A machine learning approach to the potential-field method for implicit modeling of geological structures

Implicit modeling has experienced a rise in popularity over the last decade due to its advantages in terms of speed and reproducibility in comparison with manual digitization of geological structures. The potential-field method consists in interpolating a scalar function that indicates to which side...

Full description

Saved in:
Bibliographic Details
Published inComputers & geosciences Vol. 103; pp. 173 - 182
Main Authors Gonçalves, Ítalo Gomes, Kumaira, Sissa, Guadagnin, Felipe
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Implicit modeling has experienced a rise in popularity over the last decade due to its advantages in terms of speed and reproducibility in comparison with manual digitization of geological structures. The potential-field method consists in interpolating a scalar function that indicates to which side of a geological boundary a given point belongs to, based on cokriging of point data and structural orientations. This work proposes a vector potential-field solution from a machine learning perspective, recasting the problem as multi-class classification, which alleviates some of the original method's assumptions. The potentials related to each geological class are interpreted in a compositional data framework. Variogram modeling is avoided through the use of maximum likelihood to train the model, and an uncertainty measure is introduced. The methodology was applied to the modeling of a sample dataset provided with the software Move™. The calculations were implemented in the R language and 3D visualizations were prepared with the rgl package. •Machine learning technique for implicit geological modeling.•Potential field model recast as multi-class classification.•Probabilistic interpretation of the potential field.•Variogram modeling avoided through maximization of log-likelihood.
AbstractList Implicit modeling has experienced a rise in popularity over the last decade due to its advantages in terms of speed and reproducibility in comparison with manual digitization of geological structures. The potential-field method consists in interpolating a scalar function that indicates to which side of a geological boundary a given point belongs to, based on cokriging of point data and structural orientations. This work proposes a vector potential-field solution from a machine learning perspective, recasting the problem as multi-class classification, which alleviates some of the original method's assumptions. The potentials related to each geological class are interpreted in a compositional data framework. Variogram modeling is avoided through the use of maximum likelihood to train the model, and an uncertainty measure is introduced. The methodology was applied to the modeling of a sample dataset provided with the software Move™. The calculations were implemented in the R language and 3D visualizations were prepared with the rgl package. •Machine learning technique for implicit geological modeling.•Potential field model recast as multi-class classification.•Probabilistic interpretation of the potential field.•Variogram modeling avoided through maximization of log-likelihood.
Author Gonçalves, Ítalo Gomes
Guadagnin, Felipe
Kumaira, Sissa
Author_xml – sequence: 1
  givenname: Ítalo Gomes
  surname: Gonçalves
  fullname: Gonçalves, Ítalo Gomes
  email: italogoncalves@unipampa.edu.br
– sequence: 2
  givenname: Sissa
  surname: Kumaira
  fullname: Kumaira, Sissa
– sequence: 3
  givenname: Felipe
  surname: Guadagnin
  fullname: Guadagnin, Felipe
BookMark eNp9kMtqwzAQRUVJoUnaL-hGP2B3ZNmyvegihL4g0E27FrI0ThRky0hKoX9fp-m6q4Fhzp3LWZHF6Eck5J5BzoCJh2Ou1R59XgCrc-A5sOqKLFlT86xugC_IEqBtMg5Q3pBVjEcAKIqmWpLDhg5KH-yI1KEKox33VE1T8POSJk_TAenkE47JKpf1Fp2hA6aDN7T3gdphclbbRAdv0J1h39O5ifN7q5WjMYWTTqeA8ZZc98pFvPuba_L5_PSxfc127y9v280uU7wQKeuaErBhumRQtaIVpisAWAtlC23dqa7VptJoWD1fmF5gJXrRsIoLDaYzFedrwi-5OvgYA_ZyCnZQ4VsykGdZ8ih_ZcmzLAlczrJm6vFC4Vzty2KQUVsc5082oE7SePsv_wNh1Xcb
CitedBy_id crossref_primary_10_5194_gmd_14_3915_2021
crossref_primary_10_5194_gmd_16_6987_2023
crossref_primary_10_1007_s10040_020_02220_z
crossref_primary_10_1016_j_undsp_2023_08_006
crossref_primary_10_3390_ijgi12030097
crossref_primary_10_5194_gmd_16_3651_2023
crossref_primary_10_1007_s11771_021_4707_9
crossref_primary_10_1080_25726838_2021_1889295
crossref_primary_10_3390_app12041792
crossref_primary_10_1016_j_cageo_2021_104715
crossref_primary_10_1190_geo2020_0924_1
crossref_primary_10_1007_s11004_019_09789_6
crossref_primary_10_5194_gmd_12_1_2019
crossref_primary_10_1007_s11053_021_09989_0
crossref_primary_10_1007_s12145_020_00514_0
crossref_primary_10_1007_s11053_021_09964_9
crossref_primary_10_1007_s11004_020_09887_w
crossref_primary_10_1007_s11053_021_09901_w
crossref_primary_10_3390_app9173553
crossref_primary_10_1007_s11004_022_10027_9
crossref_primary_10_3390_min13070918
crossref_primary_10_3390_info10110357
crossref_primary_10_1007_s11053_020_09721_4
crossref_primary_10_1007_s12145_022_00897_2
crossref_primary_10_1007_s11053_023_10276_3
crossref_primary_10_1016_j_cageo_2023_105323
crossref_primary_10_1016_j_envsoft_2022_105309
crossref_primary_10_1016_j_cageo_2018_10_006
crossref_primary_10_1016_j_cageo_2020_104405
crossref_primary_10_1016_j_cageo_2021_104701
crossref_primary_10_1016_j_enggeo_2023_107077
crossref_primary_10_1007_s10064_024_03794_8
crossref_primary_10_1007_s12665_023_11346_8
crossref_primary_10_5194_gmd_14_6197_2021
crossref_primary_10_3390_ijgi11070371
Cites_doi 10.1214/11-AOS919
10.1016/j.pepi.2008.06.013
10.1016/j.cageo.2015.05.018
10.1016/j.oregeorev.2015.02.020
10.1007/BF02775087
10.1016/j.spasta.2013.04.008
10.1145/383259.383266
10.1016/j.cageo.2013.10.008
10.18637/jss.v053.i04
10.1109/TGRS.2012.2207727
10.1016/j.cageo.2014.10.008
10.1093/biomet/71.1.135
10.1016/j.cageo.2015.04.004
10.1016/j.oregeorev.2015.01.001
10.18637/jss.v028.i01
10.1016/j.cageo.2008.06.005
10.1007/s11004-008-9146-8
10.1016/j.tecto.2003.08.008
10.1016/j.cageo.2015.05.019
10.1016/j.jsg.2013.01.012
10.1016/j.cageo.2013.12.002
10.1016/j.cageo.2006.12.008
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cageo.2017.03.015
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1873-7803
EndPage 182
ExternalDocumentID 10_1016_j_cageo_2017_03_015
S0098300416304848
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
TN5
WUQ
ZCA
ZMT
~02
~G-
AAHBH
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-a326t-b840e81c41059696db20019049097bab9cd5ced17c41df6e56f681536c0dbd533
IEDL.DBID AIKHN
ISSN 0098-3004
IngestDate Thu Sep 26 16:50:53 EDT 2024
Fri Feb 23 02:34:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 3D geological modeling
Potential field
Implicit modeling
Kriging
Machine learning
Compositional data analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a326t-b840e81c41059696db20019049097bab9cd5ced17c41df6e56f681536c0dbd533
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_cageo_2017_03_015
elsevier_sciencedirect_doi_10_1016_j_cageo_2017_03_015
PublicationCentury 2000
PublicationDate June 2017
2017-06-00
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: June 2017
PublicationDecade 2010
PublicationTitle Computers & geosciences
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pawlowsky-Glahn, Buccianti (bib31) 2011
R Core Team, 2017. R: A language and environment for statistical computing
Rodriguez-Galiano, Sanchez-Castillo, Chica-Olmo, Chica-Rivas (bib35) 2015; 71
Romary (bib36) 2013; 5
Wang, Carr, Ju, Li (bib46) 2014; 64
Calcagno, Chilès, Courrioux, Guillen (bib5) 2008; 171
Goovaerts (bib18) 1997
Maxelon, Renard, Courrioux, Brändli, Mancktelow (bib27) 2009; 35
Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V., 2006. Compositional Data Analysis in the Geosciences. The Geological Society, London.
Kapageridis (bib24) 2014; 85
Cowan, E. J., Lane, R. G., Ross, H. J., 2004. Leapfrog’s implicit drawing tool: a new way of drawing geological objects of any shape rapidly in 3D. In: Proceedings of the Australian Institute of Geoscientists Mining Geology 2004 Workshop. Vol. Bulletin 4. pp. 23–25.
Stachniss, Plagemann, Lilienthal, Burgard (bib42) 2008
Smirnoff, Boisvert, Paradis (bib40) 2008; 34
Chu, Zhu, Wang (bib11) 2011; 39
Chilès, Aug, Guillen, Lees (bib10) 2004; 14
Lajaunie, Courrioux, Manuel (bib25) 1997; 29
Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum, B. C., Evans, T. R., 2001. Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of the 28th annual conference on Computer graphics and interactive techniques SIGGRAPH 01, 67-76
Tresp (bib44) 2001
Vollgger, Cruden, Ailleres, Cowan (bib45) 2015; 69
Feng, Tierney (bib15) 2008; 28
Caumon, Gray, Antoine, Titeux (bib7) 2013; 51
Michalewicz (bib29) 1996
Chilès, Delfiner (bib9) 1999
Bishop (bib3) 2006
Quiñonero-candela, Rasmussen, Herbrich (bib32) 2005; 6
Cracknell, M. J., Reading, A. M., 2014. Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Computers and Geosciences 63, 22-33.
Flach (bib16) 2012
Scrucca, L., 2016. On some extensions to GA package: hybrid optimisation, parallelisation and islands evolution.
Snelson, Ghahramani (bib41) 2006; 18
.
Chan (bib8) 2010; 35
Tolosana-Delgado, Pawlowsky-Glahn, Egozcue (bib43) 2008; 40
Hristopulos (bib21) 2015; 85
Jessell, Aillères, Kemp, Lindsay, Wellmann, Hillier, Laurent, Carmichael, Martin (bib23) 2014; 18
Cowan, E., Beatson, R., Ross, H., Fright, W., McLennan, T., Evans, T., Carr, J., Lane, R., Bright, D., Gillman, A., Oshust, P., Titley, M., 2003. Practical Implicit Geological Modelling. In: Proceedings of the 5th International Mining Geology Conference. No. 8. pp. 89–99.
Isaaks, E. H., Srivastava, R. M., 1989. Applied Geostatistics. Oxford University, New York, New York, USA.
Rasmussen, Williams (bib34) 2006
Scrucca (bib38) 2013; 53
Aug, C., 2004. Modélisation géologique 3D et caractérisation des incertitudes par la méthode du champ de potentiel. (Ph.D. thesis).
Midland Valley Exploration, 2014. Move
Wu, Xu, Zou, Lei (bib47) 2015; 77
Fouedjio (bib17) 2016
Gumiaux, Gapais, Brun (bib19) 2003; 376
Hillier, de Kemp, Schetselaar (bib20) 2013; 51
McLennan, J. A., Deutsch, C. V., 2006. Implicit Boundary Modeling (BOUNDSIM). Tech. rep., Centre for Computational Geostatistics, Edmonton.
Adler, D., Murdoch, D., 2016. rgl: 3D Visualization Using OpenGL
Romary, Ors, Rivoirard, Deraisme (bib37) 2014; 85
Mardia, Marshall (bib26) 1984; 71
Feng (10.1016/j.cageo.2017.03.015_bib15) 2008; 28
Tresp (10.1016/j.cageo.2017.03.015_bib44) 2001
Rasmussen (10.1016/j.cageo.2017.03.015_bib34) 2006
Vollgger (10.1016/j.cageo.2017.03.015_bib45) 2015; 69
Wu (10.1016/j.cageo.2017.03.015_bib47) 2015; 77
Chilès (10.1016/j.cageo.2017.03.015_bib10) 2004; 14
Hillier (10.1016/j.cageo.2017.03.015_bib20) 2013; 51
Chilès (10.1016/j.cageo.2017.03.015_bib9) 1999
Jessell (10.1016/j.cageo.2017.03.015_bib23) 2014; 18
Fouedjio (10.1016/j.cageo.2017.03.015_bib17) 2016
10.1016/j.cageo.2017.03.015_bib12
10.1016/j.cageo.2017.03.015_bib2
10.1016/j.cageo.2017.03.015_bib33
10.1016/j.cageo.2017.03.015_bib1
10.1016/j.cageo.2017.03.015_bib14
10.1016/j.cageo.2017.03.015_bib13
10.1016/j.cageo.2017.03.015_bib30
Rodriguez-Galiano (10.1016/j.cageo.2017.03.015_bib35) 2015; 71
Romary (10.1016/j.cageo.2017.03.015_bib37) 2014; 85
Calcagno (10.1016/j.cageo.2017.03.015_bib5) 2008; 171
Tolosana-Delgado (10.1016/j.cageo.2017.03.015_bib43) 2008; 40
Romary (10.1016/j.cageo.2017.03.015_bib36) 2013; 5
Pawlowsky-Glahn (10.1016/j.cageo.2017.03.015_bib31) 2011
Chu (10.1016/j.cageo.2017.03.015_bib11) 2011; 39
10.1016/j.cageo.2017.03.015_bib39
Gumiaux (10.1016/j.cageo.2017.03.015_bib19) 2003; 376
Mardia (10.1016/j.cageo.2017.03.015_bib26) 1984; 71
Flach (10.1016/j.cageo.2017.03.015_bib16) 2012
Bishop (10.1016/j.cageo.2017.03.015_bib3) 2006
Stachniss (10.1016/j.cageo.2017.03.015_bib42) 2008
Caumon (10.1016/j.cageo.2017.03.015_bib7) 2013; 51
Scrucca (10.1016/j.cageo.2017.03.015_bib38) 2013; 53
Maxelon (10.1016/j.cageo.2017.03.015_bib27) 2009; 35
10.1016/j.cageo.2017.03.015_bib6
Michalewicz (10.1016/j.cageo.2017.03.015_bib29) 1996
10.1016/j.cageo.2017.03.015_bib4
10.1016/j.cageo.2017.03.015_bib22
Quiñonero-candela (10.1016/j.cageo.2017.03.015_bib32) 2005; 6
Kapageridis (10.1016/j.cageo.2017.03.015_bib24) 2014; 85
Wang (10.1016/j.cageo.2017.03.015_bib46) 2014; 64
Snelson (10.1016/j.cageo.2017.03.015_bib41) 2006; 18
Chan (10.1016/j.cageo.2017.03.015_bib8) 2010; 35
Goovaerts (10.1016/j.cageo.2017.03.015_bib18) 1997
Smirnoff (10.1016/j.cageo.2017.03.015_bib40) 2008; 34
Hristopulos (10.1016/j.cageo.2017.03.015_bib21) 2015; 85
Lajaunie (10.1016/j.cageo.2017.03.015_bib25) 1997; 29
10.1016/j.cageo.2017.03.015_bib28
References_xml – start-page: 1
  year: 2008
  end-page: 8
  ident: bib42
  article-title: Gas distribution modeling using sparse gaussian process mixture models
  publication-title: Adv. Robot.
  contributor:
    fullname: Burgard
– volume: 18
  start-page: 1257
  year: 2006
  end-page: 1264
  ident: bib41
  article-title: Sparse Gaussian Processes using Pseudo-inputs
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Ghahramani
– volume: 64
  start-page: 52
  year: 2014
  end-page: 60
  ident: bib46
  article-title: Identifying organic-rich Marcellus Shale lithofacies by support vector machine classifier in the Appalachian basin
  publication-title: Comput. Geosci.
  contributor:
    fullname: Li
– volume: 14
  start-page: 22
  year: 2004
  end-page: 24
  ident: bib10
  article-title: Modelling the geometry of geological units and its uncertainty in 3D from structural data: The Potential-Field Method
  publication-title: Orebody Model. Strateg. Mine Plan. - Spectr.
  contributor:
    fullname: Lees
– volume: 69
  start-page: 268
  year: 2015
  end-page: 284
  ident: bib45
  article-title: Regional dome evolution and its control on ore-grade distribution: Insights from 3D implicit modelling of the Navachab gold deposit
  publication-title: Namib. Ore Geol. Rev.
  contributor:
    fullname: Cowan
– volume: 71
  start-page: 804
  year: 2015
  end-page: 818
  ident: bib35
  article-title: Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines
  publication-title: Ore Geol. Rev.
  contributor:
    fullname: Chica-Rivas
– volume: 51
  start-page: 167
  year: 2013
  end-page: 179
  ident: bib20
  article-title: 3D form line construction by structural field interpolation (SFI) of geologic strike and dip observations
  publication-title: J. Struct. Geol.
  contributor:
    fullname: Schetselaar
– volume: 85
  start-page: 96
  year: 2014
  end-page: 103
  ident: bib37
  article-title: Unsupervised classification of multivariate geostatistical data: Two algorithms
  publication-title: Comput. Geosci.
  contributor:
    fullname: Deraisme
– volume: 51
  start-page: 1613
  year: 2013
  end-page: 1621
  ident: bib7
  article-title: Three-dimensional implicit stratigraphic model building from remote sensing data on tetrahedral meshes: Theory and application to a regional model of la Popa Basin, NE Mexico
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Titeux
– volume: 35
  start-page: 644
  year: 2009
  end-page: 658
  ident: bib27
  article-title: A workflow to facilitate three-dimensional geometrical modelling of complex poly-deformed geological units
  publication-title: Comput. Geosci.
  contributor:
    fullname: Mancktelow
– start-page: 654
  year: 2001
  end-page: 660
  ident: bib44
  article-title: Mixtures of Gaussian processes
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Tresp
– year: 1999
  ident: bib9
  article-title: Geostatistics: Modeling Spatial Uncertainty
  contributor:
    fullname: Delfiner
– volume: 35
  start-page: 11
  year: 2010
  ident: bib8
  article-title: DiceKriging, DiceOptim: Two R packages for the analysis of computer experiments by Kriging-Based metamodeling and optimization
  publication-title: J. Stat. Softw.
