High-fidelity facial reflectance and geometry inference from an unconstrained image
We present a deep learning-based technique to infer high-quality facial reflectance and geometry given a single unconstrained image of the subject, which may contain partial occlusions and arbitrary illumination conditions. The reconstructed high-resolution textures, which are generated in only a fe...
Saved in:
Published in | ACM transactions on graphics Vol. 37; no. 4; pp. 1 - 14 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY, USA
ACM
30.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present a deep learning-based technique to infer high-quality facial reflectance and geometry given a single unconstrained image of the subject, which may contain partial occlusions and arbitrary illumination conditions. The reconstructed high-resolution textures, which are generated in only a few seconds, include high-resolution skin surface reflectance maps, representing both the diffuse and specular albedo, and medium- and high-frequency displacement maps, thereby allowing us to render compelling digital avatars under novel lighting conditions. To extract this data, we train our deep neural networks with a high-quality skin reflectance and geometry database created with a state-of-the-art multi-view photometric stereo system using polarized gradient illumination. Given the raw facial texture map extracted from the input image, our neural networks synthesize complete reflectance and displacement maps, as well as complete missing regions caused by occlusions. The completed textures exhibit consistent quality throughout the face due to our network architecture, which propagates texture features from the visible region, resulting in high-fidelity details that are consistent with those seen in visible regions. We describe how this highly underconstrained problem is made tractable by dividing the full inference into smaller tasks, which are addressed by dedicated neural networks. We demonstrate the effectiveness of our network design with robust texture completion from images of faces that are largely occluded. With the inferred reflectance and geometry data, we demonstrate the rendering of high-fidelity 3D avatars from a variety of subjects captured under different lighting conditions. In addition, we perform evaluations demonstrating that our method can infer plausible facial reflectance and geometric details comparable to those obtained from high-end capture devices, and outperform alternative approaches that require only a single unconstrained input image. |
---|---|
AbstractList | We present a deep learning-based technique to infer high-quality facial reflectance and geometry given a single unconstrained image of the subject, which may contain partial occlusions and arbitrary illumination conditions. The reconstructed high-resolution textures, which are generated in only a few seconds, include high-resolution skin surface reflectance maps, representing both the diffuse and specular albedo, and medium- and high-frequency displacement maps, thereby allowing us to render compelling digital avatars under novel lighting conditions. To extract this data, we train our deep neural networks with a high-quality skin reflectance and geometry database created with a state-of-the-art multi-view photometric stereo system using polarized gradient illumination. Given the raw facial texture map extracted from the input image, our neural networks synthesize complete reflectance and displacement maps, as well as complete missing regions caused by occlusions. The completed textures exhibit consistent quality throughout the face due to our network architecture, which propagates texture features from the visible region, resulting in high-fidelity details that are consistent with those seen in visible regions. We describe how this highly underconstrained problem is made tractable by dividing the full inference into smaller tasks, which are addressed by dedicated neural networks. We demonstrate the effectiveness of our network design with robust texture completion from images of faces that are largely occluded. With the inferred reflectance and geometry data, we demonstrate the rendering of high-fidelity 3D avatars from a variety of subjects captured under different lighting conditions. In addition, we perform evaluations demonstrating that our method can infer plausible facial reflectance and geometric details comparable to those obtained from high-end capture devices, and outperform alternative approaches that require only a single unconstrained input image. |
ArticleNumber | 162 |
Author | Zhao, Yajie Saito, Shunsuke Chen, Weikai Morishima, Shigeo Yamaguchi, Shugo Nagano, Koki Li, Hao Olszewski, Kyle |
Author_xml | – sequence: 1 givenname: Shugo surname: Yamaguchi fullname: Yamaguchi, Shugo email: wasedayshugo@suou.waseda.jp organization: Waseda University and USC Institute for Creative Technologies – sequence: 2 givenname: Shunsuke surname: Saito fullname: Saito, Shunsuke email: shunsuke.saito16@gmail.com organization: University of Southern California, and USC Institute for Creative Technologies – sequence: 3 givenname: Koki surname: Nagano fullname: Nagano, Koki email: knagano@usc.edu organization: Pinscreen – sequence: 4 givenname: Yajie surname: Zhao fullname: Zhao, Yajie email: yajie730@gmail.com organization: USC Institute for Creative Technologies – sequence: 5 givenname: Weikai surname: Chen fullname: Chen, Weikai email: chenwk891@gmail.com organization: USC Institute for Creative Technologies – sequence: 6 givenname: Kyle surname: Olszewski fullname: Olszewski, Kyle email: olszewsk@usc.edu organization: University of Southern California, and USC Institute for Creative Technologies – sequence: 7 givenname: Shigeo surname: Morishima fullname: Morishima, Shigeo email: shigeo@waseda.jp organization: Waseda University – sequence: 8 givenname: Hao surname: Li fullname: Li, Hao email: hao@hao-li.com organization: University of Southern California, and USC Institute for Creative Technologies |
BookMark | eNp9kLFOwzAQhi1UJNrCjMSUF0i5i2M7HVEFFKkSAzBHV_tcjBIHOWHo25OqhYGB6aT77zt9-mdiErvIQlwjLBBLdStxaRSahSwApS7PxBSVMrmRupqIKRgJOUjACzHr-w8A0GWpp-JlHXbvuQ-OmzDsM082UJMl9g3bgaLljKLLdty1PKR9FqLnxIe1T107ZtlXtF3sh0QhsstCSzu-FOeemp6vTnMu3h7uX1frfPP8-LS62-QkCz3kSFtDyjuQqDyVldtWqLUCcgZ8tVwaAC4YnduW1i51gaS0V96zRsvolZwLdfxrU9f3o3Ntw0BD6OJBp6kR6kMz9amZ-tTMyN3-4T7TKJ72_xA3R4Js-3v8E34DGmZwCw |
CitedBy_id | crossref_primary_10_1145_3450626_3459829 crossref_primary_10_1016_j_cag_2021_06_004 crossref_primary_10_1109_TNSRE_2019_2961244 crossref_primary_10_1155_2022_5903514 crossref_primary_10_1016_j_imavis_2021_104119 crossref_primary_10_1145_3355089_3356571 crossref_primary_10_1145_3550454_3555509 crossref_primary_10_1088_1742_6596_2363_1_012011 crossref_primary_10_1145_3550454_3555445 crossref_primary_10_1051_jnwpu_20234120370 crossref_primary_10_1007_s41095_022_0309_1 crossref_primary_10_1111_cgf_14513 crossref_primary_10_1109_ACCESS_2020_3026545 crossref_primary_10_1016_j_eswa_2023_119678 crossref_primary_10_1111_cgf_142622 crossref_primary_10_1109_TPAMI_2023_3328453 crossref_primary_10_1145_3386569_3392464 crossref_primary_10_1016_j_cad_2022_103304 crossref_primary_10_1145_3272127_3275075 crossref_primary_10_1145_3272127_3275073 crossref_primary_10_1145_3355089_3356568 crossref_primary_10_1109_TPAMI_2021_3080586 crossref_primary_10_1109_TPAMI_2021_3084524 crossref_primary_10_1145_3476576_3476647 crossref_primary_10_1145_3476576_3476646 crossref_primary_10_1109_TIP_2022_3201466 crossref_primary_10_1145_3414685_3417817 crossref_primary_10_1145_3472954 crossref_primary_10_3724_SP_J_1089_2022_18821 crossref_primary_10_1007_s11432_020_3236_2 crossref_primary_10_1007_s11263_023_01899_3 crossref_primary_10_1111_cgf_14762 crossref_primary_10_1145_3395208 crossref_primary_10_1145_3306346_3323027 crossref_primary_10_1109_TMM_2021_3068567 crossref_primary_10_1016_j_chbr_2021_100065 crossref_primary_10_1111_cgf_14943 crossref_primary_10_1145_3528223_3530143 crossref_primary_10_1109_TPAMI_2021_3129537 crossref_primary_10_1109_TPAMI_2021_3125598 crossref_primary_10_1145_3522626 crossref_primary_10_1111_cgf_14706 crossref_primary_10_1111_cgf_14904 crossref_primary_10_1145_3272127_3275104 crossref_primary_10_1007_s11263_021_01563_8 crossref_primary_10_1145_3414685_3417824 crossref_primary_10_1145_3649889 crossref_primary_10_1145_3450626_3459936 |
Cites_doi | 10.1109/ICCV.2017.580 10.1109/CVPR.2017.578 10.1145/2070781.2024163 10.1364/JOSAA.11.000467 10.1145/2766939 10.1145/1141911.1141988 10.1145/1731047.1731055 10.1007/s11263-006-0029-5 10.1145/311535.311556 10.1145/2508363.2508380 10.1145/2010324.1964941 10.1145/2010324.1964970 10.1109/CVPR.2018.00270 10.1145/2897824.2925882 10.1109/TPAMI.2006.206 10.1109/ICCV.1999.790383 10.1145/1778765.1778777 10.1145/2638549 10.1109/TPAMI.2010.63 10.1109/ICCV.2015.425 10.1145/1201775.882264 10.1145/2661229.2661290 10.1145/1667239.1667251 10.1145/2342896.2342970 10.1145/2766974 10.1109/ICCV.2011.6126439 10.1145/1141911.1141987 10.1145/3072959.3073659 10.1109/ICCV.2013.404 10.1109/TPAMI.2014.2377712 10.1145/344779.345009 10.1631/FITEE.1700253 10.1109/CVPR.2017.632 10.1145/2980179.2980252 10.1145/344779.344855 10.1145/2766894 10.1145/2897824.2925917 10.1162/jocn.1991.3.1.71 10.1109/ICCV.2015.103 10.1145/3130800.31310887 10.1145/1457515.1409074 10.1109/CVPR.2016.598 10.1145/2766943 10.1145/1141911.1141921 10.1007/s00371-006-0078-3 10.1145/1531326.1531363 10.3758/s13428-014-0532-5 10.1145/2897824.2925873 10.1145/383259.383296 10.1023/B:VISI.0000029666.37597.d3 10.1111/cgf.13127 10.1145/1073204.1073263 10.1109/CVPR.2005.145 10.1109/ICCV.2017.175 10.1145/1360612.1360658 10.1109/CVPR.2017.624 10.1145/2614028.2615407 |
ContentType | Journal Article |
Copyright | ACM |
Copyright_xml | – notice: ACM |
DBID | AAYXX CITATION |
DOI | 10.1145/3197517.3201364 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-7368 |
EndPage | 14 |
ExternalDocumentID | 10_1145_3197517_3201364 3201364 |
GroupedDBID | --Z -DZ -~X .DC 23M 2FS 4.4 5GY 5VS 6J9 85S 8US AAKMM AALFJ AAYFX ABPPZ ACGFO ACGOD ACM ADBCU ADL ADMLS AEBYY AEFXT AEJOY AENEX AENSD AETEA AFWIH AFWXC AIKLT AKRVB ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF BDXCO CCLIF CS3 EBS EJD F5P FEDTE GUFHI HGAVV I07 LHSKQ P1C P2P PQQKQ RNS ROL TWZ UHB UPT WH7 XSW ZCA ~02 AAYXX CITATION |
ID | FETCH-LOGICAL-a326t-1ab7a5fd0315fa48db816650ad70f899700e2e1ddb4cc9621a56f5ffe61ce1f53 |
ISSN | 0730-0301 |
IngestDate | Thu Apr 24 22:55:59 EDT 2025 Thu Jul 03 08:27:58 EDT 2025 Wed Aug 20 23:42:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | facial modeling texture synthesis and inpainting image-based modeling |
Language | English |
License | Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a326t-1ab7a5fd0315fa48db816650ad70f899700e2e1ddb4cc9621a56f5ffe61ce1f53 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1145_3197517_3201364 crossref_primary_10_1145_3197517_3201364 acm_primary_3201364 |
PublicationCentury | 2000 |
PublicationDate | 2018-07-30 |
PublicationDateYYYYMMDD | 2018-07-30 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY, USA |
PublicationPlace_xml | – name: New York, NY, USA |
PublicationTitle | ACM transactions on graphics |
PublicationTitleAbbrev | ACM TOG |
PublicationYear | 2018 |
Publisher | ACM |
Publisher_xml | – name: ACM |
References | E. Richardson, M. Sela, and R. Kimmel. 2016. 3D face reconstruction by learning from synthetic data. In 3D Vision (3DV), 2016 Fourth International Conference on. IEEE, 460--469. O. Alexander, M. Rogers, W. Lambeth, M. Chiang, and P. Debevec. 2009. The Digital Emily Project: Photoreal Facial Modeling and Animation. In ACM SIGGRAPH 2009 Courses. ACM, New York, NY, USA, Article 12, 12:1--12:15 pages. 10.1145/1667239.1667251 T. Beeler, B. Bickel, P. Beardsley, B. Sumner, and M. Gross. 2010. High-quality single-shot capture of facial geometry. In ACM Trans. Graph., Vol. 29. ACM, 40. 10.1145/1778765.1778777 U. Mohammed, S. J. D. Prince, and J. Kautz. 2009. Visio-lization: Generating Novel Facial Images. In ACM Trans. Graph. ACM, Article 57, 57:1--57:8 pages. 10.1145/1531326.1531363 P. Graham, B. Tunwattanapong, J. Busch, X. Yu, A. Jones, P. Debevec, and A. Ghosh. 2013b. Measurement-based Synthesis of Facial Microgeometry. In EUROGRAPHICS. 10.1145/2342896.2342970 C. Li, K. Zhou, and S. Lin. 2014. Intrinsic Face Image Decomposition with Human Face Priors. In Proc. ECCV (5)'14. 218--233. M. Glencross, G.J. Ward, F. Melendez, C.Jay, J. Liu, and R. Hubbold. 2008. A perceptually validated model for surface depth hallucination. ACM Trans. Graph. 27, 3 (2008), 59. 10.1145/1360612.1360658 T. Karras, T. Aila, S. Laine, and J. Lehtinen. 2017. Progressive Growing of GANs for Improved Quality, Stability, and Variation. CoRR abs/1710.10196 (2017). M. Turk and A. Pentland. 1991. Eigenfaces for Recognition. J. Cognitive Neuroscience 3, 1 (1991), 71--86. 10.1162/jocn.1991.3.1.71 A. Golovinskiy, W. Matusik, H. Pfister, S. Rusinkiewicz, and T Funkhouser. 2006. A Statistical Model for Synthesis of Detailed Facial Geometry. ACM Trans. Graph. 25, 3 (2006), 1025--1034. 10.1145/1141911.1141988 A. Tewari, M. Zollhöfer, H. Kim, P. Garrido, F. Bernard, P. Perez, and C. Theobalt. 2017b. Mofa: Model-based deep convolutional face autoencoder for unsupervised monocular reconstruction. In IEEE ICCV, Vol. 2. I. Matthews and S. Baker. 2004. Active Appearance Models Revisited. Int. J. Comput. Vision 60, 2 (2004), 135--164. 10.1023/B:VISI.0000029666.37597.d3 C. Cao, D. Bradley, K. Zhou, and T. Beeler. 2015. Real-time high-fidelity facial performance capture. ACM Trans. Graph. 34, 4 (2015), 46. 10.1145/2766943 J. T. Barron and J. Malik. 2015a. Shape, illumination, and reflectance from shading. IEEE Transactions on Pattern Analysis and Machine Intelligence 37, 8 (2015), 1670--1687. E. Richardson, M. Sela, R. Or-El, and R. Kimmel. 2017. Learning detailed face reconstruction from a single image. In Proc. CVPR. IEEE, 5553--5562. L. Hu, S. Saito, L. Wei, K. Nagano, J. Seo, J. Fursund, I. Sadeghi, C. Sun, Y.-C. Chen, and H. Li. 2017. Avatar Digitization From a Single Image For Real-Time Rendering. ACM Trans. Graph. 36, 6 (2017). 10.1145/3130800.31310887 G.J. Edwards, C.J. Taylor, and T. F. Cootes. 1998. Interpreting Face Images Using Active Appearance Models. In Proceedings of the 3rd. International Conference on Face and Gesture Recognition (FG '98). IEEE Computer Society, 300--. L.-Y. Wei and M. Levoy. 2000. Fast Texture Synthesis Using Tree-structured Vector Quantization. In Proc. SIGGRAPH. 479--488. 10.1145/344779.345009 K. Olszewski, Z. Li, C. Yang, Y. Zhou, R. Yu, Z. Huang, S. Xiang, S. Saito, P. Kohli, and H. Li. 2017. Realistic Dynamic Facial Textures From a Single Image Using GANs. In IEEE ICCV. T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum. 2015. Deep Convolutional Inverse Graphics Network. In Advances in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (Eds.). Curran Associates, Inc., 2539--2547. S. Lefebvre and H. Hoppe. 2006. Appearance-space texture synthesis. ACM Trans. Graph. 25, 3 (2006), 541--548. 10.1145/1141911.1141921 Solid Angle. 2016. (2016). http://www.solidangle.com/arnold/. I. Kemelmacher-Shlizerman. 2013. Internet-based Morphable Model. IEEE ICCV (2013). 10.1109/ICCV.2013.404 W.-C. Ma, T. Hawkins, P. Peers, C.-F. Chabert, M. Weiss, and P. Debevec. 2007a. Rapid Acquisition of Specular and Diffuse Normal Maps from Polarized Spherical Gradient Illumination. In Proc. EGSR 2007. Eurographics Association, 183--194. S. Iizuka, E. Simo-Serra, and H. Ishikawa. 2017. Globally and Locally Consistent Image Completion. ACM Trans. Graph. 36, 4, Article 107 (2017), 107:1--107:14 pages. 10.1145/3072959.3073659 J. T. Barron and J. Malik. 2015b. Shape, Illumination, and Reflectance from Shading. IEEE Transactions on Pattern Analysis and Machine Intelligence (2015). P. Garrido, L. Valgaerts, C. Wu, and C. Theobalt. 2013. Reconstructing Detailed Dynamic Face Geometry from Monocular Video. In ACM Trans. Graph., Vol. 32. 158:1--158:10. 10.1145/2508363.2508380 C. Liu, H.-Y. Shum, and W. T. Freeman. 2007. Face Hallucination: Theory and Practice. Int. J. Comput. Vision 75, 1 (2007), 115--134. 10.1007/s11263-006-0029-5 A. A. Efros and T. K. Leung. 1999. Texture Synthesis by Non-Parametric Sampling. In IEEE ICCV. 1033--. Z. Shu, E. Yumer, S. Hadap, K. Sunkavalli, E. Shechtman, and D. Samaras. 2017. Neural Face Editing with Intrinsic Image Disentangling. arXiv:1704.04131 (2017). J.-Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros, O. Wang, and E. Shechtman. 2017. Toward Multimodal Image-to-image Translation. In Advances in Neural Information Processing Systems 30. H. Kim, M. Zollhöfer, A. Tewari, J. Thies, C. Richardt, and C. Theobalt. 2018. Inverse-FaceNet: Deep Monocular Inverse Face Rendering. In Proc. CVPR. S. McDonagh, M. Klaudiny, D. Bradley, T. Beeler, I. Matthews, and K. Mitchell. 2016. Synthetic prior design for real-time face tracking. In 3D Vision (3DV), 2016 Fourth International Conference on. IEEE, 639--648. R. A. Yeh*, C. Chen*, T. Y. Lim, S. A. G., M. Hasegawa-Johnson, and M. N. Do. 2017. Semantic Image Inpainting with Deep Generative Models. In Proc. CVPR. * equal contribution. M. Sela, E. Richardson, and R. Kimmel. 2017. Unrestricted facial geometry reconstruction using image-to-image translation. In IEEE ICCV. IEEE, 1585--1594. T. Beeler, F. Hahn, D. Bradley, B. Bickel, P. Beardsley, C. Gotsman, R. W. Sumner, and M. Gross. 2011. High-quality passive facial performance capture using anchor frames. In ACM Trans. Graph., Vol. 30. ACM, 75. 10.1145/2010324.1964970 V. Blanz and T. Vetter. 1999. A morphable model for the synthesis of 3D faces. In Proc. SIGGRAPH. 187--194. 10.1145/311535.311556 P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, and W. Sarokin. 2000. Acquiring the Reflectance Field of a Human Face. In Proc. SIGGRAPH. 10.1145/344779.344855 H. Li, L. Trutoiu, K. Olszewski, L. Wei, T. Trutna, P.-L. Hsieh, A. Nicholls,, A. Nicholls, and C. Ma. 2015. Facial Performance Sensing Head-Mounted Display. ACM Trans. Graph. 34, 4 (July 2015). 10.1145/2766939 S. Romdhani and T. Vetter. 2005. Estimating 3D Shape and Texture Using Pixel Intensity, Edges, Specular Highlights, Texture Constraints and a Prior.. In Proc. CVPR. 986--993. 10.1109/CVPR.2005.145 S. Suwajanakorn, I. Kemelmacher-Shlizerman, and S. M. Seitz. 2014. Total moving face reconstruction. In Proc. ECCV. Springer, 796--812. W.-C. Ma, A. Jones, J.-Y. Chiang, T. Hawkins, S. Frederiksen, P. Peers, M. Vukovic, M. Ouhyoung, and P. Debevec. 2008. Facial Performance Synthesis Using Deformation-driven Polynomial Displacement Maps. In Proc. SIGGRAPH. ACM, 121:1--121:10. 10.1145/1457515.1409074 D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. 2016. Context encoders: Feature learning by inpainting. In Proc. CVPR. 2536--2544. J. von der Pahlen, J. Jimenez, E. Danvoye, P. Debevec, G. Fyffe, and O. Alexander. 2014. Digital Ira and Beyond: Creating Real-time Photoreal Digital Actors. In ACM SIGGRAPH 2014 Courses. ACM, New York, NY, USA, Article 1, 1:1--1:384 pages. 10.1145/2614028.2615407 C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and others. 2016. Photo-realistic single image super-resolution using a generative adversarial network. arXiv:1609.04802 (2016). Z. Liu, P. Luo, X. Wang, and X. Tang. 2015. Deep Learning Face Attributes in the Wild. In IEEE ICCV. 10.1109/ICCV.2015.425 L. A. Gatys, M. Bethge, A. Hertzmann, and E. Shechtman. 2016. Preserving Color in Neural Artistic Style Transfer. CoRR abs/1606.05897 (2016). D.S. Ma, J. Correll, and B. Wittenbrink. 2015. The Chicago face database: A free stimulus set of faces and norming data. Behavior Research Methods 47, 4 (2015), 1122--1135. The Digital Human League. 2015. Digital Emily 2.0. (2015). http://gl.ict.usc.edu/Research/DigitalEmily2/. A. Haro, B. Guenterz, and I. Essay. 2001. Real-time, Photo-realistic, Physically Based Rendering of Fine Scale Human Skin Structure. In Eurographics Workshop on Rendering, S. J. Gortle and K. Myszkowski (Eds.). S. Saito, T. Li, and H. Li. 2016. Real-Time Facial Segmentation and Performance Capture from RGB Input. In Proc. ECCV. X. Zhu, Z. Lei, J. Yan, D. Yi, and S. Z. Li. 2015. High-fidelity pose and expression normalization for face recognition in the wild. In Proc. CVPR. 787--796. F. Shi, H.-T. Wu, X. Tong, and J. Chai. 2014. Automatic acquisition of high-fidelity facial performances using monocular videos. ACM Trans. Graph. 33, 6 (2014), 222. 10.1145/2661229.2661290 Y. Li, S. Liu, J. Yang, and M.-H. Yang. 2017. Generative Face Completion. In Proc. CVPR. A. Ghosh, G. Fyffe, B. Tunwattanapong, J. Busch, X. Yu, and P. Debevec. 2011. Multiview Face Capture Using Polarized Spherical Gradient Illumination. ACM Trans. Graph. 30, 6, Article 129 (2011), 129:1--129:10 pages. 10.1145/2070781.2024163 J. Han, K. Zhou, L.-Y. Wei, M. Gong, H. Bao, X. Zhang, and B. Guo. 2006. Fast example-based surface texture synthesis via discrete optimization. The Visual Computer 22, 9--11 (2006), 918--925. 10.1007/s00371-006-0078-3 K. Olszewski, J. J. Lim, S. Saito, and H. Li. 2016. High-Fidelity Facial and Speech Animation for VR HMDs. ACM Trans. Graph. 35, 6 (December 2016). 10.1145/2980179.2980252 S. Saito, L. Wei, L. Hu, K. Nagano, and e_1_2_2_4_1 e_1_2_2_24_1 e_1_2_2_49_1 e_1_2_2_6_1 e_1_2_2_22_1 McDonagh S. (e_1_2_2_61_1) e_1_2_2_20_1 e_1_2_2_2_1 Lasram A. (e_1_2_2_47_1) e_1_2_2_62_1 e_1_2_2_87_1 e_1_2_2_43_1 e_1_2_2_85_1 e_1_2_2_8_1 e_1_2_2_28_1 e_1_2_2_45_1 e_1_2_2_66_1 e_1_2_2_26_1 e_1_2_2_68_1 e_1_2_2_89_1 Ledig C. (e_1_2_2_48_1) 2016 Bradley D. (e_1_2_2_9_1) Li C. (e_1_2_2_50_1) e_1_2_2_60_1 Haro A. (e_1_2_2_31_1) e_1_2_2_13_1 e_1_2_2_38_1 e_1_2_2_59_1 e_1_2_2_11_1 Ma W.-C. (e_1_2_2_57_1) 2007 Suwajanakorn S. (e_1_2_2_79_1) e_1_2_2_30_1 e_1_2_2_51_1 e_1_2_2_76_1 e_1_2_2_19_1 e_1_2_2_32_1 e_1_2_2_53_1 e_1_2_2_74_1 e_1_2_2_17_1 e_1_2_2_34_1 e_1_2_2_55_1 e_1_2_2_36_1 e_1_2_2_78_1 Richardson E. (e_1_2_2_70_1) e_1_2_2_91_1 e_1_2_2_25_1 Zhao H. (e_1_2_2_93_1) e_1_2_2_5_1 Kingma D. P. (e_1_2_2_42_1) 2014 Duong C. N (e_1_2_2_14_1) e_1_2_2_23_1 Duong C. Nhan (e_1_2_2_64_1) e_1_2_2_7_1 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_3_1 e_1_2_2_40_1 e_1_2_2_63_1 e_1_2_2_86_1 e_1_2_2_65_1 e_1_2_2_84_1 e_1_2_2_29_1 e_1_2_2_44_1 e_1_2_2_27_1 e_1_2_2_46_1 e_1_2_2_88_1 e_1_2_2_82_1 e_1_2_2_80_1 Kim H. (e_1_2_2_41_1) Pathak D. (e_1_2_2_67_1) Saito S. (e_1_2_2_73_1) e_1_2_2_37_1 e_1_2_2_12_1 e_1_2_2_39_1 e_1_2_2_10_1 e_1_2_2_52_1 e_1_2_2_75_1 Edwards G.J. (e_1_2_2_15_1) e_1_2_2_54_1 e_1_2_2_18_1 e_1_2_2_33_1 e_1_2_2_56_1 Tewari A. (e_1_2_2_81_1) 2017 e_1_2_2_16_1 e_1_2_2_35_1 e_1_2_2_77_1 Zhu X. (e_1_2_2_95_1) e_1_2_2_90_1 e_1_2_2_94_1 Ma W.-C. (e_1_2_2_58_1) Richardson E. (e_1_2_2_69_1) e_1_2_2_71_1 R. A. (e_1_2_2_92_1) Thies J. (e_1_2_2_83_1) Saito S. (e_1_2_2_72_1) |
References_xml | – reference: J. Booth, A. Roussos, S. Zafeiriou, A. Ponniah, and D. Dunaway 2016. A 3d morphable model learnt from 10,000 faces. In Proc. CVPR. 5543--5552. – reference: T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum. 2015. Deep Convolutional Inverse Graphics Network. In Advances in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (Eds.). Curran Associates, Inc., 2539--2547. – reference: Y. Li, S. Liu, J. Yang, and M.-H. Yang. 2017. Generative Face Completion. In Proc. CVPR. – reference: J.-Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros, O. Wang, and E. Shechtman. 2017. Toward Multimodal Image-to-image Translation. In Advances in Neural Information Processing Systems 30. – reference: G. Fyffe, A. Jones, O. Alexander, R. Ichikari, and P. Debevec. 2014. Driving high-resolution facial scans with video performance capture. ACM Trans. Graph. 34, 1 (2014), 8. 10.1145/2638549 – reference: K. Olszewski, J. J. Lim, S. Saito, and H. Li. 2016. High-Fidelity Facial and Speech Animation for VR HMDs. ACM Trans. Graph. 35, 6 (December 2016). 10.1145/2980179.2980252 – reference: S. Lefebvre and H. Hoppe. 2006. Appearance-space texture synthesis. ACM Trans. Graph. 25, 3 (2006), 541--548. 10.1145/1141911.1141921 – reference: P. Garrido, L. Valgaerts, C. Wu, and C. Theobalt. 2013. Reconstructing Detailed Dynamic Face Geometry from Monocular Video. In ACM Trans. Graph., Vol. 32. 158:1--158:10. 10.1145/2508363.2508380 – reference: M. Turk and A. Pentland. 1991. Eigenfaces for Recognition. J. Cognitive Neuroscience 3, 1 (1991), 71--86. 10.1162/jocn.1991.3.1.71 – reference: G. Fyffe, K. Nagano, L. Huynh, S. Saito, J. Busch, A. Jones, H. Li, and P. Debevec. 2017. Multi-View Stereo on Consistent Face Topology. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 295--309. 10.1111/cgf.13127 – reference: U. Mohammed, S. J. D. Prince, and J. Kautz. 2009. Visio-lization: Generating Novel Facial Images. In ACM Trans. Graph. ACM, Article 57, 57:1--57:8 pages. 10.1145/1531326.1531363 – reference: K. Olszewski, Z. Li, C. Yang, Y. Zhou, R. Yu, Z. Huang, S. Xiang, S. Saito, P. Kohli, and H. Li. 2017. Realistic Dynamic Facial Textures From a Single Image Using GANs. In IEEE ICCV. – reference: X. Zhu, Z. Lei, J. Yan, D. Yi, and S. Z. Li. 2015. High-fidelity pose and expression normalization for face recognition in the wild. In Proc. CVPR. 787--796. – reference: P. Graham, B. Tunwattanapong, J. Busch, X. Yu, A. Jones, P. Debevec, and A. Ghosh. 2013a. Measurement-Based Synthesis of Facial Microgeometry. In Computer Graphics Forum, Vol. 32. Wiley Online Library, 335--344. 10.1145/2342896.2342970 – reference: H. Li, L. Trutoiu, K. Olszewski, L. Wei, T. Trutna, P.-L. Hsieh, A. Nicholls,, A. Nicholls, and C. Ma. 2015. Facial Performance Sensing Head-Mounted Display. ACM Trans. Graph. 34, 4 (July 2015). 10.1145/2766939 – reference: M. K.Johnson, F. Cole, A. Raj, and E. H. Adelson. 2011. Microgeometry Capture using an Elastomeric Sensor. ACM Trans. Graph 30, 4 (2011), 46:1--46:8. 10.1145/2010324.1964941 – reference: C. Li, K. Zhou, and S. Lin. 2014. Intrinsic Face Image Decomposition with Human Face Priors. In Proc. ECCV (5)'14. 218--233. – reference: L. Hu, S. Saito, L. Wei, K. Nagano, J. Seo, J. Fursund, I. Sadeghi, C. Sun, Y.-C. Chen, and H. Li. 2017. Avatar Digitization From a Single Image For Real-Time Rendering. ACM Trans. Graph. 36, 6 (2017). 10.1145/3130800.31310887 – reference: T. Karras, T. Aila, S. Laine, and J. Lehtinen. 2017. Progressive Growing of GANs for Improved Quality, Stability, and Variation. CoRR abs/1710.10196 (2017). – reference: V. Kwatra, I. Essa, A. Bobick, and N. Kwatra. 2005. Texture optimization for example-based synthesis. ACM Trans. Graph. 24, 3 (2005), 795--802. 10.1145/1073204.1073263 – reference: C. Cao, H. Wu, Y. Weng, T. Shao, and K. Zhou. 2016. Real-time facial animation with image-based dynamic avatars. ACM Trans. Graph. 35, 4 (2016), 126. 10.1145/2897824.2925873 – reference: F. Shi, H.-T. Wu, X. Tong, and J. Chai. 2014. Automatic acquisition of high-fidelity facial performances using monocular videos. ACM Trans. Graph. 33, 6 (2014), 222. 10.1145/2661229.2661290 – reference: T. Beeler, F. Hahn, D. Bradley, B. Bickel, P. Beardsley, C. Gotsman, R. W. Sumner, and M. Gross. 2011. High-quality passive facial performance capture using anchor frames. In ACM Trans. Graph., Vol. 30. ACM, 75. 10.1145/2010324.1964970 – reference: O. Alexander, M. Rogers, W. Lambeth, M. Chiang, and P. Debevec. 2009. The Digital Emily Project: Photoreal Facial Modeling and Animation. In ACM SIGGRAPH 2009 Courses. ACM, New York, NY, USA, Article 12, 12:1--12:15 pages. 10.1145/1667239.1667251 – reference: H. Kim, M. Zollhöfer, A. Tewari, J. Thies, C. Richardt, and C. Theobalt. 2018. Inverse-FaceNet: Deep Monocular Inverse Face Rendering. In Proc. CVPR. – reference: Solid Angle. 2016. (2016). http://www.solidangle.com/arnold/. – reference: A. Tewari, M. Zollhöfer, H. Kim, P. Garrido, F. Bernard, P. Perez, and C. Theobalt. 2017b. Mofa: Model-based deep convolutional face autoencoder for unsupervised monocular reconstruction. In IEEE ICCV, Vol. 2. – reference: C. A. Wilson, A. Ghosh, P. Peers, J.-Y. Chiang, J. Busch, and P. Debevec. 2010. Temporal upsampling of performance geometry using photometric alignment. ACM Trans. Graph. 29, 2 (2010), 17. 10.1145/1731047.1731055 – reference: Z. Liu, P. Luo, X. Wang, and X. Tang. 2015. Deep Learning Face Attributes in the Wild. In IEEE ICCV. 10.1109/ICCV.2015.425 – reference: D.S. Ma, J. Correll, and B. Wittenbrink. 2015. The Chicago face database: A free stimulus set of faces and norming data. Behavior Research Methods 47, 4 (2015), 1122--1135. – reference: S. Saito, T. Li, and H. Li. 2016. Real-Time Facial Segmentation and Performance Capture from RGB Input. In Proc. ECCV. – reference: C. Wu, D. Bradley, M. Gross, and T. Beeler. 2016. An anatomically-constrained local deformation model for monocular face capture. ACM Trans. Graph. 35, 4 (2016), 115. 10.1145/2897824.2925882 – reference: E. Richardson, M. Sela, and R. Kimmel. 2016. 3D face reconstruction by learning from synthetic data. In 3D Vision (3DV), 2016 Fourth International Conference on. IEEE, 460--469. – reference: S. Saito, L. Wei, L. Hu, K. Nagano, and H. Li. 2017. Photorealistic Facial Texture Inference Using Deep Neural Networks. In Proc. CVPR. – reference: A. Tewari, M. Zollhöfer, P. Garrido, F. Bernard, H. Kim, P. Pérez, and C. Theobalt. 2017a. Self-supervised Multi-level Face Model Learning for Monocular Reconstruction at over 250 Hz. arXiv.1712.02859 (2017). – reference: Z. Shu, E. Yumer, S. Hadap, K. Sunkavalli, E. Shechtman, and D. Samaras. 2017. Neural Face Editing with Intrinsic Image Disentangling. arXiv:1704.04131 (2017). – reference: J. Thies, M. Zollöfer, M. Stamminger, C. Theobalt, and M. Nießner. 2016b. FaceVR: Real-Time Facial Reenactment and Eye Gaze Control in Virtual Reality. arXiv:1610.03151 (2016). – reference: P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, and W. Sarokin. 2000. Acquiring the Reflectance Field of a Human Face. In Proc. SIGGRAPH. 10.1145/344779.344855 – reference: P. F. Gotardo, T. Simon, Y. Sheikh, and I. Matthews. 2015. Photogeometric scene flow for high-detail dynamic 3d reconstruction. In Proc. ICCV. 846--854. 10.1109/ICCV.2015.103 – reference: H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. 2017. Pyramid Scene Parsing Network. In Proc. CVPR. – reference: S. McDonagh, M. Klaudiny, D. Bradley, T. Beeler, I. Matthews, and K. Mitchell. 2016. Synthetic prior design for real-time face tracking. In 3D Vision (3DV), 2016 Fourth International Conference on. IEEE, 639--648. – reference: I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. 2014. Generative Adversarial Nets. In Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N D. Lawrence, and K. Q. Weinberger (Eds.). Curran Associates, Inc., 2672--2680. – reference: A. Lasram and S. Lefebvre. 2012. Parallel patch-based texture synthesis. In Proceedings of the Fourth ACM SIGGRAPH/Eurographics conference on High-Performance Graphics. Eurographics Association, 115--124. – reference: C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and others. 2016. Photo-realistic single image super-resolution using a generative adversarial network. arXiv:1609.04802 (2016). – reference: M. Sela, E. Richardson, and R. Kimmel. 2017. Unrestricted facial geometry reconstruction using image-to-image translation. In IEEE ICCV. IEEE, 1585--1594. – reference: F. Liu, D. Zeng, J. Li, and Q.-j. Zhao. 2017. On 3D face reconstruction via cascaded regression in shape space. Frontiers of Information Technology & Electronic Engineering 18, 12(2017), 1978--1990. – reference: C. Cao, D. Bradley, K. Zhou, and T. Beeler. 2015. Real-time high-fidelity facial performance capture. ACM Trans. Graph. 34, 4 (2015), 46. 10.1145/2766943 – reference: R. A. Yeh*, C. Chen*, T. Y. Lim, S. A. G., M. Hasegawa-Johnson, and M. N. Do. 2017. Semantic Image Inpainting with Deep Generative Models. In Proc. CVPR. * equal contribution. – reference: E. Richardson, M. Sela, R. Or-El, and R. Kimmel. 2017. Learning detailed face reconstruction from a single image. In Proc. CVPR. IEEE, 5553--5562. – reference: A. Haro, B. Guenterz, and I. Essay. 2001. Real-time, Photo-realistic, Physically Based Rendering of Fine Scale Human Skin Structure. In Eurographics Workshop on Rendering, S. J. Gortle and K. Myszkowski (Eds.). – reference: G.J. Edwards, C.J. Taylor, and T. F. Cootes. 1998. Interpreting Face Images Using Active Appearance Models. In Proceedings of the 3rd. International Conference on Face and Gesture Recognition (FG '98). IEEE Computer Society, 300--. – reference: T. Weyrich, W. Matusik, H. Pfister, B. Bickel, C. Donner, C. Tu, J. McAndless, J. Lee, A. Ngan, H. W. Jensen, and M. Gross. 2006. Analysis of Human Faces using a Measurement-Based Skin Reflectance Model. ACM Trans. Graph. 25, 3 (2006), 1013--1024. 10.1145/1141911.1141987 – reference: R. Donner, M. Reiter, G. Langs, P. Peloschek, and H. Bischof. 2006. Fast Active Appearance Model Search Using Canonical Correlation Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 10 (2006), 1690--1694. 10.1109/TPAMI.2006.206 – reference: S. Iizuka, E. Simo-Serra, and H. Ishikawa. 2017. Globally and Locally Consistent Image Completion. ACM Trans. Graph. 36, 4, Article 107 (2017), 107:1--107:14 pages. 10.1145/3072959.3073659 – reference: L.-Y. Wei and M. Levoy. 2000. Fast Texture Synthesis Using Tree-structured Vector Quantization. In Proc. SIGGRAPH. 479--488. 10.1145/344779.345009 – reference: A. Golovinskiy, W. Matusik, H. Pfister, S. Rusinkiewicz, and T Funkhouser. 2006. A Statistical Model for Synthesis of Detailed Facial Geometry. ACM Trans. Graph. 25, 3 (2006), 1025--1034. 10.1145/1141911.1141988 – reference: D. Bradley, T. Beeler, K. Mitchell, and others. 2017. Real-Time Multi-View Facial Capture with Synthetic Training. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 325--336. – reference: L. A. Gatys, A. S. Ecker, and M. Bethge. 2015. Texture synthesis and the controlled generation of natural stimuli using convolutional neural networks. CoRR abs/1505.07376 (2015). – reference: J. T. Barron and J. Malik. 2015b. Shape, Illumination, and Reflectance from Shading. IEEE Transactions on Pattern Analysis and Machine Intelligence (2015). – reference: J. Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and M. Nießner. 2016a. Face2Face: Real-time Face Capture and Reenactment of RGB Videos. In Proc. CVPR. – reference: A. Ghosh, G. Fyffe, B. Tunwattanapong, J. Busch, X. Yu, and P. Debevec. 2011. Multiview Face Capture Using Polarized Spherical Gradient Illumination. ACM Trans. Graph. 30, 6, Article 129 (2011), 129:1--129:10 pages. 10.1145/2070781.2024163 – reference: J. Han, K. Zhou, L.-Y. Wei, M. Gong, H. Bao, X. Zhang, and B. Guo. 2006. Fast example-based surface texture synthesis via discrete optimization. The Visual Computer 22, 9--11 (2006), 918--925. 10.1007/s00371-006-0078-3 – reference: I. Kemelmacher-Shlizerman. 2013. Internet-based Morphable Model. IEEE ICCV (2013). 10.1109/ICCV.2013.404 – reference: The Digital Human League. 2015. Digital Emily 2.0. (2015). http://gl.ict.usc.edu/Research/DigitalEmily2/. – reference: J. T. Barron and J. Malik. 2015a. Shape, illumination, and reflectance from shading. IEEE Transactions on Pattern Analysis and Machine Intelligence 37, 8 (2015), 1670--1687. – reference: C. Nhan Duong, K. Luu, K. Gia Quach, and T. D. Bui. 2015. Beyond principal components: Deep boltzmann machines for face modeling. In Proc. CVPR. 4786--4794. – reference: S. Suwajanakorn, I. Kemelmacher-Shlizerman, and S. M. Seitz. 2014. Total moving face reconstruction. In Proc. ECCV. Springer, 796--812. – reference: P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. 2016. Image-to-image translation with conditional adversarial networks. arXiv:1611.07004 (2016). – reference: W.-C. Ma, A. Jones, J.-Y. Chiang, T. Hawkins, S. Frederiksen, P. Peers, M. Vukovic, M. Ouhyoung, and P. Debevec. 2008. Facial Performance Synthesis Using Deformation-driven Polynomial Displacement Maps. In Proc. SIGGRAPH. ACM, 121:1--121:10. 10.1145/1457515.1409074 – reference: C. Liu, H.-Y. Shum, and W. T. Freeman. 2007. Face Hallucination: Theory and Practice. Int. J. Comput. Vision 75, 1 (2007), 115--134. 10.1007/s11263-006-0029-5 – reference: C. N Duong, K. Luu, K. G. Quach, and T. D. Bui. 2015. Beyond principal components: Deep boltzmann machines for face modeling. In Proc. CVPR. 4786--4794. – reference: D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. 2016. Context encoders: Feature learning by inpainting. In Proc. CVPR. 2536--2544. – reference: M. S. Langer and S. W. Zucker. 1994. Shape-from-shading on a cloudy day. JOSA A 11, 2 (1994), 467--478. – reference: J. von der Pahlen, J. Jimenez, E. Danvoye, P. Debevec, G. Fyffe, and O. Alexander. 2014. Digital Ira and Beyond: Creating Real-time Photoreal Digital Actors. In ACM SIGGRAPH 2014 Courses. ACM, New York, NY, USA, Article 1, 1:1--1:384 pages. 10.1145/2614028.2615407 – reference: I. Matthews and S. Baker. 2004. Active Appearance Models Revisited. Int. J. Comput. Vision 60, 2 (2004), 135--164. 10.1023/B:VISI.0000029666.37597.d3 – reference: T. Beeler, B. Bickel, P. Beardsley, B. Sumner, and M. Gross. 2010. High-quality single-shot capture of facial geometry. In ACM Trans. Graph., Vol. 29. ACM, 40. 10.1145/1778765.1778777 – reference: M. Glencross, G.J. Ward, F. Melendez, C.Jay, J. Liu, and R. Hubbold. 2008. A perceptually validated model for surface depth hallucination. ACM Trans. Graph. 27, 3 (2008), 59. 10.1145/1360612.1360658 – reference: V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick. 2003. Graphcut Textures: Image and Video Synthesis Using Graph Cuts. In Proc. SIGGRAPH. ACM, 277--286. 10.1145/1201775.882264 – reference: L. A. Gatys, M. Bethge, A. Hertzmann, and E. Shechtman. 2016. Preserving Color in Neural Artistic Style Transfer. CoRR abs/1606.05897 (2016). – reference: K. Nagano, G. Fyffe, O. Alexander, J. Barbič, H. Li, A. Ghosh, and P. Debevec. 2015. Skin Microstructure Deformation with Displacement Map Convolution. ACM Trans. Graph. 34, 4 (2015). 10.1145/2766894 – reference: D. P. Kingma and J. Ba. 2014. Adam: A Method for Stochastic Optimization. CoRR abs/1412.6980 (2014). – reference: W.-C. Ma, T. Hawkins, P. Peers, C.-F. Chabert, M. Weiss, and P. Debevec. 2007b. Rapid Acquisition of Specular and Diffuse Normal Maps from Polarized Spherical Gradient Illumination. In Eurographics Symposium on Rendering. – reference: A. A. Efros and W. T. Freeman. 2001. Image Quilting for Texture Synthesis and Transfer. In Proc. SIGGRAPH. ACM, 341--346. 10.1145/383259.383296 – reference: M. Aittala, T. Aila, and J. Lehtinen. 2016. Reflectance modeling by neural texture synthesis. ACM Trans. Graph. 35, 4 (2016), 65. 10.1145/2897824.2925917 – reference: A. A. Efros and T. K. Leung. 1999. Texture Synthesis by Non-Parametric Sampling. In IEEE ICCV. 1033--. – reference: I. Kemelmacher-Shlizerman and R. Basri. 2011. 3D face reconstruction from a single image using a single reference face shape. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 2 (2011), 394--405. 10.1109/TPAMI.2010.63 – reference: W.-C. Ma, T. Hawkins, P. Peers, C.-F. Chabert, M. Weiss, and P. Debevec. 2007a. Rapid Acquisition of Specular and Diffuse Normal Maps from Polarized Spherical Gradient Illumination. In Proc. EGSR 2007. Eurographics Association, 183--194. – reference: P. Graham, B. Tunwattanapong, J. Busch, X. Yu, A. Jones, P. Debevec, and A. Ghosh. 2013b. Measurement-based Synthesis of Facial Microgeometry. In EUROGRAPHICS. 10.1145/2342896.2342970 – reference: A. E. Ichim, S. Bouaziz, and M. Pauly. 2015. Dynamic 3D Avatar Creation from Handheld Video Input. ACM Trans. Graph. 34, 4, Article 45 (2015), 45:1--45:14 pages. 10.1145/2766974 – reference: I. Kemelmacher-Shlizerman and S. M. Seitz. 2011. Face reconstruction in the wild. In IEEE ICCV. IEEE, 1746--1753. 10.1109/ICCV.2011.6126439 – reference: A. Radford, L. Metz, and S. Chintala. 2015. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. CoRR abs/1511.06434 (2015). – reference: S. Sengupta, A. Kanazawa, C. D. Castillo, and D. Jacobs. 2017. SfSNet: Learning Shape, Reflectance and Illuminance of Faces in the Wild. arXiv.1712.01261 (2017). – reference: L.-Y. Wei, S. Lefebvre, V. Kwatra, and G. Turk. 2009. State of the art in example-based texture synthesis. In Eurographics 2009, State of the Art Report, EG-STAR. Eurographics Association, 93--117. – reference: S. Romdhani and T. Vetter. 2005. Estimating 3D Shape and Texture Using Pixel Intensity, Edges, Specular Highlights, Texture Constraints and a Prior.. In Proc. CVPR. 986--993. 10.1109/CVPR.2005.145 – reference: V. Blanz and T. Vetter. 1999. A morphable model for the synthesis of 3D faces. In Proc. SIGGRAPH. 187--194. 10.1145/311535.311556 – ident: e_1_2_2_65_1 doi: 10.1109/ICCV.2017.580 – ident: e_1_2_2_77_1 doi: 10.1109/CVPR.2017.578 – ident: e_1_2_2_23_1 doi: 10.1145/2070781.2024163 – ident: e_1_2_2_46_1 doi: 10.1364/JOSAA.11.000467 – ident: e_1_2_2_51_1 doi: 10.1145/2766939 – ident: e_1_2_2_25_1 doi: 10.1145/1141911.1141988 – ident: e_1_2_2_90_1 doi: 10.1145/1731047.1731055 – ident: e_1_2_2_37_1 – volume-title: Eurographics Symposium on Rendering. ident: e_1_2_2_58_1 – volume-title: Proc. CVPR. IEEE, 5553--5562 ident: e_1_2_2_70_1 – ident: e_1_2_2_53_1 doi: 10.1007/s11263-006-0029-5 – ident: e_1_2_2_7_1 doi: 10.1145/311535.311556 – ident: e_1_2_2_20_1 doi: 10.1145/2508363.2508380 – ident: e_1_2_2_84_1 – ident: e_1_2_2_36_1 doi: 10.1145/2010324.1964941 – ident: e_1_2_2_6_1 doi: 10.1145/2010324.1964970 – ident: e_1_2_2_68_1 – ident: e_1_2_2_80_1 doi: 10.1109/CVPR.2018.00270 – ident: e_1_2_2_91_1 doi: 10.1145/2897824.2925882 – ident: e_1_2_2_13_1 doi: 10.1109/TPAMI.2006.206 – ident: e_1_2_2_17_1 doi: 10.1109/ICCV.1999.790383 – ident: e_1_2_2_5_1 doi: 10.1145/1778765.1778777 – ident: e_1_2_2_18_1 doi: 10.1145/2638549 – volume-title: Proceedings of the 3rd. International Conference on Face and Gesture Recognition (FG '98) ident: e_1_2_2_15_1 – ident: e_1_2_2_39_1 doi: 10.1109/TPAMI.2010.63 – ident: e_1_2_2_55_1 doi: 10.1109/ICCV.2015.425 – volume-title: 2016 Fourth International Conference on. IEEE, 460--469 ident: e_1_2_2_69_1 – ident: e_1_2_2_45_1 doi: 10.1145/1201775.882264 – ident: e_1_2_2_76_1 doi: 10.1145/2661229.2661290 – ident: e_1_2_2_2_1 doi: 10.1145/1667239.1667251 – ident: e_1_2_2_29_1 doi: 10.1145/2342896.2342970 – ident: e_1_2_2_33_1 doi: 10.1145/2766974 – volume-title: Proc. EGSR year: 2007 ident: e_1_2_2_57_1 – ident: e_1_2_2_22_1 – volume-title: Proc. ECCV (5)'14 ident: e_1_2_2_50_1 – volume-title: Proc. CVPR. ident: e_1_2_2_83_1 – ident: e_1_2_2_40_1 doi: 10.1109/ICCV.2011.6126439 – ident: e_1_2_2_89_1 doi: 10.1145/1141911.1141987 – ident: e_1_2_2_34_1 doi: 10.1145/3072959.3073659 – ident: e_1_2_2_38_1 doi: 10.1109/ICCV.2013.404 – ident: e_1_2_2_4_1 doi: 10.1109/TPAMI.2014.2377712 – volume-title: Proceedings of the Fourth ACM SIGGRAPH/Eurographics conference on High-Performance Graphics. Eurographics Association, 115--124 ident: e_1_2_2_47_1 – ident: e_1_2_2_88_1 doi: 10.1145/344779.345009 – volume-title: Proc. CVPR. ident: e_1_2_2_41_1 – ident: e_1_2_2_43_1 – ident: e_1_2_2_82_1 – ident: e_1_2_2_54_1 doi: 10.1631/FITEE.1700253 – ident: e_1_2_2_35_1 doi: 10.1109/CVPR.2017.632 – ident: e_1_2_2_66_1 doi: 10.1145/2980179.2980252 – ident: e_1_2_2_12_1 doi: 10.1145/344779.344855 – volume-title: Adam: A Method for Stochastic Optimization. CoRR abs/1412.6980 year: 2014 ident: e_1_2_2_42_1 – ident: e_1_2_2_63_1 doi: 10.1145/2766894 – volume-title: Proc. CVPR. 4786--4794 ident: e_1_2_2_64_1 – volume-title: Proc. ECCV. Springer, 796--812 ident: e_1_2_2_79_1 – ident: e_1_2_2_1_1 doi: 10.1145/2897824.2925917 – ident: e_1_2_2_28_1 doi: 10.1145/2342896.2342970 – ident: e_1_2_2_85_1 doi: 10.1162/jocn.1991.3.1.71 – volume-title: Proc. CVPR. * equal contribution. ident: e_1_2_2_92_1 – volume-title: Computer Graphics Forum ident: e_1_2_2_9_1 – ident: e_1_2_2_27_1 doi: 10.1109/ICCV.2015.103 – ident: e_1_2_2_32_1 doi: 10.1145/3130800.31310887 – ident: e_1_2_2_59_1 doi: 10.1145/1457515.1409074 – volume-title: Proc. ECCV. ident: e_1_2_2_72_1 – ident: e_1_2_2_87_1 – ident: e_1_2_2_26_1 – ident: e_1_2_2_8_1 doi: 10.1109/CVPR.2016.598 – ident: e_1_2_2_10_1 doi: 10.1145/2766943 – ident: e_1_2_2_49_1 doi: 10.1145/1141911.1141921 – volume-title: Proc. CVPR. 2536--2544 ident: e_1_2_2_67_1 – volume-title: Proc. CVPR. 787--796 ident: e_1_2_2_95_1 – ident: e_1_2_2_30_1 doi: 10.1007/s00371-006-0078-3 – ident: e_1_2_2_62_1 doi: 10.1145/1531326.1531363 – ident: e_1_2_2_56_1 doi: 10.3758/s13428-014-0532-5 – volume-title: Mofa: Model-based deep convolutional face autoencoder for unsupervised monocular reconstruction year: 2017 ident: e_1_2_2_81_1 – volume-title: Proc. CVPR. ident: e_1_2_2_73_1 – ident: e_1_2_2_11_1 doi: 10.1145/2897824.2925873 – volume-title: Proc. CVPR. 4786--4794 ident: e_1_2_2_14_1 – ident: e_1_2_2_16_1 doi: 10.1145/383259.383296 – volume-title: Physically Based Rendering of Fine Scale Human Skin Structure. In Eurographics Workshop on Rendering, S. J. Gortle and K. Myszkowski (Eds.). ident: e_1_2_2_31_1 – ident: e_1_2_2_60_1 doi: 10.1023/B:VISI.0000029666.37597.d3 – ident: e_1_2_2_78_1 – volume-title: Proc. CVPR. ident: e_1_2_2_93_1 – ident: e_1_2_2_19_1 doi: 10.1111/cgf.13127 – ident: e_1_2_2_75_1 – volume-title: 2016 Fourth International Conference on. IEEE, 639--648 ident: e_1_2_2_61_1 – ident: e_1_2_2_94_1 – ident: e_1_2_2_44_1 doi: 10.1145/1073204.1073263 – ident: e_1_2_2_71_1 doi: 10.1109/CVPR.2005.145 – volume-title: Photo-realistic single image super-resolution using a generative adversarial network. arXiv:1609.04802 year: 2016 ident: e_1_2_2_48_1 – ident: e_1_2_2_74_1 doi: 10.1109/ICCV.2017.175 – ident: e_1_2_2_21_1 – ident: e_1_2_2_24_1 doi: 10.1145/1360612.1360658 – ident: e_1_2_2_3_1 doi: 10.1109/TPAMI.2014.2377712 – ident: e_1_2_2_52_1 doi: 10.1109/CVPR.2017.624 – ident: e_1_2_2_86_1 doi: 10.1145/2614028.2615407 |
SSID | ssj0006446 |
Score | 2.6070743 |
Snippet | We present a deep learning-based technique to infer high-quality facial reflectance and geometry given a single unconstrained image of the subject, which may... |
SourceID | crossref acm |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Computer graphics Computing methodologies Mesh geometry models Shape modeling |
SubjectTermsDisplay | Computing methodologies -- Computer graphics -- Shape modeling -- Mesh geometry models |
Title | High-fidelity facial reflectance and geometry inference from an unconstrained image |
URI | https://dl.acm.org/doi/10.1145/3197517.3201364 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4EDggFifMkHDkgoJY7tfByrAZqA7rJN2k6R49ilG23RSA_w1_Oe7aQuDAm4RJFTu5HfL-_L74OQl1pwkeHRP3DHMhG8UInKyyqxuWx1yTnIRMxGnh3nR2fiw7k8H41sFLW06ZqJ_nFjXsn_UBXGgK6YJfsPlB0WhQG4B_rCFSgM17-iMQZpJBYLVaEubZVzf4PIQ1f8kAowN-ul6a6_u7grX1PW5ZTAhw0yDdVD7BIBeudiqXYDg6aHM2wh0fcTdwcLrsB1FCF_oWAWNlRxbtTPm_l68NmohWvRhKOrb5urAUHHaq5cw-_XH9dXi8hz7cYu1OXCxL4IVjonZxqhZxaxL-AdCRpcXtIE9iqLpOC-kU7Pf33Rl4AzETFTFklln2n6O78XWBoD2EghWTHhGVagE1vRNgQchie3yF4G5kQ2JnvTt7NPJ4PMBq3QnWr37xyKQMHyb35ZHLUYvYy0mEgdOb1H7gY7gk49KO6TkVntkztRdckH5GQHHtTDg0bwoAAP2sODDvCgCA94RnfgQR08HpKz9-9OD4-S0EMjUaCYdwlTTaGkbbGZh1WibBs8KJapaovUgq1dpKnJDGvbRmhd5RlTMrfSWpMzbZiV_BEZr9Yr85hQsG21yMuCN1wLYZuqrUplMta0lc65rg7IPuxM_dVXSanDfh2QSb9TtQ5l5_HFv9Q-JV7WYYO3E14NE_q1_vDTJzf-41Nye4vNZ2TcXW_Mc9Acu-ZFIPtP15Vrqg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-fidelity+facial+reflectance+and+geometry+inference+from+an+unconstrained+image&rft.jtitle=ACM+transactions+on+graphics&rft.au=Yamaguchi%2C+Shugo&rft.au=Saito%2C+Shunsuke&rft.au=Nagano%2C+Koki&rft.au=Zhao%2C+Yajie&rft.date=2018-07-30&rft.pub=ACM&rft.issn=0730-0301&rft.eissn=1557-7368&rft.volume=37&rft.issue=4&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1145%2F3197517.3201364&rft.externalDocID=3201364 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-0301&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-0301&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-0301&client=summon |