Graphene Quantum Dots-Supported Palladium Nanoparticles for Efficient Electrocatalytic Reduction of Oxygen in Alkaline Media

Graphene quantum dots (GQDs)-supported palladium nanoparticles were synthesized by thermolytic reduction of PdCl2 in 1,2-propanediol at 80 °C in the presence of GQDs and then were subject to hydrothermal treatment at an elevated temperature within the range of 140 to 200 °C. Transmission electron mi...

Full description

Saved in:
Bibliographic Details
Published inACS sustainable chemistry & engineering Vol. 3; no. 12; pp. 3315 - 3323
Main Authors Deming, Christopher P, Mercado, Rene, Gadiraju, Vamsi, Sweeney, Samantha W, Khan, Mohammad, Chen, Shaowei
Format Journal Article
LanguageEnglish
Published American Chemical Society 07.12.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphene quantum dots (GQDs)-supported palladium nanoparticles were synthesized by thermolytic reduction of PdCl2 in 1,2-propanediol at 80 °C in the presence of GQDs and then were subject to hydrothermal treatment at an elevated temperature within the range of 140 to 200 °C. Transmission electron microscopic measurements showed a raspberry-like morphology for the samples before and after hydrothermal treatment at temperatures ≤160 °C, where nanoparticles of ca. 8 nm in diameter formed large aggregates in the range of 50 to 100 nm in diameter, and at higher hydrothermal temperatures (180 and 200 °C), chain-like nanostructures were formed instead. X-ray photoelectron and Raman spectroscopic measurements revealed that the GQD structural defects were readily removed by hydrothermal treatments, and the defect concentrations exhibited a clear diminishment with increasing hydrothermal temperature, as indicated by the loss of oxygenated carbons in XPS and a drop in the D to G band ratio in Raman measurements. Voltammetric studies showed apparent electrocatalytic activity toward oxygen reduction, with a volcano-shaped variation of the activity with GQD defect concentration, and the peak activity was observed for the sample prepared at 180 °C with a mass activity of 23.9 A/gPd and specific activity of 1.08 A/m2 at +0.9 V vs RHE. This peak activity is attributed to optimal interactions between Pd and GQD where the GQD defects promoted charge transfer from metal to GQDs and hence weakened interactions with oxygenated intermediates, leading to enhanced ORR activity. The corresponding defect concentration was higher than that identified with the platinum counterparts due to the stronger affinity of oxygen to palladium.
AbstractList Graphene quantum dots (GQDs)-supported palladium nanoparticles were synthesized by thermolytic reduction of PdCl2 in 1,2-propanediol at 80 °C in the presence of GQDs and then were subject to hydrothermal treatment at an elevated temperature within the range of 140 to 200 °C. Transmission electron microscopic measurements showed a raspberry-like morphology for the samples before and after hydrothermal treatment at temperatures ≤160 °C, where nanoparticles of ca. 8 nm in diameter formed large aggregates in the range of 50 to 100 nm in diameter, and at higher hydrothermal temperatures (180 and 200 °C), chain-like nanostructures were formed instead. X-ray photoelectron and Raman spectroscopic measurements revealed that the GQD structural defects were readily removed by hydrothermal treatments, and the defect concentrations exhibited a clear diminishment with increasing hydrothermal temperature, as indicated by the loss of oxygenated carbons in XPS and a drop in the D to G band ratio in Raman measurements. Voltammetric studies showed apparent electrocatalytic activity toward oxygen reduction, with a volcano-shaped variation of the activity with GQD defect concentration, and the peak activity was observed for the sample prepared at 180 °C with a mass activity of 23.9 A/gPd and specific activity of 1.08 A/m2 at +0.9 V vs RHE. This peak activity is attributed to optimal interactions between Pd and GQD where the GQD defects promoted charge transfer from metal to GQDs and hence weakened interactions with oxygenated intermediates, leading to enhanced ORR activity. The corresponding defect concentration was higher than that identified with the platinum counterparts due to the stronger affinity of oxygen to palladium.
Graphene quantum dots (GQDs)-supported palladium nanoparticles were synthesized by thermolytic reduction of PdCl₂ in 1,2-propanediol at 80 °C in the presence of GQDs and then were subject to hydrothermal treatment at an elevated temperature within the range of 140 to 200 °C. Transmission electron microscopic measurements showed a raspberry-like morphology for the samples before and after hydrothermal treatment at temperatures ≤160 °C, where nanoparticles of ca. 8 nm in diameter formed large aggregates in the range of 50 to 100 nm in diameter, and at higher hydrothermal temperatures (180 and 200 °C), chain-like nanostructures were formed instead. X-ray photoelectron and Raman spectroscopic measurements revealed that the GQD structural defects were readily removed by hydrothermal treatments, and the defect concentrations exhibited a clear diminishment with increasing hydrothermal temperature, as indicated by the loss of oxygenated carbons in XPS and a drop in the D to G band ratio in Raman measurements. Voltammetric studies showed apparent electrocatalytic activity toward oxygen reduction, with a volcano-shaped variation of the activity with GQD defect concentration, and the peak activity was observed for the sample prepared at 180 °C with a mass activity of 23.9 A/gPd and specific activity of 1.08 A/m² at +0.9 V vs RHE. This peak activity is attributed to optimal interactions between Pd and GQD where the GQD defects promoted charge transfer from metal to GQDs and hence weakened interactions with oxygenated intermediates, leading to enhanced ORR activity. The corresponding defect concentration was higher than that identified with the platinum counterparts due to the stronger affinity of oxygen to palladium.
Author Mercado, Rene
Deming, Christopher P
Gadiraju, Vamsi
Khan, Mohammad
Sweeney, Samantha W
Chen, Shaowei
AuthorAffiliation Department of Chemistry and Biochemistry
The Harker School
University of California
AuthorAffiliation_xml – name: University of California
– name: The Harker School
– name: Department of Chemistry and Biochemistry
Author_xml – sequence: 1
  givenname: Christopher P
  surname: Deming
  fullname: Deming, Christopher P
– sequence: 2
  givenname: Rene
  surname: Mercado
  fullname: Mercado, Rene
– sequence: 3
  givenname: Vamsi
  surname: Gadiraju
  fullname: Gadiraju, Vamsi
– sequence: 4
  givenname: Samantha W
  surname: Sweeney
  fullname: Sweeney, Samantha W
– sequence: 5
  givenname: Mohammad
  surname: Khan
  fullname: Khan, Mohammad
– sequence: 6
  givenname: Shaowei
  surname: Chen
  fullname: Chen, Shaowei
  email: Shaowei@ucsc.edu
BookMark eNqFkE1PHSEUhonRRKv-hCYsuxkF7tCBuDJ6tU1s7YeuJ2eYg6JcmAKT9Cb-eDHXhe1GNpCc9-Gc83wg2yEGJOQjZ0ecCX4MJuc5m3tcYbg7kgNjWnRbZE_wz6phrZLbb9675DDnB1aP1guh-B55ukww3WNA-nOGUOYVPY8lN7_naYqp4Eh_gPcwulr4DiFOkIozHjO1MdGltc44DIUuPZqSooECfl0T9BeOsykuBhotvf67vsNAXaCn_hG8q92-4ejggOxY8BkPX-99cnuxvDn70lxdX349O71qoA5ZGmlBK9mxTqEdFJOqa4VENjBU7ahBdp3AceC21Wi6gQ-jHoxBzbTlowCxWOyTT5t_pxT_zJhLv3LZYF0sYJxzL6oQqfiCtzV6somaFHNOaHvjCrwsUhI433PWv2jv_9Hev2qvtPyPnpJbQVq_y_ENV8v9Q5xTqDreYZ4BcquicQ
CitedBy_id crossref_primary_10_1021_acs_accounts_6b00377
crossref_primary_10_1007_s10853_017_1004_y
crossref_primary_10_1016_j_ijhydene_2016_05_295
crossref_primary_10_1039_C6RA16533H
crossref_primary_10_1039_C6QM00212A
crossref_primary_10_1016_j_gee_2018_09_002
crossref_primary_10_1016_j_mtcomm_2023_107169
crossref_primary_10_1016_j_ijhydene_2021_01_185
crossref_primary_10_1002_cctc_201700299
crossref_primary_10_1016_j_jcis_2018_05_063
crossref_primary_10_1016_j_mtchem_2023_101536
crossref_primary_10_1002_smll_202001295
crossref_primary_10_1016_j_jallcom_2020_155056
crossref_primary_10_1016_j_jpcs_2025_112633
crossref_primary_10_1016_j_ijhydene_2016_09_041
crossref_primary_10_1016_j_physe_2019_113887
crossref_primary_10_1016_j_ijhydene_2017_11_078
crossref_primary_10_3390_catal7010001
crossref_primary_10_1016_j_jcat_2019_12_018
crossref_primary_10_1016_j_jclepro_2017_01_169
crossref_primary_10_1016_j_solidstatesciences_2018_07_012
crossref_primary_10_1016_j_ijhydene_2018_07_097
crossref_primary_10_1016_j_jcat_2018_02_020
crossref_primary_10_1016_j_ijhydene_2017_07_199
crossref_primary_10_1002_celc_201600885
crossref_primary_10_33961_jecst_2020_00934
crossref_primary_10_3390_catal8080329
crossref_primary_10_1002_adfm_202107196
crossref_primary_10_1002_aenm_202103426
crossref_primary_10_1002_cctc_202301760
crossref_primary_10_1002_er_5889
crossref_primary_10_1016_j_ijhydene_2017_10_078
crossref_primary_10_1021_acssuschemeng_6b01476
crossref_primary_10_1002_aenm_202001275
crossref_primary_10_1002_tcr_202000090
crossref_primary_10_1016_j_chemphys_2025_112682
crossref_primary_10_1007_s10895_024_04060_6
crossref_primary_10_1021_acssuschemeng_6b01524
crossref_primary_10_3390_catal9040345
crossref_primary_10_1016_j_ijhydene_2020_07_262
crossref_primary_10_1021_acs_jpcc_6b04315
crossref_primary_10_1002_cey2_134
crossref_primary_10_1002_aoc_5311
crossref_primary_10_1016_j_jcat_2018_07_025
crossref_primary_10_1002_slct_201804040
crossref_primary_10_1016_j_ijhydene_2018_01_107
crossref_primary_10_1016_j_jelechem_2016_09_034
crossref_primary_10_1088_2399_1984_ad03b2
crossref_primary_10_1039_D1RE00455G
crossref_primary_10_1021_acs_iecr_4c04119
crossref_primary_10_1021_acs_jpcc_7b01941
crossref_primary_10_1016_j_jelechem_2018_12_061
crossref_primary_10_1016_j_cej_2020_125743
crossref_primary_10_1016_j_microc_2020_105196
crossref_primary_10_1039_C5TA10303G
crossref_primary_10_1016_j_fuel_2021_122432
crossref_primary_10_1016_j_ijhydene_2018_01_093
crossref_primary_10_1016_j_elecom_2016_06_006
crossref_primary_10_1016_j_jallcom_2017_01_199
crossref_primary_10_1149_1945_7111_ab679f
crossref_primary_10_1039_C6CP08925A
crossref_primary_10_1002_cctc_201601519
crossref_primary_10_1149_2162_8777_ac9182
crossref_primary_10_1021_acsami_9b05471
crossref_primary_10_1021_acssuschemeng_9b01615
crossref_primary_10_3390_en11010167
Cites_doi 10.1016/j.jpowsour.2005.05.098
10.1021/jp065181r
10.1021/cs3000864
10.1002/jctb.4797
10.1126/science.1170377
10.1021/jp800186p
10.1039/c2cc17945h
10.1021/ja3030565
10.1021/nl2017459
10.1039/c2jm34290a
10.1021/ja072367a
10.1016/j.electacta.2009.05.022
10.1016/j.ijhydene.2014.01.197
10.1016/j.scriptamat.2010.02.035
10.1021/ja300756y
10.1038/nmat1849
10.1021/ja206030c
10.1021/jp044339+
10.1021/jp047349j
10.1021/jp210796e
10.1021/cs501556j
10.1021/cs400114s
10.1166/sam.2013.1624
10.1016/j.jpowsour.2013.07.099
10.1038/nnano.2013.46
10.1016/j.electacta.2006.03.097
10.1016/j.carbon.2011.11.010
10.1021/jp506320z
10.1038/nmat1840
10.1021/cr050182l
10.1021/cm102187a
10.1002/adma.201003819
10.1021/am503388z
10.1021/jp312859x
10.1016/j.electacta.2004.11.064
10.1021/ja100571h
10.1109/JPROC.2013.2261271
10.1021/jp300199x
10.1007/978-1-84800-936-3_2
10.1021/ja303730p
10.1016/j.cej.2010.09.003
10.1021/la991206k
10.1021/jz100553m
10.1039/C4CP01890G
10.1039/c2ee22982j
10.1002/adfm.201102544
10.1016/j.ijhydene.2010.09.055
10.1038/nmat3087
10.1021/cm0518978
10.1063/1.1737365
10.1021/cm9006603
10.1016/j.elecom.2010.12.008
10.1016/j.elecom.2010.09.007
10.1021/ol0492602
10.1016/j.electacta.2014.07.020
10.1016/j.jelechem.2012.07.009
10.1038/ncomms6253
10.1016/j.jpowsour.2007.05.082
10.1039/C4CC05527F
10.1149/1.2234659
10.1016/S0360-3199(98)00172-4
10.1149/1.2937448
10.1016/j.jpowsour.2012.02.011
10.1002/aenm.201301523
ContentType Journal Article
Copyright Copyright © 2015 American Chemical Society
Copyright_xml – notice: Copyright © 2015 American Chemical Society
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acssuschemeng.5b00927
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-0485
EndPage 3323
ExternalDocumentID 10_1021_acssuschemeng_5b00927
c906235344
GroupedDBID 53G
55A
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
GNL
IH9
JG
JG~
ROL
UI2
VF5
VG9
W1F
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
7S9
L.6
ID FETCH-LOGICAL-a328t-5fa9857078efb80587425e0b0e84d9a5772edb1f49ec7b1bd9bcce909f1d2a233
IEDL.DBID ACS
ISSN 2168-0485
IngestDate Fri Jul 11 02:01:44 EDT 2025
Tue Jul 01 02:35:56 EDT 2025
Thu Apr 24 23:02:41 EDT 2025
Thu Aug 27 13:42:18 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Oxygen reduction
Defect
Palladium nanoparticle
Volcano plot
Hydrothermal
Graphene quantum dot
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a328t-5fa9857078efb80587425e0b0e84d9a5772edb1f49ec7b1bd9bcce909f1d2a233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000581314
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_2000581314
crossref_citationtrail_10_1021_acssuschemeng_5b00927
crossref_primary_10_1021_acssuschemeng_5b00927
acs_journals_10_1021_acssuschemeng_5b00927
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20151207
PublicationDateYYYYMMDD 2015-12-07
PublicationDate_xml – month: 12
  year: 2015
  text: 20151207
  day: 07
PublicationDecade 2010
PublicationTitle ACS sustainable chemistry & engineering
PublicationTitleAlternate ACS Sustainable Chem. Eng
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
Huang J. (ref58/cit58) 2012; 18
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
Cano-Castillo U. (ref1/cit1) 2013; 59
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
Wagner C. D. (ref64/cit64) 1979
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref22/cit22
ref33/cit33
Bard A. J. (ref68/cit68) 2001
ref4/cit4
ref30/cit30
ref47/cit47
ref44/cit44
ref7/cit7
References_xml – ident: ref6/cit6
  doi: 10.1016/j.jpowsour.2005.05.098
– ident: ref48/cit48
  doi: 10.1021/jp065181r
– volume: 18
  start-page: 508
  year: 2012
  ident: ref58/cit58
  publication-title: J. Electrochem
– ident: ref8/cit8
  doi: 10.1021/cs3000864
– ident: ref40/cit40
  doi: 10.1002/jctb.4797
– ident: ref59/cit59
  doi: 10.1126/science.1170377
– ident: ref34/cit34
  doi: 10.1021/jp800186p
– ident: ref67/cit67
  doi: 10.1039/c2cc17945h
– ident: ref25/cit25
  doi: 10.1021/ja3030565
– ident: ref18/cit18
  doi: 10.1021/nl2017459
– ident: ref41/cit41
  doi: 10.1039/c2jm34290a
– ident: ref36/cit36
  doi: 10.1021/ja072367a
– ident: ref32/cit32
  doi: 10.1016/j.electacta.2009.05.022
– ident: ref17/cit17
  doi: 10.1016/j.ijhydene.2014.01.197
– ident: ref47/cit47
  doi: 10.1016/j.scriptamat.2010.02.035
– ident: ref13/cit13
  doi: 10.1021/ja300756y
– ident: ref38/cit38
  doi: 10.1038/nmat1849
– ident: ref43/cit43
  doi: 10.1021/ja206030c
– ident: ref53/cit53
  doi: 10.1021/jp044339+
– ident: ref55/cit55
  doi: 10.1021/jp047349j
– volume-title: Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Data for Use in X-ray Photoelectron Spectroscopy
  year: 1979
  ident: ref64/cit64
– ident: ref46/cit46
  doi: 10.1021/jp210796e
– ident: ref19/cit19
  doi: 10.1021/cs501556j
– ident: ref28/cit28
  doi: 10.1021/cs400114s
– ident: ref23/cit23
  doi: 10.1166/sam.2013.1624
– ident: ref50/cit50
  doi: 10.1016/j.jpowsour.2013.07.099
– ident: ref66/cit66
  doi: 10.1038/nnano.2013.46
– ident: ref14/cit14
  doi: 10.1016/j.electacta.2006.03.097
– ident: ref62/cit62
  doi: 10.1016/j.carbon.2011.11.010
– ident: ref63/cit63
  doi: 10.1021/jp506320z
– ident: ref15/cit15
  doi: 10.1038/nmat1840
– ident: ref4/cit4
  doi: 10.1021/cr050182l
– ident: ref51/cit51
  doi: 10.1021/cm102187a
– ident: ref42/cit42
  doi: 10.1002/adma.201003819
– ident: ref29/cit29
  doi: 10.1021/am503388z
– ident: ref11/cit11
  doi: 10.1021/jp312859x
– ident: ref33/cit33
  doi: 10.1016/j.electacta.2004.11.064
– ident: ref12/cit12
  doi: 10.1021/ja100571h
– ident: ref65/cit65
  doi: 10.1109/JPROC.2013.2261271
– ident: ref22/cit22
  doi: 10.1021/jp300199x
– ident: ref7/cit7
  doi: 10.1007/978-1-84800-936-3_2
– ident: ref52/cit52
  doi: 10.1021/ja303730p
– ident: ref10/cit10
  doi: 10.1016/j.cej.2010.09.003
– ident: ref60/cit60
  doi: 10.1021/la991206k
– ident: ref5/cit5
  doi: 10.1021/jz100553m
– ident: ref56/cit56
  doi: 10.1039/C4CP01890G
– ident: ref44/cit44
  doi: 10.1039/c2ee22982j
– ident: ref39/cit39
  doi: 10.1002/adfm.201102544
– volume: 59
  start-page: 85
  year: 2013
  ident: ref1/cit1
  publication-title: Rev. Mex Fis
– ident: ref20/cit20
  doi: 10.1016/j.ijhydene.2010.09.055
– ident: ref26/cit26
  doi: 10.1038/nmat3087
– ident: ref35/cit35
  doi: 10.1021/cm0518978
– ident: ref16/cit16
  doi: 10.1063/1.1737365
– ident: ref61/cit61
  doi: 10.1021/cm9006603
– ident: ref37/cit37
  doi: 10.1016/j.elecom.2010.12.008
– ident: ref9/cit9
  doi: 10.1016/j.elecom.2010.09.007
– ident: ref57/cit57
  doi: 10.1021/ol0492602
– ident: ref27/cit27
  doi: 10.1016/j.electacta.2014.07.020
– ident: ref21/cit21
  doi: 10.1016/j.jelechem.2012.07.009
– ident: ref49/cit49
  doi: 10.1038/ncomms6253
– ident: ref2/cit2
  doi: 10.1016/j.jpowsour.2007.05.082
– volume-title: Electrochemical Methods: Fundamentals and Applications
  year: 2001
  ident: ref68/cit68
– ident: ref54/cit54
  doi: 10.1039/C4CC05527F
– ident: ref45/cit45
  doi: 10.1149/1.2234659
– ident: ref3/cit3
  doi: 10.1016/S0360-3199(98)00172-4
– ident: ref24/cit24
  doi: 10.1149/1.2937448
– ident: ref30/cit30
  doi: 10.1016/j.jpowsour.2012.02.011
– ident: ref31/cit31
  doi: 10.1002/aenm.201301523
SSID ssj0000993281
Score 2.338253
Snippet Graphene quantum dots (GQDs)-supported palladium nanoparticles were synthesized by thermolytic reduction of PdCl2 in 1,2-propanediol at 80 °C in the presence...
Graphene quantum dots (GQDs)-supported palladium nanoparticles were synthesized by thermolytic reduction of PdCl₂ in 1,2-propanediol at 80 °C in the presence...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3315
SubjectTerms graphene
hot water treatment
nanoparticles
oxygen
palladium
platinum
quantum dots
spectral analysis
temperature
transmission electron microscopy
X-radiation
X-ray photoelectron spectroscopy
Title Graphene Quantum Dots-Supported Palladium Nanoparticles for Efficient Electrocatalytic Reduction of Oxygen in Alkaline Media
URI http://dx.doi.org/10.1021/acssuschemeng.5b00927
https://www.proquest.com/docview/2000581314
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZ4XOBAS2lVaIuM1BOSl9iJY_uI6AJC4tkicYtsx0YraBaxiQSoP74z2SxihRBwThw54xnP55nxN4T8lFEKZZxgUXHLMqcN00FxJnIVeWJjHtpgzuFRvn-eHVzIixmy9UIGX_At62ECcNLDaNllTzpkCVKzZF7kYMiIhXZ-PwZVAO6kom1MKniuGWinnNzaeelL6JX8aNorTW_KrafZ_UBOJvd1xgUmV72mdj3_8Jy-8a0_8ZEsdaiTbo_VZJnMhOoTWXzCRbhC_u0hdTXsfPS0AWk3f-mvYT1i2PUT63FLeoIh93IAD2BHhqN2V1FHAfXSfktEAf6L9sdtddqo0D28Qc-QGxZXnw4jPb67B4Wlg4puX19ZRLgUM0X2Mznf7f_Z2WddawZmQcA1k9EapMZXOkSnE6nhhC1D4pKgs9JYCZg9lI7HzASvHHelcd4Hk5jIS2FFmn4hc9WwCl8JzaVJTWqDENiKPUideuV5NFr4EG1uVskmSK_oTGtUtFlzwYspkRadSFdJNlnHwnck59hr4_q1Yb3HYTdjlo_XBmxMlKQAe8Qki63CsBlhW08QB095tvaeiX8jCwDFZFsoo76Tufq2CT8A7tRuvVXx_9noAMU
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcgAOvCvK00ickLzEThzbx1XZskBbXq3oLbIdG1Ut2apJJIr48Yy92YVFQlWvSWw547Hn88z4G4AXIgguteU0SGZoYZWmyktGeSkDy0wofXLm7O6V04Pi3aE4XINycRcGB9FiT20K4v9hF2Cv8Fnb44EvOs2-jYSNZEHyClxFQMKjZo-3vix9K4h6cp7qk3JWKopKKhaXd_7XUzROrl01Tqt7czI427fg63KoKc_keNR3duR-_sPiePl_uQ03BwxKxnOluQNrvrkLN_5iJrwHv95EImvcB8mnHmXffyevZ11LYw3QmJ1bk4_RAV8f4Qvcn_HgPeTXEcTAZJJoKdCakcm8yE7yEZ3jF-RzZIqNukBmgXz4cY7qS44aMj45NhHvkhg3MvfhYHuyvzWlQ6EGalDOHRXB6EiUL5UPVmVC4Xlb-MxmXhW1NgIRvK8tC4X2Tlpma22d8zrTgdXc8DzfgPVm1vgHQEqhc50bz3kszO6Fyp10LGjFnQ-m1JvwEqVXDQutrVIMnbNqRaTVINJNKBbTWbmB8jxW3ji5qNlo2ex0zvlxUYPnC12pcHXGkItp_KxvY5FPFAfLWfHwMgN_Btem-7s71c7bvfeP4DqCNJFSaORjWO_Oev8EgVBnnyat_w2GUwkm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA9aQfTB-lWs2hrBJyHnJrvZJI9He9f6VetHoeDDkmQTKa17xd0FK_7xzuT2Dk-Qoq-7m5CdTDKTmcnvR8gzGaVQxgkWFbescNowHRRnolSRZzaWIQVz3h6U-0fFq2N5PFRV4l0YGEQLPbUpiY-r-ryOA8IAfwHP2x4OfRg4-zKSDgGD1FVyDVN3qN3jnY_L-Ap4PrlIHKWCl5qBosrFBZ6_9YQGyrerBmp1f05GZ7pOPi-Hm2pNTkd950b-xx9Ijv_3P7fJrcEXpeO58twhV0Jzl9z8DaHwHvm5h4DWsB_S9z3MQf-V7s66liEXKFbp1vQQA_H1CbyAfRoO4EOdHQVfmE4SPAVYNTqZk-2kWNEFfEE_IGIs6gSdRfru-wWoMT1p6Pjs1KLfSzF_ZO-To-nk084-GwgbmAVZd0xGaxAwX-kQnc6khnO3DJnLgi5qYyV48qF2PBYmeOW4q43zPpjMRF4LK_J8g6w1syY8ILSUJje5DUIgQXuQOvfK82i08CHa0myS5yC9alhwbZVy6YJXKyKtBpFukmIxpZUfoM-RgePssmajZbPzOfbHZQ2eLvSlglWKqRfbhFnfItkniIPnvHj4LwN_Qq4f7k6rNy8PXj8iN8BXk6mSRj0ma923PmyBP9S57aT4vwDleQup
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene+Quantum+Dots-Supported+Palladium+Nanoparticles+for+Efficient+Electrocatalytic+Reduction+of+Oxygen+in+Alkaline+Media&rft.jtitle=ACS+sustainable+chemistry+%26+engineering&rft.au=Deming%2C+Christopher+P&rft.au=Mercado%2C+Rene&rft.au=Gadiraju%2C+Vamsi&rft.au=Sweeney%2C+Samantha+W&rft.date=2015-12-07&rft.pub=American+Chemical+Society&rft.issn=2168-0485&rft.eissn=2168-0485&rft.volume=3&rft.issue=12&rft.spage=3315&rft.epage=3323&rft_id=info:doi/10.1021%2Facssuschemeng.5b00927&rft.externalDocID=c906235344
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-0485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-0485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-0485&client=summon