Solvent-Directed Transformation of the Self-assembly and Optical Property of a Peptide-Appended Core-Substituted Naphthelenediimide and Selective Detection of Nitrite Ions in an Aqueous Medium
This study vividly displays the different self-assembling behavior and consequent tuning of the fluorescence property of a peptide-appended core-substituted naphthalenediimide (N1) in the aliphatic hydrocarbon solvents (n-hexane/n-decane/methyl cyclohexane) and in an aqueous medium within micelles....
Saved in:
Published in | Langmuir Vol. 37; no. 31; pp. 9577 - 9587 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
10.08.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | This study vividly displays the different self-assembling behavior and consequent tuning of the fluorescence property of a peptide-appended core-substituted naphthalenediimide (N1) in the aliphatic hydrocarbon solvents (n-hexane/n-decane/methyl cyclohexane) and in an aqueous medium within micelles. The N1 is highly fluorescent in the monomeric state and self-aggregates in a hydrocarbon solvent, exhibiting “H-type” or “face-to-face” stacking as indicated by a blue shift of absorption maxima in the UV–vis spectrum. In the H-aggregated state, the fluorescence emission of N1 changes to green from the yellow emission obtained in the monomeric state. In the presence of a micelle-forming surfactant, cetyl trimethylammonium bromide (CTAB), the N1 is found to be dispersed in a water medium. Interestingly, upon encapsulation of N1 into the micelle, the molecule alters its self-assembling pattern and optical property compared to its behavior in the hydrocarbon solvent. The N1 exhibits “edge-to-edge” stacking or J aggregates inside the micelle as indicated by the UV–vis spectroscopic study, which shows a red shift of the absorption maxima compared to that in the monomeric state. The fluorescence emission also differs in the water medium with the NDI derivative exhibiting red emission. FT-IR studies reveal that all amide NHs of N1 are hydrogen-bonded within the micelle (in the J-aggregated state), whereas both non-bonding and hydrogen-bonding amide NHs are present in the H-aggregated state. This is a wonderful example of solvent-mediated transformation of the aggregation pattern (from H to J) and solvatochromism of emission over a wide range from green in the H-aggregated state to yellow in the monomeric state and orangish-red in the J-aggregated state. Moreover, the J aggregate has been successfully utilized for selective and sensitive detection of nitrite ions in water even in the presence of other common anions (NO3 –, SO4 2–, HSO4 –, CO3 2–, and Cl–). |
---|---|
AbstractList | This study vividly displays the different self-assembling behavior and consequent tuning of the fluorescence property of a peptide-appended core-substituted naphthalenediimide (N1) in the aliphatic hydrocarbon solvents (n-hexane/n-decane/methyl cyclohexane) and in an aqueous medium within micelles. The N1 is highly fluorescent in the monomeric state and self-aggregates in a hydrocarbon solvent, exhibiting “H-type” or “face-to-face” stacking as indicated by a blue shift of absorption maxima in the UV–vis spectrum. In the H-aggregated state, the fluorescence emission of N1 changes to green from the yellow emission obtained in the monomeric state. In the presence of a micelle-forming surfactant, cetyl trimethylammonium bromide (CTAB), the N1 is found to be dispersed in a water medium. Interestingly, upon encapsulation of N1 into the micelle, the molecule alters its self-assembling pattern and optical property compared to its behavior in the hydrocarbon solvent. The N1 exhibits “edge-to-edge” stacking or J aggregates inside the micelle as indicated by the UV–vis spectroscopic study, which shows a red shift of the absorption maxima compared to that in the monomeric state. The fluorescence emission also differs in the water medium with the NDI derivative exhibiting red emission. FT-IR studies reveal that all amide NHs of N1 are hydrogen-bonded within the micelle (in the J-aggregated state), whereas both non-bonding and hydrogen-bonding amide NHs are present in the H-aggregated state. This is a wonderful example of solvent-mediated transformation of the aggregation pattern (from H to J) and solvatochromism of emission over a wide range from green in the H-aggregated state to yellow in the monomeric state and orangish-red in the J-aggregated state. Moreover, the J aggregate has been successfully utilized for selective and sensitive detection of nitrite ions in water even in the presence of other common anions (NO3 –, SO4 2–, HSO4 –, CO3 2–, and Cl–). |
Author | Gayen, Kousik Paul, Subir Banerjee, Arindam Hazra, Soumyajit |
AuthorAffiliation | School of Biological Sciences |
AuthorAffiliation_xml | – name: School of Biological Sciences |
Author_xml | – sequence: 1 givenname: Kousik surname: Gayen fullname: Gayen, Kousik – sequence: 2 givenname: Subir surname: Paul fullname: Paul, Subir – sequence: 3 givenname: Soumyajit surname: Hazra fullname: Hazra, Soumyajit – sequence: 4 givenname: Arindam orcidid: 0000-0002-1309-921X surname: Banerjee fullname: Banerjee, Arindam email: bcab@iacs.res.in |
BookMark | eNp9kclOwzAYhC0EEmV5Aw4-cnHxmqTHqmyV2KT2HjnJHzBK7GA7SH07Hg2HwpWTLfubGf-eE3RonQWELhidM8rZla7DvNP2tR-Nn7OaMllkB2jGFKdEFTw_RDOaS0FymYljdBLCO6V0IeRihr42rvsEG8m18VBHaPDWaxta53sdjbPYtTi-Ad5A1xIdAvRVt8PaNvh5iKbWHX7xbgAfdxOp8Quk4wbIchjANslu5TyQzViFaOI4-T_p4S05dmChMaZP8I9dCkj55hPwNcRpt89-MtGbCHjtbMDGJhQvP0ZwY8CPST_2Z-io1V2A89_1FG1vb7are_LwfLdeLR-IFlxFUvOGp4FzKilXORMsFzSTrKWVpFnLOKimzopKV1IWAioJOYgiKyRvYdFkSpyiy73t4F3KD7HsTaihS98-PabkSmWiUFJNqNyjtXcheGjLwZte-13JaDn1Vaa-yr--yt--kozuZdPtuxu9TeP8L_kG59Wibw |
CitedBy_id | crossref_primary_10_1021_acsapm_3c02456 crossref_primary_10_1002_anie_202215916 crossref_primary_10_1002_slct_202301822 crossref_primary_10_1002_adpr_202200006 crossref_primary_10_1039_D2QO00399F crossref_primary_10_1002_ange_202215916 crossref_primary_10_1002_chem_202300624 crossref_primary_10_1021_acsabm_2c01041 |
Cites_doi | 10.1021/acs.biomac.7b01048 10.1098/rsfs.2016.0099 10.1002/aenm.201500195 10.1021/acs.langmuir.6b02727 10.1002/chem.201602624 10.1021/acscentsci.7b00115 10.1021/acs.chemrev.5b00299 10.1002/adma.201707083 10.1039/c7cs00163k 10.1021/jacs.5b00977 10.1021/acs.orglett.7b03861 10.1039/C5SC03462K 10.1039/C4OB02054E 10.1021/acsomega.7b01813 10.1002/slct.201900087 10.1021/acsami.9b02404 10.1021/acs.jpclett.9b02269 10.1039/C5CP05236J 10.1039/D0SC01748E 10.1039/C6RA06800F 10.1039/D0QM00084A 10.1016/j.snb.2016.07.052 10.1021/acsami.9b00581 10.1039/c0cc00078g 10.1111/nph.15969 10.1021/acs.orglett.6b03614 10.1039/C6CC06176A 10.1021/acs.orglett.5b03489 10.1021/ac4031303 10.1039/C7CC00554G 10.1021/la504378m 10.1021/acs.langmuir.8b02111 10.1039/C7TA02749D 10.1039/C6TC04453K 10.1039/c3ob41771a 10.1021/acs.langmuir.9b00815 10.1021/acssensors.8b01617 10.1021/acs.langmuir.0c01691 10.1039/D0CC06014C 10.1002/cplu.201900577 10.1021/la3018437 10.1021/acs.langmuir.1c00022 10.1002/chem.201303889 10.1021/jacs.9b08926 10.1002/chem.201806008 10.1007/s00604-010-0524-9 10.1039/C5SC00862J 10.1039/c3cc43538e 10.1039/C5TC02397A 10.1021/acs.chemrev.6b00160 10.1021/acs.jpcc.9b04414 10.1021/acsnano.0c06041 10.1002/ange.201311158 10.1021/ja2088647 10.1039/C9CC04723A 10.1021/acs.langmuir.0c03421 10.1002/anie.201309746 10.1039/C7TA01845B 10.1021/acs.jpcc.7b00874 10.1021/jacs.7b04006 10.1039/C5CC01536G 10.1016/j.chempr.2017.03.022 10.1039/D0CE01719A 10.1002/ange.201708267 10.1021/cr400195e 10.1021/acsami.9b12037 10.1021/ja504903j 10.1039/C8CC00177D 10.1021/am400063k 10.1021/acsami.6b00011 10.1039/b919449p |
ContentType | Journal Article |
Copyright | 2021 American Chemical
Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acs.langmuir.1c01486 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 9587 |
ExternalDocumentID | 10_1021_acs_langmuir_1c01486 a269339514 |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5VS 7~N AABXI ABFLS ABFRP ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ F5P GGK GNL IH9 IHE JG JG~ K2 RNS ROL TN5 UI2 UPT VF5 VG9 W1F X --- -~X AAHBH AAYXX ABJNI ABQRX ADHLV AGXLV CITATION CUPRZ YQT ~02 7X8 |
ID | FETCH-LOGICAL-a325t-c2d23497040257131730641f0b406f12e5dc68bab4483eb4e7e386842fe9d653 |
IEDL.DBID | ACS |
ISSN | 0743-7463 |
IngestDate | Sat Aug 17 00:45:22 EDT 2024 Fri Aug 23 00:50:25 EDT 2024 Thu Aug 12 03:15:16 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a325t-c2d23497040257131730641f0b406f12e5dc68bab4483eb4e7e386842fe9d653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1309-921X |
PQID | 2556385455 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2556385455 crossref_primary_10_1021_acs_langmuir_1c01486 acs_journals_10_1021_acs_langmuir_1c01486 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2021-08-10 |
PublicationDateYYYYMMDD | 2021-08-10 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref13/cit13 doi: 10.1021/acs.biomac.7b01048 – ident: ref37/cit37 doi: 10.1098/rsfs.2016.0099 – ident: ref9/cit9 doi: 10.1002/aenm.201500195 – ident: ref28/cit28 doi: 10.1021/acs.langmuir.6b02727 – ident: ref39/cit39 doi: 10.1002/chem.201602624 – ident: ref44/cit44 doi: 10.1021/acscentsci.7b00115 – ident: ref42/cit42 doi: 10.1021/acs.chemrev.5b00299 – ident: ref41/cit41 doi: 10.1002/adma.201707083 – ident: ref45/cit45 doi: 10.1039/c7cs00163k – ident: ref20/cit20 doi: 10.1021/jacs.5b00977 – ident: ref18/cit18 doi: 10.1021/acs.orglett.7b03861 – ident: ref66/cit66 doi: 10.1039/C5SC03462K – ident: ref14/cit14 doi: 10.1039/C4OB02054E – ident: ref30/cit30 doi: 10.1021/acsomega.7b01813 – ident: ref47/cit47 doi: 10.1002/slct.201900087 – ident: ref50/cit50 doi: 10.1021/acsami.9b02404 – ident: ref35/cit35 doi: 10.1021/acs.jpclett.9b02269 – ident: ref36/cit36 doi: 10.1039/C5CP05236J – ident: ref63/cit63 doi: 10.1039/D0SC01748E – ident: ref69/cit69 doi: 10.1039/C6RA06800F – ident: ref6/cit6 doi: 10.1039/D0QM00084A – ident: ref10/cit10 doi: 10.1016/j.snb.2016.07.052 – ident: ref40/cit40 doi: 10.1021/acsami.9b00581 – ident: ref25/cit25 doi: 10.1039/c0cc00078g – ident: ref68/cit68 doi: 10.1111/nph.15969 – ident: ref22/cit22 doi: 10.1021/acs.orglett.6b03614 – ident: ref24/cit24 doi: 10.1039/C6CC06176A – ident: ref23/cit23 doi: 10.1021/acs.orglett.5b03489 – ident: ref70/cit70 doi: 10.1021/ac4031303 – ident: ref62/cit62 doi: 10.1039/C7CC00554G – ident: ref57/cit57 doi: 10.1021/la504378m – ident: ref61/cit61 doi: 10.1021/acs.langmuir.8b02111 – ident: ref7/cit7 doi: 10.1039/C7TA02749D – ident: ref53/cit53 doi: 10.1039/C6TC04453K – ident: ref54/cit54 doi: 10.1039/c3ob41771a – ident: ref65/cit65 doi: 10.1021/acs.langmuir.9b00815 – ident: ref11/cit11 doi: 10.1021/acssensors.8b01617 – ident: ref59/cit59 doi: 10.1021/acs.langmuir.0c01691 – ident: ref60/cit60 doi: 10.1039/D0CC06014C – ident: ref12/cit12 doi: 10.1002/cplu.201900577 – ident: ref27/cit27 doi: 10.1021/la3018437 – ident: ref64/cit64 doi: 10.1021/acs.langmuir.1c00022 – ident: ref31/cit31 doi: 10.1002/chem.201303889 – ident: ref16/cit16 doi: 10.1021/jacs.9b08926 – ident: ref4/cit4 doi: 10.1002/chem.201806008 – ident: ref71/cit71 doi: 10.1007/s00604-010-0524-9 – ident: ref15/cit15 doi: 10.1039/C5SC00862J – ident: ref32/cit32 doi: 10.1039/c3cc43538e – ident: ref55/cit55 doi: 10.1039/C5TC02397A – ident: ref2/cit2 doi: 10.1021/acs.chemrev.6b00160 – ident: ref51/cit51 doi: 10.1021/acs.jpcc.9b04414 – ident: ref43/cit43 doi: 10.1021/acsnano.0c06041 – ident: ref38/cit38 doi: 10.1002/ange.201311158 – ident: ref33/cit33 doi: 10.1021/ja2088647 – ident: ref26/cit26 doi: 10.1039/C9CC04723A – ident: ref58/cit58 doi: 10.1021/acs.langmuir.0c03421 – ident: ref1/cit1 doi: 10.1002/anie.201309746 – ident: ref3/cit3 doi: 10.1039/C7TA01845B – ident: ref17/cit17 doi: 10.1021/acs.jpcc.7b00874 – ident: ref34/cit34 doi: 10.1021/jacs.7b04006 – ident: ref56/cit56 doi: 10.1039/C5CC01536G – ident: ref48/cit48 doi: 10.1016/j.chempr.2017.03.022 – ident: ref52/cit52 doi: 10.1039/D0CE01719A – ident: ref21/cit21 doi: 10.1002/ange.201708267 – ident: ref5/cit5 doi: 10.1021/cr400195e – ident: ref8/cit8 doi: 10.1021/acsami.9b12037 – ident: ref19/cit19 doi: 10.1021/ja504903j – ident: ref49/cit49 doi: 10.1039/C8CC00177D – ident: ref67/cit67 doi: 10.1021/am400063k – ident: ref29/cit29 doi: 10.1021/acsami.6b00011 – ident: ref46/cit46 doi: 10.1039/b919449p |
SSID | ssj0009349 |
Score | 2.4622386 |
Snippet | This study vividly displays the different self-assembling behavior and consequent tuning of the fluorescence property of a peptide-appended core-substituted... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 9577 |
Title | Solvent-Directed Transformation of the Self-assembly and Optical Property of a Peptide-Appended Core-Substituted Naphthelenediimide and Selective Detection of Nitrite Ions in an Aqueous Medium |
URI | http://dx.doi.org/10.1021/acs.langmuir.1c01486 https://search.proquest.com/docview/2556385455 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTttAEF6VcKCXUlqqUqAaJC49bIh3vU58jAKIVmpASipxs7zrsRqR2FFiH-jT9dE6s45FaYVartZo1_bMznw7v0KcEgIOYxs5Et6elaE1PWmt4VqZWGc5ujhWXOD8dRxdfQu_3Jrbh4vinxF8FZylbt1l392inq26gWMPWLQltlWfzgdDodHkocmubuAut93sh5FuS-WeWIUNkls_NkiP9bE3Mpe74rot1WlyS-66dWW77sffnRv_8_1fi1cbvAnDRkD2xAss3oidUTvm7a34OSnnnPMoG-WHGUx_w7JlAWUOBBJhgvNcEtLGhZ3fQ1pkcL30fnC4YX_-qrpnyhRuOE0mQ0nw1nvXYVSuULJ-apISMhiny--0Ipk7MpyzBRH75SZ-Ig8pXzjHyieI-b3HMx4XgPCZjgfMCiKFIf27sl4DB5nqxb6YXl5MR1dyM9ZBplqZSjqVKWJUn9QH6YuAAAzfgoK8Zwlc5IFCk7loYFNLN0eNNsQ-6gGHC3OMs8jod6JTlAW-FxBpq9EZVL0wDx1ynxynQqeigdbaBuZAfKK_n2xO5TrxAXcVJPywZUmyYcmBkK0YJMum0cc_6E9aWUmIYxxmSQv--ISbuukBIVPz4Rn7H4qXitNlfLfdI9GpVjUeE96p7Ecv5L8Ad2kAFw |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDCa67tBd2j2xtntowC47KIsly4mPRbYi3dqsQLKhN8OSaTRYYgexfWh_XX_aSDle1wHD0KtAUC-K_ERSFMB7QsBhbCNHwtu3MrSmL601_FYm1lmOLo4VP3A-m0Tj7-GXC3OxBaZ7C0ODqIhT5YP4t9UFgo_cxi68ZTNf9wLHjrDoATw0A7KZjIhG09tau7pFvVx9cxBGunsx9w8ubJdcddcu3VXL3tYc78GP36P0KSY_e01te-76rwKO957GY9jdoE9x1IrLE9jC4insjLpP357BzbRccAakbFUhZmL2B7ItC1HmgiCjmOIil4S7cWkXVyItMvFt5b3i4py9--v6iilTcc5JMxlKArve1y5G5Rola6s2RSETk3R1SRzJ-JEZnS-J2LOb-v95SBWLT1j7dDHf92TOnwegOKHDIuYFkYojWsKyqQSHnJrlc5gdf56NxnLzyYNMtTK1dCpTtF8DUiakPQKCM3wnCvK-JaiRBwpN5qKhTS3dIzXaEAeohxw8zDHOIqNfwHZRFvgSRKStRmdQ9cM8dMhVc5wKnYqGWmsbmH34QKufbM5olfjwuwoSbuy2JNlsyT7IThqSVVv24z_07zqRSWjHOOiSFjz5hEu86SHhVHNwj_7fws54dnaanJ5Mvh7CI8WJNL4O7yvYrtcNviYkVNs3Xu5_AS_FCHw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSIwXPjcxvmYkXnhw19hx2jxWHdU2oFRqJ028RLF9ERVtUjXJw_jr-NO4cxLYJqEJXi3LX3e--_nufMfYO0TAYWwii8zbNyI0ui-M0fRXJlYuAxvHkj44f55GJ-fh2YW-uFLqCxdR4kild-LTrd64rM0wEBxRO5nx1vVy2wssGcOiu-yeHgTeQzsaz__k21UN8qUMnIMwUt2vub-MQrrJltd103XR7PXN5BH7-nulPszke6-uTM_-uJHE8b-28pg9bFEoHzVs84Tdgfwp2x13xd-esZ_zYkWRkKIRieD44grCLXJeZByhI5_DKhOIv2FtVpc8zR3_svHWcT4jK_-2uqSeKZ9R8IwDgaDX29z5uNiCIKnVhCo4Pk0333BEVIKoTpdr7OyHm_s6PSiS-TFUPmzMzz1dUhEB4Kd4afgyx658hMdY1CUn11O93mOLyYfF-ES0xR5EqqSuhJVOIs0GKFRQigQIa-htFGR9g5AjCyRoZ6OhSQ2-JxWYEAaghuREzCB2kVb7bCcvcnjOeKSMAqtB9sMstEDZc6wMrYyGSikT6AP2Hk8_ae9qmXg3vAwSauxIkrQkOWCi44hk06T_uKX_245tEqQYOV_SnDafUKo3NUS8ql_8w_yH7P7seJJ8Op1-fMkeSIqn8el4X7GdalvDawRElXnjWf8XeBwK9g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solvent-Directed+Transformation+of+the+Self-assembly+and+Optical+Property+of+a+Peptide-Appended+Core-Substituted+Naphthelenediimide+and+Selective+Detection+of+Nitrite+Ions+in+an+Aqueous+Medium&rft.jtitle=Langmuir&rft.au=Gayen%2C+Kousik&rft.au=Paul%2C+Subir&rft.au=Hazra%2C+Soumyajit&rft.au=Banerjee%2C+Arindam&rft.date=2021-08-10&rft.eissn=1520-5827&rft.volume=37&rft.issue=31&rft.spage=9577&rft.epage=9587&rft_id=info:doi/10.1021%2Facs.langmuir.1c01486&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |