nwSg3IDixU3u-qOm8D5jzJ-9XL-9UbkOHsA-ZFTzbHAhuXixu8mje46qAei199ObOIHDYeRlNsGappnWMhdC6EkXxA1jtTmXcmMHIOwmnj3yawTe5_OMzyd69P326SByDJEAzBuNoiS83XaXgOsqdxL1orvwVRkv7W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oriented+Thin+Films+of+Electroactive+Triphenylene+Catecholate-Based+Two-Dimensional+Metal-Organic+Frameworks&rft.jtitle=ACS+nano&rft.au=M%C3%A4hringer%2C+Andre&rft.au=Jakowetz%2C+Andreas+C&rft.au=Rotter%2C+Julian+M&rft.au=Bohn%2C+Bernhard+J&rft.date=2019-06-25&rft.eissn=1936-086X&rft_id=info:doi/10.1021%2Facsnano.9b01137&rft_id=info%3Apmid%2F31046244&rft.externalDocID=31046244
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon