Atomistic Modeling of Short Pulse Laser Ablation of Metals: Connections between Melting, Spallation, and Phase Explosion
The mechanisms of short pulse laser interactions with a metal target are investigated in simulations performed with a model combining the molecular dynamics method with a continuum description of laser excitation, electron−phonon equilibration, and electron heat conduction. Three regimes of material...
Saved in:
Published in | Journal of physical chemistry. C Vol. 113; no. 27; pp. 11892 - 11906 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
09.07.2009
|
Online Access | Get full text |
Cover
Loading…
Abstract | The mechanisms of short pulse laser interactions with a metal target are investigated in simulations performed with a model combining the molecular dynamics method with a continuum description of laser excitation, electron−phonon equilibration, and electron heat conduction. Three regimes of material response to laser irradiation are identified in simulations performed with a 1 ps laser pulse, which corresponds to the condition of stress confinement: melting and resolidification of a surface region of the target, photomechanical spallation of a single or multiple layers or droplets, and an explosive disintegration of an overheated surface layer (phase explosion). The processes of laser melting, spallation, and phase explosion are taking place on the same time scale and are closely intertwined with each other. The transition to the spallation regime results in a reduction of the melting zone and a sharp drop in the duration of the melting and resolidification cycle. The transition from spallation to phase explosion is signified by an abrupt change in the composition of the ejected plume (from liquid layers and/or large droplets to a mixture of vapor-phase atoms, small clusters and droplets), and results in a substantial increase in the duration of the melting process. In simulations performed with longer, 50 ps, laser pulses, when the condition for stress confinement is not satisfied, the spallation regime is absent and phase explosion results in smaller values of the ablation yield and larger fractions of the vapor phase in the ejected plume as compared to the results obtained with a 1 ps pulse. The more vigorous material ejection and higher ablation yields, observed in the simulations performed with the shorter laser pulse, are explained by the synergistic contribution of the laser-induced stresses and the explosive release of vapor in phase explosion occurring under the condition of stress confinement. |
---|---|
AbstractList | The mechanisms of short pulse laser interactions with a metal target are investigated in simulations performed with a model combining the molecular dynamics method with a continuum description of laser excitation, electron−phonon equilibration, and electron heat conduction. Three regimes of material response to laser irradiation are identified in simulations performed with a 1 ps laser pulse, which corresponds to the condition of stress confinement: melting and resolidification of a surface region of the target, photomechanical spallation of a single or multiple layers or droplets, and an explosive disintegration of an overheated surface layer (phase explosion). The processes of laser melting, spallation, and phase explosion are taking place on the same time scale and are closely intertwined with each other. The transition to the spallation regime results in a reduction of the melting zone and a sharp drop in the duration of the melting and resolidification cycle. The transition from spallation to phase explosion is signified by an abrupt change in the composition of the ejected plume (from liquid layers and/or large droplets to a mixture of vapor-phase atoms, small clusters and droplets), and results in a substantial increase in the duration of the melting process. In simulations performed with longer, 50 ps, laser pulses, when the condition for stress confinement is not satisfied, the spallation regime is absent and phase explosion results in smaller values of the ablation yield and larger fractions of the vapor phase in the ejected plume as compared to the results obtained with a 1 ps pulse. The more vigorous material ejection and higher ablation yields, observed in the simulations performed with the shorter laser pulse, are explained by the synergistic contribution of the laser-induced stresses and the explosive release of vapor in phase explosion occurring under the condition of stress confinement. |
Author | Ivanov, Dmitriy S Zhigilei, Leonid V Lin, Zhibin |
Author_xml | – sequence: 1 givenname: Leonid V surname: Zhigilei fullname: Zhigilei, Leonid V email: lz2n@virginia.edu – sequence: 2 givenname: Zhibin surname: Lin fullname: Lin, Zhibin – sequence: 3 givenname: Dmitriy S surname: Ivanov fullname: Ivanov, Dmitriy S |
BookMark | eNptUEtrAjEQDsVC1fbQf5BLDwW3Jptd1_QmYh-gVLA9L7PZpK7EZEkitf--sRYPxcMww_diZnqoY6yRCN1S8kBJSoeblpM05dn2AnUpZ2lSZHneOc1ZcYV63m8IyRmhrIv2k2C3jQ-NwAtbS92YT2wVXq2tC3i5017iOXjp8KTSEBprDuxCBtD-EU-tMVIcUI8rGb6kNJHTIYYM8KoFfbQMMJgaL9cxB8_2rbY-gtfoUsUQefPX--jjafY-fUnmb8-v08k8AZbmIYGMCuBEqWpUSAYqE0UhiooKwrJxLVSsnEtJOK1zXvFiBIqNQTIBDPKMpayPhsdc4az3TqpSNOF3reCg0SUl5eFx5elx0XH_z9G6Zgvu-6z27qgF4cuN3TkTbzmj-wGLI36P |
CitedBy_id | crossref_primary_10_1063_1_5099936 crossref_primary_10_1007_s00339_022_05393_4 crossref_primary_10_1016_j_xcrp_2021_100651 crossref_primary_10_1364_OE_26_019665 crossref_primary_10_1007_s00339_023_06922_5 crossref_primary_10_1007_s13538_021_00875_x crossref_primary_10_1016_j_apsusc_2013_10_141 crossref_primary_10_3390_app12178464 crossref_primary_10_1021_acsami_6b07740 crossref_primary_10_1016_j_cartre_2023_100268 crossref_primary_10_4236_ns_2011_36068 crossref_primary_10_1021_acs_jpcc_8b09922 crossref_primary_10_1016_j_apsusc_2021_148930 crossref_primary_10_1039_C7CP04033D crossref_primary_10_1007_s00339_010_5877_8 crossref_primary_10_1016_j_apsusc_2018_11_106 crossref_primary_10_1103_PhysRevB_95_054305 crossref_primary_10_1103_PhysRevE_93_043203 crossref_primary_10_1016_j_apsusc_2013_09_137 crossref_primary_10_1016_j_combustflame_2019_12_009 crossref_primary_10_1016_j_ijleo_2015_06_033 crossref_primary_10_1016_j_apsusc_2022_153315 crossref_primary_10_1364_AO_54_003216 crossref_primary_10_1364_JOSAB_35_000B43 crossref_primary_10_1103_PhysRevB_96_205429 crossref_primary_10_3390_jmmp7030094 crossref_primary_10_1016_j_apsusc_2015_09_007 crossref_primary_10_1016_j_apsusc_2017_05_106 crossref_primary_10_1007_s10853_024_10263_w crossref_primary_10_1016_j_apsusc_2014_12_142 crossref_primary_10_1038_srep39584 crossref_primary_10_3390_mi15040491 crossref_primary_10_1007_s00339_012_7269_8 crossref_primary_10_1364_OE_427168 crossref_primary_10_1016_j_apsusc_2017_02_030 crossref_primary_10_1016_j_apsusc_2017_02_032 crossref_primary_10_1364_OE_20_029329 crossref_primary_10_1002_adma_201503289 crossref_primary_10_1016_j_ijmachtools_2020_103687 crossref_primary_10_1021_acs_jpcc_1c04205 crossref_primary_10_31857_S1234567823020040 crossref_primary_10_1016_j_apsusc_2022_153427 crossref_primary_10_1016_j_ijheatmasstransfer_2019_119287 crossref_primary_10_3367_UFNe_2016_09_037974 crossref_primary_10_1016_j_apsusc_2019_144134 crossref_primary_10_1021_acs_jpcc_7b02301 crossref_primary_10_3788_COL202523_033401 crossref_primary_10_1007_s40516_020_00129_9 crossref_primary_10_1016_j_applthermaleng_2024_124773 crossref_primary_10_1021_acs_jpcc_6b06261 crossref_primary_10_3788_CJL231570 crossref_primary_10_1021_acs_jpcc_6b00161 crossref_primary_10_1088_1367_2630_14_1_013039 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124119 crossref_primary_10_1016_j_jmapro_2022_03_048 crossref_primary_10_1016_j_ijleo_2015_08_107 crossref_primary_10_1088_1361_651X_ad7bd9 crossref_primary_10_1103_PhysRevB_106_024107 crossref_primary_10_1134_S0018151X20010204 crossref_primary_10_2351_7_0001408 crossref_primary_10_1016_j_jaerosci_2018_09_006 crossref_primary_10_1021_acsnano_6b02970 crossref_primary_10_1364_OE_24_017572 crossref_primary_10_1088_0256_307X_39_7_077901 crossref_primary_10_3390_molecules26216327 crossref_primary_10_1007_s00339_017_1269_7 crossref_primary_10_1088_1361_6463_acdb81 crossref_primary_10_1088_1742_6596_774_1_012098 crossref_primary_10_1002_lpor_201200017 crossref_primary_10_1016_j_surfin_2021_101438 crossref_primary_10_1063_1_4896068 crossref_primary_10_1021_acs_analchem_3c03558 crossref_primary_10_1016_j_apsusc_2019_143973 crossref_primary_10_1103_PhysRevB_82_115204 crossref_primary_10_1515_aot_2018_0010 crossref_primary_10_1117_1_JBO_21_6_065005 crossref_primary_10_1016_j_apsusc_2021_150913 crossref_primary_10_3390_coatings15010001 crossref_primary_10_1088_1612_202X_ac7137 crossref_primary_10_1364_JOT_81_000233 crossref_primary_10_1134_S0018151X2006022X crossref_primary_10_1016_j_optlastec_2022_108100 crossref_primary_10_1038_s41598_018_30269_0 crossref_primary_10_1103_PhysRevApplied_10_024023 crossref_primary_10_1007_s00339_022_06217_1 crossref_primary_10_1007_s00466_017_1449_5 crossref_primary_10_1016_j_apsusc_2018_12_117 crossref_primary_10_1038_s41598_018_19801_4 crossref_primary_10_1063_1_5012594 crossref_primary_10_1016_j_optlastec_2024_111752 crossref_primary_10_1007_s00339_024_08064_8 crossref_primary_10_1016_j_commatsci_2019_05_017 crossref_primary_10_1016_j_optlastec_2025_112605 crossref_primary_10_1007_s00339_019_2382_6 crossref_primary_10_1364_AO_432691 crossref_primary_10_1007_s11082_021_02872_5 crossref_primary_10_1088_2058_6272_aab661 crossref_primary_10_1364_OE_421097 crossref_primary_10_1115_1_4048397 crossref_primary_10_1515_aot_2019_0064 crossref_primary_10_1051_epjap_2019180336 crossref_primary_10_1134_S0030400X20020149 crossref_primary_10_1016_j_apsusc_2021_150243 crossref_primary_10_1016_j_optlastec_2024_112286 crossref_primary_10_1103_PhysRevApplied_4_064006 crossref_primary_10_34133_2022_9754131 crossref_primary_10_1038_lsa_2016_256 crossref_primary_10_1088_1361_6463_aa7b5a crossref_primary_10_1002_pssa_202300703 crossref_primary_10_2139_ssrn_4163374 crossref_primary_10_1088_1361_6595_ab3dbe crossref_primary_10_1088_1361_6463_ab82d9 crossref_primary_10_1103_PhysRevB_84_193410 crossref_primary_10_1134_S106377611302012X crossref_primary_10_1016_j_phpro_2014_08_058 crossref_primary_10_1063_5_0166912 crossref_primary_10_1007_s00339_012_7072_6 crossref_primary_10_1007_s00339_024_07797_w crossref_primary_10_1134_S0021364013010098 crossref_primary_10_1016_j_optlastec_2022_108111 crossref_primary_10_1063_1_3601346 crossref_primary_10_1063_1_4890413 crossref_primary_10_1364_AO_54_001737 crossref_primary_10_7498_aps_59_7198 crossref_primary_10_1007_s00339_013_8086_4 crossref_primary_10_1007_s00339_016_9944_7 crossref_primary_10_1007_s00339_020_3440_9 crossref_primary_10_1021_acs_chemrev_6b00468 crossref_primary_10_1103_PhysRevMaterials_6_126001 crossref_primary_10_1016_j_apsusc_2015_03_158 crossref_primary_10_1016_j_chemer_2019_125542 crossref_primary_10_1016_j_optlastec_2024_111404 crossref_primary_10_1063_1_4739256 crossref_primary_10_2351_1_5119995 crossref_primary_10_1103_PhysRevB_97_224301 crossref_primary_10_1063_1_4793521 crossref_primary_10_3390_nano13202809 crossref_primary_10_7567_APEX_7_122704 crossref_primary_10_1016_j_apsusc_2016_03_011 crossref_primary_10_1016_j_optcom_2022_128902 crossref_primary_10_1007_s00339_011_6705_5 crossref_primary_10_1016_j_optlastec_2022_108442 crossref_primary_10_1007_s00339_018_1716_0 crossref_primary_10_1103_PhysRevB_90_245306 crossref_primary_10_1016_j_apcatb_2012_11_040 crossref_primary_10_1016_j_matdes_2019_107675 crossref_primary_10_1063_1_3620898 crossref_primary_10_1117_1_OE_53_5_051510 crossref_primary_10_1016_j_apsusc_2020_145514 crossref_primary_10_1063_1_4876601 crossref_primary_10_1103_PhysRevB_107_195402 crossref_primary_10_1021_jp909328q crossref_primary_10_1088_1742_6596_690_1_012021 crossref_primary_10_1021_acs_langmuir_9b00457 crossref_primary_10_1016_j_ijheatmasstransfer_2018_08_053 crossref_primary_10_1364_OE_22_018790 crossref_primary_10_3390_nano10010049 crossref_primary_10_1063_1_4872245 crossref_primary_10_1103_PhysRevB_95_014309 crossref_primary_10_1016_j_jallcom_2024_177175 crossref_primary_10_1007_s00339_022_06012_y crossref_primary_10_1016_j_ijplas_2020_102849 crossref_primary_10_1007_s00340_015_6039_7 crossref_primary_10_1016_j_apsusc_2020_146952 crossref_primary_10_1016_j_sab_2021_106091 crossref_primary_10_1063_1_3276161 crossref_primary_10_1063_1_3475149 crossref_primary_10_1016_j_ijheatmasstransfer_2017_04_100 crossref_primary_10_1016_j_jmapro_2024_10_006 crossref_primary_10_1088_1361_648X_ad4941 crossref_primary_10_1364_AO_54_008596 crossref_primary_10_1016_j_cossms_2013_07_005 crossref_primary_10_1063_5_0054955 crossref_primary_10_1007_s10946_014_9463_y crossref_primary_10_1016_j_cattod_2010_11_077 crossref_primary_10_1016_j_apsusc_2009_10_004 crossref_primary_10_1088_0965_0393_18_3_034001 crossref_primary_10_3390_pr11061704 crossref_primary_10_1016_j_commatsci_2019_109483 crossref_primary_10_1080_15421406_2021_1885970 crossref_primary_10_1088_1361_651X_ab309f crossref_primary_10_1364_OL_393979 crossref_primary_10_1007_s00339_023_06949_8 crossref_primary_10_3390_nano12030536 crossref_primary_10_1016_j_optlastec_2022_108382 crossref_primary_10_3390_ma12081257 crossref_primary_10_4028_www_scientific_net_AMR_1112_120 crossref_primary_10_1016_j_surfcoat_2024_131300 crossref_primary_10_1039_D4NR03305A crossref_primary_10_1088_0034_4885_76_3_036502 crossref_primary_10_1364_OL_37_002691 crossref_primary_10_1364_OE_20_00A984 crossref_primary_10_1007_s00339_012_7001_8 crossref_primary_10_1364_OE_444451 crossref_primary_10_1016_j_optcom_2020_126237 crossref_primary_10_1364_OE_434515 crossref_primary_10_20948_mathmontis_2023_58_6 crossref_primary_10_1016_j_apsusc_2015_09_091 crossref_primary_10_1016_j_apsusc_2019_01_070 crossref_primary_10_1016_j_actamat_2018_06_027 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126714 crossref_primary_10_1016_j_net_2022_09_020 crossref_primary_10_1088_0034_4885_74_9_096101 crossref_primary_10_1103_PhysRevB_99_235412 crossref_primary_10_1134_S0021364012040042 crossref_primary_10_1016_j_sab_2012_10_003 crossref_primary_10_1134_S1063776119100169 crossref_primary_10_20948_prepr_2024_36 crossref_primary_10_1134_S0021364022603050 crossref_primary_10_1016_j_pacs_2024_100627 crossref_primary_10_1088_1361_6455_ab4cc3 crossref_primary_10_1007_s00339_017_1280_z crossref_primary_10_1021_acs_nanolett_4c03576 crossref_primary_10_1080_08927022_2024_2385499 crossref_primary_10_1016_j_apsusc_2011_04_027 crossref_primary_10_1016_j_optlastec_2016_08_009 crossref_primary_10_1016_j_apsusc_2018_08_225 crossref_primary_10_1016_j_apsusc_2019_05_066 crossref_primary_10_1007_s00339_020_03754_5 crossref_primary_10_1016_j_apsusc_2012_11_073 crossref_primary_10_1051_matecconf_201819704004 crossref_primary_10_1364_JOSAB_28_001817 crossref_primary_10_1007_s00339_011_6727_z crossref_primary_10_1103_PhysRevAccelBeams_22_023101 crossref_primary_10_1021_acs_jpcc_5b02085 crossref_primary_10_1007_s00339_011_6363_7 crossref_primary_10_1039_C2CP42895D crossref_primary_10_1016_j_apsusc_2018_11_199 crossref_primary_10_1016_j_apsusc_2016_10_162 crossref_primary_10_3390_ma14195544 crossref_primary_10_1016_j_ceramint_2020_12_274 crossref_primary_10_1016_j_optcom_2019_124384 crossref_primary_10_1063_1_4885196 crossref_primary_10_1117_1_OE_56_1_011010 crossref_primary_10_1016_j_actamat_2020_11_007 crossref_primary_10_1007_s00339_011_6436_7 crossref_primary_10_1016_j_apsusc_2020_147618 crossref_primary_10_1016_j_jcis_2016_08_016 crossref_primary_10_1016_j_jcis_2016_10_029 crossref_primary_10_1080_17452759_2023_2276247 crossref_primary_10_1088_1612_202X_aa6225 crossref_primary_10_1007_s00339_010_5764_3 crossref_primary_10_2351_7_0000271 crossref_primary_10_1016_j_jmst_2025_01_043 crossref_primary_10_1016_j_matpr_2022_03_723 crossref_primary_10_1007_s00339_024_07792_1 crossref_primary_10_1364_OE_499139 crossref_primary_10_3390_mi13060870 crossref_primary_10_3390_met14080943 crossref_primary_10_1111_jace_20436 crossref_primary_10_1016_j_apsusc_2013_10_072 crossref_primary_10_1016_j_apsusc_2023_157357 crossref_primary_10_1016_j_apsusc_2016_02_111 crossref_primary_10_1021_acsami_4c16830 crossref_primary_10_2139_ssrn_3867732 crossref_primary_10_1002_adem_202201361 crossref_primary_10_1016_j_jmapro_2024_09_073 crossref_primary_10_1021_acs_jpcc_0c09970 crossref_primary_10_1364_OE_396727 crossref_primary_10_1016_j_rsurfi_2024_100390 crossref_primary_10_1016_j_apsusc_2014_03_193 crossref_primary_10_1155_2022_2455226 crossref_primary_10_3390_ma14216355 crossref_primary_10_1039_D3IM00090G crossref_primary_10_1088_1742_6596_1556_1_012002 crossref_primary_10_3390_ma11122456 crossref_primary_10_1007_s00339_023_06525_0 crossref_primary_10_1016_j_apsusc_2014_08_005 crossref_primary_10_1103_PhysRevB_91_035413 crossref_primary_10_1007_s40194_020_00849_8 crossref_primary_10_1088_1555_6611_abdcb8 crossref_primary_10_1134_S207004821405007X crossref_primary_10_1088_1361_6463_ac2274 crossref_primary_10_1007_s00339_011_6595_6 crossref_primary_10_1016_j_jssc_2012_09_023 crossref_primary_10_1016_j_apcatb_2011_01_005 crossref_primary_10_1080_01495739_2020_1822767 crossref_primary_10_1016_j_procir_2022_08_152 crossref_primary_10_1051_fopen_2018003 crossref_primary_10_1039_D0CP00608D crossref_primary_10_3389_fchem_2020_00768 crossref_primary_10_1364_AO_51_005946 crossref_primary_10_3390_met13050850 crossref_primary_10_1016_j_optlastec_2023_110540 crossref_primary_10_3390_mi12030300 crossref_primary_10_1016_j_jmrt_2023_09_316 crossref_primary_10_1016_j_optlastec_2023_110427 crossref_primary_10_1063_5_0049987 crossref_primary_10_1038_s41377_022_00751_6 crossref_primary_10_3762_bjnano_5_165 crossref_primary_10_1063_1_4916600 crossref_primary_10_7498_aps_66_040202 crossref_primary_10_1016_j_optlastec_2021_106968 crossref_primary_10_1016_j_apsusc_2014_02_104 crossref_primary_10_1016_j_optlaseng_2020_106067 crossref_primary_10_1039_C5JA00251F crossref_primary_10_1088_0022_3727_49_36_365103 crossref_primary_10_1103_PhysRevB_96_014108 crossref_primary_10_1016_j_apsusc_2018_12_184 crossref_primary_10_1109_JPHOTOV_2013_2261573 crossref_primary_10_1039_C2CP42592K crossref_primary_10_3367_UFNr_2016_09_037974 crossref_primary_10_3389_fnano_2023_1271832 crossref_primary_10_1016_j_apsusc_2020_148839 crossref_primary_10_1016_j_optlastec_2020_106618 crossref_primary_10_1002_lpor_201500119 crossref_primary_10_4103_MJBL_MJBL_147_22 crossref_primary_10_7498_aps_64_034101 crossref_primary_10_1364_OE_505324 crossref_primary_10_1016_j_ijthermalsci_2013_03_003 crossref_primary_10_1007_s00339_011_6747_8 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124328 crossref_primary_10_1103_PhysRevAccelBeams_20_113201 crossref_primary_10_1088_1742_6596_1147_1_012062 crossref_primary_10_1080_14786435_2018_1502482 crossref_primary_10_1364_OE_21_012527 crossref_primary_10_1021_acsphotonics_6b00652 crossref_primary_10_1016_j_jmapro_2025_03_010 crossref_primary_10_1063_1_5051618 crossref_primary_10_3390_app8091424 crossref_primary_10_1364_OE_442882 crossref_primary_10_3103_S1068375517020077 crossref_primary_10_1002_adem_201901310 crossref_primary_10_2351_1_5046832 crossref_primary_10_1134_S0018151X20040045 crossref_primary_10_1039_C7NR08614H crossref_primary_10_1134_S1061934816110125 crossref_primary_10_1021_acs_jpcc_8b04374 crossref_primary_10_1016_j_sab_2015_02_011 crossref_primary_10_3390_nano12183099 crossref_primary_10_1088_1361_6463_50_19_193001 crossref_primary_10_1039_C7NR08791H crossref_primary_10_1103_PhysRevB_84_224110 crossref_primary_10_3390_nano11112964 crossref_primary_10_1016_j_jnoncrysol_2024_123028 crossref_primary_10_1016_j_optlastec_2018_02_001 crossref_primary_10_1103_PhysRevB_105_035415 crossref_primary_10_1016_j_optlastec_2020_106505 crossref_primary_10_1134_S1063776115010136 crossref_primary_10_1007_s00339_021_04664_w crossref_primary_10_1016_j_jphotochemrev_2013_08_002 crossref_primary_10_1016_j_optlastec_2024_111709 crossref_primary_10_20948_mathmontis_2024_59_6 crossref_primary_10_1007_s00339_018_1663_9 crossref_primary_10_1016_j_apsusc_2019_05_325 crossref_primary_10_1016_j_cplett_2013_01_002 crossref_primary_10_3390_ma16041512 crossref_primary_10_35848_1882_0786_abfca2 crossref_primary_10_1016_j_apsusc_2022_152918 crossref_primary_10_1007_s00339_010_5888_5 crossref_primary_10_1002_smll_202206485 crossref_primary_10_1016_j_combustflame_2021_111491 crossref_primary_10_1080_01495739_2018_1490634 crossref_primary_10_1063_1_4954636 crossref_primary_10_1007_s00339_017_1490_4 crossref_primary_10_1017_S0263034618000071 crossref_primary_10_1016_j_apsusc_2024_162190 crossref_primary_10_1364_OE_21_009017 crossref_primary_10_1103_PhysRevB_82_064113 crossref_primary_10_1016_j_cap_2016_11_026 |
Cites_doi | 10.1007/978-3-662-04074-4 10.1007/s10765-006-0137-z 10.1016/j.apsusc.2008.08.098 10.1088/0022-3727/37/20/022 10.1021/jp014332h 10.1016/j.apsusc.2008.07.199 10.1007/s00339-004-2590-5 10.1007/s00339-003-2144-2 10.1103/PhysRevB.72.165415 10.1021/cr010459r 10.1088/0022-3727/40/5/021 10.1088/0022-3727/39/15/031 10.1007/s003390100887 10.1016/S0169-4332(97)00619-3 10.1103/PhysRevB.75.235414 10.1021/cr010379n 10.1364/JOSAB.14.002716 10.2351/1.521909 10.1063/1.125894 10.1103/PhysRevLett.91.105701 10.1007/BF01567638 10.1007/s00339-008-5037-6 10.1007/s00339-004-2607-0 10.1063/1.1481195 10.1007/s003390051357 10.1007/s00339-004-2682-2 10.1103/PhysRevLett.98.195701 10.1007/s00339-002-1818-5 10.1103/PhysRevLett.81.224 10.1063/1.359010 10.1103/PhysRevB.73.184113 10.1103/PhysRevLett.102.095701 10.1007/BF01538216 10.1016/S1359-6454(01)00287-7 10.1016/j.apsusc.2007.01.077 10.1007/s00339-008-4906-3 10.1103/PhysRevB.78.214107 10.1063/1.3040082 10.1016/j.apsusc.2007.01.032 10.1063/1.2364457 10.1103/PhysRevB.78.045437 10.1088/0022-3727/38/16/029 10.1063/1.2783898 10.1063/1.2358941 10.1007/s00339-007-4211-6 10.1063/1.349537 10.1103/PhysRevB.58.R11805 10.1007/s003390000686 10.1103/PhysRevE.68.041501 10.1007/s003390051549 10.1103/PhysRevB.77.075133 10.1103/PhysRevA.3.364 10.1557/PROC-538-491 10.1021/cr010436c 10.1016/S0009-2614(97)00808-7 10.1103/PhysRevB.66.115404 10.1134/1.568029 10.1143/JJAP.42.L1452 10.1103/PhysRevB.76.165430 10.1134/1.1600815 10.1063/1.322578 10.1007/s00339-005-3242-0 10.1134/S1054660X08040026 10.1063/1.349087 10.1063/1.373816 10.1007/s00339-004-2963-9 10.1007/s003390051417 10.1103/PhysRevB.67.184102 10.1063/1.2393158 10.1007/BF01538207 10.1007/BF01567637 10.1016/S0927-0256(01)00263-4 10.1063/1.1346996 10.1016/j.apsusc.2004.03.229 10.1103/PhysRevLett.91.225502 10.1007/s00339-008-4712-y 10.1016/j.scriptamat.2005.05.006 10.1007/s00339-008-4859-6 10.1017/S0263034607070206 10.1063/1.114912 10.1351/pac199769040893 10.1103/PhysRevB.68.064114 10.1007/s00339-006-3751-5 10.1023/A:1019860808227 10.1016/j.apsusc.2007.01.106 10.1063/1.2434168 10.1351/pac200678122205 10.1016/j.apsusc.2007.01.081 |
ContentType | Journal Article |
Copyright | Copyright © 2009 American Chemical Society |
Copyright_xml | – notice: Copyright © 2009 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/jp902294m |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Modeling of Short Pulse Laser Ablation of Metals |
EISSN | 1932-7455 |
EndPage | 11906 |
ExternalDocumentID | 10_1021_jp902294m c818501436 |
GroupedDBID | .K2 4.4 53G 55A 5GY 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF AFFNX ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 RNS ROL UI2 UKR UQL VF5 VG9 VQA W1F ZCG 6TJ AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a325t-a41ca90ffb67e3af4c77c7b1c0348dcf8dc59ee091d59b976af38ae3ca3a54323 |
IEDL.DBID | ACS |
ISSN | 1932-7447 |
IngestDate | Tue Jul 01 03:35:21 EDT 2025 Thu Apr 24 23:04:06 EDT 2025 Thu Aug 27 13:42:12 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a325t-a41ca90ffb67e3af4c77c7b1c0348dcf8dc59ee091d59b976af38ae3ca3a54323 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1021_jp902294m crossref_primary_10_1021_jp902294m acs_journals_10_1021_jp902294m |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-07-09 |
PublicationDateYYYYMMDD | 2009-07-09 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-07-09 day: 09 |
PublicationDecade | 2000 |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2009 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Leveugle E. (ref31/cit31) 2007; 102 Semak V. V. (ref87/cit87) 2006; 39 Preuss S. (ref34/cit34) 1995; 61 Nolte S. (ref86/cit86) 1997; 14 Le Harzic R. (ref84/cit84) 2002; 80 Ivanov D. S. (ref58/cit58) 2004; 79 Agranat M. B. (ref74/cit74) 2007; 253 Tonshoff H. K. (ref38/cit38) 2000; 12 Fortov V. E. (ref78/cit78) 1997; 69 Feng Q. (ref85/cit85) 2005; 53 Mannion P. T. (ref89/cit89) 2004; 233 Semak V. V. (ref14/cit14) 2004; 37 Brailovsky A. B. (ref11/cit11) 1995; 61 Zeng X. (ref37/cit37) 2005; 80 Xu X. (ref97/cit97) 1999; 69 Cheng C. (ref23/cit23) 2005; 72 Porneala C. (ref24/cit24) 2006; 89 Zhang L. (ref92/cit92) 2008; 255 Vogel A. (ref32/cit32) 2003; 103 Noël S. (ref80/cit80) 2007; 253 Ancona A. (ref93/cit93) 2009; 94 Upadhyay A. K. (ref70/cit70) 2008; 78 Nikolaev D. N. (ref77/cit77) 2002; 23 Anisimov S. I. (ref49/cit49) 1974; 39 Zhigilei L. V. (ref29/cit29) 2003; 103 Phipps C. R. (ref4/cit4) 2003; 77 Korte F. (ref42/cit42) 2004; 79 Cheng C. (ref94/cit94) 2007; 28 Bulgakova N. M. (ref9/cit9) 2001; 73 Martynyuk M. M. (ref6/cit6) 1976; 21 Zhigilei L. V. (ref28/cit28) 1997; 276 Chrisey D. B. (ref3/cit3) 1994 Chichkov B. N. (ref36/cit36) 1996; 63 Lam Y. C. (ref48/cit48) 2007; 25 Ivanov D. S. (ref59/cit59) 2007; 98 Povarnitsyn M. E. (ref26/cit26) 2007; 75 Zhidkov A. G. (ref67/cit67) 2001; 73 Song K. H. (ref22/cit22) 1998; 127 Anisimov S. I. (ref5/cit5) 1968; 27 Yoo J. H. (ref25/cit25) 2000; 76 Miotello A. (ref7/cit7) 1995; 67 Garrison B. J. (ref75/cit75) 2003; 68 Vorobyev A. Y. (ref47/cit47) 2007; 86 Sokolowski-Tinten K. (ref62/cit62) 1998; 58 Amoruso S. (ref79/cit79) 2007; 89 Miotello A. (ref8/cit8) 1999; 69 Singha S. (ref44/cit44) 2008; 104 ref52/ref52_1 Ivanov D. S. (ref60/cit60) 2003; 91 Young D. A. (ref76/cit76) 1971; 3 Schäfer C. (ref71/cit71) 2002; 66 Yang J. (ref18/cit18) 2007; 76 Kashii M. (ref33/cit33) 2007; 253 Cheng J. (ref39/cit39) 2009; 95 Perez D. (ref72/cit72) 2003; 67 Kuznetsov A. I. (ref43/cit43) 2009; 94 Sokolowski-Tinten K. (ref82/cit82) 1998; 81 Ivanov D. S. (ref46/cit46) 2008; 92 Fortov V. E. (ref65/cit65) 1991; 70 Bennett T. D. (ref10/cit10) 1995; 77 Nakata Y. (ref41/cit41) 2003; 42 Inogamov N. A. (ref83/cit83) 1999; 69 Lin Z. (ref57/cit57) 2007; 253 Perez D. (ref96/cit96) 2006; 89 Chan W.-L. (ref63/cit63) 2008; 78 Upadhyay A. K. (ref69/cit69) 2005; 38 Hermann J. (ref81/cit81) 2008; 18 Tamura H. (ref66/cit66) 2001; 89 Leveugle E. (ref16/cit16) 2004; 79 Bäuerle D. (ref1/cit1) 2000 ref51/cit51 Zhigilei L. V. (ref17/cit17) 2000; 88 Ben-Yakar A. (ref40/cit40) 2007; 40 ref68/cit68 Bulgakova N. M. (ref21/cit21) 2005; 81 Lin Z. (ref61/cit61) 2006; 73 Ivanov D. S. (ref50/cit50) 2003; 68 Mannion P. T. (ref90/cit90) 2007; 59 Zhou X. W. (ref54/cit54) 2001; 49 Chan W.-L. (ref64/cit64) 2009; 102 Povarnitsyn M. E. (ref27/cit27) 2009; 255 von Allmen M. (ref2/cit2) 1998 von Allmen M. (ref12/cit12) 1976; 47 Li Y. (ref45/cit45) 2006; 89 Furusawa K. (ref88/cit88) 1999; 69 Zweig A. D. (ref13/cit13) 1991; 70 Anisimov S. I. (ref73/cit73) 2003; 77 Lin Z. (ref56/cit56) 2008; 77 Masuhara H. (ref19/cit19) 2006; 78 Hatanaka K. (ref20/cit20) 2002; 106 Schäfer C. (ref53/cit53) 2002; 24 (ref55/cit55) 1972 Lorazo P. (ref95/cit95) 2003; 91 Liu B. (ref91/cit91) 2007; 90 Jandeleit J. (ref35/cit35) 1996; 63 Zhigilei L. V. (ref30/cit30) 2003; 76 Paltauf G. (ref15/cit15) 2003; 103 |
References_xml | – volume-title: Laser Processing and Chemistry year: 2000 ident: ref1/cit1 doi: 10.1007/978-3-662-04074-4 – volume: 28 start-page: 9 year: 2007 ident: ref94/cit94 publication-title: Int. J. Thermophys. doi: 10.1007/s10765-006-0137-z – volume: 255 start-page: 3097 year: 2008 ident: ref92/cit92 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2008.08.098 – volume: 37 start-page: 2925 year: 2004 ident: ref14/cit14 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/37/20/022 – volume: 106 start-page: 3049 year: 2002 ident: ref20/cit20 publication-title: J. Phys. Chem. B doi: 10.1021/jp014332h – volume: 255 start-page: 5120 year: 2009 ident: ref27/cit27 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2008.07.199 – volume: 79 start-page: 879 year: 2004 ident: ref42/cit42 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s00339-004-2590-5 – volume: 77 start-page: 193 year: 2003 ident: ref4/cit4 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s00339-003-2144-2 – volume: 72 start-page: 165415 year: 2005 ident: ref23/cit23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.165415 – volume: 103 start-page: 321 year: 2003 ident: ref29/cit29 publication-title: Chem. Rev. doi: 10.1021/cr010459r – volume: 40 start-page: 1447 year: 2007 ident: ref40/cit40 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/40/5/021 – volume: 39 start-page: 3440 year: 2006 ident: ref87/cit87 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/39/15/031 – volume: 73 start-page: 741 year: 2001 ident: ref67/cit67 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s003390100887 – volume: 127 start-page: 111 year: 1998 ident: ref22/cit22 publication-title: Appl. Surf. Sci. doi: 10.1016/S0169-4332(97)00619-3 – volume: 75 start-page: 235414 year: 2007 ident: ref26/cit26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.235414 – volume: 103 start-page: 577 year: 2003 ident: ref32/cit32 publication-title: Chem. Rev. doi: 10.1021/cr010379n – volume: 14 start-page: 2716 year: 1997 ident: ref86/cit86 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.14.002716 – volume: 12 start-page: 23 year: 2000 ident: ref38/cit38 publication-title: J. Laser. Appl. doi: 10.2351/1.521909 – volume: 76 start-page: 783 year: 2000 ident: ref25/cit25 publication-title: Appl. Phys. Lett. doi: 10.1063/1.125894 – volume: 91 start-page: 105701 year: 2003 ident: ref60/cit60 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.105701 – volume: 63 start-page: 117 year: 1996 ident: ref35/cit35 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/BF01567638 – volume: 95 start-page: 739 year: 2009 ident: ref39/cit39 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s00339-008-5037-6 – volume: 39 start-page: 375 year: 1974 ident: ref49/cit49 publication-title: Sov. Phys. JETP – volume: 79 start-page: 977 year: 2004 ident: ref58/cit58 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s00339-004-2607-0 – volume: 80 start-page: 3886 year: 2002 ident: ref84/cit84 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1481195 – volume: 69 start-page: S67 year: 1999 ident: ref8/cit8 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s003390051357 – volume: 79 start-page: 1643 year: 2004 ident: ref16/cit16 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s00339-004-2682-2 – volume: 98 start-page: 195701 year: 2007 ident: ref59/cit59 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.195701 – volume: 76 start-page: 339 year: 2003 ident: ref30/cit30 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s00339-002-1818-5 – volume: 81 start-page: 224 year: 1998 ident: ref82/cit82 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.224 – volume: 77 start-page: 849 year: 1995 ident: ref10/cit10 publication-title: J. Appl. Phys. doi: 10.1063/1.359010 – volume: 73 start-page: 184113 year: 2006 ident: ref61/cit61 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.184113 – volume: 59 start-page: 753 year: 2007 ident: ref90/cit90 publication-title: J. Phys.: Conf. Ser. – volume: 102 start-page: 095701 year: 2009 ident: ref64/cit64 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.095701 – volume: 61 start-page: 81 year: 1995 ident: ref11/cit11 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/BF01538216 – volume: 49 start-page: 4005 year: 2001 ident: ref54/cit54 publication-title: Acta Mater. doi: 10.1016/S1359-6454(01)00287-7 – volume: 253 start-page: 6276 year: 2007 ident: ref74/cit74 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2007.01.077 – volume: 94 start-page: 19 year: 2009 ident: ref93/cit93 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s00339-008-4906-3 – volume: 78 start-page: 214107 year: 2008 ident: ref63/cit63 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.214107 – volume: 104 start-page: 113520 year: 2008 ident: ref44/cit44 publication-title: J. Appl. Phys. doi: 10.1063/1.3040082 – volume: 253 start-page: 6295 year: 2007 ident: ref57/cit57 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2007.01.032 – volume: 89 start-page: 161110 year: 2006 ident: ref45/cit45 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2364457 – volume: 78 start-page: 045437 year: 2008 ident: ref70/cit70 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.045437 – volume: 38 start-page: 2933 year: 2005 ident: ref69/cit69 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/38/16/029 – volume: 102 start-page: 074914 year: 2007 ident: ref31/cit31 publication-title: J. Appl. Phys. doi: 10.1063/1.2783898 – volume: 89 start-page: 141907 year: 2006 ident: ref96/cit96 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2358941 – volume: 89 start-page: 1017 year: 2007 ident: ref79/cit79 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s00339-007-4211-6 – volume: 70 start-page: 1684 year: 1991 ident: ref13/cit13 publication-title: J. Appl. Phys. doi: 10.1063/1.349537 – volume: 58 start-page: R11805 year: 1998 ident: ref62/cit62 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.R11805 – volume: 73 start-page: 199 year: 2001 ident: ref9/cit9 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s003390000686 – volume: 68 start-page: 041501 year: 2003 ident: ref75/cit75 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.68.041501 – volume: 69 start-page: S869 year: 1999 ident: ref97/cit97 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s003390051549 – volume: 27 start-page: 182 year: 1968 ident: ref5/cit5 publication-title: Sov. Phys. JETP – volume: 77 start-page: 075133 year: 2008 ident: ref56/cit56 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.075133 – volume-title: Pulsed Laser Deposition of Thin Films year: 1994 ident: ref3/cit3 – volume: 3 start-page: 364 year: 1971 ident: ref76/cit76 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.3.364 – ident: ref52/ref52_1 doi: 10.1557/PROC-538-491 – volume: 103 start-page: 487 year: 2003 ident: ref15/cit15 publication-title: Chem. Rev. doi: 10.1021/cr010436c – volume: 276 start-page: 269 year: 1997 ident: ref28/cit28 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(97)00808-7 – volume: 66 start-page: 115404 year: 2002 ident: ref71/cit71 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.66.115404 – volume: 69 start-page: 310 year: 1999 ident: ref83/cit83 publication-title: JETP Lett. doi: 10.1134/1.568029 – volume: 42 start-page: L1452 year: 2003 ident: ref41/cit41 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.42.L1452 – ident: ref68/cit68 – volume: 76 start-page: 165430 year: 2007 ident: ref18/cit18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.165430 – volume: 77 start-page: 606 year: 2003 ident: ref73/cit73 publication-title: JETP Lett. doi: 10.1134/1.1600815 – volume: 47 start-page: 5460 year: 1976 ident: ref12/cit12 publication-title: J. Appl. Phys. doi: 10.1063/1.322578 – volume: 81 start-page: 345 year: 2005 ident: ref21/cit21 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s00339-005-3242-0 – ident: ref51/cit51 – volume: 18 start-page: 374 year: 2008 ident: ref81/cit81 publication-title: Laser Phys. doi: 10.1134/S1054660X08040026 – volume: 70 start-page: 4524 year: 1991 ident: ref65/cit65 publication-title: J. Appl. Phys. doi: 10.1063/1.349087 – volume: 88 start-page: 1281 year: 2000 ident: ref17/cit17 publication-title: J. Appl. Phys. doi: 10.1063/1.373816 – volume: 80 start-page: 237 year: 2005 ident: ref37/cit37 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s00339-004-2963-9 – volume: 69 start-page: S359 year: 1999 ident: ref88/cit88 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s003390051417 – volume: 67 start-page: 184102 year: 2003 ident: ref72/cit72 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.67.184102 – volume: 89 start-page: 211121 year: 2006 ident: ref24/cit24 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2393158 – volume: 61 start-page: 33 year: 1995 ident: ref34/cit34 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/BF01538207 – volume: 63 start-page: 109 year: 1996 ident: ref36/cit36 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/BF01567637 – volume: 24 start-page: 421 year: 2002 ident: ref53/cit53 publication-title: Comput. Mater. Sci. doi: 10.1016/S0927-0256(01)00263-4 – volume: 89 start-page: 3520 year: 2001 ident: ref66/cit66 publication-title: J. Appl. Phys. doi: 10.1063/1.1346996 – volume: 233 start-page: 275 year: 2004 ident: ref89/cit89 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2004.03.229 – volume: 91 start-page: 225502 year: 2003 ident: ref95/cit95 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.225502 – volume: 92 start-page: 791 year: 2008 ident: ref46/cit46 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s00339-008-4712-y – volume: 53 start-page: 511 year: 2005 ident: ref85/cit85 publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2005.05.006 – volume: 94 start-page: 221 year: 2009 ident: ref43/cit43 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s00339-008-4859-6 – volume: 25 start-page: 155 year: 2007 ident: ref48/cit48 publication-title: Laser Part. Beams doi: 10.1017/S0263034607070206 – volume: 67 start-page: 3535 year: 1995 ident: ref7/cit7 publication-title: Appl. Phys. Lett. doi: 10.1063/1.114912 – volume: 69 start-page: 893 year: 1997 ident: ref78/cit78 publication-title: Pure Appl. Chem. doi: 10.1351/pac199769040893 – volume: 68 start-page: 064114 year: 2003 ident: ref50/cit50 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.064114 – volume-title: Laser Beam Interactions with Materials year: 1998 ident: ref2/cit2 – volume: 21 start-page: 430 year: 1976 ident: ref6/cit6 publication-title: Sov. Phys. Tech. Phys. – volume: 86 start-page: 235 year: 2007 ident: ref47/cit47 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s00339-006-3751-5 – volume: 23 start-page: 1311 year: 2002 ident: ref77/cit77 publication-title: Int. J. Thermophys. doi: 10.1023/A:1019860808227 – volume-title: American Institute of Physics Handbook year: 1972 ident: ref55/cit55 – volume: 253 start-page: 6447 year: 2007 ident: ref33/cit33 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2007.01.106 – volume: 90 start-page: 044103 year: 2007 ident: ref91/cit91 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2434168 – volume: 78 start-page: 2205 year: 2006 ident: ref19/cit19 publication-title: Pure Appl. Chem. doi: 10.1351/pac200678122205 – volume: 253 start-page: 6310 year: 2007 ident: ref80/cit80 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2007.01.081 |
SSID | ssj0053013 |
Score | 2.4998393 |
Snippet | The mechanisms of short pulse laser interactions with a metal target are investigated in simulations performed with a model combining the molecular dynamics... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 11892 |
Title | Atomistic Modeling of Short Pulse Laser Ablation of Metals: Connections between Melting, Spallation, and Phase Explosion |
URI | http://dx.doi.org/10.1021/jp902294m |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1JSwMxFA61HvTiLtaNoB48dGo7yUwm3oZqKWKlUAu9lSSTULQbnSmIv96XWaRQl8Oc3puFvEy-L3kbQjdUUS_yfekIwBOHBnYdBFbsqIA3Am4i4Unr0e28-O0-fRp4gxK6_sWD7zbu3uYccIbTyQbadP2A2R1W2OwVy60HM5RkrmOgipSyonzQ6q0WelS8Aj0rGNLaRQ9FJk4WOvJeWyaypj7XCzP-9Xl7aCfnkDjMjL6PSnp6gLaaReu2Q_QRJrNJWoEZ215nNuMczwzujYBr4-4S0BA_A3otcCizUDgr7Wjg4fE9TkNf0myHGOdRXCAb2_DoKu7N7cG7FVaxmEa4O4Ln4DSQzx67HaF-6_G12XbyFguOIK6XOII2lOB1Y6TPNBGGKsYUkw1VJzSIlIHL41oDqYg8LoG6CEMCoYkSRHiUuOQYlaezqT5BWASaGiENEARNXaq5FJobRgJZ51IzXkGXYINh_ovEw9T77cLuoxjACrotzDNUeYFy2ydj_JPq1bfqPKvKsa50-t8Lz9B25htiTp2fo3KyWOoLoBiJvEyn2BdJucyt |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8UD3jx24gf2BgPHhjC2rHVGyEaVCAkQMKNtF0bonyFjcT41_vabUrURA87teua9q2_X_tefw-hayqpF9ZqwuGAJw4NzDoIrNiRAasGTIfcE8aj2-7UmgP6NPSGqUyOuQsDnYigpcg68b_UBaq3LwsGcMPodBNtAQlxzUar3uhlq64HhkoSDzIwRkr9TEVo_VWDQDJaQ6A1KHnYTXIS2U7YCJLX8ioWZfn-TZ_xf73cQzspo8T1xAT20YaaHaB8I0vkdoje6vF8avWYscl8Zu6f47nGvTEwb9xdATbiFmDZEtdFEhhnStsKWHl0h20gjL37EOE0pgvKJiZYuoR7C3MMbwpLmM9C3B1DO9iG9ZlDuCM0eLjvN5pOmnDB4cT1YofTquSsorWo-YpwTaXvS19UZYXQIJQaHo8pBRQj9JgAIsM1CbgikhPuUeKSY5SbzWfqBGEeKKq50EAXFHWpYoIrpn0SiAoTymcFVITxG6U_TDSyvnAX9iLZABbQTTZLI5nKlZusGZPfql59Vl0kGh0_K53-9cFLlG_2261R67HzfIa2E6-R71TYOcrFy5W6APIRi6K1ug-M09UO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTwIxFG4UE_XibsQFG-PBA4NAO0u9TVCCCkiCJNxI22lDlC3MkBh_va-zEKImepjT63Sazmu_r30bQtdUUjtwHGFxwBOLemYfBFZsSY9VPKYDbgtj0W21nUaPPvXtfnpQNLEwMIgQegpjI75Z1bNApxkGKrdvMwaQw-h4HW0Yc505bPm1brbz2qCsJLEiA2uk1M0yCa2-alBIhisotAIn9V30shxI7EXyXlpEoiQ_v-Vo_P9I99BOyiyxn6jCPlpTkwO0VcsKuh2iDz-ajuO8zNhUQDNx6HiqcXcIDBx3FoCRuAmYNse-SBzkjLSlgJ2Hdzh2iIljIEKc-naBbGScpou4OzPX8UZYxHwS4M4Q-sGxe5-5jDtCvfrDa61hpYUXLE6qdmRxWpGclbUWjqsI11S6rnRFRZYJ9QKp4bGZUkA1ApsJIDRcE48rIjnhNiVVcoxyk-lEnSDMPUU1Fxpog6JVqpjgimmXeKLMhHJZHhVgDgfpwgkHsU28CmeSbALz6Cb7UwOZpi031TNGvzW9WjadJbk6fjY6_euDl2izc18fNB_bz2doOzEeuVaZnaNcNF-oC-AgkSjEivcFi97XkQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomistic+Modeling+of+Short+Pulse+Laser+Ablation+of+Metals%3A+Connections+between+Melting%2C+Spallation%2C+and+Phase+Explosion&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Zhigilei%2C+Leonid+V&rft.au=Lin%2C+Zhibin&rft.au=Ivanov%2C+Dmitriy+S&rft.date=2009-07-09&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=113&rft.issue=27&rft.spage=11892&rft.epage=11906&rft_id=info:doi/10.1021%2Fjp902294m&rft.externalDocID=c818501436 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |