Microplane Model M7 for Plain Concrete. II: Calibration and Verification
AbstractThe microplane material model for concrete, formulated mathematically in the companion paper, is calibrated by material test data from all the typical laboratory tests taken from the literature. Then, the model is verified by finite-element simulations of data for some characteristic tests w...
Saved in:
Published in | Journal of engineering mechanics Vol. 139; no. 12; pp. 1724 - 1735 |
---|---|
Main Authors | , |
Format | Journal Article Publication |
Language | English |
Published |
American Society of Civil Engineers
01.12.2013
American Society of Civil Engineers (ASCE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | AbstractThe microplane material model for concrete, formulated mathematically in the companion paper, is calibrated by material test data from all the typical laboratory tests taken from the literature. Then, the model is verified by finite-element simulations of data for some characteristic tests with highly nonuniform strain fields. The scaling properties of model M7 are determined. With the volumetric stress effect taken from the previous load step, the M7 numerical algorithm is explicit, delivering in each load step the stress tensor from the strain tensor with no iterative loop. This makes the model robust and suitable for large-scale finite-element computations. There are five free, easily adjustable material parameters, which make it possible to match the given compressive strength, the corresponding strain, the given hydrostatic compression curve, and certain triaxial aspects. In addition, there are many fixed, hard-to-adjust parameters, which can be taken to be the same for all concretes. The optimum values of material parameters are determined by fitting a particularly broad range of test results, including the important tests of compression-tension load cycles, mixed-mode fracture, tension-shear failure of double-edge-notched specimens, and vertex effect when axial compression is followed by torsion. Because of the lack of information on the material characteristic length or fracture energy, which can be obtained only by size effect tests on the same concrete, and on the precise boundary conditions and precise gauge locations, the finite-element fitting of the present test data can hardly be expected to give better results than single-point simulations of specimens with approximately homogeneous strain states within the gauge length. Nevertheless, tensile test data with severe localization are delocalized on the basis of assumed material length. Model M7 is shown to fit a considerably broader range of test data than the preceding models M1–M6. |
---|---|
AbstractList | The microplane material model for concrete, formulated mathematically in the preceding Part I, is here calibrated by material test data from all the typical laboratory tests taken from the literature. Then the model is verified by finite elements simulations of data for some characteristic tests with highly nonuniform strain fields. The scaling properties of model M7 are determined. With the volumetric stress effect taken from the previous load step, the M7 numerical algorithm is explicit, delivering in each load step the stress tensor from the strain tensor, with no iterative loop. This makes the model robust and suitable for large-scale finite element computations. There are 5 free, easily adjustable material parameters, which make it possible to match the given compressive strength, the corresponding strain, the given hydrostatic compression curve, and certain triaxial aspects. Besides, there are many fixed, hard-to-adjust, parameters, which can be taken the same for all concretes. The optimum values of material parameters are determined by fitting a particularly broad range of test results, including the important tests of compression-tension load cycles, mixed-mode fracture, tension-shear failure of double-edge-notched specimens, and vertex effect when axial compression is followed by torsion. Because of the lack of information on the material characteristic length or fracture energy, which can be obtained only by size effect tests on the same concrete, and on the precise boundary conditions and precise gauge locations, the finite element fitting of the present test data can hardly be expected to give better results than single-point simulations of specimens with approximately homogeneous strain states within the gauge length. Nevertheless, tensile test data with severe localization are delocalized on the basis of assumed material length. Model M7 is shown to fit a considerably broader range of test data than the preceding models M1–M6. AbstractThe microplane material model for concrete, formulated mathematically in the companion paper, is calibrated by material test data from all the typical laboratory tests taken from the literature. Then, the model is verified by finite-element simulations of data for some characteristic tests with highly nonuniform strain fields. The scaling properties of model M7 are determined. With the volumetric stress effect taken from the previous load step, the M7 numerical algorithm is explicit, delivering in each load step the stress tensor from the strain tensor with no iterative loop. This makes the model robust and suitable for large-scale finite-element computations. There are five free, easily adjustable material parameters, which make it possible to match the given compressive strength, the corresponding strain, the given hydrostatic compression curve, and certain triaxial aspects. In addition, there are many fixed, hard-to-adjust parameters, which can be taken to be the same for all concretes. The optimum values of material parameters are determined by fitting a particularly broad range of test results, including the important tests of compression-tension load cycles, mixed-mode fracture, tension-shear failure of double-edge-notched specimens, and vertex effect when axial compression is followed by torsion. Because of the lack of information on the material characteristic length or fracture energy, which can be obtained only by size effect tests on the same concrete, and on the precise boundary conditions and precise gauge locations, the finite-element fitting of the present test data can hardly be expected to give better results than single-point simulations of specimens with approximately homogeneous strain states within the gauge length. Nevertheless, tensile test data with severe localization are delocalized on the basis of assumed material length. Model M7 is shown to fit a considerably broader range of test data than the preceding models M1–M6. The microplane material model for concrete, formulated mathematically in the preceding Part I, is here calibrated by material test data from all the typical laboratory tests taken from the literature. Then the model is verified by finite elements simulations of data for some characteristic tests with highly nonuniform strain fields. The scaling properties of model M7 are determined. With the volumetric stress effect taken from the previous load step, the M7 numerical algorithm is explicit, delivering in each load step the stress tensor from the strain tensor, with no iterative loop. This makes the model robust and suitable for large-scale finite element computations. There are 5 free, easily adjustable material parameters, which make it possible to match the given compressive strength, the corresponding strain, the given hydrostatic compression curve, and certain triaxial aspects. Besides, there are many fixed, hard-to-adjust, parameters, which can be taken the same for all concretes. The optimum values of material parameters are determined by fitting a particularly broad range of test results, including the important tests of compression-tension load cycles, mixed-mode fracture, tension-shear failure of double-edge-notched specimens, and vertex effect when axial compression is followed by torsion. Because of the lack of information on the material characteristic length or fracture energy, which can be obtained only by size effect tests on the same concrete, and on the precise boundary conditions and precise gauge locations, the finite element fitting of the present test data can hardly be expected to give better results than single-point simulations of specimens with approximately homogeneous strain states within the gauge length. Nevertheless, tensile test data with severe localization are delocalized on the basis of assumed material length. Model M7 is shown to fit a considerably broader range of test data than the preceding models M1 |
Author | Caner, Ferhun C Bažant, Zdeněk P |
Author_xml | – sequence: 1 givenname: Ferhun C surname: Caner fullname: Caner, Ferhun C email: ferhun.caner@upc.edu organization: Univ. Politecnica de Catalunya Northwestern Univ. Associate Professor, Institute of Energy Technologies, School of Industrial Engineering, , Campus Sud, 08028 Barcelona, ; presently, Visiting Scholar, Dept. of Civil and Environmental Engineering, , Evanston, IL 60208. E-mail – sequence: 2 givenname: Zdeněk P surname: Bažant fullname: Bažant, Zdeněk P organization: Northwestern Univ. Distinguished McCormick Institute Professor and W. P. Murphy Professor of Civil Engineering, Mechanical Engineering, and Materials Science, , Evanston, IL 60208 (corresponding author). E-mail |
BookMark | eNp1kF1rwyAUhmV0sLbbf5BddRfpNEaNvSuhWwsNG-zjVow5BUsaO20v9u-XrKW7mnCUc_B50WeEBq1vAaF7SqaUCPo4mb8Vi4dFOaUqY4nMczUl3eKSXqHhZTZAQyIZSxRT6gaNYtwSQjOhxBAtS2eD3zemBVz6GhpcSrzxAb82xrW48K0NcIApXq1muDCNq4I5ON9i09b4E4LbOPs7uEXXG9NEuDufY_TxtHgvlsn65XlVzNeJYWl-SKwlrJIWGOSyZsRwQWsFFakzW4lUGi55zStjDLWcppQJENZW3KYgiaqkYWNET7k2Hq0OYCF0D9DeuL-mr5TItNuUyLOOmZyYffBfR4gHvXPRQtP_2h-jprnIOKeKsO7q7BwffIwBNnof3M6Eb02J7pVr3SvXi1L3enWvV5-Vd7A4waZL11t_DG2n4kL-D_4Ak96GSw |
Cites_doi | 10.1016/j.cemconcomp.2011.02.011 10.1016/j.cemconcomp.2011.02.010 10.1007/BF02472035 10.1061/(ASCE)0733-9399(2002)128:1(24) 10.1115/1.4011992 10.1061/(ASCE)0733-9399(2003)129:12(1439) 10.1016/S0020-7683(00)00034-2 10.1061/(ASCE)EM.1943-7889.0000254 10.1016/0008-8846(84)90113-3 10.1007/BF02486267 10.1061/(ASCE)0733-9399(1996)122:3(255) 10.1061/(ASCE)0733-9399(2005)131:1(41) 10.1061/(ASCE)EM.1943-7889.0000570 10.2172/4343548 10.1007/BF02472034 10.21236/AD0761820 10.1115/1.3097329 10.1061/(ASCE)0733-9399(1998)124:8(842) 10.1002/zamm.19860660108 10.1016/j.cma.2005.10.023 10.1002/nme.975 10.1023/A:1007578814070 |
ContentType | Journal Article Publication |
Contributor | Universitat Politècnica de Catalunya. Institut de Tècniques Energètiques |
Contributor_xml | – sequence: 1 fullname: Universitat Politècnica de Catalunya. Institut de Tècniques Energètiques |
Copyright | 2013 American Society of Civil Engineers. Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es |
Copyright_xml | – notice: 2013 American Society of Civil Engineers. – notice: Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a> |
DBID | AAYXX CITATION 7TB 8FD F28 FR3 KR7 XX2 |
DOI | 10.1061/(ASCE)EM.1943-7889.0000571 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Recercat |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1943-7889 |
EndPage | 1735 |
ExternalDocumentID | oai_recercat_cat_2072_209684 10_1061__ASCE_EM_1943_7889_0000571 10_1061_ASCE_EM_1943_7889_0000571 |
GroupedDBID | -0O 02 0O 0R 29K 4.4 4S 5GY AAIKC ABBOT ABDBF ABFLS ABPTK ACDCL ACIWK ACNET ACVYA ADZKS AENEX ALMA_UNASSIGNED_HOLDINGS ARCSS ARKUK ASUFR CS3 D-I E.L E70 EAD EAP EAS EBS EDO EJD EMI EMK EST ESX GQVBS HZ H~9 I-F L7B O9- O~X P2P RAC RNS RXW TAE TAF TN5 TUS X -~X .4S .DC 0R~ 2FS 6TJ AAELQ AAMNW AAYOK AAYXX ABDPE ABEFU ABFSI ACGFO ACKIV ACUHS ADNWM ADVLX AFFNX AI. AIRRX ALNAR CITATION HZ~ VH1 WHG XSW ZY4 ~02 ~A~ 7TB 8FD F28 FR3 KR7 XX2 |
ID | FETCH-LOGICAL-a328t-cc03b7ce3e87d30a561d9eb0d4cb627a575d5baaa1c512136e6ccb5c2e709b7a3 |
ISSN | 0733-9399 |
IngestDate | Fri Aug 29 12:36:44 EDT 2025 Fri Jul 11 10:20:07 EDT 2025 Tue Jul 01 00:24:00 EDT 2025 Tue Jan 05 18:51:37 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a328t-cc03b7ce3e87d30a561d9eb0d4cb627a575d5baaa1c512136e6ccb5c2e709b7a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://recercat.cat/handle/2072/209684 |
PQID | 1864551903 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | csuc_recercat_oai_recercat_cat_2072_209684 proquest_miscellaneous_1864551903 crossref_primary_10_1061__ASCE_EM_1943_7889_0000571 asce_journals_10_1061_ASCE_EM_1943_7889_0000571 |
ProviderPackageCode | GQVBS ABBOT RAC ACNET ARKUK ADZKS -0O E70 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-01 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of engineering mechanics |
PublicationYear | 2013 |
Publisher | American Society of Civil Engineers American Society of Civil Engineers (ASCE) |
Publisher_xml | – name: American Society of Civil Engineers – name: American Society of Civil Engineers (ASCE) |
References | Bažant, Z. P.; Bishop, F. C.; Chang, T.-P. 1986; 33 Cusatis, G.; Pelessone, D.; Mencarelli, A. 2011b; 33 Li, Z.; Li, F.; Chang, T.-Y.-P.; Mai, Y.-W. 1998; 95 Kupfer, H.; Hilsdorf, H. K.; Rüsch, H. 1969; 66 Bažant, Z. P.; Oh, B.-H. 1983; 16 Gálvez, J.; Elices, M.; Guinea, G.; Planas, J. 1998; 94 Bažant, Z. P.; Caner, F. C. 2005; 131 Bažant, Z. P.; Xiang, Y.; Adley, M. D.; Prat, P. C.; Akers, S. A. 1996; 122 Sinha, B. P.; Gerstle, K. H.; Tulin, L. G. 1964; 62 Bažant, Z. P.; Oh, B.-H. 1986; 66 Yin, W. S.; Su, E. C. M.; Mansur, M. A.; Hsu, T. T. C. 1989; 86 Gasser, T. C.; Holzapfel, G. A. 2006; 195 Li, F.; Li, Z. 2000; 38 Bresler, B.; Pister, K. S. 1958; 551 Caner, F. C.; Bažant, Z. P. 2013; 139 Cusatis, G.; Bažant, Z. P.; Cedolin, L. 2003; 129 Brocca, M.; Bažant, Z. P. 2000; 53 Bažant, Z.; Yu, Q. 2011; 137 Chern, J.-C.; Yang, H.-J.; Chen, H.-W. 1992; 89 Jirásek, M.; Zimmermann, T. 1998; 124 Reinhardt, H. W.; Cornelissen, H. A. W. 1984; 14 Caner, F.; Bažant, Z.; Červenka, J. 2002; 128 van Mier, J. G. M. 1986a; 19 Pivonka, P.; Ožbolt, J.; Lackner, R.; Mang, H. A. 2004; 60 Cusatis, G.; Mencarelli, A.; Pelessone, D.; Baylot, J. T. 2011a; 33 van Mier, J. G. M. 1986b; 19 Bažant Z. P. (e_1_3_2_7_1) 1991 e_1_3_2_27_1 e_1_3_2_29_1 e_1_3_2_20_1 e_1_3_2_21_1 Kupfer H. (e_1_3_2_25_1) 1969; 66 e_1_3_2_22_1 e_1_3_2_23_1 e_1_3_2_24_1 e_1_3_2_26_1 Bažant Z. P. (e_1_3_2_5_1) 1986; 33 Chern J.-C. (e_1_3_2_16_1) 1992; 89 Sinha B. P. (e_1_3_2_33_1) 1964; 62 e_1_3_2_9_1 e_1_3_2_17_1 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_31_1 e_1_3_2_10_1 e_1_3_2_32_1 e_1_3_2_6_1 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_13_1 e_1_3_2_34_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_3_1 e_1_3_2_15_1 e_1_3_2_36_1 Yin W. S. (e_1_3_2_37_1) 1989; 86 Bresler B. (e_1_3_2_11_1) 1958; 551 Li Z. (e_1_3_2_28_1) 1998; 95 Petersson P. E. (e_1_3_2_30_1) 1981 |
References_xml | – volume: 53 start-page: 265 year: 2000 end-page: 281 article-title: Microplane constitutive model and metal plasticity publication-title: Appl. Mech. Rev. – volume: 137 start-page: 580 year: 2011 end-page: 588 article-title: Size effect testing of cohesive fracture parameters and non-uniqueness of work-of-fracture method publication-title: J. Eng. Mech. – volume: 33 start-page: 891 year: 2011a end-page: 905 article-title: Lattice discrete particle model (LDPM) for failure behavior of concrete. II: Calibration and validation publication-title: Cement Concr. Compos. – volume: 19 start-page: 179 year: 1986a end-page: 190 article-title: Multiaxial strain-softening of concrete. I: Fracture publication-title: Mater. Struct. – volume: 19 start-page: 190 year: 1986b article-title: Multiaxial strain-softening of concrete. II: Load histories publication-title: Mater. Struct. – volume: 33 start-page: 553 year: 1986 end-page: 560 article-title: Confined compression tests of cement paste and concrete up to 300 ksi publication-title: J. Am. Concr. Inst. – volume: 14 start-page: 263 year: 1984 end-page: 270 article-title: Post-peak cyclic behavior of concrete in uniaxial tensile and alternating tensile and compressive loading publication-title: Cement Concr. Res. – volume: 139 start-page: 1714 year: 2013 end-page: 1723 article-title: Microplane model M7 for plain concrete. I: Formulation publication-title: J. Eng. Mech. – volume: 94 start-page: 267 year: 1998 end-page: 284 article-title: Mixed mode fracture of concrete under proportional and nonproportional loading publication-title: Int. J. Fract. – volume: 131 start-page: 41 year: 2005 end-page: 47 article-title: Microplane model M5 with kinematic and static constraints for concrete fracture and anelasticity. II. Computation publication-title: J. Eng. Mech. – volume: 89 start-page: 32 year: 1992 end-page: 40 article-title: Behavior of steel fiber-reinforced concrete in multiaxial loading publication-title: ACI Mater. J. – volume: 66 start-page: 656 year: 1969 end-page: 666 article-title: Behavior of concrete under biaxial stresses publication-title: J. Am. Concr. Inst. – volume: 195 start-page: 5198 year: 2006 end-page: 5219 article-title: 3D crack propagation in unreinforced concrete: A two-step algorithm for tracking 3D crack paths publication-title: Comput. Methods Appl. Mech. Eng. – volume: 551 start-page: 321 year: 1958 end-page: 345 article-title: Strength of concrete under combined stresses publication-title: J. Am. Concr. Inst. – volume: 122 start-page: 255 year: 1996 end-page: 262 article-title: Microplane model for concrete. II. Data delocalization and verification publication-title: J. Eng. Mech. – volume: 66 start-page: 37 year: 1986 end-page: 49 article-title: Efficient numerical integration on the surface of a sphere publication-title: Z. Angew. Math. Mech. – volume: 124 start-page: 842 year: 1998 end-page: 851 article-title: Analysis of rotating crack model publication-title: J. Eng. Mech. – volume: 60 start-page: 549 year: 2004 end-page: 570 article-title: Comparative studies of 3D-constitutive models for concrete: Application to mixed-mode fracture publication-title: Int. J. Numer. Methods Eng. – volume: 16 start-page: 155 year: 1983 end-page: 177 article-title: Crack band theory for fracture of concrete publication-title: Matér. Struct. – volume: 86 start-page: 236 year: 1989 end-page: 243 article-title: Biaxial tests of plain and fiber concrete publication-title: ACI Mater. J. – volume: 129 start-page: 1439 year: 2003 end-page: 1448 article-title: Confinement–shear lattice model for concrete damage in tension and compression: I. Theory publication-title: J. Eng. Mech. – volume: 38 start-page: 777 year: 2000 end-page: 793 article-title: Continuum damage mechanics based modeling of fiber-reinforced concrete in tension publication-title: Int. J. Solids Struct. – volume: 95 start-page: 564 year: 1998 end-page: 574 article-title: Uniaxial tensile behavior of concrete reinforced with randomly distributed short fibers publication-title: ACI Mater. J. – volume: 62 start-page: 195 year: 1964 end-page: 210 article-title: Stress-strain relations for concrete under cyclic loading publication-title: J. Am. Concr. Inst. – volume: 128 start-page: 24 year: 2002 end-page: 33 article-title: Vertex effect in strain-softening concrete at rotating principal axes publication-title: J. Eng. Mech. – volume: 33 start-page: 881 year: 2011b end-page: 890 article-title: Lattice discrete particle model (LDPM) for failure behavior of concrete. I: Theory publication-title: Cement Concr. Compos. – ident: e_1_3_2_19_1 doi: 10.1016/j.cemconcomp.2011.02.011 – ident: e_1_3_2_18_1 doi: 10.1016/j.cemconcomp.2011.02.010 – ident: e_1_3_2_36_1 doi: 10.1007/BF02472035 – ident: e_1_3_2_14_1 doi: 10.1061/(ASCE)0733-9399(2002)128:1(24) – volume: 66 start-page: 656 issue: 8 year: 1969 ident: e_1_3_2_25_1 article-title: Behavior of concrete under biaxial stresses publication-title: J. Am. Concr. Inst. – ident: e_1_3_2_13_1 doi: 10.1115/1.4011992 – volume: 551 start-page: 321 issue: 9 year: 1958 ident: e_1_3_2_11_1 article-title: Strength of concrete under combined stresses publication-title: J. Am. Concr. Inst. – ident: e_1_3_2_17_1 doi: 10.1061/(ASCE)0733-9399(2003)129:12(1439) – ident: e_1_3_2_27_1 doi: 10.1016/S0020-7683(00)00034-2 – volume-title: Stability of structures: Elastic, damage theories year: 1991 ident: e_1_3_2_7_1 – volume: 89 start-page: 32 issue: 1 year: 1992 ident: e_1_3_2_16_1 article-title: Behavior of steel fiber-reinforced concrete in multiaxial loading publication-title: ACI Mater. J. – ident: e_1_3_2_4_1 doi: 10.1061/(ASCE)EM.1943-7889.0000254 – ident: e_1_3_2_2_1 – volume: 86 start-page: 236 issue: 3 year: 1989 ident: e_1_3_2_37_1 article-title: Biaxial tests of plain and fiber concrete publication-title: ACI Mater. J. – volume-title: Rep. No. TVBM 1006 year: 1981 ident: e_1_3_2_30_1 – ident: e_1_3_2_32_1 doi: 10.1016/0008-8846(84)90113-3 – ident: e_1_3_2_8_1 doi: 10.1007/BF02486267 – ident: e_1_3_2_10_1 doi: 10.1061/(ASCE)0733-9399(1996)122:3(255) – ident: e_1_3_2_6_1 doi: 10.1061/(ASCE)0733-9399(2005)131:1(41) – volume: 33 start-page: 553 issue: 4 year: 1986 ident: e_1_3_2_5_1 article-title: Confined compression tests of cement paste and concrete up to 300 ksi publication-title: J. Am. Concr. Inst. – ident: e_1_3_2_34_1 – ident: e_1_3_2_15_1 doi: 10.1061/(ASCE)EM.1943-7889.0000570 – ident: e_1_3_2_22_1 doi: 10.2172/4343548 – ident: e_1_3_2_35_1 doi: 10.1007/BF02472034 – ident: e_1_3_2_3_1 – ident: e_1_3_2_23_1 doi: 10.21236/AD0761820 – volume: 62 start-page: 195 issue: 2 year: 1964 ident: e_1_3_2_33_1 article-title: Stress-strain relations for concrete under cyclic loading publication-title: J. Am. Concr. Inst. – ident: e_1_3_2_12_1 doi: 10.1115/1.3097329 – ident: e_1_3_2_24_1 doi: 10.1061/(ASCE)0733-9399(1998)124:8(842) – ident: e_1_3_2_9_1 doi: 10.1002/zamm.19860660108 – ident: e_1_3_2_26_1 – volume: 95 start-page: 564 issue: 5 year: 1998 ident: e_1_3_2_28_1 article-title: Uniaxial tensile behavior of concrete reinforced with randomly distributed short fibers publication-title: ACI Mater. J. – ident: e_1_3_2_21_1 doi: 10.1016/j.cma.2005.10.023 – ident: e_1_3_2_31_1 doi: 10.1002/nme.975 – ident: e_1_3_2_20_1 doi: 10.1023/A:1007578814070 – ident: e_1_3_2_29_1 |
SSID | ssj0014696 |
Score | 2.408799 |
Snippet | AbstractThe microplane material model for concrete, formulated mathematically in the companion paper, is calibrated by material test data from all the typical... The microplane material model for concrete, formulated mathematically in the preceding Part I, is here calibrated by material test data from all the typical... |
SourceID | csuc proquest crossref asce |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1724 |
SubjectTerms | Calibratge Calibration Concrete Concretes Enginyeria civil Enginyeria mecànica Finite element method Formigó Gauges Materials i estructures Materials i estructures de formigó Mathematical analysis Mathematical models Metrologia Parameters Physical measurements Strain Technical Papers Àrees temàtiques de la UPC |
Title | Microplane Model M7 for Plain Concrete. II: Calibration and Verification |
URI | http://ascelibrary.org/doi/abs/10.1061/(ASCE)EM.1943-7889.0000571 https://www.proquest.com/docview/1864551903 https://recercat.cat/handle/2072/209684 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wIPiKsoNxmJSkCVLIkdO-GtLa1apKBJbGjixfJtQmJ0Uy8vPPDbOSdJ04xtAvZQK82D4_g7Of5sn_OZkNcOVb5PhAucNC7g3Oggsy4KcmeklTB7EzEmChefxOyIfzxOjzudX-3skrUJ7c8r80pugircA1wxS_Y_kG0qhRtwDfhCCQhD-U8YFxhNd47hquWZZqeDQpZhgwenukrmA0q49uFgPseJP6ZhmRpwXC7_Ak08qZfsruGofqdWOPjhMUm4FRw_1nWyzNQvv23geeFuWbQ_Tvujia5EDb6ibwPSmo--Dw7C9jpDzFoxG5U7kowFOauOMwp95S5zzjAeMb_gTyt1oq3hJC33CGyJt4baWFZSJZfcOJAM6Hug2MPP40k_ySdF2DyqVJxMq3NbLupn_zGuNdGG5T67iJXC2tSkUFiXwrpUXdctspfANCPpkr3h6MNo2uxDcVGe8Na8-1a2VsT7b7C2t1e1DEZ3vcLpTovpdO1qYy-N9yWJObxH7tbI0mFlSvdJxy8ekDstTcqHZLYzKloaFS0kBaOipVHRxqjofP6etkyKgknRtkk9IkfTyeF4FtTHbQSaJdk6sDZi8IF65jPpWKSBWbvcm8hxa0QiNRB7lxqtdWxTFAIUXlhrUpt4GeVGavaYdBdnC_-EUM0yCURT-Eg4LmWqNVzl2nGfRk5kWY_sYw-p-ltaqS1E1yLUI2zbmeq80mFRf8e1R95hvysgD34JL69QTL35g78kkgkUuch4j7zaoqPAx-LGGXT12QZalwkOM4s8Yk9v1Ixn5Pbui3pOuuvlxr8ALrs2L2uD-w3NaY80 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microplane+Model+M7+for+Plain+Concrete.+II%3A+Calibration+and+Verification&rft.jtitle=Journal+of+engineering+mechanics&rft.au=Caner%2C+Ferhun+C.&rft.au=Ba%C5%BEant%2C+Zden%C4%9Bk+P.&rft.date=2013-12-01&rft.issn=0733-9399&rft.eissn=1943-7889&rft.volume=139&rft.issue=12&rft.spage=1724&rft.epage=1735&rft_id=info:doi/10.1061%2F%28ASCE%29EM.1943-7889.0000571&rft.externalDBID=n%2Fa&rft.externalDocID=10_1061__ASCE_EM_1943_7889_0000571 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-9399&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-9399&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-9399&client=summon |