Learning an intrinsic garment space for interactive authoring of garment animation

Authoring dynamic garment shapes for character animation on body motion is one of the fundamental steps in the CG industry. Established workflows are either time and labor consuming (i.e., manual editing on dense frames with controllers), or lack keyframe-level control (i.e., physically-based simula...

Full description

Saved in:
Bibliographic Details
Published inACM transactions on graphics Vol. 38; no. 6; pp. 1 - 12
Main Authors Wang, Tuanfeng Y., Shao, Tianjia, Fu, Kai, Mitra, Niloy J.
Format Journal Article
LanguageEnglish
Published New York, NY, USA ACM 08.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Authoring dynamic garment shapes for character animation on body motion is one of the fundamental steps in the CG industry. Established workflows are either time and labor consuming (i.e., manual editing on dense frames with controllers), or lack keyframe-level control (i.e., physically-based simulation). Not surprisingly, garment authoring remains a bottleneck in many production pipelines. Instead, we present a deep-learning-based approach for semi-automatic authoring of garment animation, wherein the user provides the desired garment shape in a selection of keyframes, while our system infers a latent representation for its motion-independent intrinsic parameters (e.g., gravity, cloth materials, etc.). Given new character motions, the latent representation allows to automatically generate a plausible garment animation at interactive rates. Having factored out character motion, the learned intrinsic garment space enables smooth transition between keyframes on a new motion sequence. Technically, we learn an intrinsic garment space with an motion-driven autoencoder network, where the encoder maps the garment shapes to the intrinsic space under the condition of body motions, while the decoder acts as a differentiable simulator to generate garment shapes according to changes in character body motion and intrinsic parameters. We evaluate our approach qualitatively and quantitatively on common garment types. Experiments demonstrate our system can significantly improve current garment authoring workflows via an interactive user interface. Compared with the standard CG pipeline, our system significantly reduces the ratio of required keyframes from 20% to 1 -- 2%.
AbstractList Authoring dynamic garment shapes for character animation on body motion is one of the fundamental steps in the CG industry. Established workflows are either time and labor consuming (i.e., manual editing on dense frames with controllers), or lack keyframe-level control (i.e., physically-based simulation). Not surprisingly, garment authoring remains a bottleneck in many production pipelines. Instead, we present a deep-learning-based approach for semi-automatic authoring of garment animation, wherein the user provides the desired garment shape in a selection of keyframes, while our system infers a latent representation for its motion-independent intrinsic parameters (e.g., gravity, cloth materials, etc.). Given new character motions, the latent representation allows to automatically generate a plausible garment animation at interactive rates. Having factored out character motion, the learned intrinsic garment space enables smooth transition between keyframes on a new motion sequence. Technically, we learn an intrinsic garment space with an motion-driven autoencoder network, where the encoder maps the garment shapes to the intrinsic space under the condition of body motions, while the decoder acts as a differentiable simulator to generate garment shapes according to changes in character body motion and intrinsic parameters. We evaluate our approach qualitatively and quantitatively on common garment types. Experiments demonstrate our system can significantly improve current garment authoring workflows via an interactive user interface. Compared with the standard CG pipeline, our system significantly reduces the ratio of required keyframes from 20% to 1 -- 2%.
ArticleNumber 220
Author Shao, Tianjia
Wang, Tuanfeng Y.
Mitra, Niloy J.
Fu, Kai
Author_xml – sequence: 1
  givenname: Tuanfeng Y.
  surname: Wang
  fullname: Wang, Tuanfeng Y.
  email: yangtuanfeng.wang.14@ucl.ac.uk
  organization: miHoYo Inc
– sequence: 2
  givenname: Tianjia
  surname: Shao
  fullname: Shao, Tianjia
  email: tianjiashao@gmail.com
  organization: University of Leeds
– sequence: 3
  givenname: Kai
  surname: Fu
  fullname: Fu, Kai
  email: kai.fu@mihoyo.com
  organization: miHoYo Inc
– sequence: 4
  givenname: Niloy J.
  surname: Mitra
  fullname: Mitra, Niloy J.
  email: n.mitra@cs.ucl.ac.uk
  organization: University College London and Adobe Research
BookMark eNp9kE9LAzEUxINUcFs9C57yBbbN_-wepagVFgTR8_I2JDXSzZYkCn57d23twYOneTDzewwzR7MwBIvQNSVLSoVccS4lqerlqEpSdoYKKqUuNVfVDBVEc1ISTugFmqf0TghRQqgCPTcWYvBhiyFgH3L0IXmDtxB7GzJOezAWuyFOno1gsv-0GD7y2xAnaHCnKATfQ_ZDuETnDnbJXh11gV7v717Wm7J5enhc3zYlcKZyyQyhlnWVUbpmhtecd4JLqox2lILrxltL0THlTCUJdbzWUomxNXPOdBr4AsnDXxOHlKJ1rfH5p0GO4HctJe00THscpj0OM3KrP9w-jtXj1z_EzYEA05_Cv-Y3GnxuxQ
CitedBy_id crossref_primary_10_1145_3478513_3480545
crossref_primary_10_1371_journal_pone_0272433
crossref_primary_10_1109_TPAMI_2020_3010886
crossref_primary_10_1111_cgf_14493
crossref_primary_10_1109_TVCG_2023_3346055
crossref_primary_10_1007_s41095_022_0324_2
crossref_primary_10_1145_3618376
crossref_primary_10_1177_0040517520944248
crossref_primary_10_1007_s41095_023_0344_6
crossref_primary_10_1145_3550454_3555491
crossref_primary_10_1007_s11390_021_1331_y
crossref_primary_10_1111_cgf_142642
crossref_primary_10_1186_s40691_024_00393_9
crossref_primary_10_1111_cgf_14937
crossref_primary_10_1111_cgf_14939
crossref_primary_10_1145_3528223_3530179
crossref_primary_10_1007_s11390_022_1887_1
crossref_primary_10_1007_s11042_020_09743_3
crossref_primary_10_1145_3447239
crossref_primary_10_1145_3478513_3480497
crossref_primary_10_5057_kansei_22_1_3
crossref_primary_10_1177_00405175221135625
crossref_primary_10_1109_TVCG_2020_3028961
crossref_primary_10_1111_cgf_14109
crossref_primary_10_1111_cgf_142653
crossref_primary_10_1111_cgf_13912
crossref_primary_10_1111_cgf_14903
crossref_primary_10_1145_3550454_3555485
crossref_primary_10_1016_j_gmod_2021_101106
crossref_primary_10_1109_TVCG_2021_3106429
crossref_primary_10_1145_3414685_3417800
crossref_primary_10_1109_ACCESS_2021_3059701
crossref_primary_10_1145_3414685_3417843
Cites_doi 10.1109/ICCV.2015.123
10.1145/3197517.3201366
10.1145/1230100.1230107
10.1145/3197517.3201281
10.1007/978-3-030-01234-2_15
10.1145/2980179.2980236
10.5555/2919332.2919834
10.1145/2816795.2818081
10.1145/1276377.1276438
10.1145/3272127.3275074
10.1145/1276377.1276420
10.1145/3145749.3145758
10.1145/3272127.3275071
10.1145/2366145.2366171
10.1145/2601097.2601160
10.1145/3272127.3275005
10.1145/3072959.3073711
10.1145/1778765.1778843
10.1145/2508363.2508406
10.1145/2897824.2925975
10.1145/2766971
10.1145/3072959.3073663
10.1145/218380.218473
10.1145/1053427.1053429
10.1145/2461912.2462020
10.1145/2010324.1964988
10.1145/2185520.2185531
10.1145/280814.280821
10.1145/1360612.1360698
ContentType Journal Article
Copyright ACM
Copyright_xml – notice: ACM
DBID AAYXX
CITATION
DOI 10.1145/3355089.3356512
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-7368
EndPage 12
ExternalDocumentID 10_1145_3355089_3356512
3356512
GrantInformation_xml – fundername: Royal Society Advanced Newton Fellowship
– fundername: National Natural Science Foundation of China
  grantid: No. 61772462, No. U1736217
  funderid: http://dx.doi.org/10.13039/501100012659
– fundername: ERC PoC Grant
  grantid: SemanticCity
– fundername: gifts from Adobe
– fundername: ERC Starting Grant
  grantid: SmartGeometry StG-2013-335373
– fundername: Google Faculty Award
GroupedDBID --Z
-DZ
-~X
.DC
23M
2FS
4.4
5GY
5VS
6J9
85S
8US
AAKMM
AALFJ
AAYFX
ABPPZ
ACGFO
ACGOD
ACM
ADBCU
ADL
ADMLS
ADPZR
AEBYY
AENEX
AENSD
AETEA
AFWIH
AFWXC
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
BDXCO
CCLIF
CS3
EBS
F5P
FEDTE
GUFHI
HGAVV
I07
LHSKQ
P1C
P2P
PQQKQ
RNS
ROL
TWZ
UHB
UPT
WH7
XSW
ZCA
~02
AAYXX
AEFXT
AEJOY
CITATION
ID FETCH-LOGICAL-a326t-2c01e2b8c6792c3933b43516c7f11afb351754b26fc8501f3975646442ffcb7a3
ISSN 0730-0301
IngestDate Thu Jul 03 08:32:42 EDT 2025
Thu Apr 24 23:07:15 EDT 2025
Mon Apr 28 16:31:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords interactive garment animation authoring
latent representation
intrinsic garment space
Language English
License Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a326t-2c01e2b8c6792c3933b43516c7f11afb351754b26fc8501f3975646442ffcb7a3
PageCount 12
ParticipantIDs crossref_citationtrail_10_1145_3355089_3356512
crossref_primary_10_1145_3355089_3356512
acm_primary_3356512
PublicationCentury 2000
PublicationDate 2019-11-08
PublicationDateYYYYMMDD 2019-11-08
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-08
  day: 08
PublicationDecade 2010
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationTitle ACM transactions on graphics
PublicationTitleAbbrev ACM TOG
PublicationYear 2019
Publisher ACM
Publisher_xml – name: ACM
References Edilson de Aguiar, Leonid Sigal, Adrien Treuille, and Jessica K. Hodgins. 2010. Stable Spaces for Real-time Clothing. ACM Trans. Graph. 29, 4 (July 2010), 106:1--106:9.
Kyungho Lee, Seyoung Lee, and Jehee Lee. 2018. Interactive Character Animation by Learning Multi-objective Control. ACM Trans. Graph. 37, 6, Article 180 (Dec. 2018), 10 pages. 10.1145/3272127.3275071
Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and Eitan Grinspun. 2007. Efficient Simulation of Inextensible Cloth. ACM Trans. Graph. 26, 3 (July 2007), 49:1--49:7.
Peng Guan, Loretta Reiss, David A. Hirshberg, Alexander Weiss, and Michael J. Black. 2012. DRAPE: DRessing Any PErson. ACM Trans. Graph. 31, 4 (July 2012), 35:1--35:10.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision. 1026--1034.
Leonid Sigal, Moshe Mahler, Spencer Diaz, Kyna McIntosh, Elizabeth Carter, Timothy Richards, and Jessica Hodgins. 2015. A perceptual control space for garment simulation. ACM Transactions on Graphics (TOG) 34, 4 (2015), 117.
Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. 2001. Incorporating second-order functional knowledge for better option pricing. In Advances in neural information processing systems. 472--478.
Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned neural networks for character control. ACM Transactions on Graphics (TOG) 36, 4 (2017), 42.
Derek Bradley, Tiberiu Popa, Alla Sheffer, Wolfgang Heidrich, and Tamy Boubekeur. 2008. Markerless Garment Capture. ACM Trans. Graph. 27, 3 (Aug. 2008), 99:1--99:9.
Tiberiu Popa, Q Zhou, Derek Bradley, V Kraevoy, Hongbo Fu, Alla Sheffer, and W Heidrich. 2009. Wrinkling Captured Garments Using Space-Time Data-Driven Deformation. Computer Graphics Forum 28 (03 2009), 427 -- 435.
Zorah Lahner, Daniel Cremers, and Tony Tung. 2018. DeepWrinkles: Accurate and Realistic Clothing Modeling. In The European Conference on Computer Vision (ECCV).
Huamin Wang, Florian Hecht, Ravi Ramamoorthi, and James F. O'Brien. 2010. Example-based Wrinkle Synthesis for Clothing Animation. In ACM SIGGRAPH 2010 Papers (SIGGRAPH '10). 107:1--107:8.
David Baraff and Andrew Witkin. 1998. Large Steps in Cloth Simulation. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '98). 43--54.
Ryan White, Keenan Crane, and D. A. Forsyth. 2007. Capturing and Animating Occluded Cloth. ACM Trans. Graph. 26, 3, Article 34 (July 2007).
Rahul Narain, Armin Samii, and James F. O'Brien. 2012. Adaptive Anisotropic Remeshing for Cloth Simulation. ACM Trans. Graph. 31, 6 (Nov. 2012), 152:1--152:10.
Daniel Holden, Jun Saito, and Taku Komura. 2016. A Deep Learning Framework for Character Motion Synthesis and Editing. ACM Trans. Graph. 35, 4, Article 138 (July 2016), 138:1--138:11 pages.
Ladislav Kavan and Jiří Žára. 2005. Spherical Blend Skinning: A Real-time Deformation of Articulated Models. In Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games (I3D '05). 9--16.
Gabriel Taubin. 1995. A signal processing approach to fair surface design. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. ACM, 351--358.
Huamin Wang and Yin Yang. 2016. Descent Methods for Elastic Body Simulation on the GPU. ACM Trans. Graph. 35, 6 (Nov. 2016), 212:1--212:10.
Doyub Kim, Woojong Koh, Rahul Narain, Kayvon Fatahalian, Adrien Treuille, and James F. O'Brien. 2013. Near-exhaustive Precomputation of Secondary Cloth Effects. ACM Trans. Graph. 32, 4 (July 2013), 87:1--87:8.
Min Tang, Tongtong Wang, Zhongyuan Liu, Ruofeng Tong, and Dinesh Manocha. 2018. I-cloth: Incremental Collision Handling for GPU-based Interactive Cloth Simulation. ACM Trans. Graph. 37, 6 (Dec. 2018), 204:1--204:10.
Lawson Fulton, Vismay Modi, David Duvenaud, David I. W. Levin, and Alec Jacobson. 2019. Latent-space Dynamics for Reduced Deformable Simulation. Computer Graphics Forum (2019).
Alex Krizhevsky and Geoff Hinton. 2010. Convolutional deep belief networks on cifar-10. Unpublished manuscript 40, 7 (2010).
Weiwei Xu, Nobuyuki Umentani, Qianwen Chao, Jie Mao, Xiaogang Jin, and Xin Tong.
Fabian Hahn, Bernhard Thomaszewski, Stelian Coros, Robert W. Sumner, Forrester Cole, Mark Meyer, Tony DeRose, and Markus Gross. 2014. Subspace Clothing Simulation Using Adaptive Bases. ACM Trans. Graph. 33, 4 (July 2014), 105:1--105:9.
Nicholas J. Weidner, Kyle Piddington, David I. W. Levin, and Shinjiro Sueda. 2018. Eulerian-on-lagrangian Cloth Simulation. ACM Trans. Graph. 37, 4 (July 2018), 50:1--50:11.
Jinlong Yang, Jean-Sébastien Franco, Franck Hétroy-Wheeler, and Stefanie Wuhrer. 2018. Analyzing clothing layer deformation statistics of 3d human motions. In Proceedings of the European Conference on Computer Vision (ECCV). 237--253.
Tiantian Liu, Adam W. Bargteil, James F. O'Brien, and Ladislav Kavan. 2013. Fast Simulation of Mass-spring Systems. ACM Trans. Graph. 32, 6 (Nov. 2013), 214:1--214:7.
Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra Malik. 2015. Recurrent Network Models for Human Dynamics. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV) (ICCV '15). 4346--4354.
Gerard Pons-Moll, Sergi Pujades, Sonny Hu, and Michael J. Black. 2017. ClothCap: Seamless 4D Clothing Capture and Retargeting. ACM Trans. Graph. 36, 4 (July 2017), 73:1--73:15.
Nobuyuki Umetani. 2017. Exploring generative 3D shapes using autoencoder networks. In SIGGRAPH Asia 2017 Technical Briefs. ACM, 24.
Ladislav Kavan, Dan Gerszewski, Adam W. Bargteil, and Peter-Pike Sloan. 2011. Physics-inspired Upsampling for Cloth Simulation in Games. ACM Trans. Graph. 30, 4 (July 2011), 93:1--93:10.
Tuanfeng Y. Wang, Duygu Ceylan, Jovan Popović, and Niloy J. Mitra. 2018. Learning a Shared Shape Space for Multimodal Garment Design. ACM Trans. Graph. 37, 6, Article 203 (Dec. 2018), 13 pages. 10.1145/3272127.3275074
Autodesk Inc. 2015. Maya QUALOTH. http://www.qualoth.com/. (2015).
Rasmus Tamstorf, Toby Jones, and Stephen F. McCormick. 2015. Smoothed Aggregation Multigrid for Cloth Simulation. ACM Trans. Graph. 34, 6 (Oct. 2015), 245:1--245:13.
Wikipedia contributors. 2019. MikuMikuDance. https://en.wikipedia.org/wiki/MikuMikuDance. (2019). [Online; accessed 7-May-2019].
Ladislav Kavan, Steven Collins, Jiří Žára, and Carol O'Sullivan. 2007. Skinning with Dual Quaternions. In Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games (I3D '07). 39--46.
Igor Santesteban, Miguel A. Otaduy, and Dan Casas. 2019. Learning-Based Animation of Clothing for Virtual Try-On. Computer Graphics Forum 38, 2 (2019).
2014. Sensitivity-optimized Rigging for Example-based Real-time Clothing Synthesis. ACM Trans. Graph. 33, 4 (July 2014), 107:1--107:11.
He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. 2018. Mode-adaptive Neural Networks for Quadruped Motion Control. ACM Trans. Graph. 37, 4, Article 145 (July 2018), 145:1--145:11 pages.
Ian Mason, Sebastian Starke, He Zhang, Hakan Bilen, and Taku Komura. 2018. Few-shot Learning of Homogeneous Human Locomotion Styles. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 143--153.
e_1_2_2_4_1
e_1_2_2_5_1
e_1_2_2_24_1
e_1_2_2_6_1
e_1_2_2_23_1
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_3_1
e_1_2_2_40_1
e_1_2_2_41_1
Fulton Lawson (e_1_2_2_7_1) 2019
e_1_2_2_9_1
e_1_2_2_29_1
e_1_2_2_8_1
e_1_2_2_28_1
e_1_2_2_27_1
Mason Ian (e_1_2_2_22_1)
MikuMikuDance Wikipedia (e_1_2_2_37_1) 2019
Wang Huamin (e_1_2_2_32_1)
(e_1_2_2_39_1) 2014; 33
e_1_2_2_14_1
e_1_2_2_13_1
e_1_2_2_38_1
e_1_2_2_12_1
e_1_2_2_11_1
e_1_2_2_10_1
e_1_2_2_30_1
e_1_2_2_31_1
e_1_2_2_33_1
e_1_2_2_17_1
e_1_2_2_34_1
e_1_2_2_16_1
e_1_2_2_35_1
e_1_2_2_15_1
Krizhevsky Alex (e_1_2_2_18_1) 2010
e_1_2_2_36_1
Popa Tiberiu (e_1_2_2_25_1) 2009
Santesteban Igor (e_1_2_2_26_1) 2019
Lahner Zorah (e_1_2_2_19_1) 2018
References_xml – reference: Alex Krizhevsky and Geoff Hinton. 2010. Convolutional deep belief networks on cifar-10. Unpublished manuscript 40, 7 (2010).
– reference: Weiwei Xu, Nobuyuki Umentani, Qianwen Chao, Jie Mao, Xiaogang Jin, and Xin Tong.
– reference: Rahul Narain, Armin Samii, and James F. O'Brien. 2012. Adaptive Anisotropic Remeshing for Cloth Simulation. ACM Trans. Graph. 31, 6 (Nov. 2012), 152:1--152:10.
– reference: Edilson de Aguiar, Leonid Sigal, Adrien Treuille, and Jessica K. Hodgins. 2010. Stable Spaces for Real-time Clothing. ACM Trans. Graph. 29, 4 (July 2010), 106:1--106:9.
– reference: Ladislav Kavan and Jiří Žára. 2005. Spherical Blend Skinning: A Real-time Deformation of Articulated Models. In Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games (I3D '05). 9--16.
– reference: Tiantian Liu, Adam W. Bargteil, James F. O'Brien, and Ladislav Kavan. 2013. Fast Simulation of Mass-spring Systems. ACM Trans. Graph. 32, 6 (Nov. 2013), 214:1--214:7.
– reference: Peng Guan, Loretta Reiss, David A. Hirshberg, Alexander Weiss, and Michael J. Black. 2012. DRAPE: DRessing Any PErson. ACM Trans. Graph. 31, 4 (July 2012), 35:1--35:10.
– reference: Leonid Sigal, Moshe Mahler, Spencer Diaz, Kyna McIntosh, Elizabeth Carter, Timothy Richards, and Jessica Hodgins. 2015. A perceptual control space for garment simulation. ACM Transactions on Graphics (TOG) 34, 4 (2015), 117.
– reference: Ladislav Kavan, Steven Collins, Jiří Žára, and Carol O'Sullivan. 2007. Skinning with Dual Quaternions. In Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games (I3D '07). 39--46.
– reference: Jinlong Yang, Jean-Sébastien Franco, Franck Hétroy-Wheeler, and Stefanie Wuhrer. 2018. Analyzing clothing layer deformation statistics of 3d human motions. In Proceedings of the European Conference on Computer Vision (ECCV). 237--253.
– reference: Gabriel Taubin. 1995. A signal processing approach to fair surface design. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. ACM, 351--358.
– reference: David Baraff and Andrew Witkin. 1998. Large Steps in Cloth Simulation. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '98). 43--54.
– reference: Rasmus Tamstorf, Toby Jones, and Stephen F. McCormick. 2015. Smoothed Aggregation Multigrid for Cloth Simulation. ACM Trans. Graph. 34, 6 (Oct. 2015), 245:1--245:13.
– reference: Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and Eitan Grinspun. 2007. Efficient Simulation of Inextensible Cloth. ACM Trans. Graph. 26, 3 (July 2007), 49:1--49:7.
– reference: Wikipedia contributors. 2019. MikuMikuDance. https://en.wikipedia.org/wiki/MikuMikuDance. (2019). [Online; accessed 7-May-2019].
– reference: 2014. Sensitivity-optimized Rigging for Example-based Real-time Clothing Synthesis. ACM Trans. Graph. 33, 4 (July 2014), 107:1--107:11.
– reference: Nicholas J. Weidner, Kyle Piddington, David I. W. Levin, and Shinjiro Sueda. 2018. Eulerian-on-lagrangian Cloth Simulation. ACM Trans. Graph. 37, 4 (July 2018), 50:1--50:11.
– reference: Gerard Pons-Moll, Sergi Pujades, Sonny Hu, and Michael J. Black. 2017. ClothCap: Seamless 4D Clothing Capture and Retargeting. ACM Trans. Graph. 36, 4 (July 2017), 73:1--73:15.
– reference: He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. 2018. Mode-adaptive Neural Networks for Quadruped Motion Control. ACM Trans. Graph. 37, 4, Article 145 (July 2018), 145:1--145:11 pages.
– reference: Ryan White, Keenan Crane, and D. A. Forsyth. 2007. Capturing and Animating Occluded Cloth. ACM Trans. Graph. 26, 3, Article 34 (July 2007).
– reference: Igor Santesteban, Miguel A. Otaduy, and Dan Casas. 2019. Learning-Based Animation of Clothing for Virtual Try-On. Computer Graphics Forum 38, 2 (2019).
– reference: Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. 2001. Incorporating second-order functional knowledge for better option pricing. In Advances in neural information processing systems. 472--478.
– reference: Kyungho Lee, Seyoung Lee, and Jehee Lee. 2018. Interactive Character Animation by Learning Multi-objective Control. ACM Trans. Graph. 37, 6, Article 180 (Dec. 2018), 10 pages. 10.1145/3272127.3275071
– reference: Tiberiu Popa, Q Zhou, Derek Bradley, V Kraevoy, Hongbo Fu, Alla Sheffer, and W Heidrich. 2009. Wrinkling Captured Garments Using Space-Time Data-Driven Deformation. Computer Graphics Forum 28 (03 2009), 427 -- 435.
– reference: Autodesk Inc. 2015. Maya QUALOTH. http://www.qualoth.com/. (2015).
– reference: Huamin Wang, Florian Hecht, Ravi Ramamoorthi, and James F. O'Brien. 2010. Example-based Wrinkle Synthesis for Clothing Animation. In ACM SIGGRAPH 2010 Papers (SIGGRAPH '10). 107:1--107:8.
– reference: Ian Mason, Sebastian Starke, He Zhang, Hakan Bilen, and Taku Komura. 2018. Few-shot Learning of Homogeneous Human Locomotion Styles. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 143--153.
– reference: Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision. 1026--1034.
– reference: Ladislav Kavan, Dan Gerszewski, Adam W. Bargteil, and Peter-Pike Sloan. 2011. Physics-inspired Upsampling for Cloth Simulation in Games. ACM Trans. Graph. 30, 4 (July 2011), 93:1--93:10.
– reference: Huamin Wang and Yin Yang. 2016. Descent Methods for Elastic Body Simulation on the GPU. ACM Trans. Graph. 35, 6 (Nov. 2016), 212:1--212:10.
– reference: Daniel Holden, Jun Saito, and Taku Komura. 2016. A Deep Learning Framework for Character Motion Synthesis and Editing. ACM Trans. Graph. 35, 4, Article 138 (July 2016), 138:1--138:11 pages.
– reference: Fabian Hahn, Bernhard Thomaszewski, Stelian Coros, Robert W. Sumner, Forrester Cole, Mark Meyer, Tony DeRose, and Markus Gross. 2014. Subspace Clothing Simulation Using Adaptive Bases. ACM Trans. Graph. 33, 4 (July 2014), 105:1--105:9.
– reference: Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra Malik. 2015. Recurrent Network Models for Human Dynamics. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV) (ICCV '15). 4346--4354.
– reference: Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned neural networks for character control. ACM Transactions on Graphics (TOG) 36, 4 (2017), 42.
– reference: Nobuyuki Umetani. 2017. Exploring generative 3D shapes using autoencoder networks. In SIGGRAPH Asia 2017 Technical Briefs. ACM, 24.
– reference: Derek Bradley, Tiberiu Popa, Alla Sheffer, Wolfgang Heidrich, and Tamy Boubekeur. 2008. Markerless Garment Capture. ACM Trans. Graph. 27, 3 (Aug. 2008), 99:1--99:9.
– reference: Zorah Lahner, Daniel Cremers, and Tony Tung. 2018. DeepWrinkles: Accurate and Realistic Clothing Modeling. In The European Conference on Computer Vision (ECCV).
– reference: Min Tang, Tongtong Wang, Zhongyuan Liu, Ruofeng Tong, and Dinesh Manocha. 2018. I-cloth: Incremental Collision Handling for GPU-based Interactive Cloth Simulation. ACM Trans. Graph. 37, 6 (Dec. 2018), 204:1--204:10.
– reference: Lawson Fulton, Vismay Modi, David Duvenaud, David I. W. Levin, and Alec Jacobson. 2019. Latent-space Dynamics for Reduced Deformable Simulation. Computer Graphics Forum (2019).
– reference: Doyub Kim, Woojong Koh, Rahul Narain, Kayvon Fatahalian, Adrien Treuille, and James F. O'Brien. 2013. Near-exhaustive Precomputation of Secondary Cloth Effects. ACM Trans. Graph. 32, 4 (July 2013), 87:1--87:8.
– reference: Tuanfeng Y. Wang, Duygu Ceylan, Jovan Popović, and Niloy J. Mitra. 2018. Learning a Shared Shape Space for Multimodal Garment Design. ACM Trans. Graph. 37, 6, Article 203 (Dec. 2018), 13 pages. 10.1145/3272127.3275074
– volume-title: Computer Graphics Forum
  ident: e_1_2_2_22_1
– ident: e_1_2_2_11_1
  doi: 10.1109/ICCV.2015.123
– volume-title: Example-based Wrinkle Synthesis for Clothing Animation. In ACM SIGGRAPH 2010 Papers (SIGGRAPH '10)
  ident: e_1_2_2_32_1
– volume-title: https://en.wikipedia.org/wiki/MikuMikuDance. (2019). [Online
  year: 2019
  ident: e_1_2_2_37_1
– ident: e_1_2_2_1_1
– ident: e_1_2_2_41_1
  doi: 10.1145/3197517.3201366
– volume-title: DeepWrinkles: Accurate and Realistic Clothing Modeling. In The European Conference on Computer Vision (ECCV).
  year: 2018
  ident: e_1_2_2_19_1
– volume-title: Latent-space Dynamics for Reduced Deformable Simulation. Computer Graphics Forum
  year: 2019
  ident: e_1_2_2_7_1
– ident: e_1_2_2_14_1
  doi: 10.1145/1230100.1230107
– ident: e_1_2_2_35_1
  doi: 10.1145/3197517.3201281
– ident: e_1_2_2_38_1
– ident: e_1_2_2_40_1
  doi: 10.1007/978-3-030-01234-2_15
– ident: e_1_2_2_33_1
  doi: 10.1145/2980179.2980236
– volume-title: Convolutional deep belief networks on cifar-10. Unpublished manuscript 40, 7
  year: 2010
  ident: e_1_2_2_18_1
– ident: e_1_2_2_6_1
  doi: 10.5555/2919332.2919834
– ident: e_1_2_2_28_1
  doi: 10.1145/2816795.2818081
– ident: e_1_2_2_8_1
  doi: 10.1145/1276377.1276438
– ident: e_1_2_2_34_1
  doi: 10.1145/3272127.3275074
– ident: e_1_2_2_36_1
  doi: 10.1145/1276377.1276420
– ident: e_1_2_2_31_1
  doi: 10.1145/3145749.3145758
– volume-title: Wrinkling Captured Garments Using Space-Time Data-Driven Deformation. Computer Graphics Forum 28 (03
  year: 2009
  ident: e_1_2_2_25_1
– ident: e_1_2_2_20_1
  doi: 10.1145/3272127.3275071
– ident: e_1_2_2_23_1
  doi: 10.1145/2366145.2366171
– ident: e_1_2_2_10_1
  doi: 10.1145/2601097.2601160
– volume-title: Learning-Based Animation of Clothing for Virtual Try-On. Computer Graphics Forum 38, 2
  year: 2019
  ident: e_1_2_2_26_1
– ident: e_1_2_2_29_1
  doi: 10.1145/3272127.3275005
– ident: e_1_2_2_24_1
  doi: 10.1145/3072959.3073711
– volume: 33
  start-page: 4
  year: 2014
  ident: e_1_2_2_39_1
  article-title: . Sensitivity-optimized Rigging for Example-based Real-time Clothing Synthesis
  publication-title: ACM Trans. Graph.
– ident: e_1_2_2_4_1
  doi: 10.1145/1778765.1778843
– ident: e_1_2_2_21_1
  doi: 10.1145/2508363.2508406
– ident: e_1_2_2_13_1
  doi: 10.1145/2897824.2925975
– ident: e_1_2_2_27_1
  doi: 10.1145/2766971
– ident: e_1_2_2_12_1
  doi: 10.1145/3072959.3073663
– ident: e_1_2_2_30_1
  doi: 10.1145/218380.218473
– ident: e_1_2_2_5_1
– ident: e_1_2_2_16_1
  doi: 10.1145/1053427.1053429
– ident: e_1_2_2_17_1
  doi: 10.1145/2461912.2462020
– ident: e_1_2_2_15_1
  doi: 10.1145/2010324.1964988
– ident: e_1_2_2_9_1
  doi: 10.1145/2185520.2185531
– ident: e_1_2_2_2_1
  doi: 10.1145/280814.280821
– ident: e_1_2_2_3_1
  doi: 10.1145/1360612.1360698
SSID ssj0006446
Score 2.5730784
Snippet Authoring dynamic garment shapes for character animation on body motion is one of the fundamental steps in the CG industry. Established workflows are either...
SourceID crossref
acm
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Animation
Computer graphics
Computing methodologies
Machine learning
Machine learning approaches
Neural networks
Shape modeling
SubjectTermsDisplay Computing methodologies -- Computer graphics -- Animation
Computing methodologies -- Computer graphics -- Shape modeling
Computing methodologies -- Machine learning -- Machine learning approaches -- Neural networks
Title Learning an intrinsic garment space for interactive authoring of garment animation
URI https://dl.acm.org/doi/10.1145/3355089.3356512
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKdoEDGgNE2YZ84IBUJTRxnMTHaWOappUDdGKcItu1WdCWoiqdBAf-dp7jj5nBpMEliSLnqfX76fnn5_eB0GsFGzQxZTrhlSqTQiyyhC9qmRiqS4Wgda2Ma2D2vjw-K07O6flo9DPOLulFKn_8Na_kf7QK70CvJkv2HzQbhMILeAb9whU0DNd76fjU-zW4iVfsV20Hcz75wlfDCT_YCmlLepuaEEM21LWa8HV_YYPugCb6obxrr25U5IvSHsxMBwnfTnw4VxjqW0cB8p-cu3m-5p1WIPRzGnw2F3xp0cC7r22w_kdrG8TRBlW3_dDrCEB5ufw-OUljR0TGhoy8yHYaY5GYHZZdWpw9pVVSEds5xxtcUkfAiq1nFi3DNrj6TwNfmFoYBFjStGYp3EvqwrB_K6V9a4kLgYc2DZs2TkDjBDxAmzlsM8BObu4fzk4_hrUc2OJw2u3_misOBSLe3voNht3Iq4jdRDRlvoUeu_0F3rdgeYJGqttGj6Kqk0_RBw8bzDscYIMdFvAAGwywwRFscIANXuowNMDmGTo7ejc_OE5ca42EA1_vk1xOM5WLWpYVyyVhhAjgzVkpK51lXAt4rmgh8lLLmk4zDayVlgXMRq61FBUnz9FGt-zUC4Q1LAFECVkJIQpWMqEZJQvGKaW8YnUxRtswMc03WzzFz_gYpX6iGumq0ZumKJfNHSoaozfhAy_rjqEv7z90Bz28gfIu2uhXa7UHLLMXrxwUfgHl1neH
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+an+intrinsic+garment+space+for+interactive+authoring+of+garment+animation&rft.jtitle=ACM+transactions+on+graphics&rft.au=Wang%2C+Tuanfeng+Y.&rft.au=Shao%2C+Tianjia&rft.au=Fu%2C+Kai&rft.au=Mitra%2C+Niloy+J.&rft.date=2019-11-08&rft.issn=0730-0301&rft.eissn=1557-7368&rft.volume=38&rft.issue=6&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1145%2F3355089.3356512&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3355089_3356512
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-0301&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-0301&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-0301&client=summon