A machine learning approach to the potential-field method for implicit modeling of geological structures
Implicit modeling has experienced a rise in popularity over the last decade due to its advantages in terms of speed and reproducibility in comparison with manual digitization of geological structures. The potential-field method consists in interpolating a scalar function that indicates to which side...
Saved in:
Published in | Computers & geosciences Vol. 103; pp. 173 - 182 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Implicit modeling has experienced a rise in popularity over the last decade due to its advantages in terms of speed and reproducibility in comparison with manual digitization of geological structures. The potential-field method consists in interpolating a scalar function that indicates to which side of a geological boundary a given point belongs to, based on cokriging of point data and structural orientations. This work proposes a vector potential-field solution from a machine learning perspective, recasting the problem as multi-class classification, which alleviates some of the original method's assumptions. The potentials related to each geological class are interpreted in a compositional data framework. Variogram modeling is avoided through the use of maximum likelihood to train the model, and an uncertainty measure is introduced. The methodology was applied to the modeling of a sample dataset provided with the software Move™. The calculations were implemented in the R language and 3D visualizations were prepared with the rgl package.
•Machine learning technique for implicit geological modeling.•Potential field model recast as multi-class classification.•Probabilistic interpretation of the potential field.•Variogram modeling avoided through maximization of log-likelihood. |
---|---|
AbstractList | Implicit modeling has experienced a rise in popularity over the last decade due to its advantages in terms of speed and reproducibility in comparison with manual digitization of geological structures. The potential-field method consists in interpolating a scalar function that indicates to which side of a geological boundary a given point belongs to, based on cokriging of point data and structural orientations. This work proposes a vector potential-field solution from a machine learning perspective, recasting the problem as multi-class classification, which alleviates some of the original method's assumptions. The potentials related to each geological class are interpreted in a compositional data framework. Variogram modeling is avoided through the use of maximum likelihood to train the model, and an uncertainty measure is introduced. The methodology was applied to the modeling of a sample dataset provided with the software Move™. The calculations were implemented in the R language and 3D visualizations were prepared with the rgl package.
•Machine learning technique for implicit geological modeling.•Potential field model recast as multi-class classification.•Probabilistic interpretation of the potential field.•Variogram modeling avoided through maximization of log-likelihood. |
Author | Gonçalves, Ítalo Gomes Guadagnin, Felipe Kumaira, Sissa |
Author_xml | – sequence: 1 givenname: Ítalo Gomes surname: Gonçalves fullname: Gonçalves, Ítalo Gomes email: italogoncalves@unipampa.edu.br – sequence: 2 givenname: Sissa surname: Kumaira fullname: Kumaira, Sissa – sequence: 3 givenname: Felipe surname: Guadagnin fullname: Guadagnin, Felipe |
BookMark | eNp9kMtqwzAQRUVJoUnaL-hGP2B3ZNmyvegihL4g0E27FrI0ThRky0hKoX9fp-m6q4Fhzp3LWZHF6Eck5J5BzoCJh2Ou1R59XgCrc-A5sOqKLFlT86xugC_IEqBtMg5Q3pBVjEcAKIqmWpLDhg5KH-yI1KEKox33VE1T8POSJk_TAenkE47JKpf1Fp2hA6aDN7T3gdphclbbRAdv0J1h39O5ifN7q5WjMYWTTqeA8ZZc98pFvPuba_L5_PSxfc127y9v280uU7wQKeuaErBhumRQtaIVpisAWAtlC23dqa7VptJoWD1fmF5gJXrRsIoLDaYzFedrwi-5OvgYA_ZyCnZQ4VsykGdZ8ih_ZcmzLAlczrJm6vFC4Vzty2KQUVsc5082oE7SePsv_wNh1Xcb |
CitedBy_id | crossref_primary_10_5194_gmd_14_3915_2021 crossref_primary_10_5194_gmd_16_6987_2023 crossref_primary_10_1007_s10040_020_02220_z crossref_primary_10_1016_j_undsp_2023_08_006 crossref_primary_10_3390_ijgi12030097 crossref_primary_10_5194_gmd_16_3651_2023 crossref_primary_10_1007_s11771_021_4707_9 crossref_primary_10_1080_25726838_2021_1889295 crossref_primary_10_3390_app12041792 crossref_primary_10_1016_j_cageo_2021_104715 crossref_primary_10_1190_geo2020_0924_1 crossref_primary_10_1007_s11004_019_09789_6 crossref_primary_10_5194_gmd_12_1_2019 crossref_primary_10_1007_s11053_021_09989_0 crossref_primary_10_1007_s12145_020_00514_0 crossref_primary_10_1007_s11053_021_09964_9 crossref_primary_10_1007_s11004_020_09887_w crossref_primary_10_1007_s11053_021_09901_w crossref_primary_10_3390_app9173553 crossref_primary_10_1007_s11004_022_10027_9 crossref_primary_10_3390_min13070918 crossref_primary_10_3390_info10110357 crossref_primary_10_1007_s11053_020_09721_4 crossref_primary_10_1007_s12145_022_00897_2 crossref_primary_10_1007_s11053_023_10276_3 crossref_primary_10_1016_j_cageo_2023_105323 crossref_primary_10_1016_j_envsoft_2022_105309 crossref_primary_10_1016_j_cageo_2018_10_006 crossref_primary_10_1016_j_cageo_2020_104405 crossref_primary_10_1016_j_cageo_2021_104701 crossref_primary_10_1016_j_enggeo_2023_107077 crossref_primary_10_1007_s10064_024_03794_8 crossref_primary_10_1007_s12665_023_11346_8 crossref_primary_10_5194_gmd_14_6197_2021 crossref_primary_10_3390_ijgi11070371 |
Cites_doi | 10.1214/11-AOS919 10.1016/j.pepi.2008.06.013 10.1016/j.cageo.2015.05.018 10.1016/j.oregeorev.2015.02.020 10.1007/BF02775087 10.1016/j.spasta.2013.04.008 10.1145/383259.383266 10.1016/j.cageo.2013.10.008 10.18637/jss.v053.i04 10.1109/TGRS.2012.2207727 10.1016/j.cageo.2014.10.008 10.1093/biomet/71.1.135 10.1016/j.cageo.2015.04.004 10.1016/j.oregeorev.2015.01.001 10.18637/jss.v028.i01 10.1016/j.cageo.2008.06.005 10.1007/s11004-008-9146-8 10.1016/j.tecto.2003.08.008 10.1016/j.cageo.2015.05.019 10.1016/j.jsg.2013.01.012 10.1016/j.cageo.2013.12.002 10.1016/j.cageo.2006.12.008 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cageo.2017.03.015 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1873-7803 |
EndPage | 182 |
ExternalDocumentID | 10_1016_j_cageo_2017_03_015 S0098300416304848 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMA HVGLF HZ~ IHE IMUCA J1W KOM LG9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SEP SES SEW SPC SPCBC SSE SSV SSZ T5K TN5 WUQ ZCA ZMT ~02 ~G- AAHBH AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-a326t-b840e81c41059696db20019049097bab9cd5ced17c41df6e56f681536c0dbd533 |
IEDL.DBID | AIKHN |
ISSN | 0098-3004 |
IngestDate | Thu Sep 26 16:50:53 EDT 2024 Fri Feb 23 02:34:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 3D geological modeling Potential field Implicit modeling Kriging Machine learning Compositional data analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a326t-b840e81c41059696db20019049097bab9cd5ced17c41df6e56f681536c0dbd533 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_cageo_2017_03_015 elsevier_sciencedirect_doi_10_1016_j_cageo_2017_03_015 |
PublicationCentury | 2000 |
PublicationDate | June 2017 2017-06-00 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: June 2017 |
PublicationDecade | 2010 |
PublicationTitle | Computers & geosciences |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Pawlowsky-Glahn, Buccianti (bib31) 2011 R Core Team, 2017. R: A language and environment for statistical computing Rodriguez-Galiano, Sanchez-Castillo, Chica-Olmo, Chica-Rivas (bib35) 2015; 71 Romary (bib36) 2013; 5 Wang, Carr, Ju, Li (bib46) 2014; 64 Calcagno, Chilès, Courrioux, Guillen (bib5) 2008; 171 Goovaerts (bib18) 1997 Maxelon, Renard, Courrioux, Brändli, Mancktelow (bib27) 2009; 35 Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V., 2006. Compositional Data Analysis in the Geosciences. The Geological Society, London. Kapageridis (bib24) 2014; 85 Cowan, E. J., Lane, R. G., Ross, H. J., 2004. Leapfrog’s implicit drawing tool: a new way of drawing geological objects of any shape rapidly in 3D. In: Proceedings of the Australian Institute of Geoscientists Mining Geology 2004 Workshop. Vol. Bulletin 4. pp. 23–25. Stachniss, Plagemann, Lilienthal, Burgard (bib42) 2008 Smirnoff, Boisvert, Paradis (bib40) 2008; 34 Chu, Zhu, Wang (bib11) 2011; 39 Chilès, Aug, Guillen, Lees (bib10) 2004; 14 Lajaunie, Courrioux, Manuel (bib25) 1997; 29 Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum, B. C., Evans, T. R., 2001. Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of the 28th annual conference on Computer graphics and interactive techniques SIGGRAPH 01, 67-76 Tresp (bib44) 2001 Vollgger, Cruden, Ailleres, Cowan (bib45) 2015; 69 Feng, Tierney (bib15) 2008; 28 Caumon, Gray, Antoine, Titeux (bib7) 2013; 51 Michalewicz (bib29) 1996 Chilès, Delfiner (bib9) 1999 Bishop (bib3) 2006 Quiñonero-candela, Rasmussen, Herbrich (bib32) 2005; 6 Cracknell, M. J., Reading, A. M., 2014. Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Computers and Geosciences 63, 22-33. Flach (bib16) 2012 Scrucca, L., 2016. On some extensions to GA package: hybrid optimisation, parallelisation and islands evolution. Snelson, Ghahramani (bib41) 2006; 18 . Chan (bib8) 2010; 35 Tolosana-Delgado, Pawlowsky-Glahn, Egozcue (bib43) 2008; 40 Hristopulos (bib21) 2015; 85 Jessell, Aillères, Kemp, Lindsay, Wellmann, Hillier, Laurent, Carmichael, Martin (bib23) 2014; 18 Cowan, E., Beatson, R., Ross, H., Fright, W., McLennan, T., Evans, T., Carr, J., Lane, R., Bright, D., Gillman, A., Oshust, P., Titley, M., 2003. Practical Implicit Geological Modelling. In: Proceedings of the 5th International Mining Geology Conference. No. 8. pp. 89–99. Isaaks, E. H., Srivastava, R. M., 1989. Applied Geostatistics. Oxford University, New York, New York, USA. Rasmussen, Williams (bib34) 2006 Scrucca (bib38) 2013; 53 Aug, C., 2004. Modélisation géologique 3D et caractérisation des incertitudes par la méthode du champ de potentiel. (Ph.D. thesis). Midland Valley Exploration, 2014. Move Wu, Xu, Zou, Lei (bib47) 2015; 77 Fouedjio (bib17) 2016 Gumiaux, Gapais, Brun (bib19) 2003; 376 Hillier, de Kemp, Schetselaar (bib20) 2013; 51 McLennan, J. A., Deutsch, C. V., 2006. Implicit Boundary Modeling (BOUNDSIM). Tech. rep., Centre for Computational Geostatistics, Edmonton. Adler, D., Murdoch, D., 2016. rgl: 3D Visualization Using OpenGL Romary, Ors, Rivoirard, Deraisme (bib37) 2014; 85 Mardia, Marshall (bib26) 1984; 71 Feng (10.1016/j.cageo.2017.03.015_bib15) 2008; 28 Tresp (10.1016/j.cageo.2017.03.015_bib44) 2001 Rasmussen (10.1016/j.cageo.2017.03.015_bib34) 2006 Vollgger (10.1016/j.cageo.2017.03.015_bib45) 2015; 69 Wu (10.1016/j.cageo.2017.03.015_bib47) 2015; 77 Chilès (10.1016/j.cageo.2017.03.015_bib10) 2004; 14 Hillier (10.1016/j.cageo.2017.03.015_bib20) 2013; 51 Chilès (10.1016/j.cageo.2017.03.015_bib9) 1999 Jessell (10.1016/j.cageo.2017.03.015_bib23) 2014; 18 Fouedjio (10.1016/j.cageo.2017.03.015_bib17) 2016 10.1016/j.cageo.2017.03.015_bib12 10.1016/j.cageo.2017.03.015_bib2 10.1016/j.cageo.2017.03.015_bib33 10.1016/j.cageo.2017.03.015_bib1 10.1016/j.cageo.2017.03.015_bib14 10.1016/j.cageo.2017.03.015_bib13 10.1016/j.cageo.2017.03.015_bib30 Rodriguez-Galiano (10.1016/j.cageo.2017.03.015_bib35) 2015; 71 Romary (10.1016/j.cageo.2017.03.015_bib37) 2014; 85 Calcagno (10.1016/j.cageo.2017.03.015_bib5) 2008; 171 Tolosana-Delgado (10.1016/j.cageo.2017.03.015_bib43) 2008; 40 Romary (10.1016/j.cageo.2017.03.015_bib36) 2013; 5 Pawlowsky-Glahn (10.1016/j.cageo.2017.03.015_bib31) 2011 Chu (10.1016/j.cageo.2017.03.015_bib11) 2011; 39 10.1016/j.cageo.2017.03.015_bib39 Gumiaux (10.1016/j.cageo.2017.03.015_bib19) 2003; 376 Mardia (10.1016/j.cageo.2017.03.015_bib26) 1984; 71 Flach (10.1016/j.cageo.2017.03.015_bib16) 2012 Bishop (10.1016/j.cageo.2017.03.015_bib3) 2006 Stachniss (10.1016/j.cageo.2017.03.015_bib42) 2008 Caumon (10.1016/j.cageo.2017.03.015_bib7) 2013; 51 Scrucca (10.1016/j.cageo.2017.03.015_bib38) 2013; 53 Maxelon (10.1016/j.cageo.2017.03.015_bib27) 2009; 35 10.1016/j.cageo.2017.03.015_bib6 Michalewicz (10.1016/j.cageo.2017.03.015_bib29) 1996 10.1016/j.cageo.2017.03.015_bib4 10.1016/j.cageo.2017.03.015_bib22 Quiñonero-candela (10.1016/j.cageo.2017.03.015_bib32) 2005; 6 Kapageridis (10.1016/j.cageo.2017.03.015_bib24) 2014; 85 Wang (10.1016/j.cageo.2017.03.015_bib46) 2014; 64 Snelson (10.1016/j.cageo.2017.03.015_bib41) 2006; 18 Chan (10.1016/j.cageo.2017.03.015_bib8) 2010; 35 Goovaerts (10.1016/j.cageo.2017.03.015_bib18) 1997 Smirnoff (10.1016/j.cageo.2017.03.015_bib40) 2008; 34 Hristopulos (10.1016/j.cageo.2017.03.015_bib21) 2015; 85 Lajaunie (10.1016/j.cageo.2017.03.015_bib25) 1997; 29 10.1016/j.cageo.2017.03.015_bib28 |
References_xml | – start-page: 1 year: 2008 end-page: 8 ident: bib42 article-title: Gas distribution modeling using sparse gaussian process mixture models publication-title: Adv. Robot. contributor: fullname: Burgard – volume: 18 start-page: 1257 year: 2006 end-page: 1264 ident: bib41 article-title: Sparse Gaussian Processes using Pseudo-inputs publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Ghahramani – volume: 64 start-page: 52 year: 2014 end-page: 60 ident: bib46 article-title: Identifying organic-rich Marcellus Shale lithofacies by support vector machine classifier in the Appalachian basin publication-title: Comput. Geosci. contributor: fullname: Li – volume: 14 start-page: 22 year: 2004 end-page: 24 ident: bib10 article-title: Modelling the geometry of geological units and its uncertainty in 3D from structural data: The Potential-Field Method publication-title: Orebody Model. Strateg. Mine Plan. - Spectr. contributor: fullname: Lees – volume: 69 start-page: 268 year: 2015 end-page: 284 ident: bib45 article-title: Regional dome evolution and its control on ore-grade distribution: Insights from 3D implicit modelling of the Navachab gold deposit publication-title: Namib. Ore Geol. Rev. contributor: fullname: Cowan – volume: 71 start-page: 804 year: 2015 end-page: 818 ident: bib35 article-title: Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines publication-title: Ore Geol. Rev. contributor: fullname: Chica-Rivas – volume: 51 start-page: 167 year: 2013 end-page: 179 ident: bib20 article-title: 3D form line construction by structural field interpolation (SFI) of geologic strike and dip observations publication-title: J. Struct. Geol. contributor: fullname: Schetselaar – volume: 85 start-page: 96 year: 2014 end-page: 103 ident: bib37 article-title: Unsupervised classification of multivariate geostatistical data: Two algorithms publication-title: Comput. Geosci. contributor: fullname: Deraisme – volume: 51 start-page: 1613 year: 2013 end-page: 1621 ident: bib7 article-title: Three-dimensional implicit stratigraphic model building from remote sensing data on tetrahedral meshes: Theory and application to a regional model of la Popa Basin, NE Mexico publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Titeux – volume: 35 start-page: 644 year: 2009 end-page: 658 ident: bib27 article-title: A workflow to facilitate three-dimensional geometrical modelling of complex poly-deformed geological units publication-title: Comput. Geosci. contributor: fullname: Mancktelow – start-page: 654 year: 2001 end-page: 660 ident: bib44 article-title: Mixtures of Gaussian processes publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Tresp – year: 1999 ident: bib9 article-title: Geostatistics: Modeling Spatial Uncertainty contributor: fullname: Delfiner – volume: 35 start-page: 11 year: 2010 ident: bib8 article-title: DiceKriging, DiceOptim: Two R packages for the analysis of computer experiments by Kriging-Based metamodeling and optimization publication-title: J. Stat. Softw. contributor: fullname: Chan – volume: 6 start-page: 1935 year: 2005 end-page: 1959 ident: bib32 article-title: A unifying view of sparse approximate Gaussian process regression publication-title: J. Mach. Learn. Res. contributor: fullname: Herbrich – volume: 5 start-page: 85 year: 2013 end-page: 99 ident: bib36 article-title: Incomplete cholesky decomposition for the kriging of large datasets publication-title: Spat. Stat. contributor: fullname: Romary – volume: 29 start-page: 571 year: 1997 end-page: 584 ident: bib25 article-title: Foliation fields and 3D cartography in geology publication-title: Math. Geol. contributor: fullname: Manuel – volume: 85 start-page: 26 year: 2015 end-page: 37 ident: bib21 article-title: Stochastic Local Interaction (SLI) model publication-title: Comput. Geosci. contributor: fullname: Hristopulos – year: 2012 ident: bib16 article-title: Machine Learning: The Art and Science of Algorithms that Make Sense of Data contributor: fullname: Flach – volume: 71 start-page: 135 year: 1984 end-page: 146 ident: bib26 article-title: Maximum likelihood estimation of models for residual covariance in spatial regression publication-title: Biometrika contributor: fullname: Marshall – volume: 34 start-page: 127 year: 2008 end-page: 143 ident: bib40 article-title: Support vector machine for 3D modelling from sparse geological information of various origins publication-title: Comput. Geosci. contributor: fullname: Paradis – volume: 53 start-page: 1 year: 2013 end-page: 37 ident: bib38 article-title: GA: a package for Genetic Algorithms in R publication-title: J. Stat. Softw. contributor: fullname: Scrucca – year: 2006 ident: bib3 publication-title: Pattern Recognition and Machine Learning contributor: fullname: Bishop – year: 1996 ident: bib29 article-title: Genetic Algorithms + Data Structures = Evolution Programs contributor: fullname: Michalewicz – volume: 376 start-page: 241 year: 2003 end-page: 259 ident: bib19 article-title: Geostatistics applied to best-fit interpolation of orientation data publication-title: Tectonophysics contributor: fullname: Brun – year: 1997 ident: bib18 publication-title: Geoestatistics for Natural Resources Evaluation contributor: fullname: Goovaerts – volume: 39 start-page: 2607 year: 2011 end-page: 2625 ident: bib11 article-title: Penalized maximum likelihood estimation and variable selection in geostatistics publication-title: Ann. Stat. contributor: fullname: Wang – start-page: 1 year: 2016 end-page: 20 ident: bib17 article-title: Second-order non-stationary modeling approaches for univariate geostatistical data publication-title: Stoch. Environ. Res. Risk Assess. contributor: fullname: Fouedjio – volume: 28 start-page: 1 year: 2008 ident: bib15 article-title: Computing and displaying isosurfaces in R publication-title: J. Stat. Softw. contributor: fullname: Tierney – year: 2006 ident: bib34 article-title: Gaussian Processes for Machine Learning contributor: fullname: Williams – volume: 40 start-page: 327 year: 2008 end-page: 347 ident: bib43 article-title: Indicator Kriging without Order Relation Violations publication-title: Math. Geosci. contributor: fullname: Egozcue – volume: 85 start-page: 49 year: 2014 end-page: 63 ident: bib24 article-title: Variable lag variography using k-means clustering publication-title: Comput. Geosci. contributor: fullname: Kapageridis – volume: 77 start-page: 126 year: 2015 end-page: 137 ident: bib47 article-title: A 3D modeling approach to complex faults with multi-source data publication-title: Comput. Geosci. contributor: fullname: Lei – volume: 18 start-page: 261 year: 2014 end-page: 272 ident: bib23 article-title: Next Generation Three-Dimensional Geologic Modeling and Inversion publication-title: SEG Spec. Publ. contributor: fullname: Martin – volume: 171 start-page: 147 year: 2008 end-page: 157 ident: bib5 article-title: Geological modelling from field data and geological knowledge. Part I. Modelling method coupling 3D potential-field interpolation and geological rules publication-title: Phys. Earth Planet. Inter. contributor: fullname: Guillen – year: 2011 ident: bib31 article-title: Compositional Data Analysis: Theory and Applications contributor: fullname: Buccianti – year: 1999 ident: 10.1016/j.cageo.2017.03.015_bib9 contributor: fullname: Chilès – ident: 10.1016/j.cageo.2017.03.015_bib39 – volume: 39 start-page: 2607 issue: 5 year: 2011 ident: 10.1016/j.cageo.2017.03.015_bib11 article-title: Penalized maximum likelihood estimation and variable selection in geostatistics publication-title: Ann. Stat. doi: 10.1214/11-AOS919 contributor: fullname: Chu – ident: 10.1016/j.cageo.2017.03.015_bib22 – volume: 171 start-page: 147 issue: 1–4 year: 2008 ident: 10.1016/j.cageo.2017.03.015_bib5 article-title: Geological modelling from field data and geological knowledge. Part I. Modelling method coupling 3D potential-field interpolation and geological rules publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2008.06.013 contributor: fullname: Calcagno – volume: 85 start-page: 26 issue: january year: 2015 ident: 10.1016/j.cageo.2017.03.015_bib21 article-title: Stochastic Local Interaction (SLI) model publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2015.05.018 contributor: fullname: Hristopulos – start-page: 1 year: 2008 ident: 10.1016/j.cageo.2017.03.015_bib42 article-title: Gas distribution modeling using sparse gaussian process mixture models publication-title: Adv. Robot. contributor: fullname: Stachniss – volume: 69 start-page: 268 year: 2015 ident: 10.1016/j.cageo.2017.03.015_bib45 article-title: Regional dome evolution and its control on ore-grade distribution: Insights from 3D implicit modelling of the Navachab gold deposit publication-title: Namib. Ore Geol. Rev. doi: 10.1016/j.oregeorev.2015.02.020 contributor: fullname: Vollgger – volume: 29 start-page: 571 issue: 4 year: 1997 ident: 10.1016/j.cageo.2017.03.015_bib25 article-title: Foliation fields and 3D cartography in geology publication-title: Math. Geol. doi: 10.1007/BF02775087 contributor: fullname: Lajaunie – volume: 5 start-page: 85 issue: 1 year: 2013 ident: 10.1016/j.cageo.2017.03.015_bib36 article-title: Incomplete cholesky decomposition for the kriging of large datasets publication-title: Spat. Stat. doi: 10.1016/j.spasta.2013.04.008 contributor: fullname: Romary – year: 2011 ident: 10.1016/j.cageo.2017.03.015_bib31 contributor: fullname: Pawlowsky-Glahn – start-page: 654 year: 2001 ident: 10.1016/j.cageo.2017.03.015_bib44 article-title: Mixtures of Gaussian processes publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Tresp – ident: 10.1016/j.cageo.2017.03.015_bib30 – ident: 10.1016/j.cageo.2017.03.015_bib6 doi: 10.1145/383259.383266 – ident: 10.1016/j.cageo.2017.03.015_bib14 doi: 10.1016/j.cageo.2013.10.008 – volume: 53 start-page: 1 issue: 4 year: 2013 ident: 10.1016/j.cageo.2017.03.015_bib38 article-title: GA: a package for Genetic Algorithms in R publication-title: J. Stat. Softw. doi: 10.18637/jss.v053.i04 contributor: fullname: Scrucca – year: 2006 ident: 10.1016/j.cageo.2017.03.015_bib3 contributor: fullname: Bishop – volume: 51 start-page: 1613 issue: 3 year: 2013 ident: 10.1016/j.cageo.2017.03.015_bib7 article-title: Three-dimensional implicit stratigraphic model building from remote sensing data on tetrahedral meshes: Theory and application to a regional model of la Popa Basin, NE Mexico publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2207727 contributor: fullname: Caumon – volume: 77 start-page: 126 year: 2015 ident: 10.1016/j.cageo.2017.03.015_bib47 article-title: A 3D modeling approach to complex faults with multi-source data publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2014.10.008 contributor: fullname: Wu – volume: 71 start-page: 135 issue: 1 year: 1984 ident: 10.1016/j.cageo.2017.03.015_bib26 article-title: Maximum likelihood estimation of models for residual covariance in spatial regression publication-title: Biometrika doi: 10.1093/biomet/71.1.135 contributor: fullname: Mardia – ident: 10.1016/j.cageo.2017.03.015_bib13 – volume: 85 start-page: 49 year: 2014 ident: 10.1016/j.cageo.2017.03.015_bib24 article-title: Variable lag variography using k-means clustering publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2015.04.004 contributor: fullname: Kapageridis – year: 2006 ident: 10.1016/j.cageo.2017.03.015_bib34 contributor: fullname: Rasmussen – year: 1996 ident: 10.1016/j.cageo.2017.03.015_bib29 contributor: fullname: Michalewicz – volume: 18 start-page: 261 issue: SEPTEMBER year: 2014 ident: 10.1016/j.cageo.2017.03.015_bib23 article-title: Next Generation Three-Dimensional Geologic Modeling and Inversion publication-title: SEG Spec. Publ. contributor: fullname: Jessell – volume: 71 start-page: 804 year: 2015 ident: 10.1016/j.cageo.2017.03.015_bib35 article-title: Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2015.01.001 contributor: fullname: Rodriguez-Galiano – volume: 18 start-page: 1257 year: 2006 ident: 10.1016/j.cageo.2017.03.015_bib41 article-title: Sparse Gaussian Processes using Pseudo-inputs publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Snelson – volume: 28 start-page: 1 year: 2008 ident: 10.1016/j.cageo.2017.03.015_bib15 article-title: Computing and displaying isosurfaces in R publication-title: J. Stat. Softw. doi: 10.18637/jss.v028.i01 contributor: fullname: Feng – ident: 10.1016/j.cageo.2017.03.015_bib4 – start-page: 1 year: 2016 ident: 10.1016/j.cageo.2017.03.015_bib17 article-title: Second-order non-stationary modeling approaches for univariate geostatistical data publication-title: Stoch. Environ. Res. Risk Assess. contributor: fullname: Fouedjio – year: 1997 ident: 10.1016/j.cageo.2017.03.015_bib18 contributor: fullname: Goovaerts – volume: 35 start-page: 644 issue: 3 year: 2009 ident: 10.1016/j.cageo.2017.03.015_bib27 article-title: A workflow to facilitate three-dimensional geometrical modelling of complex poly-deformed geological units publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2008.06.005 contributor: fullname: Maxelon – volume: 40 start-page: 327 issue: 3 year: 2008 ident: 10.1016/j.cageo.2017.03.015_bib43 article-title: Indicator Kriging without Order Relation Violations publication-title: Math. Geosci. doi: 10.1007/s11004-008-9146-8 contributor: fullname: Tolosana-Delgado – volume: 376 start-page: 241 issue: 3–4 year: 2003 ident: 10.1016/j.cageo.2017.03.015_bib19 article-title: Geostatistics applied to best-fit interpolation of orientation data publication-title: Tectonophysics doi: 10.1016/j.tecto.2003.08.008 contributor: fullname: Gumiaux – ident: 10.1016/j.cageo.2017.03.015_bib1 – ident: 10.1016/j.cageo.2017.03.015_bib2 – year: 2012 ident: 10.1016/j.cageo.2017.03.015_bib16 contributor: fullname: Flach – ident: 10.1016/j.cageo.2017.03.015_bib28 – volume: 85 start-page: 96 year: 2014 ident: 10.1016/j.cageo.2017.03.015_bib37 article-title: Unsupervised classification of multivariate geostatistical data: Two algorithms publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2015.05.019 contributor: fullname: Romary – volume: 14 start-page: 22 issue: July year: 2004 ident: 10.1016/j.cageo.2017.03.015_bib10 article-title: Modelling the geometry of geological units and its uncertainty in 3D from structural data: The Potential-Field Method publication-title: Orebody Model. Strateg. Mine Plan. - Spectr. contributor: fullname: Chilès – volume: 6 start-page: 1935 year: 2005 ident: 10.1016/j.cageo.2017.03.015_bib32 article-title: A unifying view of sparse approximate Gaussian process regression publication-title: J. Mach. Learn. Res. contributor: fullname: Quiñonero-candela – volume: 51 start-page: 167 year: 2013 ident: 10.1016/j.cageo.2017.03.015_bib20 article-title: 3D form line construction by structural field interpolation (SFI) of geologic strike and dip observations publication-title: J. Struct. Geol. doi: 10.1016/j.jsg.2013.01.012 contributor: fullname: Hillier – ident: 10.1016/j.cageo.2017.03.015_bib33 – ident: 10.1016/j.cageo.2017.03.015_bib12 – volume: 64 start-page: 52 year: 2014 ident: 10.1016/j.cageo.2017.03.015_bib46 article-title: Identifying organic-rich Marcellus Shale lithofacies by support vector machine classifier in the Appalachian basin publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2013.12.002 contributor: fullname: Wang – volume: 35 start-page: 11 year: 2010 ident: 10.1016/j.cageo.2017.03.015_bib8 article-title: DiceKriging, DiceOptim: Two R packages for the analysis of computer experiments by Kriging-Based metamodeling and optimization publication-title: J. Stat. Softw. contributor: fullname: Chan – volume: 34 start-page: 127 year: 2008 ident: 10.1016/j.cageo.2017.03.015_bib40 article-title: Support vector machine for 3D modelling from sparse geological information of various origins publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2006.12.008 contributor: fullname: Smirnoff |
SSID | ssj0002285 |
Score | 2.422955 |
Snippet | Implicit modeling has experienced a rise in popularity over the last decade due to its advantages in terms of speed and reproducibility in comparison with... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 173 |
SubjectTerms | 3D geological modeling Compositional data analysis Implicit modeling Kriging Machine learning Potential field |
Title | A machine learning approach to the potential-field method for implicit modeling of geological structures |
URI | https://dx.doi.org/10.1016/j.cageo.2017.03.015 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VVkgsiE9RPioPjIQ2iZPYY1VRCkidqNTNimO7BEHTIQws_HbOToxAQgxs-Topek6ez_K7dwCXOuFSZcwEzHAZUBnn9ogGWkeqiHVs71q1xTydLej9Mll2YOJrYayssuX-htMdW7dXhi2aw01Z2hpfzpxfVIpLckbZFvTcJlEXeuO7h9n8i5CjiCXeOtMGePMhJ_Mq8Le1RYBh5sxObXvc3yaob5POdA9222yRjJsX2oeOXh_A9q3rxvt-CE9j8urEkJq03R9WxJuEk7oimNyRTVVbQVD-EjixGmlaRhPMVUnp1ORlTVw7HBtcGbLSng5J4y37hgvyI1hMbx4ns6BtnRDkmI_VgcR1m2ZhYUWc1v9GSaud4nabj2cyl7xQCSIcZviEMqlOUpMyJL-0GCmpMAU8hu66WusTIKE2oaYRRSrQCHPIs5iahCqTZNwYxvpw5fESm8YhQ3jp2LNw8AoLrxjFAuHtQ-oxFT8GWiCH_xV4-t_AM9ixZ42-6xy6iJ2-wEyilgPYuv4IB-338gkDFcjs |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKEYIF8SnKpwdGQpvESZyxqigFSqdW6mbFsV2CoOkQBhZ-O3dOLEBCDGxR7JOiF-f5rLx7R8iljlKpEm48blLpMRlmeMU8rQOVhzrEUVRbTOLRjN3Po3mLDFwtDMoqG-6vOd2ydXOn26DZXRUF1vim3PpFxXAk54yvkXWG_lmwqK8_vnQeQcAjZ5yJ0531kBV55fDRYgmgn1irU2yO-9v29G3LGe6Q7SZXpP36cXZJSy_3yMat7cX7vk-e-vTVSiE1bXo_LKizCKdVSSG1o6uyQjlQ9uJZqRqtG0ZTyFRpYbXkRUVtMxwMLg1daEeGtHaWfYPj-AGZDW-mg5HXNE7wMsjGKk_CqU1zP0cJJ7rfKInKqRR_8qWJzGSaqwjw9ROYoUyso9jEHKgvzntKKkgAD0l7WS71EaG-Nr5mAQMi0ACynyYhMxFTJkpSYzjvkCuHl1jV_hjCCceehYVXILyiFwqAt0Nih6n48ZoFMPhfgcf_Dbwgm6Pp41iM7yYPJ2QLR2ql1ylpA476DHKKSp7bNfMJ43bJzg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning+approach+to+the+potential-field+method+for+implicit+modeling+of+geological+structures&rft.jtitle=Computers+%26+geosciences&rft.au=Gon%C3%A7alves%2C+%C3%8Dtalo+Gomes&rft.au=Kumaira%2C+Sissa&rft.au=Guadagnin%2C+Felipe&rft.date=2017-06-01&rft.pub=Elsevier+Ltd&rft.issn=0098-3004&rft.eissn=1873-7803&rft.volume=103&rft.spage=173&rft.epage=182&rft_id=info:doi/10.1016%2Fj.cageo.2017.03.015&rft.externalDocID=S0098300416304848 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon |