Mechanistic Insights on Cooperative Catalysis through Computational Quantum Chemical Methods

One of the leading goals in contemporary chemical catalysis is to render improved efficiency to existing catalytic protocols. A few pertinent trends can readily be noticed from the current literature encompassing both catalysis development and applications. First, there has been an unprecedented gro...

Full description

Saved in:
Bibliographic Details
Published inACS catalysis Vol. 5; no. 2; pp. 480 - 503
Main Authors Jindal, Garima, Kisan, Hemanta K, Sunoj, Raghavan B
Format Journal Article
LanguageEnglish
Published American Chemical Society 06.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:One of the leading goals in contemporary chemical catalysis is to render improved efficiency to existing catalytic protocols. A few pertinent trends can readily be noticed from the current literature encompassing both catalysis development and applications. First, there has been an unprecedented growth in the use of metal-free organocatalytic methods toward realizing a plethora of synthetic targets. In parallel, the availability of newer and more efficient transition metal catalytic methods for the synthesis of complex molecules has become a reality over the years. The most recent developments indicate the emergence of multicatalytic approaches under one-pot reaction conditions, wherein the complementary attributes of two or more catalysts are made to work together. This domain, known as cooperative catalysis, is showing signs of immense promise. The mechanistic underpinnings of both of these forms of catalysis have been investigated by using a range of computational chemistry tools. With the availability of improved accuracy in computational methods aided by ever increasing computing technologies, the exploration of potential energy surfaces relating to complex cooperative catalytic systems has become more affordable. In this review, we have chosen a select set of examples from the emerging domain of cooperative catalysis to illustrate how computational methods have been effectively used toward gaining vital molecular insights. Emphasis is placed on mechanistic details, energetics of reaction, and, more importantly, on transition states that are responsible for stereoselectivity in asymmetric cooperative catalytic reactions.
ISSN:2155-5435
2155-5435
DOI:10.1021/cs501688y