Atomistic Modeling of Short Pulse Laser Ablation of Metals: Connections between Melting, Spallation, and Phase Explosion

The mechanisms of short pulse laser interactions with a metal target are investigated in simulations performed with a model combining the molecular dynamics method with a continuum description of laser excitation, electron−phonon equilibration, and electron heat conduction. Three regimes of material...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 113; no. 27; pp. 11892 - 11906
Main Authors Zhigilei, Leonid V, Lin, Zhibin, Ivanov, Dmitriy S
Format Journal Article
LanguageEnglish
Published American Chemical Society 09.07.2009
Online AccessGet full text

Cover

Loading…
Abstract The mechanisms of short pulse laser interactions with a metal target are investigated in simulations performed with a model combining the molecular dynamics method with a continuum description of laser excitation, electron−phonon equilibration, and electron heat conduction. Three regimes of material response to laser irradiation are identified in simulations performed with a 1 ps laser pulse, which corresponds to the condition of stress confinement: melting and resolidification of a surface region of the target, photomechanical spallation of a single or multiple layers or droplets, and an explosive disintegration of an overheated surface layer (phase explosion). The processes of laser melting, spallation, and phase explosion are taking place on the same time scale and are closely intertwined with each other. The transition to the spallation regime results in a reduction of the melting zone and a sharp drop in the duration of the melting and resolidification cycle. The transition from spallation to phase explosion is signified by an abrupt change in the composition of the ejected plume (from liquid layers and/or large droplets to a mixture of vapor-phase atoms, small clusters and droplets), and results in a substantial increase in the duration of the melting process. In simulations performed with longer, 50 ps, laser pulses, when the condition for stress confinement is not satisfied, the spallation regime is absent and phase explosion results in smaller values of the ablation yield and larger fractions of the vapor phase in the ejected plume as compared to the results obtained with a 1 ps pulse. The more vigorous material ejection and higher ablation yields, observed in the simulations performed with the shorter laser pulse, are explained by the synergistic contribution of the laser-induced stresses and the explosive release of vapor in phase explosion occurring under the condition of stress confinement.
AbstractList The mechanisms of short pulse laser interactions with a metal target are investigated in simulations performed with a model combining the molecular dynamics method with a continuum description of laser excitation, electron−phonon equilibration, and electron heat conduction. Three regimes of material response to laser irradiation are identified in simulations performed with a 1 ps laser pulse, which corresponds to the condition of stress confinement: melting and resolidification of a surface region of the target, photomechanical spallation of a single or multiple layers or droplets, and an explosive disintegration of an overheated surface layer (phase explosion). The processes of laser melting, spallation, and phase explosion are taking place on the same time scale and are closely intertwined with each other. The transition to the spallation regime results in a reduction of the melting zone and a sharp drop in the duration of the melting and resolidification cycle. The transition from spallation to phase explosion is signified by an abrupt change in the composition of the ejected plume (from liquid layers and/or large droplets to a mixture of vapor-phase atoms, small clusters and droplets), and results in a substantial increase in the duration of the melting process. In simulations performed with longer, 50 ps, laser pulses, when the condition for stress confinement is not satisfied, the spallation regime is absent and phase explosion results in smaller values of the ablation yield and larger fractions of the vapor phase in the ejected plume as compared to the results obtained with a 1 ps pulse. The more vigorous material ejection and higher ablation yields, observed in the simulations performed with the shorter laser pulse, are explained by the synergistic contribution of the laser-induced stresses and the explosive release of vapor in phase explosion occurring under the condition of stress confinement.
Author Ivanov, Dmitriy S
Zhigilei, Leonid V
Lin, Zhibin
Author_xml – sequence: 1
  givenname: Leonid V
  surname: Zhigilei
  fullname: Zhigilei, Leonid V
  email: lz2n@virginia.edu
– sequence: 2
  givenname: Zhibin
  surname: Lin
  fullname: Lin, Zhibin
– sequence: 3
  givenname: Dmitriy S
  surname: Ivanov
  fullname: Ivanov, Dmitriy S
BookMark eNptUEtrAjEQDsVC1fbQf5BLDwW3Jptd1_QmYh-gVLA9L7PZpK7EZEkitf--sRYPxcMww_diZnqoY6yRCN1S8kBJSoeblpM05dn2AnUpZ2lSZHneOc1ZcYV63m8IyRmhrIv2k2C3jQ-NwAtbS92YT2wVXq2tC3i5017iOXjp8KTSEBprDuxCBtD-EU-tMVIcUI8rGb6kNJHTIYYM8KoFfbQMMJgaL9cxB8_2rbY-gtfoUsUQefPX--jjafY-fUnmb8-v08k8AZbmIYGMCuBEqWpUSAYqE0UhiooKwrJxLVSsnEtJOK1zXvFiBIqNQTIBDPKMpayPhsdc4az3TqpSNOF3reCg0SUl5eFx5elx0XH_z9G6Zgvu-6z27qgF4cuN3TkTbzmj-wGLI36P
CitedBy_id crossref_primary_10_1063_1_5099936
crossref_primary_10_1007_s00339_022_05393_4
crossref_primary_10_1016_j_xcrp_2021_100651
crossref_primary_10_1364_OE_26_019665
crossref_primary_10_1007_s00339_023_06922_5
crossref_primary_10_1007_s13538_021_00875_x
crossref_primary_10_1016_j_apsusc_2013_10_141
crossref_primary_10_3390_app12178464
crossref_primary_10_1021_acsami_6b07740
crossref_primary_10_1016_j_cartre_2023_100268
crossref_primary_10_4236_ns_2011_36068
crossref_primary_10_1021_acs_jpcc_8b09922
crossref_primary_10_1016_j_apsusc_2021_148930
crossref_primary_10_1039_C7CP04033D
crossref_primary_10_1007_s00339_010_5877_8
crossref_primary_10_1016_j_apsusc_2018_11_106
crossref_primary_10_1103_PhysRevB_95_054305
crossref_primary_10_1103_PhysRevE_93_043203
crossref_primary_10_1016_j_apsusc_2013_09_137
crossref_primary_10_1016_j_combustflame_2019_12_009
crossref_primary_10_1016_j_ijleo_2015_06_033
crossref_primary_10_1016_j_apsusc_2022_153315
crossref_primary_10_1364_AO_54_003216
crossref_primary_10_1364_JOSAB_35_000B43
crossref_primary_10_1103_PhysRevB_96_205429
crossref_primary_10_3390_jmmp7030094
crossref_primary_10_1016_j_apsusc_2015_09_007
crossref_primary_10_1016_j_apsusc_2017_05_106
crossref_primary_10_1007_s10853_024_10263_w
crossref_primary_10_1016_j_apsusc_2014_12_142
crossref_primary_10_1038_srep39584
crossref_primary_10_3390_mi15040491
crossref_primary_10_1007_s00339_012_7269_8
crossref_primary_10_1364_OE_427168
crossref_primary_10_1016_j_apsusc_2017_02_030
crossref_primary_10_1016_j_apsusc_2017_02_032
crossref_primary_10_1364_OE_20_029329
crossref_primary_10_1002_adma_201503289
crossref_primary_10_1016_j_ijmachtools_2020_103687
crossref_primary_10_1021_acs_jpcc_1c04205
crossref_primary_10_31857_S1234567823020040
crossref_primary_10_1016_j_apsusc_2022_153427
crossref_primary_10_1016_j_ijheatmasstransfer_2019_119287
crossref_primary_10_3367_UFNe_2016_09_037974
crossref_primary_10_1016_j_apsusc_2019_144134
crossref_primary_10_1021_acs_jpcc_7b02301
crossref_primary_10_3788_COL202523_033401
crossref_primary_10_1007_s40516_020_00129_9
crossref_primary_10_1016_j_applthermaleng_2024_124773
crossref_primary_10_1021_acs_jpcc_6b06261
crossref_primary_10_3788_CJL231570
crossref_primary_10_1021_acs_jpcc_6b00161
crossref_primary_10_1088_1367_2630_14_1_013039
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124119
crossref_primary_10_1016_j_jmapro_2022_03_048
crossref_primary_10_1016_j_ijleo_2015_08_107
crossref_primary_10_1088_1361_651X_ad7bd9
crossref_primary_10_1103_PhysRevB_106_024107
crossref_primary_10_1134_S0018151X20010204
crossref_primary_10_2351_7_0001408
crossref_primary_10_1016_j_jaerosci_2018_09_006
crossref_primary_10_1021_acsnano_6b02970
crossref_primary_10_1364_OE_24_017572
crossref_primary_10_1088_0256_307X_39_7_077901
crossref_primary_10_3390_molecules26216327
crossref_primary_10_1007_s00339_017_1269_7
crossref_primary_10_1088_1361_6463_acdb81
crossref_primary_10_1088_1742_6596_774_1_012098
crossref_primary_10_1002_lpor_201200017
crossref_primary_10_1016_j_surfin_2021_101438
crossref_primary_10_1063_1_4896068
crossref_primary_10_1021_acs_analchem_3c03558
crossref_primary_10_1016_j_apsusc_2019_143973
crossref_primary_10_1103_PhysRevB_82_115204
crossref_primary_10_1515_aot_2018_0010
crossref_primary_10_1117_1_JBO_21_6_065005
crossref_primary_10_1016_j_apsusc_2021_150913
crossref_primary_10_3390_coatings15010001
crossref_primary_10_1088_1612_202X_ac7137
crossref_primary_10_1364_JOT_81_000233
crossref_primary_10_1134_S0018151X2006022X
crossref_primary_10_1016_j_optlastec_2022_108100
crossref_primary_10_1038_s41598_018_30269_0
crossref_primary_10_1103_PhysRevApplied_10_024023
crossref_primary_10_1007_s00339_022_06217_1
crossref_primary_10_1007_s00466_017_1449_5
crossref_primary_10_1016_j_apsusc_2018_12_117
crossref_primary_10_1038_s41598_018_19801_4
crossref_primary_10_1063_1_5012594
crossref_primary_10_1016_j_optlastec_2024_111752
crossref_primary_10_1007_s00339_024_08064_8
crossref_primary_10_1016_j_commatsci_2019_05_017
crossref_primary_10_1016_j_optlastec_2025_112605
crossref_primary_10_1007_s00339_019_2382_6
crossref_primary_10_1364_AO_432691
crossref_primary_10_1007_s11082_021_02872_5
crossref_primary_10_1088_2058_6272_aab661
crossref_primary_10_1364_OE_421097
crossref_primary_10_1115_1_4048397
crossref_primary_10_1515_aot_2019_0064
crossref_primary_10_1051_epjap_2019180336
crossref_primary_10_1134_S0030400X20020149
crossref_primary_10_1016_j_apsusc_2021_150243
crossref_primary_10_1016_j_optlastec_2024_112286
crossref_primary_10_1103_PhysRevApplied_4_064006
crossref_primary_10_34133_2022_9754131
crossref_primary_10_1038_lsa_2016_256
crossref_primary_10_1088_1361_6463_aa7b5a
crossref_primary_10_1002_pssa_202300703
crossref_primary_10_2139_ssrn_4163374
crossref_primary_10_1088_1361_6595_ab3dbe
crossref_primary_10_1088_1361_6463_ab82d9
crossref_primary_10_1103_PhysRevB_84_193410
crossref_primary_10_1134_S106377611302012X
crossref_primary_10_1016_j_phpro_2014_08_058
crossref_primary_10_1063_5_0166912
crossref_primary_10_1007_s00339_012_7072_6
crossref_primary_10_1007_s00339_024_07797_w
crossref_primary_10_1134_S0021364013010098
crossref_primary_10_1016_j_optlastec_2022_108111
crossref_primary_10_1063_1_3601346
crossref_primary_10_1063_1_4890413
crossref_primary_10_1364_AO_54_001737
crossref_primary_10_7498_aps_59_7198
crossref_primary_10_1007_s00339_013_8086_4
crossref_primary_10_1007_s00339_016_9944_7
crossref_primary_10_1007_s00339_020_3440_9
crossref_primary_10_1021_acs_chemrev_6b00468
crossref_primary_10_1103_PhysRevMaterials_6_126001
crossref_primary_10_1016_j_apsusc_2015_03_158
crossref_primary_10_1016_j_chemer_2019_125542
crossref_primary_10_1016_j_optlastec_2024_111404
crossref_primary_10_1063_1_4739256
crossref_primary_10_2351_1_5119995
crossref_primary_10_1103_PhysRevB_97_224301
crossref_primary_10_1063_1_4793521
crossref_primary_10_3390_nano13202809
crossref_primary_10_7567_APEX_7_122704
crossref_primary_10_1016_j_apsusc_2016_03_011
crossref_primary_10_1016_j_optcom_2022_128902
crossref_primary_10_1007_s00339_011_6705_5
crossref_primary_10_1016_j_optlastec_2022_108442
crossref_primary_10_1007_s00339_018_1716_0
crossref_primary_10_1103_PhysRevB_90_245306
crossref_primary_10_1016_j_apcatb_2012_11_040
crossref_primary_10_1016_j_matdes_2019_107675
crossref_primary_10_1063_1_3620898
crossref_primary_10_1117_1_OE_53_5_051510
crossref_primary_10_1016_j_apsusc_2020_145514
crossref_primary_10_1063_1_4876601
crossref_primary_10_1103_PhysRevB_107_195402
crossref_primary_10_1021_jp909328q
crossref_primary_10_1088_1742_6596_690_1_012021
crossref_primary_10_1021_acs_langmuir_9b00457
crossref_primary_10_1016_j_ijheatmasstransfer_2018_08_053
crossref_primary_10_1364_OE_22_018790
crossref_primary_10_3390_nano10010049
crossref_primary_10_1063_1_4872245
crossref_primary_10_1103_PhysRevB_95_014309
crossref_primary_10_1016_j_jallcom_2024_177175
crossref_primary_10_1007_s00339_022_06012_y
crossref_primary_10_1016_j_ijplas_2020_102849
crossref_primary_10_1007_s00340_015_6039_7
crossref_primary_10_1016_j_apsusc_2020_146952
crossref_primary_10_1016_j_sab_2021_106091
crossref_primary_10_1063_1_3276161
crossref_primary_10_1063_1_3475149
crossref_primary_10_1016_j_ijheatmasstransfer_2017_04_100
crossref_primary_10_1016_j_jmapro_2024_10_006
crossref_primary_10_1088_1361_648X_ad4941
crossref_primary_10_1364_AO_54_008596
crossref_primary_10_1016_j_cossms_2013_07_005
crossref_primary_10_1063_5_0054955
crossref_primary_10_1007_s10946_014_9463_y
crossref_primary_10_1016_j_cattod_2010_11_077
crossref_primary_10_1016_j_apsusc_2009_10_004
crossref_primary_10_1088_0965_0393_18_3_034001
crossref_primary_10_3390_pr11061704
crossref_primary_10_1016_j_commatsci_2019_109483
crossref_primary_10_1080_15421406_2021_1885970
crossref_primary_10_1088_1361_651X_ab309f
crossref_primary_10_1364_OL_393979
crossref_primary_10_1007_s00339_023_06949_8
crossref_primary_10_3390_nano12030536
crossref_primary_10_1016_j_optlastec_2022_108382
crossref_primary_10_3390_ma12081257
crossref_primary_10_4028_www_scientific_net_AMR_1112_120
crossref_primary_10_1016_j_surfcoat_2024_131300
crossref_primary_10_1039_D4NR03305A
crossref_primary_10_1088_0034_4885_76_3_036502
crossref_primary_10_1364_OL_37_002691
crossref_primary_10_1364_OE_20_00A984
crossref_primary_10_1007_s00339_012_7001_8
crossref_primary_10_1364_OE_444451
crossref_primary_10_1016_j_optcom_2020_126237
crossref_primary_10_1364_OE_434515
crossref_primary_10_20948_mathmontis_2023_58_6
crossref_primary_10_1016_j_apsusc_2015_09_091
crossref_primary_10_1016_j_apsusc_2019_01_070
crossref_primary_10_1016_j_actamat_2018_06_027
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126714
crossref_primary_10_1016_j_net_2022_09_020
crossref_primary_10_1088_0034_4885_74_9_096101
crossref_primary_10_1103_PhysRevB_99_235412
crossref_primary_10_1134_S0021364012040042
crossref_primary_10_1016_j_sab_2012_10_003
crossref_primary_10_1134_S1063776119100169
crossref_primary_10_20948_prepr_2024_36
crossref_primary_10_1134_S0021364022603050
crossref_primary_10_1016_j_pacs_2024_100627
crossref_primary_10_1088_1361_6455_ab4cc3
crossref_primary_10_1007_s00339_017_1280_z
crossref_primary_10_1021_acs_nanolett_4c03576
crossref_primary_10_1080_08927022_2024_2385499
crossref_primary_10_1016_j_apsusc_2011_04_027
crossref_primary_10_1016_j_optlastec_2016_08_009
crossref_primary_10_1016_j_apsusc_2018_08_225
crossref_primary_10_1016_j_apsusc_2019_05_066
crossref_primary_10_1007_s00339_020_03754_5
crossref_primary_10_1016_j_apsusc_2012_11_073
crossref_primary_10_1051_matecconf_201819704004
crossref_primary_10_1364_JOSAB_28_001817
crossref_primary_10_1007_s00339_011_6727_z
crossref_primary_10_1103_PhysRevAccelBeams_22_023101
crossref_primary_10_1021_acs_jpcc_5b02085
crossref_primary_10_1007_s00339_011_6363_7
crossref_primary_10_1039_C2CP42895D
crossref_primary_10_1016_j_apsusc_2018_11_199
crossref_primary_10_1016_j_apsusc_2016_10_162
crossref_primary_10_3390_ma14195544
crossref_primary_10_1016_j_ceramint_2020_12_274
crossref_primary_10_1016_j_optcom_2019_124384
crossref_primary_10_1063_1_4885196
crossref_primary_10_1117_1_OE_56_1_011010
crossref_primary_10_1016_j_actamat_2020_11_007
crossref_primary_10_1007_s00339_011_6436_7
crossref_primary_10_1016_j_apsusc_2020_147618
crossref_primary_10_1016_j_jcis_2016_08_016
crossref_primary_10_1016_j_jcis_2016_10_029
crossref_primary_10_1080_17452759_2023_2276247
crossref_primary_10_1088_1612_202X_aa6225
crossref_primary_10_1007_s00339_010_5764_3
crossref_primary_10_2351_7_0000271
crossref_primary_10_1016_j_jmst_2025_01_043
crossref_primary_10_1016_j_matpr_2022_03_723
crossref_primary_10_1007_s00339_024_07792_1
crossref_primary_10_1364_OE_499139
crossref_primary_10_3390_mi13060870
crossref_primary_10_3390_met14080943
crossref_primary_10_1111_jace_20436
crossref_primary_10_1016_j_apsusc_2013_10_072
crossref_primary_10_1016_j_apsusc_2023_157357
crossref_primary_10_1016_j_apsusc_2016_02_111
crossref_primary_10_1021_acsami_4c16830
crossref_primary_10_2139_ssrn_3867732
crossref_primary_10_1002_adem_202201361
crossref_primary_10_1016_j_jmapro_2024_09_073
crossref_primary_10_1021_acs_jpcc_0c09970
crossref_primary_10_1364_OE_396727
crossref_primary_10_1016_j_rsurfi_2024_100390
crossref_primary_10_1016_j_apsusc_2014_03_193
crossref_primary_10_1155_2022_2455226
crossref_primary_10_3390_ma14216355
crossref_primary_10_1039_D3IM00090G
crossref_primary_10_1088_1742_6596_1556_1_012002
crossref_primary_10_3390_ma11122456
crossref_primary_10_1007_s00339_023_06525_0
crossref_primary_10_1016_j_apsusc_2014_08_005
crossref_primary_10_1103_PhysRevB_91_035413
crossref_primary_10_1007_s40194_020_00849_8
crossref_primary_10_1088_1555_6611_abdcb8
crossref_primary_10_1134_S207004821405007X
crossref_primary_10_1088_1361_6463_ac2274
crossref_primary_10_1007_s00339_011_6595_6
crossref_primary_10_1016_j_jssc_2012_09_023
crossref_primary_10_1016_j_apcatb_2011_01_005
crossref_primary_10_1080_01495739_2020_1822767
crossref_primary_10_1016_j_procir_2022_08_152
crossref_primary_10_1051_fopen_2018003
crossref_primary_10_1039_D0CP00608D
crossref_primary_10_3389_fchem_2020_00768
crossref_primary_10_1364_AO_51_005946
crossref_primary_10_3390_met13050850
crossref_primary_10_1016_j_optlastec_2023_110540
crossref_primary_10_3390_mi12030300
crossref_primary_10_1016_j_jmrt_2023_09_316
crossref_primary_10_1016_j_optlastec_2023_110427
crossref_primary_10_1063_5_0049987
crossref_primary_10_1038_s41377_022_00751_6
crossref_primary_10_3762_bjnano_5_165
crossref_primary_10_1063_1_4916600
crossref_primary_10_7498_aps_66_040202
crossref_primary_10_1016_j_optlastec_2021_106968
crossref_primary_10_1016_j_apsusc_2014_02_104
crossref_primary_10_1016_j_optlaseng_2020_106067
crossref_primary_10_1039_C5JA00251F
crossref_primary_10_1088_0022_3727_49_36_365103
crossref_primary_10_1103_PhysRevB_96_014108
crossref_primary_10_1016_j_apsusc_2018_12_184
crossref_primary_10_1109_JPHOTOV_2013_2261573
crossref_primary_10_1039_C2CP42592K
crossref_primary_10_3367_UFNr_2016_09_037974
crossref_primary_10_3389_fnano_2023_1271832
crossref_primary_10_1016_j_apsusc_2020_148839
crossref_primary_10_1016_j_optlastec_2020_106618
crossref_primary_10_1002_lpor_201500119
crossref_primary_10_4103_MJBL_MJBL_147_22
crossref_primary_10_7498_aps_64_034101
crossref_primary_10_1364_OE_505324
crossref_primary_10_1016_j_ijthermalsci_2013_03_003
crossref_primary_10_1007_s00339_011_6747_8
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124328
crossref_primary_10_1103_PhysRevAccelBeams_20_113201
crossref_primary_10_1088_1742_6596_1147_1_012062
crossref_primary_10_1080_14786435_2018_1502482
crossref_primary_10_1364_OE_21_012527
crossref_primary_10_1021_acsphotonics_6b00652
crossref_primary_10_1016_j_jmapro_2025_03_010
crossref_primary_10_1063_1_5051618
crossref_primary_10_3390_app8091424
crossref_primary_10_1364_OE_442882
crossref_primary_10_3103_S1068375517020077
crossref_primary_10_1002_adem_201901310
crossref_primary_10_2351_1_5046832
crossref_primary_10_1134_S0018151X20040045
crossref_primary_10_1039_C7NR08614H
crossref_primary_10_1134_S1061934816110125
crossref_primary_10_1021_acs_jpcc_8b04374
crossref_primary_10_1016_j_sab_2015_02_011
crossref_primary_10_3390_nano12183099
crossref_primary_10_1088_1361_6463_50_19_193001
crossref_primary_10_1039_C7NR08791H
crossref_primary_10_1103_PhysRevB_84_224110
crossref_primary_10_3390_nano11112964
crossref_primary_10_1016_j_jnoncrysol_2024_123028
crossref_primary_10_1016_j_optlastec_2018_02_001
crossref_primary_10_1103_PhysRevB_105_035415
crossref_primary_10_1016_j_optlastec_2020_106505
crossref_primary_10_1134_S1063776115010136
crossref_primary_10_1007_s00339_021_04664_w
crossref_primary_10_1016_j_jphotochemrev_2013_08_002
crossref_primary_10_1016_j_optlastec_2024_111709
crossref_primary_10_20948_mathmontis_2024_59_6
crossref_primary_10_1007_s00339_018_1663_9
crossref_primary_10_1016_j_apsusc_2019_05_325
crossref_primary_10_1016_j_cplett_2013_01_002
crossref_primary_10_3390_ma16041512
crossref_primary_10_35848_1882_0786_abfca2
crossref_primary_10_1016_j_apsusc_2022_152918
crossref_primary_10_1007_s00339_010_5888_5
crossref_primary_10_1002_smll_202206485
crossref_primary_10_1016_j_combustflame_2021_111491
crossref_primary_10_1080_01495739_2018_1490634
crossref_primary_10_1063_1_4954636
crossref_primary_10_1007_s00339_017_1490_4
crossref_primary_10_1017_S0263034618000071
crossref_primary_10_1016_j_apsusc_2024_162190
crossref_primary_10_1364_OE_21_009017
crossref_primary_10_1103_PhysRevB_82_064113
crossref_primary_10_1016_j_cap_2016_11_026
Cites_doi 10.1007/978-3-662-04074-4
10.1007/s10765-006-0137-z
10.1016/j.apsusc.2008.08.098
10.1088/0022-3727/37/20/022
10.1021/jp014332h
10.1016/j.apsusc.2008.07.199
10.1007/s00339-004-2590-5
10.1007/s00339-003-2144-2
10.1103/PhysRevB.72.165415
10.1021/cr010459r
10.1088/0022-3727/40/5/021
10.1088/0022-3727/39/15/031
10.1007/s003390100887
10.1016/S0169-4332(97)00619-3
10.1103/PhysRevB.75.235414
10.1021/cr010379n
10.1364/JOSAB.14.002716
10.2351/1.521909
10.1063/1.125894
10.1103/PhysRevLett.91.105701
10.1007/BF01567638
10.1007/s00339-008-5037-6
10.1007/s00339-004-2607-0
10.1063/1.1481195
10.1007/s003390051357
10.1007/s00339-004-2682-2
10.1103/PhysRevLett.98.195701
10.1007/s00339-002-1818-5
10.1103/PhysRevLett.81.224
10.1063/1.359010
10.1103/PhysRevB.73.184113
10.1103/PhysRevLett.102.095701
10.1007/BF01538216
10.1016/S1359-6454(01)00287-7
10.1016/j.apsusc.2007.01.077
10.1007/s00339-008-4906-3
10.1103/PhysRevB.78.214107
10.1063/1.3040082
10.1016/j.apsusc.2007.01.032
10.1063/1.2364457
10.1103/PhysRevB.78.045437
10.1088/0022-3727/38/16/029
10.1063/1.2783898
10.1063/1.2358941
10.1007/s00339-007-4211-6
10.1063/1.349537
10.1103/PhysRevB.58.R11805
10.1007/s003390000686
10.1103/PhysRevE.68.041501
10.1007/s003390051549
10.1103/PhysRevB.77.075133
10.1103/PhysRevA.3.364
10.1557/PROC-538-491
10.1021/cr010436c
10.1016/S0009-2614(97)00808-7
10.1103/PhysRevB.66.115404
10.1134/1.568029
10.1143/JJAP.42.L1452
10.1103/PhysRevB.76.165430
10.1134/1.1600815
10.1063/1.322578
10.1007/s00339-005-3242-0
10.1134/S1054660X08040026
10.1063/1.349087
10.1063/1.373816
10.1007/s00339-004-2963-9
10.1007/s003390051417
10.1103/PhysRevB.67.184102
10.1063/1.2393158
10.1007/BF01538207
10.1007/BF01567637
10.1016/S0927-0256(01)00263-4
10.1063/1.1346996
10.1016/j.apsusc.2004.03.229
10.1103/PhysRevLett.91.225502
10.1007/s00339-008-4712-y
10.1016/j.scriptamat.2005.05.006
10.1007/s00339-008-4859-6
10.1017/S0263034607070206
10.1063/1.114912
10.1351/pac199769040893
10.1103/PhysRevB.68.064114
10.1007/s00339-006-3751-5
10.1023/A:1019860808227
10.1016/j.apsusc.2007.01.106
10.1063/1.2434168
10.1351/pac200678122205
10.1016/j.apsusc.2007.01.081
ContentType Journal Article
Copyright Copyright © 2009 American Chemical Society
Copyright_xml – notice: Copyright © 2009 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/jp902294m
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Modeling of Short Pulse Laser Ablation of Metals
EISSN 1932-7455
EndPage 11906
ExternalDocumentID 10_1021_jp902294m
c818501436
GroupedDBID .K2
4.4
53G
55A
5GY
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
AFFNX
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
RNS
ROL
UI2
UKR
UQL
VF5
VG9
VQA
W1F
ZCG
6TJ
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a325t-a41ca90ffb67e3af4c77c7b1c0348dcf8dc59ee091d59b976af38ae3ca3a54323
IEDL.DBID ACS
ISSN 1932-7447
IngestDate Tue Jul 01 03:35:21 EDT 2025
Thu Apr 24 23:04:06 EDT 2025
Thu Aug 27 13:42:12 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a325t-a41ca90ffb67e3af4c77c7b1c0348dcf8dc59ee091d59b976af38ae3ca3a54323
PageCount 15
ParticipantIDs crossref_citationtrail_10_1021_jp902294m
crossref_primary_10_1021_jp902294m
acs_journals_10_1021_jp902294m
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-07-09
PublicationDateYYYYMMDD 2009-07-09
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-07-09
  day: 09
PublicationDecade 2000
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2009
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Leveugle E. (ref31/cit31) 2007; 102
Semak V. V. (ref87/cit87) 2006; 39
Preuss S. (ref34/cit34) 1995; 61
Nolte S. (ref86/cit86) 1997; 14
Le Harzic R. (ref84/cit84) 2002; 80
Ivanov D. S. (ref58/cit58) 2004; 79
Agranat M. B. (ref74/cit74) 2007; 253
Tonshoff H. K. (ref38/cit38) 2000; 12
Fortov V. E. (ref78/cit78) 1997; 69
Feng Q. (ref85/cit85) 2005; 53
Mannion P. T. (ref89/cit89) 2004; 233
Semak V. V. (ref14/cit14) 2004; 37
Brailovsky A. B. (ref11/cit11) 1995; 61
Zeng X. (ref37/cit37) 2005; 80
Xu X. (ref97/cit97) 1999; 69
Cheng C. (ref23/cit23) 2005; 72
Porneala C. (ref24/cit24) 2006; 89
Zhang L. (ref92/cit92) 2008; 255
Vogel A. (ref32/cit32) 2003; 103
Noël S. (ref80/cit80) 2007; 253
Ancona A. (ref93/cit93) 2009; 94
Upadhyay A. K. (ref70/cit70) 2008; 78
Nikolaev D. N. (ref77/cit77) 2002; 23
Anisimov S. I. (ref49/cit49) 1974; 39
Zhigilei L. V. (ref29/cit29) 2003; 103
Phipps C. R. (ref4/cit4) 2003; 77
Korte F. (ref42/cit42) 2004; 79
Cheng C. (ref94/cit94) 2007; 28
Bulgakova N. M. (ref9/cit9) 2001; 73
Martynyuk M. M. (ref6/cit6) 1976; 21
Zhigilei L. V. (ref28/cit28) 1997; 276
Chrisey D. B. (ref3/cit3) 1994
Chichkov B. N. (ref36/cit36) 1996; 63
Lam Y. C. (ref48/cit48) 2007; 25
Ivanov D. S. (ref59/cit59) 2007; 98
Povarnitsyn M. E. (ref26/cit26) 2007; 75
Zhidkov A. G. (ref67/cit67) 2001; 73
Song K. H. (ref22/cit22) 1998; 127
Anisimov S. I. (ref5/cit5) 1968; 27
Yoo J. H. (ref25/cit25) 2000; 76
Miotello A. (ref7/cit7) 1995; 67
Garrison B. J. (ref75/cit75) 2003; 68
Vorobyev A. Y. (ref47/cit47) 2007; 86
Sokolowski-Tinten K. (ref62/cit62) 1998; 58
Amoruso S. (ref79/cit79) 2007; 89
Miotello A. (ref8/cit8) 1999; 69
Singha S. (ref44/cit44) 2008; 104
ref52/ref52_1
Ivanov D. S. (ref60/cit60) 2003; 91
Young D. A. (ref76/cit76) 1971; 3
Schäfer C. (ref71/cit71) 2002; 66
Yang J. (ref18/cit18) 2007; 76
Kashii M. (ref33/cit33) 2007; 253
Cheng J. (ref39/cit39) 2009; 95
Perez D. (ref72/cit72) 2003; 67
Kuznetsov A. I. (ref43/cit43) 2009; 94
Sokolowski-Tinten K. (ref82/cit82) 1998; 81
Ivanov D. S. (ref46/cit46) 2008; 92
Fortov V. E. (ref65/cit65) 1991; 70
Bennett T. D. (ref10/cit10) 1995; 77
Nakata Y. (ref41/cit41) 2003; 42
Inogamov N. A. (ref83/cit83) 1999; 69
Lin Z. (ref57/cit57) 2007; 253
Perez D. (ref96/cit96) 2006; 89
Chan W.-L. (ref63/cit63) 2008; 78
Upadhyay A. K. (ref69/cit69) 2005; 38
Hermann J. (ref81/cit81) 2008; 18
Tamura H. (ref66/cit66) 2001; 89
Leveugle E. (ref16/cit16) 2004; 79
Bäuerle D. (ref1/cit1) 2000
ref51/cit51
Zhigilei L. V. (ref17/cit17) 2000; 88
Ben-Yakar A. (ref40/cit40) 2007; 40
ref68/cit68
Bulgakova N. M. (ref21/cit21) 2005; 81
Lin Z. (ref61/cit61) 2006; 73
Ivanov D. S. (ref50/cit50) 2003; 68
Mannion P. T. (ref90/cit90) 2007; 59
Zhou X. W. (ref54/cit54) 2001; 49
Chan W.-L. (ref64/cit64) 2009; 102
Povarnitsyn M. E. (ref27/cit27) 2009; 255
von Allmen M. (ref2/cit2) 1998
von Allmen M. (ref12/cit12) 1976; 47
Li Y. (ref45/cit45) 2006; 89
Furusawa K. (ref88/cit88) 1999; 69
Zweig A. D. (ref13/cit13) 1991; 70
Anisimov S. I. (ref73/cit73) 2003; 77
Lin Z. (ref56/cit56) 2008; 77
Masuhara H. (ref19/cit19) 2006; 78
Hatanaka K. (ref20/cit20) 2002; 106
Schäfer C. (ref53/cit53) 2002; 24
(ref55/cit55) 1972
Lorazo P. (ref95/cit95) 2003; 91
Liu B. (ref91/cit91) 2007; 90
Jandeleit J. (ref35/cit35) 1996; 63
Zhigilei L. V. (ref30/cit30) 2003; 76
Paltauf G. (ref15/cit15) 2003; 103
References_xml – volume-title: Laser Processing and Chemistry
  year: 2000
  ident: ref1/cit1
  doi: 10.1007/978-3-662-04074-4
– volume: 28
  start-page: 9
  year: 2007
  ident: ref94/cit94
  publication-title: Int. J. Thermophys.
  doi: 10.1007/s10765-006-0137-z
– volume: 255
  start-page: 3097
  year: 2008
  ident: ref92/cit92
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2008.08.098
– volume: 37
  start-page: 2925
  year: 2004
  ident: ref14/cit14
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/37/20/022
– volume: 106
  start-page: 3049
  year: 2002
  ident: ref20/cit20
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp014332h
– volume: 255
  start-page: 5120
  year: 2009
  ident: ref27/cit27
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2008.07.199
– volume: 79
  start-page: 879
  year: 2004
  ident: ref42/cit42
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s00339-004-2590-5
– volume: 77
  start-page: 193
  year: 2003
  ident: ref4/cit4
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s00339-003-2144-2
– volume: 72
  start-page: 165415
  year: 2005
  ident: ref23/cit23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.165415
– volume: 103
  start-page: 321
  year: 2003
  ident: ref29/cit29
  publication-title: Chem. Rev.
  doi: 10.1021/cr010459r
– volume: 40
  start-page: 1447
  year: 2007
  ident: ref40/cit40
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/40/5/021
– volume: 39
  start-page: 3440
  year: 2006
  ident: ref87/cit87
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/39/15/031
– volume: 73
  start-page: 741
  year: 2001
  ident: ref67/cit67
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s003390100887
– volume: 127
  start-page: 111
  year: 1998
  ident: ref22/cit22
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/S0169-4332(97)00619-3
– volume: 75
  start-page: 235414
  year: 2007
  ident: ref26/cit26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.235414
– volume: 103
  start-page: 577
  year: 2003
  ident: ref32/cit32
  publication-title: Chem. Rev.
  doi: 10.1021/cr010379n
– volume: 14
  start-page: 2716
  year: 1997
  ident: ref86/cit86
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.14.002716
– volume: 12
  start-page: 23
  year: 2000
  ident: ref38/cit38
  publication-title: J. Laser. Appl.
  doi: 10.2351/1.521909
– volume: 76
  start-page: 783
  year: 2000
  ident: ref25/cit25
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.125894
– volume: 91
  start-page: 105701
  year: 2003
  ident: ref60/cit60
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.105701
– volume: 63
  start-page: 117
  year: 1996
  ident: ref35/cit35
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/BF01567638
– volume: 95
  start-page: 739
  year: 2009
  ident: ref39/cit39
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s00339-008-5037-6
– volume: 39
  start-page: 375
  year: 1974
  ident: ref49/cit49
  publication-title: Sov. Phys. JETP
– volume: 79
  start-page: 977
  year: 2004
  ident: ref58/cit58
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s00339-004-2607-0
– volume: 80
  start-page: 3886
  year: 2002
  ident: ref84/cit84
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1481195
– volume: 69
  start-page: S67
  year: 1999
  ident: ref8/cit8
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s003390051357
– volume: 79
  start-page: 1643
  year: 2004
  ident: ref16/cit16
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s00339-004-2682-2
– volume: 98
  start-page: 195701
  year: 2007
  ident: ref59/cit59
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.195701
– volume: 76
  start-page: 339
  year: 2003
  ident: ref30/cit30
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s00339-002-1818-5
– volume: 81
  start-page: 224
  year: 1998
  ident: ref82/cit82
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.224
– volume: 77
  start-page: 849
  year: 1995
  ident: ref10/cit10
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.359010
– volume: 73
  start-page: 184113
  year: 2006
  ident: ref61/cit61
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.184113
– volume: 59
  start-page: 753
  year: 2007
  ident: ref90/cit90
  publication-title: J. Phys.: Conf. Ser.
– volume: 102
  start-page: 095701
  year: 2009
  ident: ref64/cit64
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.095701
– volume: 61
  start-page: 81
  year: 1995
  ident: ref11/cit11
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/BF01538216
– volume: 49
  start-page: 4005
  year: 2001
  ident: ref54/cit54
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(01)00287-7
– volume: 253
  start-page: 6276
  year: 2007
  ident: ref74/cit74
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2007.01.077
– volume: 94
  start-page: 19
  year: 2009
  ident: ref93/cit93
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s00339-008-4906-3
– volume: 78
  start-page: 214107
  year: 2008
  ident: ref63/cit63
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.214107
– volume: 104
  start-page: 113520
  year: 2008
  ident: ref44/cit44
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3040082
– volume: 253
  start-page: 6295
  year: 2007
  ident: ref57/cit57
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2007.01.032
– volume: 89
  start-page: 161110
  year: 2006
  ident: ref45/cit45
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2364457
– volume: 78
  start-page: 045437
  year: 2008
  ident: ref70/cit70
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.045437
– volume: 38
  start-page: 2933
  year: 2005
  ident: ref69/cit69
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/38/16/029
– volume: 102
  start-page: 074914
  year: 2007
  ident: ref31/cit31
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2783898
– volume: 89
  start-page: 141907
  year: 2006
  ident: ref96/cit96
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2358941
– volume: 89
  start-page: 1017
  year: 2007
  ident: ref79/cit79
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s00339-007-4211-6
– volume: 70
  start-page: 1684
  year: 1991
  ident: ref13/cit13
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.349537
– volume: 58
  start-page: R11805
  year: 1998
  ident: ref62/cit62
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.58.R11805
– volume: 73
  start-page: 199
  year: 2001
  ident: ref9/cit9
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s003390000686
– volume: 68
  start-page: 041501
  year: 2003
  ident: ref75/cit75
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.68.041501
– volume: 69
  start-page: S869
  year: 1999
  ident: ref97/cit97
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s003390051549
– volume: 27
  start-page: 182
  year: 1968
  ident: ref5/cit5
  publication-title: Sov. Phys. JETP
– volume: 77
  start-page: 075133
  year: 2008
  ident: ref56/cit56
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.075133
– volume-title: Pulsed Laser Deposition of Thin Films
  year: 1994
  ident: ref3/cit3
– volume: 3
  start-page: 364
  year: 1971
  ident: ref76/cit76
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.3.364
– ident: ref52/ref52_1
  doi: 10.1557/PROC-538-491
– volume: 103
  start-page: 487
  year: 2003
  ident: ref15/cit15
  publication-title: Chem. Rev.
  doi: 10.1021/cr010436c
– volume: 276
  start-page: 269
  year: 1997
  ident: ref28/cit28
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(97)00808-7
– volume: 66
  start-page: 115404
  year: 2002
  ident: ref71/cit71
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.115404
– volume: 69
  start-page: 310
  year: 1999
  ident: ref83/cit83
  publication-title: JETP Lett.
  doi: 10.1134/1.568029
– volume: 42
  start-page: L1452
  year: 2003
  ident: ref41/cit41
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.42.L1452
– ident: ref68/cit68
– volume: 76
  start-page: 165430
  year: 2007
  ident: ref18/cit18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.165430
– volume: 77
  start-page: 606
  year: 2003
  ident: ref73/cit73
  publication-title: JETP Lett.
  doi: 10.1134/1.1600815
– volume: 47
  start-page: 5460
  year: 1976
  ident: ref12/cit12
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.322578
– volume: 81
  start-page: 345
  year: 2005
  ident: ref21/cit21
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s00339-005-3242-0
– ident: ref51/cit51
– volume: 18
  start-page: 374
  year: 2008
  ident: ref81/cit81
  publication-title: Laser Phys.
  doi: 10.1134/S1054660X08040026
– volume: 70
  start-page: 4524
  year: 1991
  ident: ref65/cit65
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.349087
– volume: 88
  start-page: 1281
  year: 2000
  ident: ref17/cit17
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.373816
– volume: 80
  start-page: 237
  year: 2005
  ident: ref37/cit37
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s00339-004-2963-9
– volume: 69
  start-page: S359
  year: 1999
  ident: ref88/cit88
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s003390051417
– volume: 67
  start-page: 184102
  year: 2003
  ident: ref72/cit72
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.67.184102
– volume: 89
  start-page: 211121
  year: 2006
  ident: ref24/cit24
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2393158
– volume: 61
  start-page: 33
  year: 1995
  ident: ref34/cit34
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/BF01538207
– volume: 63
  start-page: 109
  year: 1996
  ident: ref36/cit36
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/BF01567637
– volume: 24
  start-page: 421
  year: 2002
  ident: ref53/cit53
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/S0927-0256(01)00263-4
– volume: 89
  start-page: 3520
  year: 2001
  ident: ref66/cit66
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1346996
– volume: 233
  start-page: 275
  year: 2004
  ident: ref89/cit89
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2004.03.229
– volume: 91
  start-page: 225502
  year: 2003
  ident: ref95/cit95
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.225502
– volume: 92
  start-page: 791
  year: 2008
  ident: ref46/cit46
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s00339-008-4712-y
– volume: 53
  start-page: 511
  year: 2005
  ident: ref85/cit85
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2005.05.006
– volume: 94
  start-page: 221
  year: 2009
  ident: ref43/cit43
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s00339-008-4859-6
– volume: 25
  start-page: 155
  year: 2007
  ident: ref48/cit48
  publication-title: Laser Part. Beams
  doi: 10.1017/S0263034607070206
– volume: 67
  start-page: 3535
  year: 1995
  ident: ref7/cit7
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.114912
– volume: 69
  start-page: 893
  year: 1997
  ident: ref78/cit78
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac199769040893
– volume: 68
  start-page: 064114
  year: 2003
  ident: ref50/cit50
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.68.064114
– volume-title: Laser Beam Interactions with Materials
  year: 1998
  ident: ref2/cit2
– volume: 21
  start-page: 430
  year: 1976
  ident: ref6/cit6
  publication-title: Sov. Phys. Tech. Phys.
– volume: 86
  start-page: 235
  year: 2007
  ident: ref47/cit47
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s00339-006-3751-5
– volume: 23
  start-page: 1311
  year: 2002
  ident: ref77/cit77
  publication-title: Int. J. Thermophys.
  doi: 10.1023/A:1019860808227
– volume-title: American Institute of Physics Handbook
  year: 1972
  ident: ref55/cit55
– volume: 253
  start-page: 6447
  year: 2007
  ident: ref33/cit33
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2007.01.106
– volume: 90
  start-page: 044103
  year: 2007
  ident: ref91/cit91
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2434168
– volume: 78
  start-page: 2205
  year: 2006
  ident: ref19/cit19
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac200678122205
– volume: 253
  start-page: 6310
  year: 2007
  ident: ref80/cit80
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2007.01.081
SSID ssj0053013
Score 2.4998393
Snippet The mechanisms of short pulse laser interactions with a metal target are investigated in simulations performed with a model combining the molecular dynamics...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 11892
Title Atomistic Modeling of Short Pulse Laser Ablation of Metals: Connections between Melting, Spallation, and Phase Explosion
URI http://dx.doi.org/10.1021/jp902294m
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1JSwMxFA61HvTiLtaNoB48dGo7yUwm3oZqKWKlUAu9lSSTULQbnSmIv96XWaRQl8Oc3puFvEy-L3kbQjdUUS_yfekIwBOHBnYdBFbsqIA3Am4i4Unr0e28-O0-fRp4gxK6_sWD7zbu3uYccIbTyQbadP2A2R1W2OwVy60HM5RkrmOgipSyonzQ6q0WelS8Aj0rGNLaRQ9FJk4WOvJeWyaypj7XCzP-9Xl7aCfnkDjMjL6PSnp6gLaaReu2Q_QRJrNJWoEZ215nNuMczwzujYBr4-4S0BA_A3otcCizUDgr7Wjg4fE9TkNf0myHGOdRXCAb2_DoKu7N7cG7FVaxmEa4O4Ln4DSQzx67HaF-6_G12XbyFguOIK6XOII2lOB1Y6TPNBGGKsYUkw1VJzSIlIHL41oDqYg8LoG6CEMCoYkSRHiUuOQYlaezqT5BWASaGiENEARNXaq5FJobRgJZ51IzXkGXYINh_ovEw9T77cLuoxjACrotzDNUeYFy2ydj_JPq1bfqPKvKsa50-t8Lz9B25htiTp2fo3KyWOoLoBiJvEyn2BdJucyt
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8UD3jx24gf2BgPHhjC2rHVGyEaVCAkQMKNtF0bonyFjcT41_vabUrURA87teua9q2_X_tefw-hayqpF9ZqwuGAJw4NzDoIrNiRAasGTIfcE8aj2-7UmgP6NPSGqUyOuQsDnYigpcg68b_UBaq3LwsGcMPodBNtAQlxzUar3uhlq64HhkoSDzIwRkr9TEVo_VWDQDJaQ6A1KHnYTXIS2U7YCJLX8ioWZfn-TZ_xf73cQzspo8T1xAT20YaaHaB8I0vkdoje6vF8avWYscl8Zu6f47nGvTEwb9xdATbiFmDZEtdFEhhnStsKWHl0h20gjL37EOE0pgvKJiZYuoR7C3MMbwpLmM9C3B1DO9iG9ZlDuCM0eLjvN5pOmnDB4cT1YofTquSsorWo-YpwTaXvS19UZYXQIJQaHo8pBRQj9JgAIsM1CbgikhPuUeKSY5SbzWfqBGEeKKq50EAXFHWpYoIrpn0SiAoTymcFVITxG6U_TDSyvnAX9iLZABbQTTZLI5nKlZusGZPfql59Vl0kGh0_K53-9cFLlG_2261R67HzfIa2E6-R71TYOcrFy5W6APIRi6K1ug-M09UO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTwIxFG4UE_XibsQFG-PBA4NAO0u9TVCCCkiCJNxI22lDlC3MkBh_va-zEKImepjT63Sazmu_r30bQtdUUjtwHGFxwBOLemYfBFZsSY9VPKYDbgtj0W21nUaPPvXtfnpQNLEwMIgQegpjI75Z1bNApxkGKrdvMwaQw-h4HW0Yc505bPm1brbz2qCsJLEiA2uk1M0yCa2-alBIhisotAIn9V30shxI7EXyXlpEoiQ_v-Vo_P9I99BOyiyxn6jCPlpTkwO0VcsKuh2iDz-ajuO8zNhUQDNx6HiqcXcIDBx3FoCRuAmYNse-SBzkjLSlgJ2Hdzh2iIljIEKc-naBbGScpou4OzPX8UZYxHwS4M4Q-sGxe5-5jDtCvfrDa61hpYUXLE6qdmRxWpGclbUWjqsI11S6rnRFRZYJ9QKp4bGZUkA1ApsJIDRcE48rIjnhNiVVcoxyk-lEnSDMPUU1Fxpog6JVqpjgimmXeKLMhHJZHhVgDgfpwgkHsU28CmeSbALz6Cb7UwOZpi031TNGvzW9WjadJbk6fjY6_euDl2izc18fNB_bz2doOzEeuVaZnaNcNF-oC-AgkSjEivcFi97XkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomistic+Modeling+of+Short+Pulse+Laser+Ablation+of+Metals%3A+Connections+between+Melting%2C+Spallation%2C+and+Phase+Explosion&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Zhigilei%2C+Leonid+V&rft.au=Lin%2C+Zhibin&rft.au=Ivanov%2C+Dmitriy+S&rft.date=2009-07-09&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=113&rft.issue=27&rft.spage=11892&rft.epage=11906&rft_id=info:doi/10.1021%2Fjp902294m&rft.externalDocID=c818501436
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon