Effect of Metal Nanoparticle Aggregate Structure on the Thermodynamics of Oxidative Dissolution
Here, we compare the electrochemical oxidation potential of 15 nm diameter citrate-stabilized Au NPs aggregated by acid (low pH) to those aggregated by tetrakis(hydroxymethyl) phosphonium chloride (THPC). For acid-induced aggregation, the solution changes to a blue-violet color, the localized surfa...
Saved in:
Published in | Langmuir Vol. 37; no. 24; pp. 7320 - 7327 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
22.06.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | Here, we compare the electrochemical oxidation potential of 15 nm diameter citrate-stabilized Au NPs aggregated by acid (low pH) to those aggregated by tetrakis(hydroxymethyl) phosphonium chloride (THPC). For acid-induced aggregation, the solution changes to a blue-violet color, the localized surface plasmon resonance (LSPR) band of Au NPs at 520 nm decreases along with an increase in absorbance at higher wavelengths (600–800 nm), and the peak oxidation potential (E p) in anodic stripping voltammetry (ASV) obtained in bromide has a positive shift by as large as 200 mV. For THPC-induced aggregation (Au/THPC mole ratio = 62.5), the solution changes to a blue color as the LSPR band at 520 nm decreases and a new distinct peak at 700 nm appears, but the E p does not exhibit a positive shift. Scanning transmission electron microscopy (STEM) images reveal that acid-induced aggregates are three-dimensional with strongly fused Au NP–Au NP contacts, while THPC-induced aggregates are linear or two-dimensional with ∼1 nm separation between Au NPs. The surface area-to-volume ratio (SA/V) decreases for acid-aggregated Au NPs due to strong Au NP–Au NP contacts, which leads to lower surface free energy and a higher E p. The SA/V does not change for THPC-aggregated Au NPs since space remains between them and their SA is fully accessible. These findings show that metal NP oxidative stability, as determined by ASV, is highly sensitive to the details of the aggregate structure. |
---|---|
AbstractList | Here, we compare the electrochemical oxidation potential of 15 nm diameter citrate-stabilized Au NPs aggregated by acid (low pH) to those aggregated by tetrakis(hydroxymethyl) phosphonium chloride (THPC). For acid-induced aggregation, the solution changes to a blue-violet color, the localized surface plasmon resonance (LSPR) band of Au NPs at 520 nm decreases along with an increase in absorbance at higher wavelengths (600–800 nm), and the peak oxidation potential (E p) in anodic stripping voltammetry (ASV) obtained in bromide has a positive shift by as large as 200 mV. For THPC-induced aggregation (Au/THPC mole ratio = 62.5), the solution changes to a blue color as the LSPR band at 520 nm decreases and a new distinct peak at 700 nm appears, but the E p does not exhibit a positive shift. Scanning transmission electron microscopy (STEM) images reveal that acid-induced aggregates are three-dimensional with strongly fused Au NP–Au NP contacts, while THPC-induced aggregates are linear or two-dimensional with ∼1 nm separation between Au NPs. The surface area-to-volume ratio (SA/V) decreases for acid-aggregated Au NPs due to strong Au NP–Au NP contacts, which leads to lower surface free energy and a higher E p. The SA/V does not change for THPC-aggregated Au NPs since space remains between them and their SA is fully accessible. These findings show that metal NP oxidative stability, as determined by ASV, is highly sensitive to the details of the aggregate structure. |
Author | Nambiar, Harikrishnan N Allen, Stacy L Jasinski, Jacek B Zamborini, Francis P Pattadar, Dhruba K |
AuthorAffiliation | Department of Chemistry Department of Chemistry and Biochemistry Conn Center for Renewable Energy Research University of Arizona |
AuthorAffiliation_xml | – name: University of Arizona – name: – name: Department of Chemistry – name: Conn Center for Renewable Energy Research – name: Department of Chemistry and Biochemistry |
Author_xml | – sequence: 1 givenname: Dhruba K surname: Pattadar fullname: Pattadar, Dhruba K organization: University of Arizona – sequence: 2 givenname: Harikrishnan N surname: Nambiar fullname: Nambiar, Harikrishnan N – sequence: 3 givenname: Stacy L surname: Allen fullname: Allen, Stacy L – sequence: 4 givenname: Jacek B orcidid: 0000-0002-1297-6145 surname: Jasinski fullname: Jasinski, Jacek B – sequence: 5 givenname: Francis P orcidid: 0000-0003-0685-0180 surname: Zamborini fullname: Zamborini, Francis P email: f.zamborini@louisville.edu |
BookMark | eNp9kD1PwzAURS0EEqXwDxg8sqQ823HijKiUD6nAAMyW47wUoyQutoPg35OqsDLd4d3zpHtOyOHgByTknMGCAWeXxsZFZ4ZNP7qwYBZAFvKAzJjkkEnFy0MygzIXWZkX4picxPgOAJXIqxnRq7ZFm6hv6QMm09FHM_itCcnZDunVZhNwYxLS5xRGm8aA1A80vSF9ecPQ--Z7ML2zccc_fbnGJPeJ9NrF6LsxOT-ckqPWdBHPfnNOXm9WL8u7bP10e7-8WmdGcJmy2qiC5wxrY2wByigsWcGbvFYN1FDkVSEFyoYLy0tRgTBSFTVDxaHNoWmkmJOL_d9t8B8jxqR7Fy12kxb0Y9RcioqDUgKmar6v2uBjDNjqbXC9Cd-agd751JNP_edT__qcMNhju-u7H8Mw7fkf-QHVAX-e |
CitedBy_id | crossref_primary_10_1021_acs_langmuir_3c00334 crossref_primary_10_1124_pharmrev_122_000719 crossref_primary_10_1016_j_est_2024_112169 crossref_primary_10_1021_acs_jchemed_2c00927 crossref_primary_10_3390_nano13131907 crossref_primary_10_3390_toxics12030223 crossref_primary_10_1021_acs_jpca_2c03900 crossref_primary_10_1021_acsomega_3c00771 crossref_primary_10_1149_1945_7111_ac418c |
Cites_doi | 10.1149/1945-7111/abbd72 10.1021/ja901609k 10.1021/ja502628r 10.1021/jacs.0c09426 10.1002/adma.200390095 10.1039/C5CC08211K 10.1016/j.coelec.2018.12.006 10.1021/acs.analchem.5b02343 10.1021/ja104260n 10.1021/acsnano.5b07505 10.1021/acs.langmuir.9b02421 10.1021/jp806059a 10.1021/ja902062j 10.1021/am400402c 10.1002/open.201402050 10.1002/cphc.201100207 10.1016/j.aca.2012.08.043 10.1021/ja2015179 10.1021/jp402833q 10.1021/la3027804 10.1021/nl0727563 10.1039/C3CP54221A 10.1016/j.optmat.2017.01.004 10.1021/acs.chemrev.7b00776 10.1021/es202009h 10.1021/jp075550z 10.1002/celc.201901700 10.1166/jnn.2009.J066 10.1039/df9511100055 10.1126/science.277.5329.1078 10.1021/es400391a 10.1021/ac071253e 10.1021/la052055q 10.1039/D0NA00159G 10.1021/jacs.7b06775 10.1016/j.electacta.2018.02.021 10.1021/acs.analchem.8b01905 10.1021/jacs.8b06830 10.1021/acs.jpcc.6b09066 10.1080/17458080600778644 10.1002/anie.201505307 10.1021/jacs.7b05957 10.1016/j.scitotenv.2013.02.093 10.1021/acs.jpcc.9b06555 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acs.langmuir.1c00565 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 7327 |
ExternalDocumentID | 10_1021_acs_langmuir_1c00565 b244677647 |
GroupedDBID | - .K2 02 4.4 55A 5GY 5VS 7~N AABXI ABFLS ABFRP ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ F5P GGK GNL IH9 IHE JG JG~ K2 RNS ROL TN5 UI2 UPT VF5 VG9 W1F X --- -~X 53G AAHBH AAYXX ABJNI ABQRX ADHLV AGXLV CITATION CUPRZ YQT ~02 7X8 |
ID | FETCH-LOGICAL-a325t-ba86241ebaac608a8e7162d4b8d0b0649653e5d23c273903a586b1e820f40dd53 |
IEDL.DBID | ACS |
ISSN | 0743-7463 |
IngestDate | Fri Aug 16 09:58:58 EDT 2024 Fri Aug 23 00:50:24 EDT 2024 Thu Jun 24 03:11:19 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a325t-ba86241ebaac608a8e7162d4b8d0b0649653e5d23c273903a586b1e820f40dd53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1297-6145 0000-0003-0685-0180 |
PQID | 2539208830 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2539208830 crossref_primary_10_1021_acs_langmuir_1c00565 acs_journals_10_1021_acs_langmuir_1c00565 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 20210622 2021-06-22 |
PublicationDateYYYYMMDD | 2021-06-22 |
PublicationDate_xml | – month: 06 year: 2021 text: 20210622 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref41/cit41 doi: 10.1149/1945-7111/abbd72 – ident: ref9/cit9 doi: 10.1021/ja901609k – ident: ref5/cit5 doi: 10.1021/ja502628r – ident: ref32/cit32 doi: 10.1021/jacs.0c09426 – ident: ref2/cit2 doi: 10.1002/adma.200390095 – ident: ref30/cit30 doi: 10.1039/C5CC08211K – ident: ref27/cit27 doi: 10.1016/j.coelec.2018.12.006 – ident: ref15/cit15 doi: 10.1021/acs.analchem.5b02343 – ident: ref16/cit16 doi: 10.1021/ja104260n – ident: ref18/cit18 doi: 10.1021/acsnano.5b07505 – ident: ref31/cit31 doi: 10.1021/acs.langmuir.9b02421 – ident: ref35/cit35 doi: 10.1021/jp806059a – ident: ref34/cit34 doi: 10.1021/ja902062j – ident: ref8/cit8 doi: 10.1021/am400402c – ident: ref24/cit24 doi: 10.1002/open.201402050 – ident: ref26/cit26 doi: 10.1002/cphc.201100207 – ident: ref20/cit20 doi: 10.1016/j.aca.2012.08.043 – ident: ref13/cit13 doi: 10.1021/ja2015179 – ident: ref14/cit14 doi: 10.1021/jp402833q – ident: ref36/cit36 doi: 10.1021/la3027804 – ident: ref10/cit10 doi: 10.1021/nl0727563 – ident: ref28/cit28 doi: 10.1039/C3CP54221A – ident: ref39/cit39 doi: 10.1016/j.optmat.2017.01.004 – ident: ref7/cit7 doi: 10.1021/acs.chemrev.7b00776 – ident: ref6/cit6 doi: 10.1021/es202009h – ident: ref22/cit22 doi: 10.1021/jp075550z – ident: ref37/cit37 doi: 10.1002/celc.201901700 – ident: ref43/cit43 doi: 10.1166/jnn.2009.J066 – ident: ref29/cit29 doi: 10.1039/df9511100055 – ident: ref11/cit11 doi: 10.1126/science.277.5329.1078 – ident: ref25/cit25 doi: 10.1021/es400391a – ident: ref12/cit12 doi: 10.1021/ac071253e – ident: ref3/cit3 doi: 10.1021/la052055q – ident: ref44/cit44 doi: 10.1039/D0NA00159G – ident: ref1/cit1 doi: 10.1021/jacs.7b06775 – ident: ref17/cit17 doi: 10.1016/j.electacta.2018.02.021 – ident: ref33/cit33 doi: 10.1021/acs.analchem.8b01905 – ident: ref4/cit4 doi: 10.1021/jacs.8b06830 – ident: ref38/cit38 doi: 10.1021/acs.jpcc.6b09066 – ident: ref42/cit42 doi: 10.1080/17458080600778644 – ident: ref19/cit19 doi: 10.1002/anie.201505307 – ident: ref23/cit23 doi: 10.1021/jacs.7b05957 – ident: ref21/cit21 doi: 10.1016/j.scitotenv.2013.02.093 – ident: ref40/cit40 doi: 10.1021/acs.jpcc.9b06555 |
SSID | ssj0009349 |
Score | 2.4634051 |
Snippet | Here, we compare the electrochemical oxidation potential of 15 nm diameter citrate-stabilized Au NPs aggregated by acid (low pH) to those aggregated by... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 7320 |
Title | Effect of Metal Nanoparticle Aggregate Structure on the Thermodynamics of Oxidative Dissolution |
URI | http://dx.doi.org/10.1021/acs.langmuir.1c00565 https://search.proquest.com/docview/2539208830 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86D3rxW5xfRPDioTVNmrQ7jukYgu4wB7uFtEllyFpZVxD_el_64Zgi6rWkaXnvJe_3y0t-QeiKEt_XXrnoroCgeJo4iomOo3xjAsIj4Ve7fB_FYOzfT_hkSRS_VvCpd6Pi3LVrd7NiOne92GpX8nW0QQMYHxYK9UZLkV1WwV0ruxn4gjVH5X7oxSakOF9NSKvzcZlk-jto2BzVqfaWvLjFInLj9-_KjX_8_120XeNN3K0CZA-tmXQfbfaaa94OkKz0i3GW4AcDSBzDfAtEumqPu8_Ax-1KGx6VQrPF3OAsxYAaMQTYfJbp6kb73L4_fJvqUkcc304_Y_oQjft3T72BU9-6AE6ifOFEyp4Z8UykVCxIqEJjRaa0H4WaRABgOoIzwzVlMSCfDmGKhyLyDCCJxCdac3aEWmmWmmOEg1CEhgQm1Ax4pAASnxBiYs4SbYmW10bXYB1Zj5pclgVx6kn7sDGZrE3WRk7jJvlaCXH80v6y8aUEi9oyiEpNVuSScsCEEDyMnPzj-6doi9rtLEQ4lJ6hFhjdnAMeWUQXZRB-AGDR3JE |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4HMaFN-JNkLhw6EibJu2OaDAN2MZhG9otSpsMTYgWrZuE-PU47bppSAhxjdI0td34cxJ_BrjyqO9rN990VxiguJo6iomao3xjAsoj4Re3fDui2fcfB3ywArzMhcFJZDhSlh_iL9gF3BvbZrfw3qejcdWNLYUlX4V1HqDPtIio3l1w7bIC9Vr2zcAXrMyY-2UU65fibNkvLS_Lua9pbMHLfJb5FZO36nQSVeOvHwSO__6MbdicoU9yW5jLDqyYZBcq9bLo2x7Igs2YpEPSNojLCa6-GFYX_cntK0bndt-NdHPa2enYkDQhiCEJmtv4PdVFffvMPv_8OdI5qzi5G80tfB_6jftevenMajCgyjw-cSJlM0hcEykVCxqq0FjKKe1HoaYRwpma4Mxw7bEYcVCNMsVDEbkGccXQp1pzdgBrSZqYQyBBKEJDAxNqhlGlwJB-SKmJORtqG3a5R3CN0pGzfyiT-fG450rbWIpMzkR2BE6pLflR0HL80f-yVKlEidpDEZWYdJpJjyNCxKWW0eN_vP8CKs1euyVbD52nE9jw7EUXKhzPO4U1VIA5Q6Qyic5zu_wGVunk9g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66gnrxLb6N4MVD16Rp0u5xWV18K6ggXkLapLLItrLdBfHXO0nb9QEieg1pkk4myTczyTcI7fskCDR1TncFBgrVxFNMtDwVGBMSHougvOV7JU7ug7MH_vAp1RcMooCWChfEt6v6RacVwwA9tOXWjdcf9QZNmlgaSz6JpnhIXYS23bn94NtlJfK1DJxhIFj9au6HVuzZlBRfz6avW7M7b7rz6HE8UnfN5Lk5GsbN5O0bieO_fmUBzVUoFLdLtVlEEyZbQjOdOvnbMpIlqzHOU3xpAJ9j2IXBvC7r4_YTWOnW_4ZvHf3saGBwnmHAkhjUbtDPdZnnvrDfX7_2tGMXx0e9saavoPvu8V3nxKtyMcDU-Xzoxcq-JKEmVioRJFKRsdRTOogjTWKANS3BmeHaZwngoRZhikcipgbwRRoQrTlbRY0sz8wawmEkIkNCE2kG1qUA0z4lxCScpdqaX3QdHYB0ZLWWCunC5D6VtrAWmaxEto68esbkS0nP8Uv9vXpaJUjUBkdUZvJRIX0OSBG2XEY2_tD_Lpq-OerKi9Or800069v7LkR4vr-FGiB_sw2AZRjvONV8B6yJ53A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Metal+Nanoparticle+Aggregate+Structure+on+the+Thermodynamics+of+Oxidative+Dissolution&rft.jtitle=Langmuir&rft.au=Pattadar%2C+Dhruba+K&rft.au=Nambiar%2C+Harikrishnan+N&rft.au=Allen%2C+Stacy+L&rft.au=Jasinski%2C+Jacek+B&rft.date=2021-06-22&rft.eissn=1520-5827&rft.volume=37&rft.issue=24&rft.spage=7320&rft.epage=7327&rft_id=info:doi/10.1021%2Facs.langmuir.1c00565&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |