Learning an intrinsic garment space for interactive authoring of garment animation
Authoring dynamic garment shapes for character animation on body motion is one of the fundamental steps in the CG industry. Established workflows are either time and labor consuming (i.e., manual editing on dense frames with controllers), or lack keyframe-level control (i.e., physically-based simula...
Saved in:
Published in | ACM transactions on graphics Vol. 38; no. 6; pp. 1 - 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY, USA
ACM
08.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Authoring dynamic garment shapes for character animation on body motion is one of the fundamental steps in the CG industry. Established workflows are either time and labor consuming (i.e., manual editing on dense frames with controllers), or lack keyframe-level control (i.e., physically-based simulation). Not surprisingly, garment authoring remains a bottleneck in many production pipelines. Instead, we present a deep-learning-based approach for semi-automatic authoring of garment animation, wherein the user provides the desired garment shape in a selection of keyframes, while our system infers a latent representation for its motion-independent intrinsic parameters (e.g., gravity, cloth materials, etc.). Given new character motions, the latent representation allows to automatically generate a plausible garment animation at interactive rates. Having factored out character motion, the learned intrinsic garment space enables smooth transition between keyframes on a new motion sequence. Technically, we learn an intrinsic garment space with an motion-driven autoencoder network, where the encoder maps the garment shapes to the intrinsic space under the condition of body motions, while the decoder acts as a differentiable simulator to generate garment shapes according to changes in character body motion and intrinsic parameters. We evaluate our approach qualitatively and quantitatively on common garment types. Experiments demonstrate our system can significantly improve current garment authoring workflows via an interactive user interface. Compared with the standard CG pipeline, our system significantly reduces the ratio of required keyframes from 20% to 1 -- 2%. |
---|---|
AbstractList | Authoring dynamic garment shapes for character animation on body motion is one of the fundamental steps in the CG industry. Established workflows are either time and labor consuming (i.e., manual editing on dense frames with controllers), or lack keyframe-level control (i.e., physically-based simulation). Not surprisingly, garment authoring remains a bottleneck in many production pipelines. Instead, we present a deep-learning-based approach for semi-automatic authoring of garment animation, wherein the user provides the desired garment shape in a selection of keyframes, while our system infers a latent representation for its motion-independent intrinsic parameters (e.g., gravity, cloth materials, etc.). Given new character motions, the latent representation allows to automatically generate a plausible garment animation at interactive rates. Having factored out character motion, the learned intrinsic garment space enables smooth transition between keyframes on a new motion sequence. Technically, we learn an intrinsic garment space with an motion-driven autoencoder network, where the encoder maps the garment shapes to the intrinsic space under the condition of body motions, while the decoder acts as a differentiable simulator to generate garment shapes according to changes in character body motion and intrinsic parameters. We evaluate our approach qualitatively and quantitatively on common garment types. Experiments demonstrate our system can significantly improve current garment authoring workflows via an interactive user interface. Compared with the standard CG pipeline, our system significantly reduces the ratio of required keyframes from 20% to 1 -- 2%. |
ArticleNumber | 220 |
Author | Shao, Tianjia Wang, Tuanfeng Y. Mitra, Niloy J. Fu, Kai |
Author_xml | – sequence: 1 givenname: Tuanfeng Y. surname: Wang fullname: Wang, Tuanfeng Y. email: yangtuanfeng.wang.14@ucl.ac.uk organization: miHoYo Inc – sequence: 2 givenname: Tianjia surname: Shao fullname: Shao, Tianjia email: tianjiashao@gmail.com organization: University of Leeds – sequence: 3 givenname: Kai surname: Fu fullname: Fu, Kai email: kai.fu@mihoyo.com organization: miHoYo Inc – sequence: 4 givenname: Niloy J. surname: Mitra fullname: Mitra, Niloy J. email: n.mitra@cs.ucl.ac.uk organization: University College London and Adobe Research |
BookMark | eNp9kE9LAzEUxINUcFs9C57yBbbN_-wepagVFgTR8_I2JDXSzZYkCn57d23twYOneTDzewwzR7MwBIvQNSVLSoVccS4lqerlqEpSdoYKKqUuNVfVDBVEc1ISTugFmqf0TghRQqgCPTcWYvBhiyFgH3L0IXmDtxB7GzJOezAWuyFOno1gsv-0GD7y2xAnaHCnKATfQ_ZDuETnDnbJXh11gV7v717Wm7J5enhc3zYlcKZyyQyhlnWVUbpmhtecd4JLqox2lILrxltL0THlTCUJdbzWUomxNXPOdBr4AsnDXxOHlKJ1rfH5p0GO4HctJe00THscpj0OM3KrP9w-jtXj1z_EzYEA05_Cv-Y3GnxuxQ |
CitedBy_id | crossref_primary_10_1145_3478513_3480545 crossref_primary_10_1371_journal_pone_0272433 crossref_primary_10_1109_TPAMI_2020_3010886 crossref_primary_10_1111_cgf_14493 crossref_primary_10_1109_TVCG_2023_3346055 crossref_primary_10_1007_s41095_022_0324_2 crossref_primary_10_1145_3618376 crossref_primary_10_1177_0040517520944248 crossref_primary_10_1007_s41095_023_0344_6 crossref_primary_10_1145_3550454_3555491 crossref_primary_10_1007_s11390_021_1331_y crossref_primary_10_1111_cgf_142642 crossref_primary_10_1186_s40691_024_00393_9 crossref_primary_10_1111_cgf_14937 crossref_primary_10_1111_cgf_14939 crossref_primary_10_1145_3528223_3530179 crossref_primary_10_1007_s11390_022_1887_1 crossref_primary_10_1007_s11042_020_09743_3 crossref_primary_10_1145_3447239 crossref_primary_10_1145_3478513_3480497 crossref_primary_10_5057_kansei_22_1_3 crossref_primary_10_1177_00405175221135625 crossref_primary_10_1109_TVCG_2020_3028961 crossref_primary_10_1111_cgf_14109 crossref_primary_10_1111_cgf_142653 crossref_primary_10_1111_cgf_13912 crossref_primary_10_1111_cgf_14903 crossref_primary_10_1145_3550454_3555485 crossref_primary_10_1016_j_gmod_2021_101106 crossref_primary_10_1109_TVCG_2021_3106429 crossref_primary_10_1145_3414685_3417800 crossref_primary_10_1109_ACCESS_2021_3059701 crossref_primary_10_1145_3414685_3417843 |
Cites_doi | 10.1109/ICCV.2015.123 10.1145/3197517.3201366 10.1145/1230100.1230107 10.1145/3197517.3201281 10.1007/978-3-030-01234-2_15 10.1145/2980179.2980236 10.5555/2919332.2919834 10.1145/2816795.2818081 10.1145/1276377.1276438 10.1145/3272127.3275074 10.1145/1276377.1276420 10.1145/3145749.3145758 10.1145/3272127.3275071 10.1145/2366145.2366171 10.1145/2601097.2601160 10.1145/3272127.3275005 10.1145/3072959.3073711 10.1145/1778765.1778843 10.1145/2508363.2508406 10.1145/2897824.2925975 10.1145/2766971 10.1145/3072959.3073663 10.1145/218380.218473 10.1145/1053427.1053429 10.1145/2461912.2462020 10.1145/2010324.1964988 10.1145/2185520.2185531 10.1145/280814.280821 10.1145/1360612.1360698 |
ContentType | Journal Article |
Copyright | ACM |
Copyright_xml | – notice: ACM |
DBID | AAYXX CITATION |
DOI | 10.1145/3355089.3356512 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-7368 |
EndPage | 12 |
ExternalDocumentID | 10_1145_3355089_3356512 3356512 |
GrantInformation_xml | – fundername: Royal Society Advanced Newton Fellowship – fundername: National Natural Science Foundation of China grantid: No. 61772462, No. U1736217 funderid: http://dx.doi.org/10.13039/501100012659 – fundername: ERC PoC Grant grantid: SemanticCity – fundername: gifts from Adobe – fundername: ERC Starting Grant grantid: SmartGeometry StG-2013-335373 – fundername: Google Faculty Award |
GroupedDBID | --Z -DZ -~X .DC 23M 2FS 4.4 5GY 5VS 6J9 85S 8US AAKMM AALFJ AAYFX ABPPZ ACGFO ACGOD ACM ADBCU ADL ADMLS ADPZR AEBYY AENEX AENSD AETEA AFWIH AFWXC AIKLT AKRVB ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF BDXCO CCLIF CS3 EBS F5P FEDTE GUFHI HGAVV I07 LHSKQ P1C P2P PQQKQ RNS ROL TWZ UHB UPT WH7 XSW ZCA ~02 AAYXX AEFXT AEJOY CITATION |
ID | FETCH-LOGICAL-a326t-2c01e2b8c6792c3933b43516c7f11afb351754b26fc8501f3975646442ffcb7a3 |
ISSN | 0730-0301 |
IngestDate | Thu Jul 03 08:32:42 EDT 2025 Thu Apr 24 23:07:15 EDT 2025 Mon Apr 28 16:31:04 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | interactive garment animation authoring latent representation intrinsic garment space |
Language | English |
License | Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a326t-2c01e2b8c6792c3933b43516c7f11afb351754b26fc8501f3975646442ffcb7a3 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1145_3355089_3356512 crossref_primary_10_1145_3355089_3356512 acm_primary_3356512 |
PublicationCentury | 2000 |
PublicationDate | 2019-11-08 |
PublicationDateYYYYMMDD | 2019-11-08 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY, USA |
PublicationPlace_xml | – name: New York, NY, USA |
PublicationTitle | ACM transactions on graphics |
PublicationTitleAbbrev | ACM TOG |
PublicationYear | 2019 |
Publisher | ACM |
Publisher_xml | – name: ACM |
References | Edilson de Aguiar, Leonid Sigal, Adrien Treuille, and Jessica K. Hodgins. 2010. Stable Spaces for Real-time Clothing. ACM Trans. Graph. 29, 4 (July 2010), 106:1--106:9. Kyungho Lee, Seyoung Lee, and Jehee Lee. 2018. Interactive Character Animation by Learning Multi-objective Control. ACM Trans. Graph. 37, 6, Article 180 (Dec. 2018), 10 pages. 10.1145/3272127.3275071 Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and Eitan Grinspun. 2007. Efficient Simulation of Inextensible Cloth. ACM Trans. Graph. 26, 3 (July 2007), 49:1--49:7. Peng Guan, Loretta Reiss, David A. Hirshberg, Alexander Weiss, and Michael J. Black. 2012. DRAPE: DRessing Any PErson. ACM Trans. Graph. 31, 4 (July 2012), 35:1--35:10. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision. 1026--1034. Leonid Sigal, Moshe Mahler, Spencer Diaz, Kyna McIntosh, Elizabeth Carter, Timothy Richards, and Jessica Hodgins. 2015. A perceptual control space for garment simulation. ACM Transactions on Graphics (TOG) 34, 4 (2015), 117. Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. 2001. Incorporating second-order functional knowledge for better option pricing. In Advances in neural information processing systems. 472--478. Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned neural networks for character control. ACM Transactions on Graphics (TOG) 36, 4 (2017), 42. Derek Bradley, Tiberiu Popa, Alla Sheffer, Wolfgang Heidrich, and Tamy Boubekeur. 2008. Markerless Garment Capture. ACM Trans. Graph. 27, 3 (Aug. 2008), 99:1--99:9. Tiberiu Popa, Q Zhou, Derek Bradley, V Kraevoy, Hongbo Fu, Alla Sheffer, and W Heidrich. 2009. Wrinkling Captured Garments Using Space-Time Data-Driven Deformation. Computer Graphics Forum 28 (03 2009), 427 -- 435. Zorah Lahner, Daniel Cremers, and Tony Tung. 2018. DeepWrinkles: Accurate and Realistic Clothing Modeling. In The European Conference on Computer Vision (ECCV). Huamin Wang, Florian Hecht, Ravi Ramamoorthi, and James F. O'Brien. 2010. Example-based Wrinkle Synthesis for Clothing Animation. In ACM SIGGRAPH 2010 Papers (SIGGRAPH '10). 107:1--107:8. David Baraff and Andrew Witkin. 1998. Large Steps in Cloth Simulation. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '98). 43--54. Ryan White, Keenan Crane, and D. A. Forsyth. 2007. Capturing and Animating Occluded Cloth. ACM Trans. Graph. 26, 3, Article 34 (July 2007). Rahul Narain, Armin Samii, and James F. O'Brien. 2012. Adaptive Anisotropic Remeshing for Cloth Simulation. ACM Trans. Graph. 31, 6 (Nov. 2012), 152:1--152:10. Daniel Holden, Jun Saito, and Taku Komura. 2016. A Deep Learning Framework for Character Motion Synthesis and Editing. ACM Trans. Graph. 35, 4, Article 138 (July 2016), 138:1--138:11 pages. Ladislav Kavan and Jiří Žára. 2005. Spherical Blend Skinning: A Real-time Deformation of Articulated Models. In Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games (I3D '05). 9--16. Gabriel Taubin. 1995. A signal processing approach to fair surface design. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. ACM, 351--358. Huamin Wang and Yin Yang. 2016. Descent Methods for Elastic Body Simulation on the GPU. ACM Trans. Graph. 35, 6 (Nov. 2016), 212:1--212:10. Doyub Kim, Woojong Koh, Rahul Narain, Kayvon Fatahalian, Adrien Treuille, and James F. O'Brien. 2013. Near-exhaustive Precomputation of Secondary Cloth Effects. ACM Trans. Graph. 32, 4 (July 2013), 87:1--87:8. Min Tang, Tongtong Wang, Zhongyuan Liu, Ruofeng Tong, and Dinesh Manocha. 2018. I-cloth: Incremental Collision Handling for GPU-based Interactive Cloth Simulation. ACM Trans. Graph. 37, 6 (Dec. 2018), 204:1--204:10. Lawson Fulton, Vismay Modi, David Duvenaud, David I. W. Levin, and Alec Jacobson. 2019. Latent-space Dynamics for Reduced Deformable Simulation. Computer Graphics Forum (2019). Alex Krizhevsky and Geoff Hinton. 2010. Convolutional deep belief networks on cifar-10. Unpublished manuscript 40, 7 (2010). Weiwei Xu, Nobuyuki Umentani, Qianwen Chao, Jie Mao, Xiaogang Jin, and Xin Tong. Fabian Hahn, Bernhard Thomaszewski, Stelian Coros, Robert W. Sumner, Forrester Cole, Mark Meyer, Tony DeRose, and Markus Gross. 2014. Subspace Clothing Simulation Using Adaptive Bases. ACM Trans. Graph. 33, 4 (July 2014), 105:1--105:9. Nicholas J. Weidner, Kyle Piddington, David I. W. Levin, and Shinjiro Sueda. 2018. Eulerian-on-lagrangian Cloth Simulation. ACM Trans. Graph. 37, 4 (July 2018), 50:1--50:11. Jinlong Yang, Jean-Sébastien Franco, Franck Hétroy-Wheeler, and Stefanie Wuhrer. 2018. Analyzing clothing layer deformation statistics of 3d human motions. In Proceedings of the European Conference on Computer Vision (ECCV). 237--253. Tiantian Liu, Adam W. Bargteil, James F. O'Brien, and Ladislav Kavan. 2013. Fast Simulation of Mass-spring Systems. ACM Trans. Graph. 32, 6 (Nov. 2013), 214:1--214:7. Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra Malik. 2015. Recurrent Network Models for Human Dynamics. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV) (ICCV '15). 4346--4354. Gerard Pons-Moll, Sergi Pujades, Sonny Hu, and Michael J. Black. 2017. ClothCap: Seamless 4D Clothing Capture and Retargeting. ACM Trans. Graph. 36, 4 (July 2017), 73:1--73:15. Nobuyuki Umetani. 2017. Exploring generative 3D shapes using autoencoder networks. In SIGGRAPH Asia 2017 Technical Briefs. ACM, 24. Ladislav Kavan, Dan Gerszewski, Adam W. Bargteil, and Peter-Pike Sloan. 2011. Physics-inspired Upsampling for Cloth Simulation in Games. ACM Trans. Graph. 30, 4 (July 2011), 93:1--93:10. Tuanfeng Y. Wang, Duygu Ceylan, Jovan Popović, and Niloy J. Mitra. 2018. Learning a Shared Shape Space for Multimodal Garment Design. ACM Trans. Graph. 37, 6, Article 203 (Dec. 2018), 13 pages. 10.1145/3272127.3275074 Autodesk Inc. 2015. Maya QUALOTH. http://www.qualoth.com/. (2015). Rasmus Tamstorf, Toby Jones, and Stephen F. McCormick. 2015. Smoothed Aggregation Multigrid for Cloth Simulation. ACM Trans. Graph. 34, 6 (Oct. 2015), 245:1--245:13. Wikipedia contributors. 2019. MikuMikuDance. https://en.wikipedia.org/wiki/MikuMikuDance. (2019). [Online; accessed 7-May-2019]. Ladislav Kavan, Steven Collins, Jiří Žára, and Carol O'Sullivan. 2007. Skinning with Dual Quaternions. In Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games (I3D '07). 39--46. Igor Santesteban, Miguel A. Otaduy, and Dan Casas. 2019. Learning-Based Animation of Clothing for Virtual Try-On. Computer Graphics Forum 38, 2 (2019). 2014. Sensitivity-optimized Rigging for Example-based Real-time Clothing Synthesis. ACM Trans. Graph. 33, 4 (July 2014), 107:1--107:11. He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. 2018. Mode-adaptive Neural Networks for Quadruped Motion Control. ACM Trans. Graph. 37, 4, Article 145 (July 2018), 145:1--145:11 pages. Ian Mason, Sebastian Starke, He Zhang, Hakan Bilen, and Taku Komura. 2018. Few-shot Learning of Homogeneous Human Locomotion Styles. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 143--153. e_1_2_2_4_1 e_1_2_2_5_1 e_1_2_2_24_1 e_1_2_2_6_1 e_1_2_2_23_1 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_20_1 e_1_2_2_2_1 e_1_2_2_3_1 e_1_2_2_40_1 e_1_2_2_41_1 Fulton Lawson (e_1_2_2_7_1) 2019 e_1_2_2_9_1 e_1_2_2_29_1 e_1_2_2_8_1 e_1_2_2_28_1 e_1_2_2_27_1 Mason Ian (e_1_2_2_22_1) MikuMikuDance Wikipedia (e_1_2_2_37_1) 2019 Wang Huamin (e_1_2_2_32_1) (e_1_2_2_39_1) 2014; 33 e_1_2_2_14_1 e_1_2_2_13_1 e_1_2_2_38_1 e_1_2_2_12_1 e_1_2_2_11_1 e_1_2_2_10_1 e_1_2_2_30_1 e_1_2_2_31_1 e_1_2_2_33_1 e_1_2_2_17_1 e_1_2_2_34_1 e_1_2_2_16_1 e_1_2_2_35_1 e_1_2_2_15_1 Krizhevsky Alex (e_1_2_2_18_1) 2010 e_1_2_2_36_1 Popa Tiberiu (e_1_2_2_25_1) 2009 Santesteban Igor (e_1_2_2_26_1) 2019 Lahner Zorah (e_1_2_2_19_1) 2018 |
References_xml | – reference: Alex Krizhevsky and Geoff Hinton. 2010. Convolutional deep belief networks on cifar-10. Unpublished manuscript 40, 7 (2010). – reference: Weiwei Xu, Nobuyuki Umentani, Qianwen Chao, Jie Mao, Xiaogang Jin, and Xin Tong. – reference: Rahul Narain, Armin Samii, and James F. O'Brien. 2012. Adaptive Anisotropic Remeshing for Cloth Simulation. ACM Trans. Graph. 31, 6 (Nov. 2012), 152:1--152:10. – reference: Edilson de Aguiar, Leonid Sigal, Adrien Treuille, and Jessica K. Hodgins. 2010. Stable Spaces for Real-time Clothing. ACM Trans. Graph. 29, 4 (July 2010), 106:1--106:9. – reference: Ladislav Kavan and Jiří Žára. 2005. Spherical Blend Skinning: A Real-time Deformation of Articulated Models. In Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games (I3D '05). 9--16. – reference: Tiantian Liu, Adam W. Bargteil, James F. O'Brien, and Ladislav Kavan. 2013. Fast Simulation of Mass-spring Systems. ACM Trans. Graph. 32, 6 (Nov. 2013), 214:1--214:7. – reference: Peng Guan, Loretta Reiss, David A. Hirshberg, Alexander Weiss, and Michael J. Black. 2012. DRAPE: DRessing Any PErson. ACM Trans. Graph. 31, 4 (July 2012), 35:1--35:10. – reference: Leonid Sigal, Moshe Mahler, Spencer Diaz, Kyna McIntosh, Elizabeth Carter, Timothy Richards, and Jessica Hodgins. 2015. A perceptual control space for garment simulation. ACM Transactions on Graphics (TOG) 34, 4 (2015), 117. – reference: Ladislav Kavan, Steven Collins, Jiří Žára, and Carol O'Sullivan. 2007. Skinning with Dual Quaternions. In Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games (I3D '07). 39--46. – reference: Jinlong Yang, Jean-Sébastien Franco, Franck Hétroy-Wheeler, and Stefanie Wuhrer. 2018. Analyzing clothing layer deformation statistics of 3d human motions. In Proceedings of the European Conference on Computer Vision (ECCV). 237--253. – reference: Gabriel Taubin. 1995. A signal processing approach to fair surface design. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. ACM, 351--358. – reference: David Baraff and Andrew Witkin. 1998. Large Steps in Cloth Simulation. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '98). 43--54. – reference: Rasmus Tamstorf, Toby Jones, and Stephen F. McCormick. 2015. Smoothed Aggregation Multigrid for Cloth Simulation. ACM Trans. Graph. 34, 6 (Oct. 2015), 245:1--245:13. – reference: Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and Eitan Grinspun. 2007. Efficient Simulation of Inextensible Cloth. ACM Trans. Graph. 26, 3 (July 2007), 49:1--49:7. – reference: Wikipedia contributors. 2019. MikuMikuDance. https://en.wikipedia.org/wiki/MikuMikuDance. (2019). [Online; accessed 7-May-2019]. – reference: 2014. Sensitivity-optimized Rigging for Example-based Real-time Clothing Synthesis. ACM Trans. Graph. 33, 4 (July 2014), 107:1--107:11. – reference: Nicholas J. Weidner, Kyle Piddington, David I. W. Levin, and Shinjiro Sueda. 2018. Eulerian-on-lagrangian Cloth Simulation. ACM Trans. Graph. 37, 4 (July 2018), 50:1--50:11. – reference: Gerard Pons-Moll, Sergi Pujades, Sonny Hu, and Michael J. Black. 2017. ClothCap: Seamless 4D Clothing Capture and Retargeting. ACM Trans. Graph. 36, 4 (July 2017), 73:1--73:15. – reference: He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. 2018. Mode-adaptive Neural Networks for Quadruped Motion Control. ACM Trans. Graph. 37, 4, Article 145 (July 2018), 145:1--145:11 pages. – reference: Ryan White, Keenan Crane, and D. A. Forsyth. 2007. Capturing and Animating Occluded Cloth. ACM Trans. Graph. 26, 3, Article 34 (July 2007). – reference: Igor Santesteban, Miguel A. Otaduy, and Dan Casas. 2019. Learning-Based Animation of Clothing for Virtual Try-On. Computer Graphics Forum 38, 2 (2019). – reference: Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. 2001. Incorporating second-order functional knowledge for better option pricing. In Advances in neural information processing systems. 472--478. – reference: Kyungho Lee, Seyoung Lee, and Jehee Lee. 2018. Interactive Character Animation by Learning Multi-objective Control. ACM Trans. Graph. 37, 6, Article 180 (Dec. 2018), 10 pages. 10.1145/3272127.3275071 – reference: Tiberiu Popa, Q Zhou, Derek Bradley, V Kraevoy, Hongbo Fu, Alla Sheffer, and W Heidrich. 2009. Wrinkling Captured Garments Using Space-Time Data-Driven Deformation. Computer Graphics Forum 28 (03 2009), 427 -- 435. – reference: Autodesk Inc. 2015. Maya QUALOTH. http://www.qualoth.com/. (2015). – reference: Huamin Wang, Florian Hecht, Ravi Ramamoorthi, and James F. O'Brien. 2010. Example-based Wrinkle Synthesis for Clothing Animation. In ACM SIGGRAPH 2010 Papers (SIGGRAPH '10). 107:1--107:8. – reference: Ian Mason, Sebastian Starke, He Zhang, Hakan Bilen, and Taku Komura. 2018. Few-shot Learning of Homogeneous Human Locomotion Styles. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 143--153. – reference: Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision. 1026--1034. – reference: Ladislav Kavan, Dan Gerszewski, Adam W. Bargteil, and Peter-Pike Sloan. 2011. Physics-inspired Upsampling for Cloth Simulation in Games. ACM Trans. Graph. 30, 4 (July 2011), 93:1--93:10. – reference: Huamin Wang and Yin Yang. 2016. Descent Methods for Elastic Body Simulation on the GPU. ACM Trans. Graph. 35, 6 (Nov. 2016), 212:1--212:10. – reference: Daniel Holden, Jun Saito, and Taku Komura. 2016. A Deep Learning Framework for Character Motion Synthesis and Editing. ACM Trans. Graph. 35, 4, Article 138 (July 2016), 138:1--138:11 pages. – reference: Fabian Hahn, Bernhard Thomaszewski, Stelian Coros, Robert W. Sumner, Forrester Cole, Mark Meyer, Tony DeRose, and Markus Gross. 2014. Subspace Clothing Simulation Using Adaptive Bases. ACM Trans. Graph. 33, 4 (July 2014), 105:1--105:9. – reference: Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra Malik. 2015. Recurrent Network Models for Human Dynamics. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV) (ICCV '15). 4346--4354. – reference: Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned neural networks for character control. ACM Transactions on Graphics (TOG) 36, 4 (2017), 42. – reference: Nobuyuki Umetani. 2017. Exploring generative 3D shapes using autoencoder networks. In SIGGRAPH Asia 2017 Technical Briefs. ACM, 24. – reference: Derek Bradley, Tiberiu Popa, Alla Sheffer, Wolfgang Heidrich, and Tamy Boubekeur. 2008. Markerless Garment Capture. ACM Trans. Graph. 27, 3 (Aug. 2008), 99:1--99:9. – reference: Zorah Lahner, Daniel Cremers, and Tony Tung. 2018. DeepWrinkles: Accurate and Realistic Clothing Modeling. In The European Conference on Computer Vision (ECCV). – reference: Min Tang, Tongtong Wang, Zhongyuan Liu, Ruofeng Tong, and Dinesh Manocha. 2018. I-cloth: Incremental Collision Handling for GPU-based Interactive Cloth Simulation. ACM Trans. Graph. 37, 6 (Dec. 2018), 204:1--204:10. – reference: Lawson Fulton, Vismay Modi, David Duvenaud, David I. W. Levin, and Alec Jacobson. 2019. Latent-space Dynamics for Reduced Deformable Simulation. Computer Graphics Forum (2019). – reference: Doyub Kim, Woojong Koh, Rahul Narain, Kayvon Fatahalian, Adrien Treuille, and James F. O'Brien. 2013. Near-exhaustive Precomputation of Secondary Cloth Effects. ACM Trans. Graph. 32, 4 (July 2013), 87:1--87:8. – reference: Tuanfeng Y. Wang, Duygu Ceylan, Jovan Popović, and Niloy J. Mitra. 2018. Learning a Shared Shape Space for Multimodal Garment Design. ACM Trans. Graph. 37, 6, Article 203 (Dec. 2018), 13 pages. 10.1145/3272127.3275074 – volume-title: Computer Graphics Forum ident: e_1_2_2_22_1 – ident: e_1_2_2_11_1 doi: 10.1109/ICCV.2015.123 – volume-title: Example-based Wrinkle Synthesis for Clothing Animation. In ACM SIGGRAPH 2010 Papers (SIGGRAPH '10) ident: e_1_2_2_32_1 – volume-title: https://en.wikipedia.org/wiki/MikuMikuDance. (2019). [Online year: 2019 ident: e_1_2_2_37_1 – ident: e_1_2_2_1_1 – ident: e_1_2_2_41_1 doi: 10.1145/3197517.3201366 – volume-title: DeepWrinkles: Accurate and Realistic Clothing Modeling. In The European Conference on Computer Vision (ECCV). year: 2018 ident: e_1_2_2_19_1 – volume-title: Latent-space Dynamics for Reduced Deformable Simulation. Computer Graphics Forum year: 2019 ident: e_1_2_2_7_1 – ident: e_1_2_2_14_1 doi: 10.1145/1230100.1230107 – ident: e_1_2_2_35_1 doi: 10.1145/3197517.3201281 – ident: e_1_2_2_38_1 – ident: e_1_2_2_40_1 doi: 10.1007/978-3-030-01234-2_15 – ident: e_1_2_2_33_1 doi: 10.1145/2980179.2980236 – volume-title: Convolutional deep belief networks on cifar-10. Unpublished manuscript 40, 7 year: 2010 ident: e_1_2_2_18_1 – ident: e_1_2_2_6_1 doi: 10.5555/2919332.2919834 – ident: e_1_2_2_28_1 doi: 10.1145/2816795.2818081 – ident: e_1_2_2_8_1 doi: 10.1145/1276377.1276438 – ident: e_1_2_2_34_1 doi: 10.1145/3272127.3275074 – ident: e_1_2_2_36_1 doi: 10.1145/1276377.1276420 – ident: e_1_2_2_31_1 doi: 10.1145/3145749.3145758 – volume-title: Wrinkling Captured Garments Using Space-Time Data-Driven Deformation. Computer Graphics Forum 28 (03 year: 2009 ident: e_1_2_2_25_1 – ident: e_1_2_2_20_1 doi: 10.1145/3272127.3275071 – ident: e_1_2_2_23_1 doi: 10.1145/2366145.2366171 – ident: e_1_2_2_10_1 doi: 10.1145/2601097.2601160 – volume-title: Learning-Based Animation of Clothing for Virtual Try-On. Computer Graphics Forum 38, 2 year: 2019 ident: e_1_2_2_26_1 – ident: e_1_2_2_29_1 doi: 10.1145/3272127.3275005 – ident: e_1_2_2_24_1 doi: 10.1145/3072959.3073711 – volume: 33 start-page: 4 year: 2014 ident: e_1_2_2_39_1 article-title: . Sensitivity-optimized Rigging for Example-based Real-time Clothing Synthesis publication-title: ACM Trans. Graph. – ident: e_1_2_2_4_1 doi: 10.1145/1778765.1778843 – ident: e_1_2_2_21_1 doi: 10.1145/2508363.2508406 – ident: e_1_2_2_13_1 doi: 10.1145/2897824.2925975 – ident: e_1_2_2_27_1 doi: 10.1145/2766971 – ident: e_1_2_2_12_1 doi: 10.1145/3072959.3073663 – ident: e_1_2_2_30_1 doi: 10.1145/218380.218473 – ident: e_1_2_2_5_1 – ident: e_1_2_2_16_1 doi: 10.1145/1053427.1053429 – ident: e_1_2_2_17_1 doi: 10.1145/2461912.2462020 – ident: e_1_2_2_15_1 doi: 10.1145/2010324.1964988 – ident: e_1_2_2_9_1 doi: 10.1145/2185520.2185531 – ident: e_1_2_2_2_1 doi: 10.1145/280814.280821 – ident: e_1_2_2_3_1 doi: 10.1145/1360612.1360698 |
SSID | ssj0006446 |
Score | 2.5730784 |
Snippet | Authoring dynamic garment shapes for character animation on body motion is one of the fundamental steps in the CG industry. Established workflows are either... |
SourceID | crossref acm |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Animation Computer graphics Computing methodologies Machine learning Machine learning approaches Neural networks Shape modeling |
SubjectTermsDisplay | Computing methodologies -- Computer graphics -- Animation Computing methodologies -- Computer graphics -- Shape modeling Computing methodologies -- Machine learning -- Machine learning approaches -- Neural networks |
Title | Learning an intrinsic garment space for interactive authoring of garment animation |
URI | https://dl.acm.org/doi/10.1145/3355089.3356512 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKdoEDGgNE2YZ84IBUJTRxnMTHaWOappUDdGKcItu1WdCWoiqdBAf-dp7jj5nBpMEliSLnqfX76fnn5_eB0GsFGzQxZTrhlSqTQiyyhC9qmRiqS4Wgda2Ma2D2vjw-K07O6flo9DPOLulFKn_8Na_kf7QK70CvJkv2HzQbhMILeAb9whU0DNd76fjU-zW4iVfsV20Hcz75wlfDCT_YCmlLepuaEEM21LWa8HV_YYPugCb6obxrr25U5IvSHsxMBwnfTnw4VxjqW0cB8p-cu3m-5p1WIPRzGnw2F3xp0cC7r22w_kdrG8TRBlW3_dDrCEB5ufw-OUljR0TGhoy8yHYaY5GYHZZdWpw9pVVSEds5xxtcUkfAiq1nFi3DNrj6TwNfmFoYBFjStGYp3EvqwrB_K6V9a4kLgYc2DZs2TkDjBDxAmzlsM8BObu4fzk4_hrUc2OJw2u3_misOBSLe3voNht3Iq4jdRDRlvoUeu_0F3rdgeYJGqttGj6Kqk0_RBw8bzDscYIMdFvAAGwywwRFscIANXuowNMDmGTo7ejc_OE5ca42EA1_vk1xOM5WLWpYVyyVhhAjgzVkpK51lXAt4rmgh8lLLmk4zDayVlgXMRq61FBUnz9FGt-zUC4Q1LAFECVkJIQpWMqEZJQvGKaW8YnUxRtswMc03WzzFz_gYpX6iGumq0ZumKJfNHSoaozfhAy_rjqEv7z90Bz28gfIu2uhXa7UHLLMXrxwUfgHl1neH |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+an+intrinsic+garment+space+for+interactive+authoring+of+garment+animation&rft.jtitle=ACM+transactions+on+graphics&rft.au=Wang%2C+Tuanfeng+Y.&rft.au=Shao%2C+Tianjia&rft.au=Fu%2C+Kai&rft.au=Mitra%2C+Niloy+J.&rft.date=2019-11-08&rft.issn=0730-0301&rft.eissn=1557-7368&rft.volume=38&rft.issue=6&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1145%2F3355089.3356512&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3355089_3356512 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-0301&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-0301&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-0301&client=summon |