Penta-Twin Destruction by Coordinated Twin Boundary Deformation

Penta-twinned nanomaterials often exhibit unique mechanical properties. However, the intrinsic deformation behavior of penta-twins remains largely unclear, especially under the condition of high shear stress. In this study, we show that the deformation of penta-twins often subject to a structural de...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 21; no. 19; pp. 8378 - 8384
Main Authors Chen, Yingbin, Huang, Qishan, Zhao, Shuchun, Zhou, Haofei, Wang, Jiangwei
Format Journal Article
LanguageEnglish
Published American Chemical Society 13.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Penta-twinned nanomaterials often exhibit unique mechanical properties. However, the intrinsic deformation behavior of penta-twins remains largely unclear, especially under the condition of high shear stress. In this study, we show that the deformation of penta-twins often subject to a structural destruction via dislocation-mediated coordinated twin boundary (TB) deformation, resulting in a reconstructed pentagon-shaped core. This reconstructed core region is mainly induced by the coordinated TB migration along different directions (for the nucleation and growth) and accelerated by the TB sliding (for the growth). The destructed penta-twin core can effectively accommodate the intrinsic disclination of the penta-twin, which further collapses beyond a critical size, as predicted by an energy-based criterion. These intrinsic deformation behaviors of penta-twins would enable the possibility of controlling the morphology of penta-twinned nanomaterials with unique properties.
AbstractList Penta-twinned nanomaterials often exhibit unique mechanical properties. However, the intrinsic deformation behavior of penta-twins remains largely unclear, especially under the condition of high shear stress. In this study, we show that the deformation of penta-twins often subject to a structural destruction via dislocation-mediated coordinated twin boundary (TB) deformation, resulting in a reconstructed pentagon-shaped core. This reconstructed core region is mainly induced by the coordinated TB migration along different directions (for the nucleation and growth) and accelerated by the TB sliding (for the growth). The destructed penta-twin core can effectively accommodate the intrinsic disclination of the penta-twin, which further collapses beyond a critical size, as predicted by an energy-based criterion. These intrinsic deformation behaviors of penta-twins would enable the possibility of controlling the morphology of penta-twinned nanomaterials with unique properties.Penta-twinned nanomaterials often exhibit unique mechanical properties. However, the intrinsic deformation behavior of penta-twins remains largely unclear, especially under the condition of high shear stress. In this study, we show that the deformation of penta-twins often subject to a structural destruction via dislocation-mediated coordinated twin boundary (TB) deformation, resulting in a reconstructed pentagon-shaped core. This reconstructed core region is mainly induced by the coordinated TB migration along different directions (for the nucleation and growth) and accelerated by the TB sliding (for the growth). The destructed penta-twin core can effectively accommodate the intrinsic disclination of the penta-twin, which further collapses beyond a critical size, as predicted by an energy-based criterion. These intrinsic deformation behaviors of penta-twins would enable the possibility of controlling the morphology of penta-twinned nanomaterials with unique properties.
Penta-twinned nanomaterials often exhibit unique mechanical properties. However, the intrinsic deformation behavior of penta-twins remains largely unclear, especially under the condition of high shear stress. In this study, we show that the deformation of penta-twins often subject to a structural destruction via dislocation-mediated coordinated twin boundary (TB) deformation, resulting in a reconstructed pentagon-shaped core. This reconstructed core region is mainly induced by the coordinated TB migration along different directions (for the nucleation and growth) and accelerated by the TB sliding (for the growth). The destructed penta-twin core can effectively accommodate the intrinsic disclination of the penta-twin, which further collapses beyond a critical size, as predicted by an energy-based criterion. These intrinsic deformation behaviors of penta-twins would enable the possibility of controlling the morphology of penta-twinned nanomaterials with unique properties.
Author Chen, Yingbin
Huang, Qishan
Zhou, Haofei
Wang, Jiangwei
Zhao, Shuchun
AuthorAffiliation Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering
Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou
Center for X-Mechanics and State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics
AuthorAffiliation_xml – name: Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering
– name: Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou
– name: Center for X-Mechanics and State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics
Author_xml – sequence: 1
  givenname: Yingbin
  surname: Chen
  fullname: Chen, Yingbin
  organization: Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering
– sequence: 2
  givenname: Qishan
  surname: Huang
  fullname: Huang, Qishan
  organization: Center for X-Mechanics and State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics
– sequence: 3
  givenname: Shuchun
  surname: Zhao
  fullname: Zhao, Shuchun
  organization: Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering
– sequence: 4
  givenname: Haofei
  orcidid: 0000-0001-9226-9530
  surname: Zhou
  fullname: Zhou, Haofei
  email: haofei_zhou@zju.edu.cn
  organization: Center for X-Mechanics and State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics
– sequence: 5
  givenname: Jiangwei
  orcidid: 0000-0003-1191-0782
  surname: Wang
  fullname: Wang, Jiangwei
  email: jiangwei_wang@zju.edu.cn
  organization: Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou
BookMark eNqFkLtOwzAUQC0EEm3hDxgysqT4EScxC4LylCrBUGbrJnYkV6ldbEeof4_7gIEBJlu651jXZ4yOrbMaoQuCpwRTcgVtmFqwrtcxTkmLqajwERoRznBeCkGPf-51cYrGISwxxoJxPEI3b9pGyBefxmb3OkQ_tNE4mzWbbOacV8ZC1Crbze_cYBX4TQI751ewBc_QSQd90OeHc4LeHx8Ws-d8_vr0Mrud58AojzlQTRhApUvBCRZQqEbwplYYKNcFZYzWNW44cFZDRRUhSnUCeNOKxGqu2QRd7t9de_cxpEXlyoRW9z1Y7YYgKa_qqsRFUSa02KOtdyF43cm1N6u0tyRYbnvJ1Et-95KHXkm7_qW1Ju7-GD2Y_j8Z7-XtdOkGb1OMv5Uv9FKIwQ
CitedBy_id crossref_primary_10_3390_met12081356
crossref_primary_10_1016_j_scriptamat_2024_116279
crossref_primary_10_1016_j_actamat_2024_120565
crossref_primary_10_1016_j_actamat_2024_120031
crossref_primary_10_1016_j_jmst_2024_12_007
crossref_primary_10_3390_met11111775
crossref_primary_10_1021_acs_nanolett_2c03852
crossref_primary_10_1021_acs_nanolett_1c03448
crossref_primary_10_1080_21663831_2022_2053220
crossref_primary_10_1002_smll_202410202
crossref_primary_10_1016_j_ijplas_2021_103128
crossref_primary_10_1002_sstr_202300502
crossref_primary_10_1016_j_matchar_2023_112921
crossref_primary_10_1021_jacs_3c03682
crossref_primary_10_1016_j_jmst_2022_11_004
Cites_doi 10.1126/sciadv.abe4758
10.1038/s41467-017-01234-8
10.1016/j.scriptamat.2019.04.043
10.1016/j.actamat.2020.06.055
10.1021/ja303950v
10.1021/nl503237t
10.1016/j.eml.2016.03.007
10.1088/0022-3719/5/5/004
10.1016/j.actamat.2015.05.036
10.1021/nl202714n
10.1039/c0gc00915f
10.1021/acs.nanolett.5b02960
10.1016/j.scriptamat.2010.10.012
10.1021/jp505334x
10.1002/smll.201600038
10.1073/pnas.1915140117
10.1021/acs.chemmater.8b03984
10.1002/smll.201604296
10.1103/PhysRevB.66.184112
10.1063/1.3263948
10.1038/ncomms6983
10.1002/adfm.200790031
10.1103/PhysRevB.85.045443
10.1016/j.commatsci.2011.11.005
10.1126/science.aax6511
10.1063/1.1879111
10.1038/nmat2083
10.1021/jacs.5b10059
10.1016/j.physleta.2014.12.015
10.1016/j.actamat.2020.06.028
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acs.nanolett.1c02970
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 8384
ExternalDocumentID 10_1021_acs_nanolett_1c02970
b749271298
GroupedDBID -
123
4.4
55A
5VS
7~N
AABXI
ABFRP
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
F5P
GGK
GNL
IH9
IHE
JG
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
.K2
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
CITATION
CUPRZ
ED~
JG~
7X8
ID FETCH-LOGICAL-a325t-a2e13aa7e695109a4db95b8d0a25e42332880b5a538a72d11ddf9a5bc99a4e5e3
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Fri Jul 11 01:21:23 EDT 2025
Tue Jul 01 04:09:56 EDT 2025
Thu Apr 24 23:11:35 EDT 2025
Fri Oct 15 12:25:57 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords twin boundary migration
twin boundary sliding
Penta-twin
in situ nanomechanical testing
twin boundary
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a325t-a2e13aa7e695109a4db95b8d0a25e42332880b5a538a72d11ddf9a5bc99a4e5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9226-9530
0000-0003-1191-0782
PQID 2578760446
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2578760446
crossref_primary_10_1021_acs_nanolett_1c02970
crossref_citationtrail_10_1021_acs_nanolett_1c02970
acs_journals_10_1021_acs_nanolett_1c02970
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211013
2021-10-13
PublicationDateYYYYMMDD 2021-10-13
PublicationDate_xml – month: 10
  year: 2021
  text: 20211013
  day: 13
PublicationDecade 2020
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref2/cit2
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref24/cit24
  doi: 10.1126/sciadv.abe4758
– ident: ref25/cit25
  doi: 10.1038/s41467-017-01234-8
– ident: ref30/cit30
  doi: 10.1016/j.scriptamat.2019.04.043
– ident: ref29/cit29
  doi: 10.1016/j.actamat.2020.06.055
– ident: ref6/cit6
  doi: 10.1021/ja303950v
– ident: ref15/cit15
  doi: 10.1021/nl503237t
– ident: ref28/cit28
  doi: 10.1016/j.eml.2016.03.007
– ident: ref23/cit23
  doi: 10.1088/0022-3719/5/5/004
– ident: ref4/cit4
  doi: 10.1016/j.actamat.2015.05.036
– ident: ref13/cit13
  doi: 10.1021/nl202714n
– ident: ref10/cit10
  doi: 10.1039/c0gc00915f
– ident: ref11/cit11
  doi: 10.1021/acs.nanolett.5b02960
– ident: ref1/cit1
  doi: 10.1016/j.scriptamat.2010.10.012
– ident: ref9/cit9
  doi: 10.1021/jp505334x
– ident: ref14/cit14
  doi: 10.1002/smll.201600038
– ident: ref22/cit22
  doi: 10.1073/pnas.1915140117
– ident: ref19/cit19
  doi: 10.1021/acs.chemmater.8b03984
– ident: ref26/cit26
  doi: 10.1002/smll.201604296
– ident: ref21/cit21
  doi: 10.1103/PhysRevB.66.184112
– ident: ref3/cit3
  doi: 10.1063/1.3263948
– ident: ref16/cit16
  doi: 10.1038/ncomms6983
– ident: ref7/cit7
  doi: 10.1002/adfm.200790031
– ident: ref12/cit12
  doi: 10.1103/PhysRevB.85.045443
– ident: ref20/cit20
  doi: 10.1016/j.commatsci.2011.11.005
– ident: ref18/cit18
  doi: 10.1126/science.aax6511
– ident: ref2/cit2
  doi: 10.1063/1.1879111
– ident: ref8/cit8
  doi: 10.1038/nmat2083
– ident: ref5/cit5
  doi: 10.1021/jacs.5b10059
– ident: ref17/cit17
  doi: 10.1016/j.physleta.2014.12.015
– ident: ref27/cit27
  doi: 10.1016/j.actamat.2020.06.028
SSID ssj0009350
Score 2.4629276
Snippet Penta-twinned nanomaterials often exhibit unique mechanical properties. However, the intrinsic deformation behavior of penta-twins remains largely unclear,...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8378
Title Penta-Twin Destruction by Coordinated Twin Boundary Deformation
URI http://dx.doi.org/10.1021/acs.nanolett.1c02970
https://www.proquest.com/docview/2578760446
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6iL_rgXZw3KvjiQ2qTNN36JDocQ_ACbrC3klthKK3YDpm_3pOs3Zwi09c2KUlOzjnf6bkhdAZiV4MqTbHgKsAhMRILKQKweURTKkOodP907-6jbj-8HfDBzFD87sGn5EKows9ElsM2Sp8o22wJTPQVGgEfWyjUfpoV2WWuIyswMZhEcSusU-V--YpVSKqYV0jz8tgpmc4GeqhTdSaxJc_-qJS--vhZufGP699E6xXe9K4mF2QLLZlsG619qUK4gy4fbfw47r0PM8-aoVVBWU-OvXYOtukwAzyqPff-2nVhehvDwGna4y7qd2567S6u-ipgwSgvsaCGMCGaJrLwKhahljGXLR0Iyg3AK0aBqSUXIAtFk2pCtE5jwaWKYazhhu2h5SzPzD7yIpmmJgbIJ1ssZIGOQ0LSlEZUKSmJ1A10DvtPKr4oEufypiSxD-tDSapDaSBWEyJRVYFy2yfjZcEsPJ31OinQsWD8aU3jBDjJukdEZvJRkTjhFVkH98E_Vn2IVqkNc7FBLuwILQORzDHglFKeuMv5CfpD5wo
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8IHtSD30b8nIkXD0ParoOdDBIJKhATwXBb-rWEaDbjIAb_el_LBmJiCNeubdq-vq-9199D6ArErgJVGrmcyYrrYS1cLngFfB5eFVJjIuw_3U7Xb_W9xwEbFBDL38LAIlKYKbVB_Dm6AL4xbTGPE9jNqIylqbkEnvoa2CPEXOx642WOtUttYVbgZfCMgpqXv5j7Zxajl2S6qJcWxbLVNc1t9DpbpU0xeSuPR6Isv_8AOK68jR20lVmfTn16XXZRQcd7aPMXJuE-un022eRu72sYO8YpzeBlHTFxGgl4qsMYrFPl2O93tibT5wQ6zh5BHqB-877XaLlZlQWXU8JGLicaU86r2jfGVsA9JQImaqrCCdNgbFECLC4YB8nIq0RhrFQUcCZkAH010_QQFeMk1kfI8UUU6QAMQFGjHq2owMM4iohPpBQCC1VC17D_MOOSNLQBcIJD05gfSpgdSgnRnB6hzODKTdWM9yWj3Nmojylcx5L-lzmpQ-ArEyzhsU7GaWhFmW_C3ccrrPoCrbd6nXbYfug-naANYhJgTPoLPUVFIJg-AwtmJM7tff0B_pXvaw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yQfTBuzivFXzxobNJ2m59kjkd8zYGbjB8KbkVhtIO2yHz13uStXMTZOhrmoQkJ-fWc_IdhM5B7EpQpZHNPOHYLlbcZpw54POwKhcKE27-6T61_VbPve97_ZlSX7CIFGZKTRBfc_VQRjnCAL7U7TGLE9hRVsFC110Cb31ZR-705a43nr_xdqkpzgr8DN5RUHOLV3O_zKJ1k0jnddO8aDb6prmBXqYrNWkmr5VRxivi8weI47-2sonWcyvUqk-uzRZaUvE2WpvBJtxBVx2dVW53PwaxpZ3THGbW4mOrkYDHOojBSpWW-X5tajO9j6Hj9DHkLuo1b7uNlp1XW7AZJV5mM6IwZayqfG10BcyVPPB4TTqMeAqMLkqA1bnHQEKyKpEYSxkFzOMigL7KU3QPleIkVvvI8nkUqQAMQV6jLnVk4GIcRcQnQnCOuSyjC9h_mHNLGppAOMGhbiwOJcwPpYxoQZNQ5LDlunrG24JR9nTUcALbsaD_WUHuEPhLB01YrJJRGhqR5uuw98EfVn2KVjo3zfDxrv1wiFaJzoPRWTD0CJWAXuoYDJmMn5gr-wWz3PHu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Penta-Twin+Destruction+by+Coordinated+Twin+Boundary+Deformation&rft.jtitle=Nano+letters&rft.au=Chen%2C+Yingbin&rft.au=Huang%2C+Qishan&rft.au=Zhao%2C+Shuchun&rft.au=Zhou%2C+Haofei&rft.date=2021-10-13&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=21&rft.issue=19&rft.spage=8378&rft.epage=8384&rft_id=info:doi/10.1021%2Facs.nanolett.1c02970&rft.externalDocID=b749271298
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon