Molecular Understanding of the Chemical Stability of Organic Materials for OLEDs: A Comparative Study on Sulfonyl, Phosphine-Oxide, and Carbonyl-Containing Host Materials
Chemical stability of organic materials on service toward excitons and charge carriers is intrinsically associated with the operational stability and economics of state-of-the-art organic light-emitting devices. Here we conducted comprehensive experiments and theoretical calculations to comparativel...
Saved in:
Published in | Journal of physical chemistry. C Vol. 118; no. 14; pp. 7569 - 7578 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
10.04.2014
|
Online Access | Get full text |
Cover
Loading…
Abstract | Chemical stability of organic materials on service toward excitons and charge carriers is intrinsically associated with the operational stability and economics of state-of-the-art organic light-emitting devices. Here we conducted comprehensive experiments and theoretical calculations to comparatively investigate the intrinsic chemical stability of organic materials, which contain typical electron-accepting moieties of sulfonyl, phosphine-oxide, and carbonyl group. The materials with a diphenylsulfonyl moiety suffered a fatal chemical instability originating from the cleavage of C–S single bond whether under UV irradiation or in electrical-stressed devices. The material with a dibenzothiophene-S,S-dioxide moiety exhibited significantly improved chemical stability because of effective shielding of the weak C–S single bond in a ring. In contrast, the commercially used carbonyl-containing compound demonstrated the highest chemical stability with negligible degradation under the same condition. Quantum chemical calculations fully supported the experimental results and suggested that the bond strength of the weak chemical bonds of the molecules would determine the intrinsic chemical stability of the organic materials in their excited and charged states, which might be a plausible origin of the limited stability of high-energy blue-emitting materials and devices. Several implications have been drawn for the design of new blue-emitting materials. |
---|---|
AbstractList | Chemical stability of organic materials on service toward excitons and charge carriers is intrinsically associated with the operational stability and economics of state-of-the-art organic light-emitting devices. Here we conducted comprehensive experiments and theoretical calculations to comparatively investigate the intrinsic chemical stability of organic materials, which contain typical electron-accepting moieties of sulfonyl, phosphine-oxide, and carbonyl group. The materials with a diphenylsulfonyl moiety suffered a fatal chemical instability originating from the cleavage of C–S single bond whether under UV irradiation or in electrical-stressed devices. The material with a dibenzothiophene-S,S-dioxide moiety exhibited significantly improved chemical stability because of effective shielding of the weak C–S single bond in a ring. In contrast, the commercially used carbonyl-containing compound demonstrated the highest chemical stability with negligible degradation under the same condition. Quantum chemical calculations fully supported the experimental results and suggested that the bond strength of the weak chemical bonds of the molecules would determine the intrinsic chemical stability of the organic materials in their excited and charged states, which might be a plausible origin of the limited stability of high-energy blue-emitting materials and devices. Several implications have been drawn for the design of new blue-emitting materials. |
Author | Wang, Liduo Duan, Lian Lin, Na Qiao, Juan Qiu, Yong |
AuthorAffiliation | Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry Tsinghua University |
AuthorAffiliation_xml | – name: Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry – name: Tsinghua University |
Author_xml | – sequence: 1 givenname: Na surname: Lin fullname: Lin, Na – sequence: 2 givenname: Juan surname: Qiao fullname: Qiao, Juan email: qjuan@mail.tsinghua.edu.cn – sequence: 3 givenname: Lian surname: Duan fullname: Duan, Lian – sequence: 4 givenname: Liduo surname: Wang fullname: Wang, Liduo – sequence: 5 givenname: Yong surname: Qiu fullname: Qiu, Yong |
BookMark | eNptkM9KAzEQxoMoaNWDb5CLB8G1STbb3Xor619oqaCel9ndSZu6TUqSin0ln9IUpYJ4moH5fjPzfT2yb6xBQs44u-JM8P5iJbkYcPm2R474MBVJLrNsf9fL_JD0vF8wlqWMp0fkc2I7bNYdOPpqWnQ-gGm1mVGraJgjLee41A109DlArTsdNtvJ1M3A6IZOIKDT0HmqrKPT8e2Nv6YjWtrlChwE_Y6RW7eRMfR53SlrNt0lfZpbv5prg8n0Q7d4SeNJWoKrt-OktCaANtsfHqwPvzdOyIGKBU9_6jF5ubt9KR-S8fT-sRyNE0hFFpI6FYIxHDaDNpeDAotasboQA2yhRYFS1armopZKZflQIsgMsChil-fIC54ek_732sZZ7x2qqtEheolvOdBdxVm1TbraJR2Jiz_EyukluM2_2vNvLTS-Wti1M9HKP7ovi7yQDA |
CitedBy_id | crossref_primary_10_2139_ssrn_3968862 crossref_primary_10_1002_anie_202501895 crossref_primary_10_1021_acsami_5b11232 crossref_primary_10_1002_anie_201813604 crossref_primary_10_1039_C8TC01471J crossref_primary_10_1039_D2QM00083K crossref_primary_10_1007_s41061_016_0022_6 crossref_primary_10_1039_C7TC00457E crossref_primary_10_1039_D0TC04465B crossref_primary_10_1002_adfm_201802558 crossref_primary_10_1039_C9QM00185A crossref_primary_10_1039_C9TC05585A crossref_primary_10_1002_adma_201501376 crossref_primary_10_1038_s41467_023_43408_7 crossref_primary_10_1039_D1TC01119G crossref_primary_10_1016_j_ccr_2016_06_016 crossref_primary_10_1021_acs_jpclett_1c03748 crossref_primary_10_1039_D0SC01238F crossref_primary_10_1103_PhysRevMaterials_4_044603 crossref_primary_10_1016_j_orgel_2017_12_051 crossref_primary_10_1016_j_cej_2024_157082 crossref_primary_10_1021_acs_organomet_7b00242 crossref_primary_10_1002_adom_201600901 crossref_primary_10_1002_chem_202101819 crossref_primary_10_1021_jacs_5b10950 crossref_primary_10_1021_acs_jpcc_7b05761 crossref_primary_10_1002_ange_202403066 crossref_primary_10_1088_0256_307X_33_8_088501 crossref_primary_10_1002_ange_201605963 crossref_primary_10_1016_j_dyepig_2022_110571 crossref_primary_10_1039_D2TC00716A crossref_primary_10_1016_j_dyepig_2017_07_008 crossref_primary_10_1002_adma_202402289 crossref_primary_10_1002_adma_201506391 crossref_primary_10_1002_chem_201600005 crossref_primary_10_1016_j_orgel_2021_106138 crossref_primary_10_1021_acsami_2c09033 crossref_primary_10_3389_fchem_2021_758357 crossref_primary_10_1021_acsami_7b15190 crossref_primary_10_1039_C8TC00594J crossref_primary_10_1016_j_orgel_2016_06_012 crossref_primary_10_1002_tcr_201800138 crossref_primary_10_1002_aelm_201600101 crossref_primary_10_1002_advs_202102141 crossref_primary_10_1002_adom_201700387 crossref_primary_10_1002_chem_202005144 crossref_primary_10_1021_acsami_9b16073 crossref_primary_10_1039_C7TC00746A crossref_primary_10_1002_adfm_201603542 crossref_primary_10_3390_ma14030589 crossref_primary_10_1039_D0TC05662F crossref_primary_10_1021_acs_chemmater_0c02910 crossref_primary_10_1038_s41467_023_39697_7 crossref_primary_10_1016_j_jphotochem_2023_115289 crossref_primary_10_1002_adom_202102309 crossref_primary_10_1002_tcr_201800148 crossref_primary_10_1039_C9TC06978J crossref_primary_10_1038_s41377_020_00395_4 crossref_primary_10_1002_anie_202207204 crossref_primary_10_1021_acsami_9b19474 crossref_primary_10_1021_acsami_2c02623 crossref_primary_10_6023_cjoc202108017 crossref_primary_10_1039_C7TC01552F crossref_primary_10_1246_cl_160814 crossref_primary_10_1016_j_orgel_2016_12_003 crossref_primary_10_1021_accountsmr_1c00263 crossref_primary_10_1039_C6TC03230C crossref_primary_10_1016_j_cej_2022_134728 crossref_primary_10_1039_D2SU00015F crossref_primary_10_1007_s11426_018_9413_5 crossref_primary_10_1002_adma_202407882 crossref_primary_10_1039_D1CP01185E crossref_primary_10_1021_acssuschemeng_2c01426 crossref_primary_10_1021_acsami_6b14638 crossref_primary_10_1021_acsmaterialslett_3c00626 crossref_primary_10_1016_j_dyepig_2024_112023 crossref_primary_10_1039_D2TC02829H crossref_primary_10_1002_chem_202002655 crossref_primary_10_1002_ange_202207204 crossref_primary_10_1002_sdtp_13804 crossref_primary_10_2139_ssrn_4134093 crossref_primary_10_1002_smll_202405312 crossref_primary_10_1039_C4PY01016G crossref_primary_10_1039_D2TC01000C crossref_primary_10_1002_adfm_202008332 crossref_primary_10_1016_j_mtener_2021_100650 crossref_primary_10_1021_acscatal_7b04298 crossref_primary_10_1002_adfm_202206207 crossref_primary_10_1002_cphc_201600945 crossref_primary_10_1021_acsami_0c07840 crossref_primary_10_1002_advs_201802246 crossref_primary_10_1021_acs_jpcc_9b08563 crossref_primary_10_1039_C6NJ00200E crossref_primary_10_1002_ange_202501895 crossref_primary_10_1002_adfm_201505040 crossref_primary_10_1039_D2PY00470D crossref_primary_10_1016_j_dyepig_2016_01_018 crossref_primary_10_1039_D0TC01897J crossref_primary_10_1007_s11664_020_08050_9 crossref_primary_10_1002_anie_201605963 crossref_primary_10_1021_acsami_0c02260 crossref_primary_10_1021_acsami_8b00926 crossref_primary_10_1039_C9TC05373E crossref_primary_10_1039_C5TC00640F crossref_primary_10_1002_ange_201813604 crossref_primary_10_1002_anie_202403066 crossref_primary_10_1016_j_jiec_2017_09_052 crossref_primary_10_1002_adfm_202010547 crossref_primary_10_1039_D0CP00221F crossref_primary_10_1016_j_dyepig_2023_111200 crossref_primary_10_1016_j_scib_2018_03_003 crossref_primary_10_1039_C6RA13240E crossref_primary_10_1016_j_molstruc_2022_134213 crossref_primary_10_1002_adfm_202402963 crossref_primary_10_1016_j_orgel_2017_06_057 crossref_primary_10_1021_acsami_5b10561 crossref_primary_10_1021_acsami_8b22704 crossref_primary_10_1002_adma_201405474 crossref_primary_10_1021_acs_chemmater_6b02069 crossref_primary_10_1002_sdtp_12412 crossref_primary_10_1002_adom_202000102 crossref_primary_10_1002_sdtp_11723 crossref_primary_10_1002_adom_202401391 crossref_primary_10_1021_acs_jpclett_4c03097 crossref_primary_10_1016_j_cej_2022_138957 crossref_primary_10_1039_D1TC02186A crossref_primary_10_1021_acs_jctc_5b00829 crossref_primary_10_1002_adom_202101530 crossref_primary_10_1039_C9CC09244G crossref_primary_10_1039_D0TC05234E crossref_primary_10_1021_acsami_6b10020 crossref_primary_10_1038_s41598_023_34623_9 crossref_primary_10_1039_C7TC02156A crossref_primary_10_1016_j_orgel_2022_106450 crossref_primary_10_1246_cl_190412 crossref_primary_10_1021_acs_jpclett_4c00705 crossref_primary_10_1039_D2ME00225F crossref_primary_10_1039_D0TC00039F crossref_primary_10_1039_D0TC00330A crossref_primary_10_1002_tcr_202100088 crossref_primary_10_1021_jacs_7b00873 crossref_primary_10_1007_s40843_021_1807_x crossref_primary_10_1016_j_cdc_2020_100543 crossref_primary_10_1016_j_dyepig_2019_107947 crossref_primary_10_3390_nano13233020 crossref_primary_10_1063_1_5124802 crossref_primary_10_1002_app_48178 crossref_primary_10_1016_j_cej_2024_157429 crossref_primary_10_1021_jacs_4c13264 crossref_primary_10_1002_cplu_202200013 crossref_primary_10_1021_acs_chemmater_8b04235 crossref_primary_10_1021_acs_chemmater_8b03142 |
Cites_doi | 10.1002/adma.201201124 10.1016/j.orgel.2010.11.004 10.1016/j.orgel.2012.04.025 10.1103/PhysRevB.37.785 10.1002/adma.201204724 10.1021/jp305415x 10.1063/1.3006890 10.1002/adma.201003128 10.1063/1.2133922 10.1002/adma.200502078 10.1002/adma.201205022 10.1021/jo100898a 10.1039/c2tc00584k 10.1039/b910292b 10.1021/cm040081o 10.1021/ja401383q 10.1021/jp984369a 10.1002/adma.201003816 10.1021/ol201039n 10.1002/sia.740160184 10.1002/adma.200902624 10.1016/j.orgel.2012.10.003 10.1002/adfm.200700816 10.1366/0003702864509565 10.1021/la960038i 10.1021/ja049883a 10.1039/C1JM14832J 10.1002/adfm.200500823 10.1021/cm800129h 10.1063/1.2430922 10.1021/ja306538w 10.1063/1.3460285 10.1016/j.orgel.2011.04.015 10.1021/ac00039a018 10.1002/adma.201101848 10.1039/B913628B 10.1016/j.jphotochem.2005.01.004 10.1039/b9nj00236g 10.1039/c0jm01159b 10.1063/1.3617459 10.1002/adma.201200627 10.1002/adma.201202569 10.1021/jp4085684 10.1063/1.464913 10.1016/j.orgel.2007.06.002 |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical Society |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/jp412614k |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | risky |
EISSN | 1932-7455 |
EndPage | 7578 |
ExternalDocumentID | 10_1021_jp412614k f38563066 |
GroupedDBID | .K2 4.4 53G 55A 5GY 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 RNS ROL UI2 UKR VF5 VG9 VQA W1F AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a325t-b32200e9c6d7468e8bf0b826edade2e4fbfb12b4ff5794ea45ae8894e77e1813 |
IEDL.DBID | ACS |
ISSN | 1932-7447 |
IngestDate | Tue Jul 01 01:21:49 EDT 2025 Thu Apr 24 22:56:48 EDT 2025 Thu Aug 27 13:41:58 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a325t-b32200e9c6d7468e8bf0b826edade2e4fbfb12b4ff5794ea45ae8894e77e1813 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1021_jp412614k crossref_primary_10_1021_jp412614k acs_journals_10_1021_jp412614k |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-10 |
PublicationDateYYYYMMDD | 2014-04-10 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-10 day: 10 |
PublicationDecade | 2010 |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Yook K. S. (ref2/cit2) 2012; 24 Zhang Q. (ref21/cit21) 2012; 134 Kondakov D. Y. (ref9/cit9) 2007; 101 Gardella J. A. (ref46/cit46) 1986; 40 Kondakov D. Y. (ref10/cit10) 2008; 104 Chaskar A. (ref7/cit7) 2011; 23 Scholz S. (ref36/cit36) 2008; 6999 de Moraes I. R. (ref38/cit38) 2011; 99 Li K. (ref16/cit16) 2009; 33 Liu J. (ref14/cit14) 2008; 20 So F. (ref5/cit5) 2010; 22 Briggs D. (ref48/cit48) 1992; 64 Sasabe H. (ref3/cit3) 2013; 1 Kessel R. (ref47/cit47) 1990; 16 Scholz S. (ref34/cit34) 2007; 8 Hsu F.-M. (ref15/cit15) 2009; 19 Seifert R. (ref44/cit44) 2010; 97 Zhou G. (ref18/cit18) 2010; 20 Aziz H. (ref4/cit4) 2004; 16 Huang T. H. (ref13/cit13) 2006; 16 Schmidbauer S. (ref6/cit6) 2013; 25 Duan L. (ref8/cit8) 2011; 23 Xiao L. (ref1/cit1) 2011; 23 Zheng C.-J. (ref23/cit23) 2013; 25 Wang Q. (ref42/cit42) 2012; 112 Christensen P. R. (ref22/cit22) 2013; 135 Frisch M. J. (ref30/cit30) 2010 Gu C. (ref28/cit28) 2012; 24 Huang T. H. (ref12/cit12) 2006; 18 Grisorio R. (ref17/cit17) 2010; 20 Brunner K. (ref26/cit26) 2004; 126 Kim S.-J. (ref19/cit19) 2011; 12 de Moraes I. R. (ref39/cit39) 2011; 12 de Moraes I. R. (ref40/cit40) 2012; 13 Lee C. (ref31/cit31) 1988; 37 Albani B. A. (ref50/cit50) 2013; 117 Lin N. (ref25/cit25) 2012; 116 Budyka M. F. (ref49/cit49) 2005; 173 Jeon S. O. (ref11/cit11) 2012; 22 Fery C. (ref43/cit43) 2005; 87 Scholz S. (ref37/cit37) 2009; 94 Hopkins J. (ref45/cit45) 1996; 12 Moss K. C. (ref24/cit24) 2010; 75 Lin N. (ref27/cit27) 2013; 43 Jiang W. (ref29/cit29) 2011; 13 DiLabio G. A. (ref33/cit33) 1999; 103 Scholz S. (ref35/cit35) 2008; 18 Seifert R. (ref41/cit41) 2013; 14 Becke A. D. (ref32/cit32) 1993; 98 Ye J. (ref20/cit20) 2012; 24 |
References_xml | – volume: 24 start-page: 3410 year: 2012 ident: ref20/cit20 publication-title: Adv. Mater. doi: 10.1002/adma.201201124 – volume: 12 start-page: 341 year: 2011 ident: ref39/cit39 publication-title: Org. Electron. doi: 10.1016/j.orgel.2010.11.004 – volume: 13 start-page: 1900 year: 2012 ident: ref40/cit40 publication-title: Org. Electron. doi: 10.1016/j.orgel.2012.04.025 – volume: 37 start-page: 785 year: 1988 ident: ref31/cit31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.37.785 – volume: 25 start-page: 2205 year: 2013 ident: ref23/cit23 publication-title: Adv. Mater. doi: 10.1002/adma.201204724 – volume: 116 start-page: 19451 year: 2012 ident: ref25/cit25 publication-title: J. Phys. Chem. C doi: 10.1021/jp305415x – volume-title: Gaussian 09 year: 2010 ident: ref30/cit30 – volume: 104 start-page: 084520(1) year: 2008 ident: ref10/cit10 publication-title: J. Appl. Phys. doi: 10.1063/1.3006890 – volume: 23 start-page: 926 year: 2011 ident: ref1/cit1 publication-title: Adv. Mater. doi: 10.1002/adma.201003128 – volume: 87 start-page: 213502(1) year: 2005 ident: ref43/cit43 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2133922 – volume: 18 start-page: 602 year: 2006 ident: ref12/cit12 publication-title: Adv. Mater. doi: 10.1002/adma.200502078 – volume: 43 start-page: 407 year: 2013 ident: ref27/cit27 publication-title: Sci. China: Chem. – volume: 25 start-page: 2114 year: 2013 ident: ref6/cit6 publication-title: Adv. Mater. doi: 10.1002/adma.201205022 – volume: 75 start-page: 6771 year: 2010 ident: ref24/cit24 publication-title: J. Org. Chem. doi: 10.1021/jo100898a – volume: 1 start-page: 1699 year: 2013 ident: ref3/cit3 publication-title: J. Mater. Chem. C doi: 10.1039/c2tc00584k – volume: 19 start-page: 8002 year: 2009 ident: ref15/cit15 publication-title: J. Mater. Chem. doi: 10.1039/b910292b – volume: 16 start-page: 4522 year: 2004 ident: ref4/cit4 publication-title: Chem. Mater. doi: 10.1021/cm040081o – volume: 135 start-page: 8109 year: 2013 ident: ref22/cit22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja401383q – volume: 103 start-page: 1653 year: 1999 ident: ref33/cit33 publication-title: J. Phys. Chem. A doi: 10.1021/jp984369a – volume: 23 start-page: 1137 year: 2011 ident: ref8/cit8 publication-title: Adv. Mater. doi: 10.1002/adma.201003816 – volume: 13 start-page: 3146 year: 2011 ident: ref29/cit29 publication-title: Org. Lett. doi: 10.1021/ol201039n – volume: 16 start-page: 401 year: 1990 ident: ref47/cit47 publication-title: Surf. Interface Anal. doi: 10.1002/sia.740160184 – volume: 22 start-page: 3762 year: 2010 ident: ref5/cit5 publication-title: Adv. Mater. doi: 10.1002/adma.200902624 – volume: 14 start-page: 115 year: 2013 ident: ref41/cit41 publication-title: Org. Electron. doi: 10.1016/j.orgel.2012.10.003 – volume: 18 start-page: 2541 year: 2008 ident: ref35/cit35 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200700816 – volume: 40 start-page: 224 year: 1986 ident: ref46/cit46 publication-title: Appl. Spectrosc. doi: 10.1366/0003702864509565 – volume: 12 start-page: 3666 year: 1996 ident: ref45/cit45 publication-title: Langmuir doi: 10.1021/la960038i – volume: 126 start-page: 6035 year: 2004 ident: ref26/cit26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja049883a – volume: 22 start-page: 4233 year: 2012 ident: ref11/cit11 publication-title: J. Mater. Chem. doi: 10.1039/C1JM14832J – volume: 16 start-page: 1449 year: 2006 ident: ref13/cit13 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200500823 – volume: 20 start-page: 4499 year: 2008 ident: ref14/cit14 publication-title: Chem. Mater. doi: 10.1021/cm800129h – volume: 101 start-page: 024512(1) year: 2007 ident: ref9/cit9 publication-title: J. Appl. Phys. doi: 10.1063/1.2430922 – volume: 134 start-page: 14706 year: 2012 ident: ref21/cit21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja306538w – volume: 97 start-page: 013308(1) year: 2010 ident: ref44/cit44 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3460285 – volume: 12 start-page: 1314 year: 2011 ident: ref19/cit19 publication-title: Org. Electron. doi: 10.1016/j.orgel.2011.04.015 – volume: 64 start-page: 1729 year: 1992 ident: ref48/cit48 publication-title: Anal. Chem. doi: 10.1021/ac00039a018 – volume: 23 start-page: 3876 year: 2011 ident: ref7/cit7 publication-title: Adv. Mater. doi: 10.1002/adma.201101848 – volume: 20 start-page: 1012 year: 2010 ident: ref17/cit17 publication-title: J. Mater. Chem. doi: 10.1039/B913628B – volume: 173 start-page: 70 year: 2005 ident: ref49/cit49 publication-title: J. Photochem. Photobiol., A doi: 10.1016/j.jphotochem.2005.01.004 – volume: 6999 start-page: 69991B(1) year: 2008 ident: ref36/cit36 publication-title: Proc. SPIE – volume: 33 start-page: 2120 year: 2009 ident: ref16/cit16 publication-title: New J. Chem. doi: 10.1039/b9nj00236g – volume: 20 start-page: 7472 year: 2010 ident: ref18/cit18 publication-title: J. Mater. Chem. doi: 10.1039/c0jm01159b – volume: 99 start-page: 053302(1) year: 2011 ident: ref38/cit38 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3617459 – volume: 24 start-page: 3169 year: 2012 ident: ref2/cit2 publication-title: Adv. Mater. doi: 10.1002/adma.201200627 – volume: 94 start-page: 043314(1) year: 2009 ident: ref37/cit37 publication-title: Appl. Phys. Lett. – volume: 24 start-page: 5727 year: 2012 ident: ref28/cit28 publication-title: Adv. Mater. doi: 10.1002/adma.201202569 – volume: 112 start-page: 064502(1) year: 2012 ident: ref42/cit42 publication-title: J. Appl. Phys. – volume: 117 start-page: 13885 year: 2013 ident: ref50/cit50 publication-title: J. Phys. Chem. A doi: 10.1021/jp4085684 – volume: 98 start-page: 5648 year: 1993 ident: ref32/cit32 publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 8 start-page: 709 year: 2007 ident: ref34/cit34 publication-title: Org. Electron. doi: 10.1016/j.orgel.2007.06.002 |
SSID | ssj0053013 |
Score | 2.5000162 |
Snippet | Chemical stability of organic materials on service toward excitons and charge carriers is intrinsically associated with the operational stability and economics... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 7569 |
Title | Molecular Understanding of the Chemical Stability of Organic Materials for OLEDs: A Comparative Study on Sulfonyl, Phosphine-Oxide, and Carbonyl-Containing Host Materials |
URI | http://dx.doi.org/10.1021/jp412614k |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF60HvTiW3yWQT14cDXZbF7eSlSKWBVU8Fb2SX3QFpOC-pP8lc42jRZ83QI7mwnZ2Z1v2JlvCNnlvkqDRCoacq4o95mmjiOG6pRJK4IosZErTm5dRM1bfnYX3k2QnV9u8Jl_-NDHN6ATeZwkUyxKYhdhNbLr6rgN0UKD8uoYoSLncUUfND7VuR6Vj7meMR9yOkeOq0qcMnXk8WBQyAP19p2Y8a_PmyezIwwJjXLRF8iE6S6S6axq3bZE3ltV01u4HS9egZ4FBHxQsQQAQs1hcuyrGynLMhW0RFGaJSCghcvzk-P8CBqQffGEg8s-xDlduB48WZfbvg9XnV7e7yBmpZcv99rsA6qETDxLN0wdCVbZiwKavbz40rFMbk5PbrImHTVloCJgYUElngCeZ1IV6ZhHiUmk9STGKEYLbZjhVlrpM8mtDXGrG8FDYZIEn-LYIJoIVkit2-uaVQLK8CASRmqPa5zmp446H9FoyjzuC6nXSB0XrT3aU3l7eF3OMFyp_vga2avWs61GjOauscbTT6Lbn6L9ksbju9D6fwo3yAzipWHiju9tklrxPDBbiEkKWR_a5Ae2Ud2g |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JSgNBEG1cDnpxF3cL8eDB1ll6JjPewqhETVQwgrfQK24kwZmA-kl-pdWzmKCC3gZ6K3qqu17RVa8I2WWujP1ISBowJilzPUUtRwxVsScM98PIhDY5uXUZNm7Z-V1wV9Lk2FwYFCLFmdL8EX_ILuAePvZxIrQlT-NkEkGIZx2tenJT3boBKqpfvCAjYmSsVrEIjQ61FkimIxZoxJSczhY1iXIh8giSp4NBJg7k-zd-xv9JOUdmSkQJ9UIF5smY7i6QqaQq5LZIPlpVCVy4HU1lgZ4BhH9QcQYAAs88VPbNthRJmhJaPCuUFBDewlXz5Dg9gjokQ9ZwsLGIOKYLN4NnYyPd9-H6vpf27xHB0qvXB6X3AZeEhL8I20wtJVZRmQIavTQbrrFE2qcn7aRByxINlPtekFGB94Hj6FiGqsbCSEfCOAI9Fq240p5mRhjheoIZE-DB15wFXEcRftVqGrGFv0wmur2uXiEgNfNDroVymMJhbmyJ9BGbxp7DXC7UKtnCDe-UJyzt5I_nHjov1Y6vkr3qt3ZkyW9uy2w8_9Z156trvyD1-Nlp7a8Ft8lUo91qdppnlxfrZBqRVB7S4zobZCJ7GehNRCuZ2MrV9BPVSuYB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8NAEF48QH3xFm8H8cEHV3Ns0sS3Ei31qBVU8K3siRdtMSmoP8lf6WwOLSroW2BPNrM73zAz3xCyw1wZ-5GQNGBMUuZ6ilqOGKpiTxjuh5EJbXJy6yJs3rDT2-C2NBRtLgxuIsWZ0tyJb291X5mSYcA9eOjjZKhPHkfJuHXXWWOrnlxVL2-AwuoXXmREjYzVKiah4aFWC8l0SAsNqZPGDGl_biSPInncH2RiX75942j8_05nyXSJLKFeiMIcGdHdeTKZVAXdFsh7qyqFCzfDKS3QM4AwECruAEAAmofMvtqWIllTQotnhbACwlxonx8fpYdQh-SLPRxsTCKO6cLV4MnYiPc9uLzrpf07RLK0_XKv9B7gkpDwZ2GbqaXGKipUQLOXZl9rLJLrxvF10qRlqQbKfS_IqMB3wXF0LENVY2GkI2EcgZaLVlxpTzMjjHA9wYwJ8AHQnAVcRxF-1WoaMYa_RMa6va5eJiA180OuhXKYwmFubAn1EaPGnsNcLtQK2cRD75Q3Le3kTnQPjZjqxFfIbvVrO7LkObflNp5-67r92bVfkHv87LT614JbZOLyqNE5P7k4WyNTCKjyyB7XWSdj2fNAbyBoycRmLqkfUknohA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Understanding+of+the+Chemical+Stability+of+Organic+Materials+for+OLEDs%3A+A+Comparative+Study+on+Sulfonyl%2C+Phosphine-Oxide%2C+and+Carbonyl-Containing+Host+Materials&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Lin%2C+Na&rft.au=Qiao%2C+Juan&rft.au=Duan%2C+Lian&rft.au=Wang%2C+Liduo&rft.date=2014-04-10&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=118&rft.issue=14&rft.spage=7569&rft.epage=7578&rft_id=info:doi/10.1021%2Fjp412614k&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jp412614k |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |