Graphene Quantum Dots-Supported Palladium Nanoparticles for Efficient Electrocatalytic Reduction of Oxygen in Alkaline Media
Graphene quantum dots (GQDs)-supported palladium nanoparticles were synthesized by thermolytic reduction of PdCl2 in 1,2-propanediol at 80 °C in the presence of GQDs and then were subject to hydrothermal treatment at an elevated temperature within the range of 140 to 200 °C. Transmission electron mi...
Saved in:
Published in | ACS sustainable chemistry & engineering Vol. 3; no. 12; pp. 3315 - 3323 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
07.12.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphene quantum dots (GQDs)-supported palladium nanoparticles were synthesized by thermolytic reduction of PdCl2 in 1,2-propanediol at 80 °C in the presence of GQDs and then were subject to hydrothermal treatment at an elevated temperature within the range of 140 to 200 °C. Transmission electron microscopic measurements showed a raspberry-like morphology for the samples before and after hydrothermal treatment at temperatures ≤160 °C, where nanoparticles of ca. 8 nm in diameter formed large aggregates in the range of 50 to 100 nm in diameter, and at higher hydrothermal temperatures (180 and 200 °C), chain-like nanostructures were formed instead. X-ray photoelectron and Raman spectroscopic measurements revealed that the GQD structural defects were readily removed by hydrothermal treatments, and the defect concentrations exhibited a clear diminishment with increasing hydrothermal temperature, as indicated by the loss of oxygenated carbons in XPS and a drop in the D to G band ratio in Raman measurements. Voltammetric studies showed apparent electrocatalytic activity toward oxygen reduction, with a volcano-shaped variation of the activity with GQD defect concentration, and the peak activity was observed for the sample prepared at 180 °C with a mass activity of 23.9 A/gPd and specific activity of 1.08 A/m2 at +0.9 V vs RHE. This peak activity is attributed to optimal interactions between Pd and GQD where the GQD defects promoted charge transfer from metal to GQDs and hence weakened interactions with oxygenated intermediates, leading to enhanced ORR activity. The corresponding defect concentration was higher than that identified with the platinum counterparts due to the stronger affinity of oxygen to palladium. |
---|---|
AbstractList | Graphene quantum dots (GQDs)-supported palladium nanoparticles were synthesized by thermolytic reduction of PdCl2 in 1,2-propanediol at 80 °C in the presence of GQDs and then were subject to hydrothermal treatment at an elevated temperature within the range of 140 to 200 °C. Transmission electron microscopic measurements showed a raspberry-like morphology for the samples before and after hydrothermal treatment at temperatures ≤160 °C, where nanoparticles of ca. 8 nm in diameter formed large aggregates in the range of 50 to 100 nm in diameter, and at higher hydrothermal temperatures (180 and 200 °C), chain-like nanostructures were formed instead. X-ray photoelectron and Raman spectroscopic measurements revealed that the GQD structural defects were readily removed by hydrothermal treatments, and the defect concentrations exhibited a clear diminishment with increasing hydrothermal temperature, as indicated by the loss of oxygenated carbons in XPS and a drop in the D to G band ratio in Raman measurements. Voltammetric studies showed apparent electrocatalytic activity toward oxygen reduction, with a volcano-shaped variation of the activity with GQD defect concentration, and the peak activity was observed for the sample prepared at 180 °C with a mass activity of 23.9 A/gPd and specific activity of 1.08 A/m2 at +0.9 V vs RHE. This peak activity is attributed to optimal interactions between Pd and GQD where the GQD defects promoted charge transfer from metal to GQDs and hence weakened interactions with oxygenated intermediates, leading to enhanced ORR activity. The corresponding defect concentration was higher than that identified with the platinum counterparts due to the stronger affinity of oxygen to palladium. Graphene quantum dots (GQDs)-supported palladium nanoparticles were synthesized by thermolytic reduction of PdCl₂ in 1,2-propanediol at 80 °C in the presence of GQDs and then were subject to hydrothermal treatment at an elevated temperature within the range of 140 to 200 °C. Transmission electron microscopic measurements showed a raspberry-like morphology for the samples before and after hydrothermal treatment at temperatures ≤160 °C, where nanoparticles of ca. 8 nm in diameter formed large aggregates in the range of 50 to 100 nm in diameter, and at higher hydrothermal temperatures (180 and 200 °C), chain-like nanostructures were formed instead. X-ray photoelectron and Raman spectroscopic measurements revealed that the GQD structural defects were readily removed by hydrothermal treatments, and the defect concentrations exhibited a clear diminishment with increasing hydrothermal temperature, as indicated by the loss of oxygenated carbons in XPS and a drop in the D to G band ratio in Raman measurements. Voltammetric studies showed apparent electrocatalytic activity toward oxygen reduction, with a volcano-shaped variation of the activity with GQD defect concentration, and the peak activity was observed for the sample prepared at 180 °C with a mass activity of 23.9 A/gPd and specific activity of 1.08 A/m² at +0.9 V vs RHE. This peak activity is attributed to optimal interactions between Pd and GQD where the GQD defects promoted charge transfer from metal to GQDs and hence weakened interactions with oxygenated intermediates, leading to enhanced ORR activity. The corresponding defect concentration was higher than that identified with the platinum counterparts due to the stronger affinity of oxygen to palladium. |
Author | Mercado, Rene Deming, Christopher P Gadiraju, Vamsi Khan, Mohammad Sweeney, Samantha W Chen, Shaowei |
AuthorAffiliation | Department of Chemistry and Biochemistry The Harker School University of California |
AuthorAffiliation_xml | – name: University of California – name: The Harker School – name: Department of Chemistry and Biochemistry |
Author_xml | – sequence: 1 givenname: Christopher P surname: Deming fullname: Deming, Christopher P – sequence: 2 givenname: Rene surname: Mercado fullname: Mercado, Rene – sequence: 3 givenname: Vamsi surname: Gadiraju fullname: Gadiraju, Vamsi – sequence: 4 givenname: Samantha W surname: Sweeney fullname: Sweeney, Samantha W – sequence: 5 givenname: Mohammad surname: Khan fullname: Khan, Mohammad – sequence: 6 givenname: Shaowei surname: Chen fullname: Chen, Shaowei email: Shaowei@ucsc.edu |
BookMark | eNqFkE1PHSEUhonRRKv-hCYsuxkF7tCBuDJ6tU1s7YeuJ2eYg6JcmAKT9Cb-eDHXhe1GNpCc9-Gc83wg2yEGJOQjZ0ecCX4MJuc5m3tcYbg7kgNjWnRbZE_wz6phrZLbb9675DDnB1aP1guh-B55ukww3WNA-nOGUOYVPY8lN7_naYqp4Eh_gPcwulr4DiFOkIozHjO1MdGltc44DIUuPZqSooECfl0T9BeOsykuBhotvf67vsNAXaCn_hG8q92-4ejggOxY8BkPX-99cnuxvDn70lxdX349O71qoA5ZGmlBK9mxTqEdFJOqa4VENjBU7ahBdp3AceC21Wi6gQ-jHoxBzbTlowCxWOyTT5t_pxT_zJhLv3LZYF0sYJxzL6oQqfiCtzV6somaFHNOaHvjCrwsUhI433PWv2jv_9Hev2qvtPyPnpJbQVq_y_ENV8v9Q5xTqDreYZ4BcquicQ |
CitedBy_id | crossref_primary_10_1021_acs_accounts_6b00377 crossref_primary_10_1007_s10853_017_1004_y crossref_primary_10_1016_j_ijhydene_2016_05_295 crossref_primary_10_1039_C6RA16533H crossref_primary_10_1039_C6QM00212A crossref_primary_10_1016_j_gee_2018_09_002 crossref_primary_10_1016_j_mtcomm_2023_107169 crossref_primary_10_1016_j_ijhydene_2021_01_185 crossref_primary_10_1002_cctc_201700299 crossref_primary_10_1016_j_jcis_2018_05_063 crossref_primary_10_1016_j_mtchem_2023_101536 crossref_primary_10_1002_smll_202001295 crossref_primary_10_1016_j_jallcom_2020_155056 crossref_primary_10_1016_j_jpcs_2025_112633 crossref_primary_10_1016_j_ijhydene_2016_09_041 crossref_primary_10_1016_j_physe_2019_113887 crossref_primary_10_1016_j_ijhydene_2017_11_078 crossref_primary_10_3390_catal7010001 crossref_primary_10_1016_j_jcat_2019_12_018 crossref_primary_10_1016_j_jclepro_2017_01_169 crossref_primary_10_1016_j_solidstatesciences_2018_07_012 crossref_primary_10_1016_j_ijhydene_2018_07_097 crossref_primary_10_1016_j_jcat_2018_02_020 crossref_primary_10_1016_j_ijhydene_2017_07_199 crossref_primary_10_1002_celc_201600885 crossref_primary_10_33961_jecst_2020_00934 crossref_primary_10_3390_catal8080329 crossref_primary_10_1002_adfm_202107196 crossref_primary_10_1002_aenm_202103426 crossref_primary_10_1002_cctc_202301760 crossref_primary_10_1002_er_5889 crossref_primary_10_1016_j_ijhydene_2017_10_078 crossref_primary_10_1021_acssuschemeng_6b01476 crossref_primary_10_1002_aenm_202001275 crossref_primary_10_1002_tcr_202000090 crossref_primary_10_1016_j_chemphys_2025_112682 crossref_primary_10_1007_s10895_024_04060_6 crossref_primary_10_1021_acssuschemeng_6b01524 crossref_primary_10_3390_catal9040345 crossref_primary_10_1016_j_ijhydene_2020_07_262 crossref_primary_10_1021_acs_jpcc_6b04315 crossref_primary_10_1002_cey2_134 crossref_primary_10_1002_aoc_5311 crossref_primary_10_1016_j_jcat_2018_07_025 crossref_primary_10_1002_slct_201804040 crossref_primary_10_1016_j_ijhydene_2018_01_107 crossref_primary_10_1016_j_jelechem_2016_09_034 crossref_primary_10_1088_2399_1984_ad03b2 crossref_primary_10_1039_D1RE00455G crossref_primary_10_1021_acs_iecr_4c04119 crossref_primary_10_1021_acs_jpcc_7b01941 crossref_primary_10_1016_j_jelechem_2018_12_061 crossref_primary_10_1016_j_cej_2020_125743 crossref_primary_10_1016_j_microc_2020_105196 crossref_primary_10_1039_C5TA10303G crossref_primary_10_1016_j_fuel_2021_122432 crossref_primary_10_1016_j_ijhydene_2018_01_093 crossref_primary_10_1016_j_elecom_2016_06_006 crossref_primary_10_1016_j_jallcom_2017_01_199 crossref_primary_10_1149_1945_7111_ab679f crossref_primary_10_1039_C6CP08925A crossref_primary_10_1002_cctc_201601519 crossref_primary_10_1149_2162_8777_ac9182 crossref_primary_10_1021_acsami_9b05471 crossref_primary_10_1021_acssuschemeng_9b01615 crossref_primary_10_3390_en11010167 |
Cites_doi | 10.1016/j.jpowsour.2005.05.098 10.1021/jp065181r 10.1021/cs3000864 10.1002/jctb.4797 10.1126/science.1170377 10.1021/jp800186p 10.1039/c2cc17945h 10.1021/ja3030565 10.1021/nl2017459 10.1039/c2jm34290a 10.1021/ja072367a 10.1016/j.electacta.2009.05.022 10.1016/j.ijhydene.2014.01.197 10.1016/j.scriptamat.2010.02.035 10.1021/ja300756y 10.1038/nmat1849 10.1021/ja206030c 10.1021/jp044339+ 10.1021/jp047349j 10.1021/jp210796e 10.1021/cs501556j 10.1021/cs400114s 10.1166/sam.2013.1624 10.1016/j.jpowsour.2013.07.099 10.1038/nnano.2013.46 10.1016/j.electacta.2006.03.097 10.1016/j.carbon.2011.11.010 10.1021/jp506320z 10.1038/nmat1840 10.1021/cr050182l 10.1021/cm102187a 10.1002/adma.201003819 10.1021/am503388z 10.1021/jp312859x 10.1016/j.electacta.2004.11.064 10.1021/ja100571h 10.1109/JPROC.2013.2261271 10.1021/jp300199x 10.1007/978-1-84800-936-3_2 10.1021/ja303730p 10.1016/j.cej.2010.09.003 10.1021/la991206k 10.1021/jz100553m 10.1039/C4CP01890G 10.1039/c2ee22982j 10.1002/adfm.201102544 10.1016/j.ijhydene.2010.09.055 10.1038/nmat3087 10.1021/cm0518978 10.1063/1.1737365 10.1021/cm9006603 10.1016/j.elecom.2010.12.008 10.1016/j.elecom.2010.09.007 10.1021/ol0492602 10.1016/j.electacta.2014.07.020 10.1016/j.jelechem.2012.07.009 10.1038/ncomms6253 10.1016/j.jpowsour.2007.05.082 10.1039/C4CC05527F 10.1149/1.2234659 10.1016/S0360-3199(98)00172-4 10.1149/1.2937448 10.1016/j.jpowsour.2012.02.011 10.1002/aenm.201301523 |
ContentType | Journal Article |
Copyright | Copyright © 2015 American Chemical Society |
Copyright_xml | – notice: Copyright © 2015 American Chemical Society |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acssuschemeng.5b00927 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-0485 |
EndPage | 3323 |
ExternalDocumentID | 10_1021_acssuschemeng_5b00927 c906235344 |
GroupedDBID | 53G 55A AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD GNL IH9 JG JG~ ROL UI2 VF5 VG9 W1F AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK 7S9 L.6 |
ID | FETCH-LOGICAL-a328t-5fa9857078efb80587425e0b0e84d9a5772edb1f49ec7b1bd9bcce909f1d2a233 |
IEDL.DBID | ACS |
ISSN | 2168-0485 |
IngestDate | Fri Jul 11 02:01:44 EDT 2025 Tue Jul 01 02:35:56 EDT 2025 Thu Apr 24 23:02:41 EDT 2025 Thu Aug 27 13:42:18 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Oxygen reduction Defect Palladium nanoparticle Volcano plot Hydrothermal Graphene quantum dot |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a328t-5fa9857078efb80587425e0b0e84d9a5772edb1f49ec7b1bd9bcce909f1d2a233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2000581314 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000581314 crossref_citationtrail_10_1021_acssuschemeng_5b00927 crossref_primary_10_1021_acssuschemeng_5b00927 acs_journals_10_1021_acssuschemeng_5b00927 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20151207 |
PublicationDateYYYYMMDD | 2015-12-07 |
PublicationDate_xml | – month: 12 year: 2015 text: 20151207 day: 07 |
PublicationDecade | 2010 |
PublicationTitle | ACS sustainable chemistry & engineering |
PublicationTitleAlternate | ACS Sustainable Chem. Eng |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 Huang J. (ref58/cit58) 2012; 18 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 Cano-Castillo U. (ref1/cit1) 2013; 59 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 Wagner C. D. (ref64/cit64) 1979 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref22/cit22 ref33/cit33 Bard A. J. (ref68/cit68) 2001 ref4/cit4 ref30/cit30 ref47/cit47 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref6/cit6 doi: 10.1016/j.jpowsour.2005.05.098 – ident: ref48/cit48 doi: 10.1021/jp065181r – volume: 18 start-page: 508 year: 2012 ident: ref58/cit58 publication-title: J. Electrochem – ident: ref8/cit8 doi: 10.1021/cs3000864 – ident: ref40/cit40 doi: 10.1002/jctb.4797 – ident: ref59/cit59 doi: 10.1126/science.1170377 – ident: ref34/cit34 doi: 10.1021/jp800186p – ident: ref67/cit67 doi: 10.1039/c2cc17945h – ident: ref25/cit25 doi: 10.1021/ja3030565 – ident: ref18/cit18 doi: 10.1021/nl2017459 – ident: ref41/cit41 doi: 10.1039/c2jm34290a – ident: ref36/cit36 doi: 10.1021/ja072367a – ident: ref32/cit32 doi: 10.1016/j.electacta.2009.05.022 – ident: ref17/cit17 doi: 10.1016/j.ijhydene.2014.01.197 – ident: ref47/cit47 doi: 10.1016/j.scriptamat.2010.02.035 – ident: ref13/cit13 doi: 10.1021/ja300756y – ident: ref38/cit38 doi: 10.1038/nmat1849 – ident: ref43/cit43 doi: 10.1021/ja206030c – ident: ref53/cit53 doi: 10.1021/jp044339+ – ident: ref55/cit55 doi: 10.1021/jp047349j – volume-title: Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Data for Use in X-ray Photoelectron Spectroscopy year: 1979 ident: ref64/cit64 – ident: ref46/cit46 doi: 10.1021/jp210796e – ident: ref19/cit19 doi: 10.1021/cs501556j – ident: ref28/cit28 doi: 10.1021/cs400114s – ident: ref23/cit23 doi: 10.1166/sam.2013.1624 – ident: ref50/cit50 doi: 10.1016/j.jpowsour.2013.07.099 – ident: ref66/cit66 doi: 10.1038/nnano.2013.46 – ident: ref14/cit14 doi: 10.1016/j.electacta.2006.03.097 – ident: ref62/cit62 doi: 10.1016/j.carbon.2011.11.010 – ident: ref63/cit63 doi: 10.1021/jp506320z – ident: ref15/cit15 doi: 10.1038/nmat1840 – ident: ref4/cit4 doi: 10.1021/cr050182l – ident: ref51/cit51 doi: 10.1021/cm102187a – ident: ref42/cit42 doi: 10.1002/adma.201003819 – ident: ref29/cit29 doi: 10.1021/am503388z – ident: ref11/cit11 doi: 10.1021/jp312859x – ident: ref33/cit33 doi: 10.1016/j.electacta.2004.11.064 – ident: ref12/cit12 doi: 10.1021/ja100571h – ident: ref65/cit65 doi: 10.1109/JPROC.2013.2261271 – ident: ref22/cit22 doi: 10.1021/jp300199x – ident: ref7/cit7 doi: 10.1007/978-1-84800-936-3_2 – ident: ref52/cit52 doi: 10.1021/ja303730p – ident: ref10/cit10 doi: 10.1016/j.cej.2010.09.003 – ident: ref60/cit60 doi: 10.1021/la991206k – ident: ref5/cit5 doi: 10.1021/jz100553m – ident: ref56/cit56 doi: 10.1039/C4CP01890G – ident: ref44/cit44 doi: 10.1039/c2ee22982j – ident: ref39/cit39 doi: 10.1002/adfm.201102544 – volume: 59 start-page: 85 year: 2013 ident: ref1/cit1 publication-title: Rev. Mex Fis – ident: ref20/cit20 doi: 10.1016/j.ijhydene.2010.09.055 – ident: ref26/cit26 doi: 10.1038/nmat3087 – ident: ref35/cit35 doi: 10.1021/cm0518978 – ident: ref16/cit16 doi: 10.1063/1.1737365 – ident: ref61/cit61 doi: 10.1021/cm9006603 – ident: ref37/cit37 doi: 10.1016/j.elecom.2010.12.008 – ident: ref9/cit9 doi: 10.1016/j.elecom.2010.09.007 – ident: ref57/cit57 doi: 10.1021/ol0492602 – ident: ref27/cit27 doi: 10.1016/j.electacta.2014.07.020 – ident: ref21/cit21 doi: 10.1016/j.jelechem.2012.07.009 – ident: ref49/cit49 doi: 10.1038/ncomms6253 – ident: ref2/cit2 doi: 10.1016/j.jpowsour.2007.05.082 – volume-title: Electrochemical Methods: Fundamentals and Applications year: 2001 ident: ref68/cit68 – ident: ref54/cit54 doi: 10.1039/C4CC05527F – ident: ref45/cit45 doi: 10.1149/1.2234659 – ident: ref3/cit3 doi: 10.1016/S0360-3199(98)00172-4 – ident: ref24/cit24 doi: 10.1149/1.2937448 – ident: ref30/cit30 doi: 10.1016/j.jpowsour.2012.02.011 – ident: ref31/cit31 doi: 10.1002/aenm.201301523 |
SSID | ssj0000993281 |
Score | 2.338253 |
Snippet | Graphene quantum dots (GQDs)-supported palladium nanoparticles were synthesized by thermolytic reduction of PdCl2 in 1,2-propanediol at 80 °C in the presence... Graphene quantum dots (GQDs)-supported palladium nanoparticles were synthesized by thermolytic reduction of PdCl₂ in 1,2-propanediol at 80 °C in the presence... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3315 |
SubjectTerms | graphene hot water treatment nanoparticles oxygen palladium platinum quantum dots spectral analysis temperature transmission electron microscopy X-radiation X-ray photoelectron spectroscopy |
Title | Graphene Quantum Dots-Supported Palladium Nanoparticles for Efficient Electrocatalytic Reduction of Oxygen in Alkaline Media |
URI | http://dx.doi.org/10.1021/acssuschemeng.5b00927 https://www.proquest.com/docview/2000581314 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZ4XOBAS2lVaIuM1BOSl9iJY_uI6AJC4tkicYtsx0YraBaxiQSoP74z2SxihRBwThw54xnP55nxN4T8lFEKZZxgUXHLMqcN00FxJnIVeWJjHtpgzuFRvn-eHVzIixmy9UIGX_At62ECcNLDaNllTzpkCVKzZF7kYMiIhXZ-PwZVAO6kom1MKniuGWinnNzaeelL6JX8aNorTW_KrafZ_UBOJvd1xgUmV72mdj3_8Jy-8a0_8ZEsdaiTbo_VZJnMhOoTWXzCRbhC_u0hdTXsfPS0AWk3f-mvYT1i2PUT63FLeoIh93IAD2BHhqN2V1FHAfXSfktEAf6L9sdtddqo0D28Qc-QGxZXnw4jPb67B4Wlg4puX19ZRLgUM0X2Mznf7f_Z2WddawZmQcA1k9EapMZXOkSnE6nhhC1D4pKgs9JYCZg9lI7HzASvHHelcd4Hk5jIS2FFmn4hc9WwCl8JzaVJTWqDENiKPUideuV5NFr4EG1uVskmSK_oTGtUtFlzwYspkRadSFdJNlnHwnck59hr4_q1Yb3HYTdjlo_XBmxMlKQAe8Qki63CsBlhW08QB095tvaeiX8jCwDFZFsoo76Tufq2CT8A7tRuvVXx_9noAMU |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcgAOvCvK00ickLzEThzbx1XZskBbXq3oLbIdG1Ut2apJJIr48Yy92YVFQlWvSWw547Hn88z4G4AXIgguteU0SGZoYZWmyktGeSkDy0wofXLm7O6V04Pi3aE4XINycRcGB9FiT20K4v9hF2Cv8Fnb44EvOs2-jYSNZEHyClxFQMKjZo-3vix9K4h6cp7qk3JWKopKKhaXd_7XUzROrl01Tqt7czI427fg63KoKc_keNR3duR-_sPiePl_uQ03BwxKxnOluQNrvrkLN_5iJrwHv95EImvcB8mnHmXffyevZ11LYw3QmJ1bk4_RAV8f4Qvcn_HgPeTXEcTAZJJoKdCakcm8yE7yEZ3jF-RzZIqNukBmgXz4cY7qS44aMj45NhHvkhg3MvfhYHuyvzWlQ6EGalDOHRXB6EiUL5UPVmVC4Xlb-MxmXhW1NgIRvK8tC4X2Tlpma22d8zrTgdXc8DzfgPVm1vgHQEqhc50bz3kszO6Fyp10LGjFnQ-m1JvwEqVXDQutrVIMnbNqRaTVINJNKBbTWbmB8jxW3ji5qNlo2ex0zvlxUYPnC12pcHXGkItp_KxvY5FPFAfLWfHwMgN_Btem-7s71c7bvfeP4DqCNJFSaORjWO_Oev8EgVBnnyat_w2GUwkm |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA9aQfTB-lWs2hrBJyHnJrvZJI9He9f6VetHoeDDkmQTKa17xd0FK_7xzuT2Dk-Qoq-7m5CdTDKTmcnvR8gzGaVQxgkWFbescNowHRRnolSRZzaWIQVz3h6U-0fFq2N5PFRV4l0YGEQLPbUpiY-r-ryOA8IAfwHP2x4OfRg4-zKSDgGD1FVyDVN3qN3jnY_L-Ap4PrlIHKWCl5qBosrFBZ6_9YQGyrerBmp1f05GZ7pOPi-Hm2pNTkd950b-xx9Ijv_3P7fJrcEXpeO58twhV0Jzl9z8DaHwHvm5h4DWsB_S9z3MQf-V7s66liEXKFbp1vQQA_H1CbyAfRoO4EOdHQVfmE4SPAVYNTqZk-2kWNEFfEE_IGIs6gSdRfru-wWoMT1p6Pjs1KLfSzF_ZO-To-nk084-GwgbmAVZd0xGaxAwX-kQnc6khnO3DJnLgi5qYyV48qF2PBYmeOW4q43zPpjMRF4LK_J8g6w1syY8ILSUJje5DUIgQXuQOvfK82i08CHa0myS5yC9alhwbZVy6YJXKyKtBpFukmIxpZUfoM-RgePssmajZbPzOfbHZQ2eLvSlglWKqRfbhFnfItkniIPnvHj4LwN_Qq4f7k6rNy8PXj8iN8BXk6mSRj0ma923PmyBP9S57aT4vwDleQup |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene+Quantum+Dots-Supported+Palladium+Nanoparticles+for+Efficient+Electrocatalytic+Reduction+of+Oxygen+in+Alkaline+Media&rft.jtitle=ACS+sustainable+chemistry+%26+engineering&rft.au=Deming%2C+Christopher+P&rft.au=Mercado%2C+Rene&rft.au=Gadiraju%2C+Vamsi&rft.au=Sweeney%2C+Samantha+W&rft.date=2015-12-07&rft.pub=American+Chemical+Society&rft.issn=2168-0485&rft.eissn=2168-0485&rft.volume=3&rft.issue=12&rft.spage=3315&rft.epage=3323&rft_id=info:doi/10.1021%2Facssuschemeng.5b00927&rft.externalDocID=c906235344 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-0485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-0485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-0485&client=summon |