  contributor:
    fullname: Chan
– volume: 6
  start-page: 1935
  year: 2005
  end-page: 1959
  ident: bib32
  article-title: A unifying view of sparse approximate Gaussian process regression
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Herbrich
– volume: 5
  start-page: 85
  year: 2013
  end-page: 99
  ident: bib36
  article-title: Incomplete cholesky decomposition for the kriging of large datasets
  publication-title: Spat. Stat.
  contributor:
    fullname: Romary
– volume: 29
  start-page: 571
  year: 1997
  end-page: 584
  ident: bib25
  article-title: Foliation fields and 3D cartography in geology
  publication-title: Math. Geol.
  contributor:
    fullname: Manuel
– volume: 85
  start-page: 26
  year: 2015
  end-page: 37
  ident: bib21
  article-title: Stochastic Local Interaction (SLI) model
  publication-title: Comput. Geosci.
  contributor:
    fullname: Hristopulos
– year: 2012
  ident: bib16
  article-title: Machine Learning: The Art and Science of Algorithms that Make Sense of Data
  contributor:
    fullname: Flach
– volume: 71
  start-page: 135
  year: 1984
  end-page: 146
  ident: bib26
  article-title: Maximum likelihood estimation of models for residual covariance in spatial regression
  publication-title: Biometrika
  contributor:
    fullname: Marshall
– volume: 34
  start-page: 127
  year: 2008
  end-page: 143
  ident: bib40
  article-title: Support vector machine for 3D modelling from sparse geological information of various origins
  publication-title: Comput. Geosci.
  contributor:
    fullname: Paradis
– volume: 53
  start-page: 1
  year: 2013
  end-page: 37
  ident: bib38
  article-title: GA: a package for Genetic Algorithms in R
  publication-title: J. Stat. Softw.
  contributor:
    fullname: Scrucca
– year: 2006
  ident: bib3
  publication-title: Pattern Recognition and Machine Learning
  contributor:
    fullname: Bishop
– year: 1996
  ident: bib29
  article-title: Genetic Algorithms + Data Structures = Evolution Programs
  contributor:
    fullname: Michalewicz
– volume: 376
  start-page: 241
  year: 2003
  end-page: 259
  ident: bib19
  article-title: Geostatistics applied to best-fit interpolation of orientation data
  publication-title: Tectonophysics
  contributor:
    fullname: Brun
– year: 1997
  ident: bib18
  publication-title: Geoestatistics for Natural Resources Evaluation
  contributor:
    fullname: Goovaerts
– volume: 39
  start-page: 2607
  year: 2011
  end-page: 2625
  ident: bib11
  article-title: Penalized maximum likelihood estimation and variable selection in geostatistics
  publication-title: Ann. Stat.
  contributor:
    fullname: Wang
– start-page: 1
  year: 2016
  end-page: 20
  ident: bib17
  article-title: Second-order non-stationary modeling approaches for univariate geostatistical data
  publication-title: Stoch. Environ. Res. Risk Assess.
  contributor:
    fullname: Fouedjio
– volume: 28
  start-page: 1
  year: 2008
  ident: bib15
  article-title: Computing and displaying isosurfaces in R
  publication-title: J. Stat. Softw.
  contributor:
    fullname: Tierney
– year: 2006
  ident: bib34
  article-title: Gaussian Processes for Machine Learning
  contributor:
    fullname: Williams
– volume: 40
  start-page: 327
  year: 2008
  end-page: 347
  ident: bib43
  article-title: Indicator Kriging without Order Relation Violations
  publication-title: Math. Geosci.
  contributor:
    fullname: Egozcue
– volume: 85
  start-page: 49
  year: 2014
  end-page: 63
  ident: bib24
  article-title: Variable lag variography using k-means clustering
  publication-title: Comput. Geosci.
  contributor:
    fullname: Kapageridis
– volume: 77
  start-page: 126
  year: 2015
  end-page: 137
  ident: bib47
  article-title: A 3D modeling approach to complex faults with multi-source data
  publication-title: Comput. Geosci.
  contributor:
    fullname: Lei
– volume: 18
  start-page: 261
  year: 2014
  end-page: 272
  ident: bib23
  article-title: Next Generation Three-Dimensional Geologic Modeling and Inversion
  publication-title: SEG Spec. Publ.
  contributor:
    fullname: Martin
– volume: 171
  start-page: 147
  year: 2008
  end-page: 157
  ident: bib5
  article-title: Geological modelling from field data and geological knowledge. Part I. Modelling method coupling 3D potential-field interpolation and geological rules
  publication-title: Phys. Earth Planet. Inter.
  contributor:
    fullname: Guillen
– year: 2011
  ident: bib31
  article-title: Compositional Data Analysis: Theory and Applications
  contributor:
    fullname: Buccianti
– year: 1999
  ident: 10.1016/j.cageo.2017.03.015_bib9
  contributor:
    fullname: Chilès
– ident: 10.1016/j.cageo.2017.03.015_bib39
– volume: 39
  start-page: 2607
  issue: 5
  year: 2011
  ident: 10.1016/j.cageo.2017.03.015_bib11
  article-title: Penalized maximum likelihood estimation and variable selection in geostatistics
  publication-title: Ann. Stat.
  doi: 10.1214/11-AOS919
  contributor:
    fullname: Chu
– ident: 10.1016/j.cageo.2017.03.015_bib22
– volume: 171
  start-page: 147
  issue: 1–4
  year: 2008
  ident: 10.1016/j.cageo.2017.03.015_bib5
  article-title: Geological modelling from field data and geological knowledge. Part I. Modelling method coupling 3D potential-field interpolation and geological rules
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/j.pepi.2008.06.013
  contributor:
    fullname: Calcagno
– volume: 85
  start-page: 26
  issue: january
  year: 2015
  ident: 10.1016/j.cageo.2017.03.015_bib21
  article-title: Stochastic Local Interaction (SLI) model
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2015.05.018
  contributor:
    fullname: Hristopulos
– start-page: 1
  year: 2008
  ident: 10.1016/j.cageo.2017.03.015_bib42
  article-title: Gas distribution modeling using sparse gaussian process mixture models
  publication-title: Adv. Robot.
  contributor:
    fullname: Stachniss
– volume: 69
  start-page: 268
  year: 2015
  ident: 10.1016/j.cageo.2017.03.015_bib45
  article-title: Regional dome evolution and its control on ore-grade distribution: Insights from 3D implicit modelling of the Navachab gold deposit
  publication-title: Namib. Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2015.02.020
  contributor:
    fullname: Vollgger
– volume: 29
  start-page: 571
  issue: 4
  year: 1997
  ident: 10.1016/j.cageo.2017.03.015_bib25
  article-title: Foliation fields and 3D cartography in geology
  publication-title: Math. Geol.
  doi: 10.1007/BF02775087
  contributor:
    fullname: Lajaunie
– volume: 5
  start-page: 85
  issue: 1
  year: 2013
  ident: 10.1016/j.cageo.2017.03.015_bib36
  article-title: Incomplete cholesky decomposition for the kriging of large datasets
  publication-title: Spat. Stat.
  doi: 10.1016/j.spasta.2013.04.008
  contributor:
    fullname: Romary
– year: 2011
  ident: 10.1016/j.cageo.2017.03.015_bib31
  contributor:
    fullname: Pawlowsky-Glahn
– start-page: 654
  year: 2001
  ident: 10.1016/j.cageo.2017.03.015_bib44
  article-title: Mixtures of Gaussian processes
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Tresp
– ident: 10.1016/j.cageo.2017.03.015_bib30
– ident: 10.1016/j.cageo.2017.03.015_bib6
  doi: 10.1145/383259.383266
– ident: 10.1016/j.cageo.2017.03.015_bib14
  doi: 10.1016/j.cageo.2013.10.008
– volume: 53
  start-page: 1
  issue: 4
  year: 2013
  ident: 10.1016/j.cageo.2017.03.015_bib38
  article-title: GA: a package for Genetic Algorithms in R
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v053.i04
  contributor:
    fullname: Scrucca
– year: 2006
  ident: 10.1016/j.cageo.2017.03.015_bib3
  contributor:
    fullname: Bishop
– volume: 51
  start-page: 1613
  issue: 3
  year: 2013
  ident: 10.1016/j.cageo.2017.03.015_bib7
  article-title: Three-dimensional implicit stratigraphic model building from remote sensing data on tetrahedral meshes: Theory and application to a regional model of la Popa Basin, NE Mexico
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2207727
  contributor:
    fullname: Caumon
– volume: 77
  start-page: 126
  year: 2015
  ident: 10.1016/j.cageo.2017.03.015_bib47
  article-title: A 3D modeling approach to complex faults with multi-source data
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2014.10.008
  contributor:
    fullname: Wu
– volume: 71
  start-page: 135
  issue: 1
  year: 1984
  ident: 10.1016/j.cageo.2017.03.015_bib26
  article-title: Maximum likelihood estimation of models for residual covariance in spatial regression
  publication-title: Biometrika
  doi: 10.1093/biomet/71.1.135
  contributor:
    fullname: Mardia
– ident: 10.1016/j.cageo.2017.03.015_bib13
– volume: 85
  start-page: 49
  year: 2014
  ident: 10.1016/j.cageo.2017.03.015_bib24
  article-title: Variable lag variography using k-means clustering
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2015.04.004
  contributor:
    fullname: Kapageridis
– year: 2006
  ident: 10.1016/j.cageo.2017.03.015_bib34
  contributor:
    fullname: Rasmussen
– year: 1996
  ident: 10.1016/j.cageo.2017.03.015_bib29
  contributor:
    fullname: Michalewicz
– volume: 18
  start-page: 261
  issue: SEPTEMBER
  year: 2014
  ident: 10.1016/j.cageo.2017.03.015_bib23
  article-title: Next Generation Three-Dimensional Geologic Modeling and Inversion
  publication-title: SEG Spec. Publ.
  contributor:
    fullname: Jessell
– volume: 71
  start-page: 804
  year: 2015
  ident: 10.1016/j.cageo.2017.03.015_bib35
  article-title: Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2015.01.001
  contributor:
    fullname: Rodriguez-Galiano
– volume: 18
  start-page: 1257
  year: 2006
  ident: 10.1016/j.cageo.2017.03.015_bib41
  article-title: Sparse Gaussian Processes using Pseudo-inputs
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Snelson
– volume: 28
  start-page: 1
  year: 2008
  ident: 10.1016/j.cageo.2017.03.015_bib15
  article-title: Computing and displaying isosurfaces in R
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v028.i01
  contributor:
    fullname: Feng
– ident: 10.1016/j.cageo.2017.03.015_bib4
– start-page: 1
  year: 2016
  ident: 10.1016/j.cageo.2017.03.015_bib17
  article-title: Second-order non-stationary modeling approaches for univariate geostatistical data
  publication-title: Stoch. Environ. Res. Risk Assess.
  contributor:
    fullname: Fouedjio
– year: 1997
  ident: 10.1016/j.cageo.2017.03.015_bib18
  contributor:
    fullname: Goovaerts
– volume: 35
  start-page: 644
  issue: 3
  year: 2009
  ident: 10.1016/j.cageo.2017.03.015_bib27
  article-title: A workflow to facilitate three-dimensional geometrical modelling of complex poly-deformed geological units
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2008.06.005
  contributor:
    fullname: Maxelon
– volume: 40
  start-page: 327
  issue: 3
  year: 2008
  ident: 10.1016/j.cageo.2017.03.015_bib43
  article-title: Indicator Kriging without Order Relation Violations
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-008-9146-8
  contributor:
    fullname: Tolosana-Delgado
– volume: 376
  start-page: 241
  issue: 3–4
  year: 2003
  ident: 10.1016/j.cageo.2017.03.015_bib19
  article-title: Geostatistics applied to best-fit interpolation of orientation data
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2003.08.008
  contributor:
    fullname: Gumiaux
– ident: 10.1016/j.cageo.2017.03.015_bib1
– ident: 10.1016/j.cageo.2017.03.015_bib2
– year: 2012
  ident: 10.1016/j.cageo.2017.03.015_bib16
  contributor:
    fullname: Flach
– ident: 10.1016/j.cageo.2017.03.015_bib28
– volume: 85
  start-page: 96
  year: 2014
  ident: 10.1016/j.cageo.2017.03.015_bib37
  article-title: Unsupervised classification of multivariate geostatistical data: Two algorithms
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2015.05.019
  contributor:
    fullname: Romary
– volume: 14
  start-page: 22
  issue: July
  year: 2004
  ident: 10.1016/j.cageo.2017.03.015_bib10
  article-title: Modelling the geometry of geological units and its uncertainty in 3D from structural data: The Potential-Field Method
  publication-title: Orebody Model. Strateg. Mine Plan. - Spectr.
  contributor:
    fullname: Chilès
– volume: 6
  start-page: 1935
  year: 2005
  ident: 10.1016/j.cageo.2017.03.015_bib32
  article-title: A unifying view of sparse approximate Gaussian process regression
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Quiñonero-candela
– volume: 51
  start-page: 167
  year: 2013
  ident: 10.1016/j.cageo.2017.03.015_bib20
  article-title: 3D form line construction by structural field interpolation (SFI) of geologic strike and dip observations
  publication-title: J. Struct. Geol.
  doi: 10.1016/j.jsg.2013.01.012
  contributor:
    fullname: Hillier
– ident: 10.1016/j.cageo.2017.03.015_bib33
– ident: 10.1016/j.cageo.2017.03.015_bib12
– volume: 64
  start-page: 52
  year: 2014
  ident: 10.1016/j.cageo.2017.03.015_bib46
  article-title: Identifying organic-rich Marcellus Shale lithofacies by support vector machine classifier in the Appalachian basin
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2013.12.002
  contributor:
    fullname: Wang
– volume: 35
  start-page: 11
  year: 2010
  ident: 10.1016/j.cageo.2017.03.015_bib8
  article-title: DiceKriging, DiceOptim: Two R packages for the analysis of computer experiments by Kriging-Based metamodeling and optimization
  publication-title: J. Stat. Softw.
  contributor:
    fullname: Chan
– volume: 34
  start-page: 127
  year: 2008
  ident: 10.1016/j.cageo.2017.03.015_bib40
  article-title: Support vector machine for 3D modelling from sparse geological information of various origins
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2006.12.008
  contributor:
    fullname: Smirnoff
SSID ssj0002285
Score 2.422955
Snippet Implicit modeling has experienced a rise in popularity over the last decade due to its advantages in terms of speed and reproducibility in comparison with...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 173
SubjectTerms 3D geological modeling
Compositional data analysis
Implicit modeling
Kriging
Machine learning
Potential field
Title A machine learning approach to the potential-field method for implicit modeling of geological structures
URI https://dx.doi.org/10.1016/j.cageo.2017.03.015
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VVkgsiE9RPioPjIQ2iZPYY1VRCkidqNTNimO7BEHTIQws_HbOToxAQgxs-Topek6ez_K7dwCXOuFSZcwEzHAZUBnn9ogGWkeqiHVs71q1xTydLej9Mll2YOJrYayssuX-htMdW7dXhi2aw01Z2hpfzpxfVIpLckbZFvTcJlEXeuO7h9n8i5CjiCXeOtMGePMhJ_Mq8Le1RYBh5sxObXvc3yaob5POdA9222yRjJsX2oeOXh_A9q3rxvt-CE9j8urEkJq03R9WxJuEk7oimNyRTVVbQVD-EjixGmlaRhPMVUnp1ORlTVw7HBtcGbLSng5J4y37hgvyI1hMbx4ns6BtnRDkmI_VgcR1m2ZhYUWc1v9GSaud4nabj2cyl7xQCSIcZviEMqlOUpMyJL-0GCmpMAU8hu66WusTIKE2oaYRRSrQCHPIs5iahCqTZNwYxvpw5fESm8YhQ3jp2LNw8AoLrxjFAuHtQ-oxFT8GWiCH_xV4-t_AM9ixZ42-6xy6iJ2-wEyilgPYuv4IB-338gkDFcjs
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKEYIF8SnKpwdGQpvESZyxqigFSqdW6mbFsV2CoOkQBhZ-O3dOLEBCDGxR7JOiF-f5rLx7R8iljlKpEm48blLpMRlmeMU8rQOVhzrEUVRbTOLRjN3Po3mLDFwtDMoqG-6vOd2ydXOn26DZXRUF1vim3PpFxXAk54yvkXWG_lmwqK8_vnQeQcAjZ5yJ0531kBV55fDRYgmgn1irU2yO-9v29G3LGe6Q7SZXpP36cXZJSy_3yMat7cX7vk-e-vTVSiE1bXo_LKizCKdVSSG1o6uyQjlQ9uJZqRqtG0ZTyFRpYbXkRUVtMxwMLg1daEeGtHaWfYPj-AGZDW-mg5HXNE7wMsjGKk_CqU1zP0cJJ7rfKInKqRR_8qWJzGSaqwjw9ROYoUyso9jEHKgvzntKKkgAD0l7WS71EaG-Nr5mAQMi0ACynyYhMxFTJkpSYzjvkCuHl1jV_hjCCceehYVXILyiFwqAt0Nih6n48ZoFMPhfgcf_Dbwgm6Pp41iM7yYPJ2QLR2ql1ylpA476DHKKSp7bNfMJ43bJzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning+approach+to+the+potential-field+method+for+implicit+modeling+of+geological+structures&rft.jtitle=Computers+%26+geosciences&rft.au=Gon%C3%A7alves%2C+%C3%8Dtalo+Gomes&rft.au=Kumaira%2C+Sissa&rft.au=Guadagnin%2C+Felipe&rft.date=2017-06-01&rft.pub=Elsevier+Ltd&rft.issn=0098-3004&rft.eissn=1873-7803&rft.volume=103&rft.spage=173&rft.epage=182&rft_id=info:doi/10.1016%2Fj.cageo.2017.03.015&rft.externalDocID=S0098300416304848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon