Penta-Twin Destruction by Coordinated Twin Boundary Deformation
Penta-twinned nanomaterials often exhibit unique mechanical properties. However, the intrinsic deformation behavior of penta-twins remains largely unclear, especially under the condition of high shear stress. In this study, we show that the deformation of penta-twins often subject to a structural de...
Saved in:
Published in | Nano letters Vol. 21; no. 19; pp. 8378 - 8384 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
13.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Penta-twinned nanomaterials often exhibit unique mechanical properties. However, the intrinsic deformation behavior of penta-twins remains largely unclear, especially under the condition of high shear stress. In this study, we show that the deformation of penta-twins often subject to a structural destruction via dislocation-mediated coordinated twin boundary (TB) deformation, resulting in a reconstructed pentagon-shaped core. This reconstructed core region is mainly induced by the coordinated TB migration along different directions (for the nucleation and growth) and accelerated by the TB sliding (for the growth). The destructed penta-twin core can effectively accommodate the intrinsic disclination of the penta-twin, which further collapses beyond a critical size, as predicted by an energy-based criterion. These intrinsic deformation behaviors of penta-twins would enable the possibility of controlling the morphology of penta-twinned nanomaterials with unique properties. |
---|---|
AbstractList | Penta-twinned nanomaterials often exhibit unique mechanical properties. However, the intrinsic deformation behavior of penta-twins remains largely unclear, especially under the condition of high shear stress. In this study, we show that the deformation of penta-twins often subject to a structural destruction via dislocation-mediated coordinated twin boundary (TB) deformation, resulting in a reconstructed pentagon-shaped core. This reconstructed core region is mainly induced by the coordinated TB migration along different directions (for the nucleation and growth) and accelerated by the TB sliding (for the growth). The destructed penta-twin core can effectively accommodate the intrinsic disclination of the penta-twin, which further collapses beyond a critical size, as predicted by an energy-based criterion. These intrinsic deformation behaviors of penta-twins would enable the possibility of controlling the morphology of penta-twinned nanomaterials with unique properties.Penta-twinned nanomaterials often exhibit unique mechanical properties. However, the intrinsic deformation behavior of penta-twins remains largely unclear, especially under the condition of high shear stress. In this study, we show that the deformation of penta-twins often subject to a structural destruction via dislocation-mediated coordinated twin boundary (TB) deformation, resulting in a reconstructed pentagon-shaped core. This reconstructed core region is mainly induced by the coordinated TB migration along different directions (for the nucleation and growth) and accelerated by the TB sliding (for the growth). The destructed penta-twin core can effectively accommodate the intrinsic disclination of the penta-twin, which further collapses beyond a critical size, as predicted by an energy-based criterion. These intrinsic deformation behaviors of penta-twins would enable the possibility of controlling the morphology of penta-twinned nanomaterials with unique properties. Penta-twinned nanomaterials often exhibit unique mechanical properties. However, the intrinsic deformation behavior of penta-twins remains largely unclear, especially under the condition of high shear stress. In this study, we show that the deformation of penta-twins often subject to a structural destruction via dislocation-mediated coordinated twin boundary (TB) deformation, resulting in a reconstructed pentagon-shaped core. This reconstructed core region is mainly induced by the coordinated TB migration along different directions (for the nucleation and growth) and accelerated by the TB sliding (for the growth). The destructed penta-twin core can effectively accommodate the intrinsic disclination of the penta-twin, which further collapses beyond a critical size, as predicted by an energy-based criterion. These intrinsic deformation behaviors of penta-twins would enable the possibility of controlling the morphology of penta-twinned nanomaterials with unique properties. |
Author | Chen, Yingbin Huang, Qishan Zhou, Haofei Wang, Jiangwei Zhao, Shuchun |
AuthorAffiliation | Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou Center for X-Mechanics and State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics |
AuthorAffiliation_xml | – name: Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering – name: Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou – name: Center for X-Mechanics and State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics |
Author_xml | – sequence: 1 givenname: Yingbin surname: Chen fullname: Chen, Yingbin organization: Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering – sequence: 2 givenname: Qishan surname: Huang fullname: Huang, Qishan organization: Center for X-Mechanics and State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics – sequence: 3 givenname: Shuchun surname: Zhao fullname: Zhao, Shuchun organization: Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering – sequence: 4 givenname: Haofei orcidid: 0000-0001-9226-9530 surname: Zhou fullname: Zhou, Haofei email: haofei_zhou@zju.edu.cn organization: Center for X-Mechanics and State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics – sequence: 5 givenname: Jiangwei orcidid: 0000-0003-1191-0782 surname: Wang fullname: Wang, Jiangwei email: jiangwei_wang@zju.edu.cn organization: Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou |
BookMark | eNqFkLtOwzAUQC0EEm3hDxgysqT4EScxC4LylCrBUGbrJnYkV6ldbEeof4_7gIEBJlu651jXZ4yOrbMaoQuCpwRTcgVtmFqwrtcxTkmLqajwERoRznBeCkGPf-51cYrGISwxxoJxPEI3b9pGyBefxmb3OkQ_tNE4mzWbbOacV8ZC1Crbze_cYBX4TQI751ewBc_QSQd90OeHc4LeHx8Ws-d8_vr0Mrud58AojzlQTRhApUvBCRZQqEbwplYYKNcFZYzWNW44cFZDRRUhSnUCeNOKxGqu2QRd7t9de_cxpEXlyoRW9z1Y7YYgKa_qqsRFUSa02KOtdyF43cm1N6u0tyRYbnvJ1Et-95KHXkm7_qW1Ju7-GD2Y_j8Z7-XtdOkGb1OMv5Uv9FKIwQ |
CitedBy_id | crossref_primary_10_3390_met12081356 crossref_primary_10_1016_j_scriptamat_2024_116279 crossref_primary_10_1016_j_actamat_2024_120565 crossref_primary_10_1016_j_actamat_2024_120031 crossref_primary_10_1016_j_jmst_2024_12_007 crossref_primary_10_3390_met11111775 crossref_primary_10_1021_acs_nanolett_2c03852 crossref_primary_10_1021_acs_nanolett_1c03448 crossref_primary_10_1080_21663831_2022_2053220 crossref_primary_10_1002_smll_202410202 crossref_primary_10_1016_j_ijplas_2021_103128 crossref_primary_10_1002_sstr_202300502 crossref_primary_10_1016_j_matchar_2023_112921 crossref_primary_10_1021_jacs_3c03682 crossref_primary_10_1016_j_jmst_2022_11_004 |
Cites_doi | 10.1126/sciadv.abe4758 10.1038/s41467-017-01234-8 10.1016/j.scriptamat.2019.04.043 10.1016/j.actamat.2020.06.055 10.1021/ja303950v 10.1021/nl503237t 10.1016/j.eml.2016.03.007 10.1088/0022-3719/5/5/004 10.1016/j.actamat.2015.05.036 10.1021/nl202714n 10.1039/c0gc00915f 10.1021/acs.nanolett.5b02960 10.1016/j.scriptamat.2010.10.012 10.1021/jp505334x 10.1002/smll.201600038 10.1073/pnas.1915140117 10.1021/acs.chemmater.8b03984 10.1002/smll.201604296 10.1103/PhysRevB.66.184112 10.1063/1.3263948 10.1038/ncomms6983 10.1002/adfm.200790031 10.1103/PhysRevB.85.045443 10.1016/j.commatsci.2011.11.005 10.1126/science.aax6511 10.1063/1.1879111 10.1038/nmat2083 10.1021/jacs.5b10059 10.1016/j.physleta.2014.12.015 10.1016/j.actamat.2020.06.028 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acs.nanolett.1c02970 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 8384 |
ExternalDocumentID | 10_1021_acs_nanolett_1c02970 b749271298 |
GroupedDBID | - 123 4.4 55A 5VS 7~N AABXI ABFRP ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED F5P GGK GNL IH9 IHE JG K2 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X .K2 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV CITATION CUPRZ ED~ JG~ 7X8 |
ID | FETCH-LOGICAL-a325t-a2e13aa7e695109a4db95b8d0a25e42332880b5a538a72d11ddf9a5bc99a4e5e3 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Fri Jul 11 01:21:23 EDT 2025 Tue Jul 01 04:09:56 EDT 2025 Thu Apr 24 23:11:35 EDT 2025 Fri Oct 15 12:25:57 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | twin boundary migration twin boundary sliding Penta-twin in situ nanomechanical testing twin boundary |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a325t-a2e13aa7e695109a4db95b8d0a25e42332880b5a538a72d11ddf9a5bc99a4e5e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9226-9530 0000-0003-1191-0782 |
PQID | 2578760446 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2578760446 crossref_primary_10_1021_acs_nanolett_1c02970 crossref_citationtrail_10_1021_acs_nanolett_1c02970 acs_journals_10_1021_acs_nanolett_1c02970 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211013 2021-10-13 |
PublicationDateYYYYMMDD | 2021-10-13 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211013 day: 13 |
PublicationDecade | 2020 |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref2/cit2 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref24/cit24 doi: 10.1126/sciadv.abe4758 – ident: ref25/cit25 doi: 10.1038/s41467-017-01234-8 – ident: ref30/cit30 doi: 10.1016/j.scriptamat.2019.04.043 – ident: ref29/cit29 doi: 10.1016/j.actamat.2020.06.055 – ident: ref6/cit6 doi: 10.1021/ja303950v – ident: ref15/cit15 doi: 10.1021/nl503237t – ident: ref28/cit28 doi: 10.1016/j.eml.2016.03.007 – ident: ref23/cit23 doi: 10.1088/0022-3719/5/5/004 – ident: ref4/cit4 doi: 10.1016/j.actamat.2015.05.036 – ident: ref13/cit13 doi: 10.1021/nl202714n – ident: ref10/cit10 doi: 10.1039/c0gc00915f – ident: ref11/cit11 doi: 10.1021/acs.nanolett.5b02960 – ident: ref1/cit1 doi: 10.1016/j.scriptamat.2010.10.012 – ident: ref9/cit9 doi: 10.1021/jp505334x – ident: ref14/cit14 doi: 10.1002/smll.201600038 – ident: ref22/cit22 doi: 10.1073/pnas.1915140117 – ident: ref19/cit19 doi: 10.1021/acs.chemmater.8b03984 – ident: ref26/cit26 doi: 10.1002/smll.201604296 – ident: ref21/cit21 doi: 10.1103/PhysRevB.66.184112 – ident: ref3/cit3 doi: 10.1063/1.3263948 – ident: ref16/cit16 doi: 10.1038/ncomms6983 – ident: ref7/cit7 doi: 10.1002/adfm.200790031 – ident: ref12/cit12 doi: 10.1103/PhysRevB.85.045443 – ident: ref20/cit20 doi: 10.1016/j.commatsci.2011.11.005 – ident: ref18/cit18 doi: 10.1126/science.aax6511 – ident: ref2/cit2 doi: 10.1063/1.1879111 – ident: ref8/cit8 doi: 10.1038/nmat2083 – ident: ref5/cit5 doi: 10.1021/jacs.5b10059 – ident: ref17/cit17 doi: 10.1016/j.physleta.2014.12.015 – ident: ref27/cit27 doi: 10.1016/j.actamat.2020.06.028 |
SSID | ssj0009350 |
Score | 2.4629276 |
Snippet | Penta-twinned nanomaterials often exhibit unique mechanical properties. However, the intrinsic deformation behavior of penta-twins remains largely unclear,... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8378 |
Title | Penta-Twin Destruction by Coordinated Twin Boundary Deformation |
URI | http://dx.doi.org/10.1021/acs.nanolett.1c02970 https://www.proquest.com/docview/2578760446 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6iL_rgXZw3KvjiQ2qTNN36JDocQ_ACbrC3klthKK3YDpm_3pOs3Zwi09c2KUlOzjnf6bkhdAZiV4MqTbHgKsAhMRILKQKweURTKkOodP907-6jbj-8HfDBzFD87sGn5EKows9ElsM2Sp8o22wJTPQVGgEfWyjUfpoV2WWuIyswMZhEcSusU-V--YpVSKqYV0jz8tgpmc4GeqhTdSaxJc_-qJS--vhZufGP699E6xXe9K4mF2QLLZlsG619qUK4gy4fbfw47r0PM8-aoVVBWU-OvXYOtukwAzyqPff-2nVhehvDwGna4y7qd2567S6u-ipgwSgvsaCGMCGaJrLwKhahljGXLR0Iyg3AK0aBqSUXIAtFk2pCtE5jwaWKYazhhu2h5SzPzD7yIpmmJgbIJ1ssZIGOQ0LSlEZUKSmJ1A10DvtPKr4oEufypiSxD-tDSapDaSBWEyJRVYFy2yfjZcEsPJ31OinQsWD8aU3jBDjJukdEZvJRkTjhFVkH98E_Vn2IVqkNc7FBLuwILQORzDHglFKeuMv5CfpD5wo |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8IHtSD30b8nIkXD0ParoOdDBIJKhATwXBb-rWEaDbjIAb_el_LBmJiCNeubdq-vq-9199D6ArErgJVGrmcyYrrYS1cLngFfB5eFVJjIuw_3U7Xb_W9xwEbFBDL38LAIlKYKbVB_Dm6AL4xbTGPE9jNqIylqbkEnvoa2CPEXOx642WOtUttYVbgZfCMgpqXv5j7Zxajl2S6qJcWxbLVNc1t9DpbpU0xeSuPR6Isv_8AOK68jR20lVmfTn16XXZRQcd7aPMXJuE-un022eRu72sYO8YpzeBlHTFxGgl4qsMYrFPl2O93tibT5wQ6zh5BHqB-877XaLlZlQWXU8JGLicaU86r2jfGVsA9JQImaqrCCdNgbFECLC4YB8nIq0RhrFQUcCZkAH010_QQFeMk1kfI8UUU6QAMQFGjHq2owMM4iohPpBQCC1VC17D_MOOSNLQBcIJD05gfSpgdSgnRnB6hzODKTdWM9yWj3Nmojylcx5L-lzmpQ-ArEyzhsU7GaWhFmW_C3ccrrPoCrbd6nXbYfug-naANYhJgTPoLPUVFIJg-AwtmJM7tff0B_pXvaw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yQfTBuzivFXzxobNJ2m59kjkd8zYGbjB8KbkVhtIO2yHz13uStXMTZOhrmoQkJ-fWc_IdhM5B7EpQpZHNPOHYLlbcZpw54POwKhcKE27-6T61_VbPve97_ZlSX7CIFGZKTRBfc_VQRjnCAL7U7TGLE9hRVsFC110Cb31ZR-705a43nr_xdqkpzgr8DN5RUHOLV3O_zKJ1k0jnddO8aDb6prmBXqYrNWkmr5VRxivi8weI47-2sonWcyvUqk-uzRZaUvE2WpvBJtxBVx2dVW53PwaxpZ3THGbW4mOrkYDHOojBSpWW-X5tajO9j6Hj9DHkLuo1b7uNlp1XW7AZJV5mM6IwZayqfG10BcyVPPB4TTqMeAqMLkqA1bnHQEKyKpEYSxkFzOMigL7KU3QPleIkVvvI8nkUqQAMQV6jLnVk4GIcRcQnQnCOuSyjC9h_mHNLGppAOMGhbiwOJcwPpYxoQZNQ5LDlunrG24JR9nTUcALbsaD_WUHuEPhLB01YrJJRGhqR5uuw98EfVn2KVjo3zfDxrv1wiFaJzoPRWTD0CJWAXuoYDJmMn5gr-wWz3PHu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Penta-Twin+Destruction+by+Coordinated+Twin+Boundary+Deformation&rft.jtitle=Nano+letters&rft.au=Chen%2C+Yingbin&rft.au=Huang%2C+Qishan&rft.au=Zhao%2C+Shuchun&rft.au=Zhou%2C+Haofei&rft.date=2021-10-13&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=21&rft.issue=19&rft.spage=8378&rft.epage=8384&rft_id=info:doi/10.1021%2Facs.nanolett.1c02970&rft.externalDocID=b749271298 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |