Microplane Model M7 for Plain Concrete. II: Calibration and Verification

AbstractThe microplane material model for concrete, formulated mathematically in the companion paper, is calibrated by material test data from all the typical laboratory tests taken from the literature. Then, the model is verified by finite-element simulations of data for some characteristic tests w...

Full description

Saved in:
Bibliographic Details
Published inJournal of engineering mechanics Vol. 139; no. 12; pp. 1724 - 1735
Main Authors Caner, Ferhun C, Bažant, Zdeněk P
Format Journal Article Publication
LanguageEnglish
Published American Society of Civil Engineers 01.12.2013
American Society of Civil Engineers (ASCE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract AbstractThe microplane material model for concrete, formulated mathematically in the companion paper, is calibrated by material test data from all the typical laboratory tests taken from the literature. Then, the model is verified by finite-element simulations of data for some characteristic tests with highly nonuniform strain fields. The scaling properties of model M7 are determined. With the volumetric stress effect taken from the previous load step, the M7 numerical algorithm is explicit, delivering in each load step the stress tensor from the strain tensor with no iterative loop. This makes the model robust and suitable for large-scale finite-element computations. There are five free, easily adjustable material parameters, which make it possible to match the given compressive strength, the corresponding strain, the given hydrostatic compression curve, and certain triaxial aspects. In addition, there are many fixed, hard-to-adjust parameters, which can be taken to be the same for all concretes. The optimum values of material parameters are determined by fitting a particularly broad range of test results, including the important tests of compression-tension load cycles, mixed-mode fracture, tension-shear failure of double-edge-notched specimens, and vertex effect when axial compression is followed by torsion. Because of the lack of information on the material characteristic length or fracture energy, which can be obtained only by size effect tests on the same concrete, and on the precise boundary conditions and precise gauge locations, the finite-element fitting of the present test data can hardly be expected to give better results than single-point simulations of specimens with approximately homogeneous strain states within the gauge length. Nevertheless, tensile test data with severe localization are delocalized on the basis of assumed material length. Model M7 is shown to fit a considerably broader range of test data than the preceding models M1–M6.
AbstractList The microplane material model for concrete, formulated mathematically in the preceding Part I, is here calibrated by material test data from all the typical laboratory tests taken from the literature. Then the model is verified by finite elements simulations of data for some characteristic tests with highly nonuniform strain fields. The scaling properties of model M7 are determined. With the volumetric stress effect taken from the previous load step, the M7 numerical algorithm is explicit, delivering in each load step the stress tensor from the strain tensor, with no iterative loop. This makes the model robust and suitable for large-scale finite element computations. There are 5 free, easily adjustable material parameters, which make it possible to match the given compressive strength, the corresponding strain, the given hydrostatic compression curve, and certain triaxial aspects. Besides, there are many fixed, hard-to-adjust, parameters, which can be taken the same for all concretes. The optimum values of material parameters are determined by fitting a particularly broad range of test results, including the important tests of compression-tension load cycles, mixed-mode fracture, tension-shear failure of double-edge-notched specimens, and vertex effect when axial compression is followed by torsion. Because of the lack of information on the material characteristic length or fracture energy, which can be obtained only by size effect tests on the same concrete, and on the precise boundary conditions and precise gauge locations, the finite element fitting of the present test data can hardly be expected to give better results than single-point simulations of specimens with approximately homogeneous strain states within the gauge length. Nevertheless, tensile test data with severe localization are delocalized on the basis of assumed material length. Model M7 is shown to fit a considerably broader range of test data than the preceding models M1–M6.
AbstractThe microplane material model for concrete, formulated mathematically in the companion paper, is calibrated by material test data from all the typical laboratory tests taken from the literature. Then, the model is verified by finite-element simulations of data for some characteristic tests with highly nonuniform strain fields. The scaling properties of model M7 are determined. With the volumetric stress effect taken from the previous load step, the M7 numerical algorithm is explicit, delivering in each load step the stress tensor from the strain tensor with no iterative loop. This makes the model robust and suitable for large-scale finite-element computations. There are five free, easily adjustable material parameters, which make it possible to match the given compressive strength, the corresponding strain, the given hydrostatic compression curve, and certain triaxial aspects. In addition, there are many fixed, hard-to-adjust parameters, which can be taken to be the same for all concretes. The optimum values of material parameters are determined by fitting a particularly broad range of test results, including the important tests of compression-tension load cycles, mixed-mode fracture, tension-shear failure of double-edge-notched specimens, and vertex effect when axial compression is followed by torsion. Because of the lack of information on the material characteristic length or fracture energy, which can be obtained only by size effect tests on the same concrete, and on the precise boundary conditions and precise gauge locations, the finite-element fitting of the present test data can hardly be expected to give better results than single-point simulations of specimens with approximately homogeneous strain states within the gauge length. Nevertheless, tensile test data with severe localization are delocalized on the basis of assumed material length. Model M7 is shown to fit a considerably broader range of test data than the preceding models M1–M6.
The microplane material model for concrete, formulated mathematically in the preceding Part I, is here calibrated by material test data from all the typical laboratory tests taken from the literature. Then the model is verified by finite elements simulations of data for some characteristic tests with highly nonuniform strain fields. The scaling properties of model M7 are determined. With the volumetric stress effect taken from the previous load step, the M7 numerical algorithm is explicit, delivering in each load step the stress tensor from the strain tensor, with no iterative loop. This makes the model robust and suitable for large-scale finite element computations. There are 5 free, easily adjustable material parameters, which make it possible to match the given compressive strength, the corresponding strain, the given hydrostatic compression curve, and certain triaxial aspects. Besides, there are many fixed, hard-to-adjust, parameters, which can be taken the same for all concretes. The optimum values of material parameters are determined by fitting a particularly broad range of test results, including the important tests of compression-tension load cycles, mixed-mode fracture, tension-shear failure of double-edge-notched specimens, and vertex effect when axial compression is followed by torsion. Because of the lack of information on the material characteristic length or fracture energy, which can be obtained only by size effect tests on the same concrete, and on the precise boundary conditions and precise gauge locations, the finite element fitting of the present test data can hardly be expected to give better results than single-point simulations of specimens with approximately homogeneous strain states within the gauge length. Nevertheless, tensile test data with severe localization are delocalized on the basis of assumed material length. Model M7 is shown to fit a considerably broader range of test data than the preceding models M1
Author Caner, Ferhun C
Bažant, Zdeněk P
Author_xml – sequence: 1
  givenname: Ferhun C
  surname: Caner
  fullname: Caner, Ferhun C
  email: ferhun.caner@upc.edu
  organization: Univ. Politecnica de Catalunya Northwestern Univ. Associate Professor, Institute of Energy Technologies, School of Industrial Engineering, , Campus Sud, 08028 Barcelona, ; presently, Visiting Scholar, Dept. of Civil and Environmental Engineering, , Evanston, IL 60208. E-mail
– sequence: 2
  givenname: Zdeněk P
  surname: Bažant
  fullname: Bažant, Zdeněk P
  organization: Northwestern Univ. Distinguished McCormick Institute Professor and W. P. Murphy Professor of Civil Engineering, Mechanical Engineering, and Materials Science, , Evanston, IL 60208 (corresponding author). E-mail
BookMark eNp1kF1rwyAUhmV0sLbbf5BddRfpNEaNvSuhWwsNG-zjVow5BUsaO20v9u-XrKW7mnCUc_B50WeEBq1vAaF7SqaUCPo4mb8Vi4dFOaUqY4nMczUl3eKSXqHhZTZAQyIZSxRT6gaNYtwSQjOhxBAtS2eD3zemBVz6GhpcSrzxAb82xrW48K0NcIApXq1muDCNq4I5ON9i09b4E4LbOPs7uEXXG9NEuDufY_TxtHgvlsn65XlVzNeJYWl-SKwlrJIWGOSyZsRwQWsFFakzW4lUGi55zStjDLWcppQJENZW3KYgiaqkYWNET7k2Hq0OYCF0D9DeuL-mr5TItNuUyLOOmZyYffBfR4gHvXPRQtP_2h-jprnIOKeKsO7q7BwffIwBNnof3M6Eb02J7pVr3SvXi1L3enWvV5-Vd7A4waZL11t_DG2n4kL-D_4Ak96GSw
Cites_doi 10.1016/j.cemconcomp.2011.02.011
10.1016/j.cemconcomp.2011.02.010
10.1007/BF02472035
10.1061/(ASCE)0733-9399(2002)128:1(24)
10.1115/1.4011992
10.1061/(ASCE)0733-9399(2003)129:12(1439)
10.1016/S0020-7683(00)00034-2
10.1061/(ASCE)EM.1943-7889.0000254
10.1016/0008-8846(84)90113-3
10.1007/BF02486267
10.1061/(ASCE)0733-9399(1996)122:3(255)
10.1061/(ASCE)0733-9399(2005)131:1(41)
10.1061/(ASCE)EM.1943-7889.0000570
10.2172/4343548
10.1007/BF02472034
10.21236/AD0761820
10.1115/1.3097329
10.1061/(ASCE)0733-9399(1998)124:8(842)
10.1002/zamm.19860660108
10.1016/j.cma.2005.10.023
10.1002/nme.975
10.1023/A:1007578814070
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. Institut de Tècniques Energètiques
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Institut de Tècniques Energètiques
Copyright 2013 American Society of Civil Engineers.
Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es
Copyright_xml – notice: 2013 American Society of Civil Engineers.
– notice: Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>
DBID AAYXX
CITATION
7TB
8FD
F28
FR3
KR7
XX2
DOI 10.1061/(ASCE)EM.1943-7889.0000571
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Recercat
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1943-7889
EndPage 1735
ExternalDocumentID oai_recercat_cat_2072_209684
10_1061__ASCE_EM_1943_7889_0000571
10_1061_ASCE_EM_1943_7889_0000571
GroupedDBID -0O
02
0O
0R
29K
4.4
4S
5GY
AAIKC
ABBOT
ABDBF
ABFLS
ABPTK
ACDCL
ACIWK
ACNET
ACVYA
ADZKS
AENEX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ARKUK
ASUFR
CS3
D-I
E.L
E70
EAD
EAP
EAS
EBS
EDO
EJD
EMI
EMK
EST
ESX
GQVBS
HZ
H~9
I-F
L7B
O9-
O~X
P2P
RAC
RNS
RXW
TAE
TAF
TN5
TUS
X
-~X
.4S
.DC
0R~
2FS
6TJ
AAELQ
AAMNW
AAYOK
AAYXX
ABDPE
ABEFU
ABFSI
ACGFO
ACKIV
ACUHS
ADNWM
ADVLX
AFFNX
AI.
AIRRX
ALNAR
CITATION
HZ~
VH1
WHG
XSW
ZY4
~02
~A~
7TB
8FD
F28
FR3
KR7
XX2
ID FETCH-LOGICAL-a328t-cc03b7ce3e87d30a561d9eb0d4cb627a575d5baaa1c512136e6ccb5c2e709b7a3
ISSN 0733-9399
IngestDate Fri Aug 29 12:36:44 EDT 2025
Fri Jul 11 10:20:07 EDT 2025
Tue Jul 01 00:24:00 EDT 2025
Tue Jan 05 18:51:37 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a328t-cc03b7ce3e87d30a561d9eb0d4cb627a575d5baaa1c512136e6ccb5c2e709b7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://recercat.cat/handle/2072/209684
PQID 1864551903
PQPubID 23500
PageCount 12
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_209684
proquest_miscellaneous_1864551903
crossref_primary_10_1061__ASCE_EM_1943_7889_0000571
asce_journals_10_1061_ASCE_EM_1943_7889_0000571
ProviderPackageCode GQVBS
ABBOT
RAC
ACNET
ARKUK
ADZKS
-0O
E70
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of engineering mechanics
PublicationYear 2013
Publisher American Society of Civil Engineers
American Society of Civil Engineers (ASCE)
Publisher_xml – name: American Society of Civil Engineers
– name: American Society of Civil Engineers (ASCE)
References Bažant, Z. P.; Bishop, F. C.; Chang, T.-P. 1986; 33
Cusatis, G.; Pelessone, D.; Mencarelli, A. 2011b; 33
Li, Z.; Li, F.; Chang, T.-Y.-P.; Mai, Y.-W. 1998; 95
Kupfer, H.; Hilsdorf, H. K.; Rüsch, H. 1969; 66
Bažant, Z. P.; Oh, B.-H. 1983; 16
Gálvez, J.; Elices, M.; Guinea, G.; Planas, J. 1998; 94
Bažant, Z. P.; Caner, F. C. 2005; 131
Bažant, Z. P.; Xiang, Y.; Adley, M. D.; Prat, P. C.; Akers, S. A. 1996; 122
Sinha, B. P.; Gerstle, K. H.; Tulin, L. G. 1964; 62
Bažant, Z. P.; Oh, B.-H. 1986; 66
Yin, W. S.; Su, E. C. M.; Mansur, M. A.; Hsu, T. T. C. 1989; 86
Gasser, T. C.; Holzapfel, G. A. 2006; 195
Li, F.; Li, Z. 2000; 38
Bresler, B.; Pister, K. S. 1958; 551
Caner, F. C.; Bažant, Z. P. 2013; 139
Cusatis, G.; Bažant, Z. P.; Cedolin, L. 2003; 129
Brocca, M.; Bažant, Z. P. 2000; 53
Bažant, Z.; Yu, Q. 2011; 137
Chern, J.-C.; Yang, H.-J.; Chen, H.-W. 1992; 89
Jirásek, M.; Zimmermann, T. 1998; 124
Reinhardt, H. W.; Cornelissen, H. A. W. 1984; 14
Caner, F.; Bažant, Z.; Červenka, J. 2002; 128
van Mier, J. G. M. 1986a; 19
Pivonka, P.; Ožbolt, J.; Lackner, R.; Mang, H. A. 2004; 60
Cusatis, G.; Mencarelli, A.; Pelessone, D.; Baylot, J. T. 2011a; 33
van Mier, J. G. M. 1986b; 19
Bažant Z. P. (e_1_3_2_7_1) 1991
e_1_3_2_27_1
e_1_3_2_29_1
e_1_3_2_20_1
e_1_3_2_21_1
Kupfer H. (e_1_3_2_25_1) 1969; 66
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_26_1
Bažant Z. P. (e_1_3_2_5_1) 1986; 33
Chern J.-C. (e_1_3_2_16_1) 1992; 89
Sinha B. P. (e_1_3_2_33_1) 1964; 62
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_31_1
e_1_3_2_10_1
e_1_3_2_32_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_13_1
e_1_3_2_34_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_3_1
e_1_3_2_15_1
e_1_3_2_36_1
Yin W. S. (e_1_3_2_37_1) 1989; 86
Bresler B. (e_1_3_2_11_1) 1958; 551
Li Z. (e_1_3_2_28_1) 1998; 95
Petersson P. E. (e_1_3_2_30_1) 1981
References_xml – volume: 53
  start-page: 265
  year: 2000
  end-page: 281
  article-title: Microplane constitutive model and metal plasticity
  publication-title: Appl. Mech. Rev.
– volume: 137
  start-page: 580
  year: 2011
  end-page: 588
  article-title: Size effect testing of cohesive fracture parameters and non-uniqueness of work-of-fracture method
  publication-title: J. Eng. Mech.
– volume: 33
  start-page: 891
  year: 2011a
  end-page: 905
  article-title: Lattice discrete particle model (LDPM) for failure behavior of concrete. II: Calibration and validation
  publication-title: Cement Concr. Compos.
– volume: 19
  start-page: 179
  year: 1986a
  end-page: 190
  article-title: Multiaxial strain-softening of concrete. I: Fracture
  publication-title: Mater. Struct.
– volume: 19
  start-page: 190
  year: 1986b
  article-title: Multiaxial strain-softening of concrete. II: Load histories
  publication-title: Mater. Struct.
– volume: 33
  start-page: 553
  year: 1986
  end-page: 560
  article-title: Confined compression tests of cement paste and concrete up to 300 ksi
  publication-title: J. Am. Concr. Inst.
– volume: 14
  start-page: 263
  year: 1984
  end-page: 270
  article-title: Post-peak cyclic behavior of concrete in uniaxial tensile and alternating tensile and compressive loading
  publication-title: Cement Concr. Res.
– volume: 139
  start-page: 1714
  year: 2013
  end-page: 1723
  article-title: Microplane model M7 for plain concrete. I: Formulation
  publication-title: J. Eng. Mech.
– volume: 94
  start-page: 267
  year: 1998
  end-page: 284
  article-title: Mixed mode fracture of concrete under proportional and nonproportional loading
  publication-title: Int. J. Fract.
– volume: 131
  start-page: 41
  year: 2005
  end-page: 47
  article-title: Microplane model M5 with kinematic and static constraints for concrete fracture and anelasticity. II. Computation
  publication-title: J. Eng. Mech.
– volume: 89
  start-page: 32
  year: 1992
  end-page: 40
  article-title: Behavior of steel fiber-reinforced concrete in multiaxial loading
  publication-title: ACI Mater. J.
– volume: 66
  start-page: 656
  year: 1969
  end-page: 666
  article-title: Behavior of concrete under biaxial stresses
  publication-title: J. Am. Concr. Inst.
– volume: 195
  start-page: 5198
  year: 2006
  end-page: 5219
  article-title: 3D crack propagation in unreinforced concrete: A two-step algorithm for tracking 3D crack paths
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 551
  start-page: 321
  year: 1958
  end-page: 345
  article-title: Strength of concrete under combined stresses
  publication-title: J. Am. Concr. Inst.
– volume: 122
  start-page: 255
  year: 1996
  end-page: 262
  article-title: Microplane model for concrete. II. Data delocalization and verification
  publication-title: J. Eng. Mech.
– volume: 66
  start-page: 37
  year: 1986
  end-page: 49
  article-title: Efficient numerical integration on the surface of a sphere
  publication-title: Z. Angew. Math. Mech.
– volume: 124
  start-page: 842
  year: 1998
  end-page: 851
  article-title: Analysis of rotating crack model
  publication-title: J. Eng. Mech.
– volume: 60
  start-page: 549
  year: 2004
  end-page: 570
  article-title: Comparative studies of 3D-constitutive models for concrete: Application to mixed-mode fracture
  publication-title: Int. J. Numer. Methods Eng.
– volume: 16
  start-page: 155
  year: 1983
  end-page: 177
  article-title: Crack band theory for fracture of concrete
  publication-title: Matér. Struct.
– volume: 86
  start-page: 236
  year: 1989
  end-page: 243
  article-title: Biaxial tests of plain and fiber concrete
  publication-title: ACI Mater. J.
– volume: 129
  start-page: 1439
  year: 2003
  end-page: 1448
  article-title: Confinement–shear lattice model for concrete damage in tension and compression: I. Theory
  publication-title: J. Eng. Mech.
– volume: 38
  start-page: 777
  year: 2000
  end-page: 793
  article-title: Continuum damage mechanics based modeling of fiber-reinforced concrete in tension
  publication-title: Int. J. Solids Struct.
– volume: 95
  start-page: 564
  year: 1998
  end-page: 574
  article-title: Uniaxial tensile behavior of concrete reinforced with randomly distributed short fibers
  publication-title: ACI Mater. J.
– volume: 62
  start-page: 195
  year: 1964
  end-page: 210
  article-title: Stress-strain relations for concrete under cyclic loading
  publication-title: J. Am. Concr. Inst.
– volume: 128
  start-page: 24
  year: 2002
  end-page: 33
  article-title: Vertex effect in strain-softening concrete at rotating principal axes
  publication-title: J. Eng. Mech.
– volume: 33
  start-page: 881
  year: 2011b
  end-page: 890
  article-title: Lattice discrete particle model (LDPM) for failure behavior of concrete. I: Theory
  publication-title: Cement Concr. Compos.
– ident: e_1_3_2_19_1
  doi: 10.1016/j.cemconcomp.2011.02.011
– ident: e_1_3_2_18_1
  doi: 10.1016/j.cemconcomp.2011.02.010
– ident: e_1_3_2_36_1
  doi: 10.1007/BF02472035
– ident: e_1_3_2_14_1
  doi: 10.1061/(ASCE)0733-9399(2002)128:1(24)
– volume: 66
  start-page: 656
  issue: 8
  year: 1969
  ident: e_1_3_2_25_1
  article-title: Behavior of concrete under biaxial stresses
  publication-title: J. Am. Concr. Inst.
– ident: e_1_3_2_13_1
  doi: 10.1115/1.4011992
– volume: 551
  start-page: 321
  issue: 9
  year: 1958
  ident: e_1_3_2_11_1
  article-title: Strength of concrete under combined stresses
  publication-title: J. Am. Concr. Inst.
– ident: e_1_3_2_17_1
  doi: 10.1061/(ASCE)0733-9399(2003)129:12(1439)
– ident: e_1_3_2_27_1
  doi: 10.1016/S0020-7683(00)00034-2
– volume-title: Stability of structures: Elastic, damage theories
  year: 1991
  ident: e_1_3_2_7_1
– volume: 89
  start-page: 32
  issue: 1
  year: 1992
  ident: e_1_3_2_16_1
  article-title: Behavior of steel fiber-reinforced concrete in multiaxial loading
  publication-title: ACI Mater. J.
– ident: e_1_3_2_4_1
  doi: 10.1061/(ASCE)EM.1943-7889.0000254
– ident: e_1_3_2_2_1
– volume: 86
  start-page: 236
  issue: 3
  year: 1989
  ident: e_1_3_2_37_1
  article-title: Biaxial tests of plain and fiber concrete
  publication-title: ACI Mater. J.
– volume-title: Rep. No. TVBM 1006
  year: 1981
  ident: e_1_3_2_30_1
– ident: e_1_3_2_32_1
  doi: 10.1016/0008-8846(84)90113-3
– ident: e_1_3_2_8_1
  doi: 10.1007/BF02486267
– ident: e_1_3_2_10_1
  doi: 10.1061/(ASCE)0733-9399(1996)122:3(255)
– ident: e_1_3_2_6_1
  doi: 10.1061/(ASCE)0733-9399(2005)131:1(41)
– volume: 33
  start-page: 553
  issue: 4
  year: 1986
  ident: e_1_3_2_5_1
  article-title: Confined compression tests of cement paste and concrete up to 300 ksi
  publication-title: J. Am. Concr. Inst.
– ident: e_1_3_2_34_1
– ident: e_1_3_2_15_1
  doi: 10.1061/(ASCE)EM.1943-7889.0000570
– ident: e_1_3_2_22_1
  doi: 10.2172/4343548
– ident: e_1_3_2_35_1
  doi: 10.1007/BF02472034
– ident: e_1_3_2_3_1
– ident: e_1_3_2_23_1
  doi: 10.21236/AD0761820
– volume: 62
  start-page: 195
  issue: 2
  year: 1964
  ident: e_1_3_2_33_1
  article-title: Stress-strain relations for concrete under cyclic loading
  publication-title: J. Am. Concr. Inst.
– ident: e_1_3_2_12_1
  doi: 10.1115/1.3097329
– ident: e_1_3_2_24_1
  doi: 10.1061/(ASCE)0733-9399(1998)124:8(842)
– ident: e_1_3_2_9_1
  doi: 10.1002/zamm.19860660108
– ident: e_1_3_2_26_1
– volume: 95
  start-page: 564
  issue: 5
  year: 1998
  ident: e_1_3_2_28_1
  article-title: Uniaxial tensile behavior of concrete reinforced with randomly distributed short fibers
  publication-title: ACI Mater. J.
– ident: e_1_3_2_21_1
  doi: 10.1016/j.cma.2005.10.023
– ident: e_1_3_2_31_1
  doi: 10.1002/nme.975
– ident: e_1_3_2_20_1
  doi: 10.1023/A:1007578814070
– ident: e_1_3_2_29_1
SSID ssj0014696
Score 2.408799
Snippet AbstractThe microplane material model for concrete, formulated mathematically in the companion paper, is calibrated by material test data from all the typical...
The microplane material model for concrete, formulated mathematically in the preceding Part I, is here calibrated by material test data from all the typical...
SourceID csuc
proquest
crossref
asce
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1724
SubjectTerms Calibratge
Calibration
Concrete
Concretes
Enginyeria civil
Enginyeria mecànica
Finite element method
Formigó
Gauges
Materials i estructures
Materials i estructures de formigó
Mathematical analysis
Mathematical models
Metrologia
Parameters
Physical measurements
Strain
Technical Papers
Àrees temàtiques de la UPC
Title Microplane Model M7 for Plain Concrete. II: Calibration and Verification
URI http://ascelibrary.org/doi/abs/10.1061/(ASCE)EM.1943-7889.0000571
https://www.proquest.com/docview/1864551903
https://recercat.cat/handle/2072/209684
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wIPiKsoNxmJSkCVLIkdO-GtLa1apKBJbGjixfJtQmJ0Uy8vPPDbOSdJ04xtAvZQK82D4_g7Of5sn_OZkNcOVb5PhAucNC7g3Oggsy4KcmeklTB7EzEmChefxOyIfzxOjzudX-3skrUJ7c8r80pugircA1wxS_Y_kG0qhRtwDfhCCQhD-U8YFxhNd47hquWZZqeDQpZhgwenukrmA0q49uFgPseJP6ZhmRpwXC7_Ak08qZfsruGofqdWOPjhMUm4FRw_1nWyzNQvv23geeFuWbQ_Tvujia5EDb6ibwPSmo--Dw7C9jpDzFoxG5U7kowFOauOMwp95S5zzjAeMb_gTyt1oq3hJC33CGyJt4baWFZSJZfcOJAM6Hug2MPP40k_ySdF2DyqVJxMq3NbLupn_zGuNdGG5T67iJXC2tSkUFiXwrpUXdctspfANCPpkr3h6MNo2uxDcVGe8Na8-1a2VsT7b7C2t1e1DEZ3vcLpTovpdO1qYy-N9yWJObxH7tbI0mFlSvdJxy8ekDstTcqHZLYzKloaFS0kBaOipVHRxqjofP6etkyKgknRtkk9IkfTyeF4FtTHbQSaJdk6sDZi8IF65jPpWKSBWbvcm8hxa0QiNRB7lxqtdWxTFAIUXlhrUpt4GeVGavaYdBdnC_-EUM0yCURT-Eg4LmWqNVzl2nGfRk5kWY_sYw-p-ltaqS1E1yLUI2zbmeq80mFRf8e1R95hvysgD34JL69QTL35g78kkgkUuch4j7zaoqPAx-LGGXT12QZalwkOM4s8Yk9v1Ixn5Pbui3pOuuvlxr8ALrs2L2uD-w3NaY80
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microplane+Model+M7+for+Plain+Concrete.+II%3A+Calibration+and+Verification&rft.jtitle=Journal+of+engineering+mechanics&rft.au=Caner%2C+Ferhun+C.&rft.au=Ba%C5%BEant%2C+Zden%C4%9Bk+P.&rft.date=2013-12-01&rft.issn=0733-9399&rft.eissn=1943-7889&rft.volume=139&rft.issue=12&rft.spage=1724&rft.epage=1735&rft_id=info:doi/10.1061%2F%28ASCE%29EM.1943-7889.0000571&rft.externalDBID=n%2Fa&rft.externalDocID=10_1061__ASCE_EM_1943_7889_0000571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-9399&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-9399&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-9399&client=summon