Entropy at Bio–Nano Interfaces
Entropy, one of the central concepts of thermodynamics, can be a predominant contribution to structural formation and transition. Although it is well-known that diverse forces and energies can significantly contribute to the structures and activities at bio–nano interfaces, the potential entropic co...
Saved in:
Published in | Nano letters Vol. 20; no. 8; pp. 5616 - 5624 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
12.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Entropy, one of the central concepts of thermodynamics, can be a predominant contribution to structural formation and transition. Although it is well-known that diverse forces and energies can significantly contribute to the structures and activities at bio–nano interfaces, the potential entropic contribution remains less well understood. Therefore, this review article seeks to provide a conceptual framework demonstrating that entropy can be exploited to shape the physicochemical properties of bio–nano interfaces and thereby regulate the structures, responses, and functions of biological systems. We introduce the typical types of entropy that matter at bio–nano interfaces. Moreover, some key characteristics featuring entropy at bio–nano interfaces, such as the difference between entropic force and energetic interaction and the associated implications for biomimetic research, are discussed. We expect that this review could stimulate further effort in the fundamental research of entropy in biology and in the biological applications of entropic effects in designer biomaterials. |
---|---|
AbstractList | Entropy, one of the central concepts of thermodynamics, can be a predominant contribution to structural formation and transition. Although it is well-known that diverse forces and energies can significantly contribute to the structures and activities at bio–nano interfaces, the potential entropic contribution remains less well understood. Therefore, this review article seeks to provide a conceptual framework demonstrating that entropy can be exploited to shape the physicochemical properties of bio–nano interfaces and thereby regulate the structures, responses, and functions of biological systems. We introduce the typical types of entropy that matter at bio–nano interfaces. Moreover, some key characteristics featuring entropy at bio–nano interfaces, such as the difference between entropic force and energetic interaction and the associated implications for biomimetic research, are discussed. We expect that this review could stimulate further effort in the fundamental research of entropy in biology and in the biological applications of entropic effects in designer biomaterials. Entropy, one of the central concepts of thermodynamics, can be a predominant contribution to structural formation and transition. Although it is well-known that diverse forces and energies can significantly contribute to the structures and activities at bio-nano interfaces, the potential entropic contribution remains less well understood. Therefore, this review article seeks to provide a conceptual framework demonstrating that entropy can be exploited to shape the physicochemical properties of bio-nano interfaces and thereby regulate the structures, responses, and functions of biological systems. We introduce the typical types of entropy that matter at bio-nano interfaces. Moreover, some key characteristics featuring entropy at bio-nano interfaces, such as the difference between entropic force and energetic interaction and the associated implications for biomimetic research, are discussed. We expect that this review could stimulate further effort in the fundamental research of entropy in biology and in the biological applications of entropic effects in designer biomaterials.Entropy, one of the central concepts of thermodynamics, can be a predominant contribution to structural formation and transition. Although it is well-known that diverse forces and energies can significantly contribute to the structures and activities at bio-nano interfaces, the potential entropic contribution remains less well understood. Therefore, this review article seeks to provide a conceptual framework demonstrating that entropy can be exploited to shape the physicochemical properties of bio-nano interfaces and thereby regulate the structures, responses, and functions of biological systems. We introduce the typical types of entropy that matter at bio-nano interfaces. Moreover, some key characteristics featuring entropy at bio-nano interfaces, such as the difference between entropic force and energetic interaction and the associated implications for biomimetic research, are discussed. We expect that this review could stimulate further effort in the fundamental research of entropy in biology and in the biological applications of entropic effects in designer biomaterials. |
Author | Zhu, Guolong Xu, Ziyang Yan, Li-Tang |
AuthorAffiliation | State Key Laboratory of Chemical Engineering, Department of Chemical Engineering |
AuthorAffiliation_xml | – name: State Key Laboratory of Chemical Engineering, Department of Chemical Engineering |
Author_xml | – sequence: 1 givenname: Guolong surname: Zhu fullname: Zhu, Guolong – sequence: 2 givenname: Ziyang surname: Xu fullname: Xu, Ziyang – sequence: 3 givenname: Li-Tang orcidid: 0000-0002-6090-3039 surname: Yan fullname: Yan, Li-Tang email: ltyan@mail.tsinghua.edu.cn |
BookMark | eNqFkLtOAzEQRS0UJJLAH1BsSbPBz33QQZRApAgaqK1ZM5Y22tjBdop0_AN_yJewUQIFBVQz0txzpTkjMnDeISGXjE4Y5ewaTJw4cL7DlCbUUF4IdUKGTAmaF3XNBz97Jc_IKMYVpbQWig5JNnMp-M0ug5Tdtf7z_eOxL8oWLmGwYDCek1MLXcSL4xyTl_nsefqQL5_uF9PbZQ6Cq5RXrLClLLkpsLJlJZtXrKWCGoCDFaUpJAUuENCyWvKqKbmy0qiGUomNBSHG5OrQuwn-bYsx6XUbDXYdOPTbqLnkBSsVU7yP3hyiJvgYA1pt2gSp9f0r0HaaUb3Xonst-luLPmrpYfkL3oR2DWH3H0YP2P668tvgehl_I193GH3M |
CitedBy_id | crossref_primary_10_1021_acsmacrolett_2c00610 crossref_primary_10_1039_D2NH00156J crossref_primary_10_1126_sciadv_adp2179 crossref_primary_10_1021_acs_analchem_1c02919 crossref_primary_10_1021_acsbiomaterials_1c00388 crossref_primary_10_1103_PhysRevLett_131_134002 crossref_primary_10_1039_D1NR01443A crossref_primary_10_1021_acs_jpclett_1c03295 crossref_primary_10_1016_j_canlet_2025_217585 crossref_primary_10_1039_D3CS00347G crossref_primary_10_1021_acs_langmuir_3c02701 crossref_primary_10_1021_acs_nanolett_1c03127 crossref_primary_10_1016_j_colsurfb_2022_113120 crossref_primary_10_1021_acs_langmuir_3c01410 crossref_primary_10_1021_acsnano_2c04774 crossref_primary_10_1016_j_fmre_2021_06_014 crossref_primary_10_1007_s40242_023_3174_2 crossref_primary_10_1002_smsc_202300078 crossref_primary_10_1016_j_progpolymsci_2023_101710 crossref_primary_10_1021_acsnano_0c08877 crossref_primary_10_1017_S0033583522000038 crossref_primary_10_1021_acs_analchem_2c00837 crossref_primary_10_1021_acs_nanolett_2c04939 crossref_primary_10_1021_acsnano_1c01173 crossref_primary_10_1021_acsnano_4c09675 crossref_primary_10_1002_aisy_202300716 crossref_primary_10_2174_0929867329666220929152644 crossref_primary_10_1016_j_seh_2023_100002 crossref_primary_10_1021_acs_langmuir_2c01192 crossref_primary_10_1021_acsbiomaterials_3c01367 |
Cites_doi | 10.1126/science.1088469 10.1103/PhysRevLett.124.198102 10.1038/nature06603 10.1103/PhysRevLett.112.068102 10.1142/8333 10.1126/science.1253751 10.1021/ja0535099 10.1073/pnas.1720139115 10.1016/j.molcel.2015.09.006 10.1038/nmat4072 10.1101/cshperspect.a004648 10.1126/science.8134835 10.1021/acs.jpclett.9b03253 10.1038/nnano.2008.130 10.15252/embj.201593517 10.1039/C9SM02338K 10.1002/andp.18652010702 10.1021/acs.jpcb.9b04042 10.1016/j.molcel.2015.01.013 10.1021/nn4057353 10.1002/smll.201501885 10.1021/nn204012y 10.1063/1.1743956 10.1073/pnas.1822092116 10.1073/pnas.1222276110 10.1038/nmat2206 10.1073/pnas.0405747102 10.1039/C9SM01262A 10.1038/s41598-018-37659-4 10.1038/nature05959 10.1126/science.1093783 10.1021/acs.macromol.5b01290 10.1021/jacs.9b03927 10.1146/annurev-cellbio-100913-013325 10.1073/pnas.1305766110 10.1515/zna-1978-0308 10.1038/srep03271 10.1111/j.1749-6632.1949.tb27296.x 10.1103/PhysRevLett.91.245701 10.1007/JHEP04(2011)029 10.1126/sciadv.aaw0514 10.1021/acsnano.5b03184 10.2307/4444260 10.1073/pnas.1222033110 10.1016/j.bpj.2012.11.3813 10.1039/C5NR06134B 10.1021/acs.nanolett.5b02129 10.1021/acsnano.5b04181 10.1038/nmat4178 10.1038/nrm.2017.7 10.1038/s42003-019-0471-x 10.1039/C6TB03310E 10.1038/nmat2344 10.1021/acsnano.8b04753 10.1021/nl5029396 10.1126/science.1100369 10.1016/j.cell.2015.08.010 10.1126/sciadv.aaw3192 10.1038/nmat2442 10.1073/pnas.1418159111 10.1021/acscentsci.7b00626 10.1002/andp.19013090310 10.1073/pnas.1805443115 10.1002/smll.201603155 10.1039/C8SM02285B 10.1103/PhysRevE.80.011910 10.1016/j.biomaterials.2014.03.087 10.1073/pnas.1615395114 10.1103/PhysRevLett.100.018103 10.1021/cr940534g 10.1021/acs.accounts.8b00001 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acs.nanolett.0c02635 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 5624 |
ExternalDocumentID | 10_1021_acs_nanolett_0c02635 c502138158 |
GroupedDBID | - .K2 123 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ F5P GNL IH9 IHE JG JG~ K2 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 4.4 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK 7X8 |
ID | FETCH-LOGICAL-a325t-816f7472c6e8f784bde945a9aa2af37c640a23eaef19428b725f4c5b004ebfa33 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Fri Jul 11 08:24:53 EDT 2025 Tue Jul 01 04:09:47 EDT 2025 Thu Apr 24 23:12:43 EDT 2025 Thu Aug 27 13:41:55 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | biophysicochemical interaction superentropic effect nanomedicine entropy bio−nano interface |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a325t-816f7472c6e8f784bde945a9aa2af37c640a23eaef19428b725f4c5b004ebfa33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-6090-3039 |
PQID | 2426175152 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2426175152 crossref_citationtrail_10_1021_acs_nanolett_0c02635 crossref_primary_10_1021_acs_nanolett_0c02635 acs_journals_10_1021_acs_nanolett_0c02635 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200812 2020-08-12 |
PublicationDateYYYYMMDD | 2020-08-12 |
PublicationDate_xml | – month: 08 year: 2020 text: 20200812 day: 12 |
PublicationDecade | 2020 |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 Prausnitz J. M. P. (ref67/cit67) 1998 ref52/cit52 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 Gibbs J. W. (ref23/cit23) 1902 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 Boltzmann L. (ref22/cit22) 1896 ref28/cit28 ref40/cit40 ref68/cit68 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 Ben-Naim A. (ref26/cit26) 2012 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 Clausius R. (ref21/cit21) 1864 |
References_xml | – ident: ref3/cit3 doi: 10.1126/science.1088469 – ident: ref52/cit52 doi: 10.1103/PhysRevLett.124.198102 – ident: ref28/cit28 doi: 10.1038/nature06603 – ident: ref48/cit48 doi: 10.1103/PhysRevLett.112.068102 – volume-title: Entropy and the Second Law: Interpretation and Miss-Interpretations year: 2012 ident: ref26/cit26 doi: 10.1142/8333 – ident: ref14/cit14 doi: 10.1126/science.1253751 – ident: ref31/cit31 doi: 10.1021/ja0535099 – ident: ref42/cit42 doi: 10.1073/pnas.1720139115 – ident: ref63/cit63 doi: 10.1016/j.molcel.2015.09.006 – ident: ref13/cit13 doi: 10.1038/nmat4072 – ident: ref19/cit19 doi: 10.1101/cshperspect.a004648 – ident: ref1/cit1 doi: 10.1126/science.8134835 – volume-title: Molecular Thermodynamics of Fluid-Phase Equilibria year: 1998 ident: ref67/cit67 – ident: ref32/cit32 doi: 10.1021/acs.jpclett.9b03253 – ident: ref47/cit47 doi: 10.1038/nnano.2008.130 – ident: ref60/cit60 doi: 10.15252/embj.201593517 – ident: ref55/cit55 doi: 10.1039/C9SM02338K – ident: ref25/cit25 doi: 10.1002/andp.18652010702 – ident: ref54/cit54 doi: 10.1021/acs.jpcb.9b04042 – ident: ref58/cit58 doi: 10.1016/j.molcel.2015.01.013 – ident: ref41/cit41 doi: 10.1021/nn4057353 – ident: ref75/cit75 doi: 10.1002/smll.201501885 – ident: ref40/cit40 doi: 10.1021/nn204012y – ident: ref9/cit9 doi: 10.1063/1.1743956 – ident: ref44/cit44 doi: 10.1073/pnas.1822092116 – ident: ref53/cit53 doi: 10.1073/pnas.1222276110 – ident: ref5/cit5 doi: 10.1038/nmat2206 – ident: ref71/cit71 doi: 10.1073/pnas.0405747102 – ident: ref74/cit74 doi: 10.1039/C9SM01262A – ident: ref33/cit33 doi: 10.1038/s41598-018-37659-4 – ident: ref17/cit17 doi: 10.1038/nature05959 – ident: ref70/cit70 doi: 10.1126/science.1093783 – ident: ref16/cit16 doi: 10.1021/acs.macromol.5b01290 – volume-title: Abhandlungen Über Die Mechanische Wärmetheorie year: 1864 ident: ref21/cit21 – ident: ref29/cit29 doi: 10.1021/jacs.9b03927 – ident: ref59/cit59 doi: 10.1146/annurev-cellbio-100913-013325 – ident: ref30/cit30 doi: 10.1073/pnas.1305766110 – volume-title: Vorlesungen über Gastheorie year: 1896 ident: ref22/cit22 – ident: ref39/cit39 doi: 10.1515/zna-1978-0308 – ident: ref46/cit46 doi: 10.1038/srep03271 – ident: ref10/cit10 doi: 10.1111/j.1749-6632.1949.tb27296.x – ident: ref64/cit64 doi: 10.1103/PhysRevLett.91.245701 – ident: ref27/cit27 doi: 10.1007/JHEP04(2011)029 – ident: ref12/cit12 doi: 10.1126/sciadv.aaw0514 – ident: ref6/cit6 doi: 10.1021/acsnano.5b03184 – volume-title: Elementary Principles in Statistical Mechanics year: 1902 ident: ref23/cit23 – ident: ref20/cit20 doi: 10.2307/4444260 – ident: ref18/cit18 doi: 10.1073/pnas.1222033110 – ident: ref38/cit38 doi: 10.1016/j.bpj.2012.11.3813 – ident: ref69/cit69 doi: 10.1039/C5NR06134B – ident: ref35/cit35 doi: 10.1021/acs.nanolett.5b02129 – ident: ref43/cit43 doi: 10.1021/acsnano.5b04181 – ident: ref7/cit7 doi: 10.1038/nmat4178 – ident: ref61/cit61 doi: 10.1038/nrm.2017.7 – ident: ref37/cit37 doi: 10.1038/s42003-019-0471-x – ident: ref51/cit51 doi: 10.1039/C6TB03310E – ident: ref72/cit72 doi: 10.1038/nmat2344 – ident: ref36/cit36 doi: 10.1021/acsnano.8b04753 – ident: ref15/cit15 doi: 10.1021/nl5029396 – ident: ref2/cit2 doi: 10.1126/science.1100369 – ident: ref66/cit66 doi: 10.1016/j.cell.2015.08.010 – ident: ref49/cit49 doi: 10.1126/sciadv.aaw3192 – ident: ref4/cit4 doi: 10.1038/nmat2442 – ident: ref11/cit11 doi: 10.1073/pnas.1418159111 – ident: ref57/cit57 doi: 10.1021/acscentsci.7b00626 – ident: ref24/cit24 doi: 10.1002/andp.19013090310 – ident: ref45/cit45 doi: 10.1073/pnas.1805443115 – ident: ref68/cit68 doi: 10.1002/smll.201603155 – ident: ref62/cit62 doi: 10.1039/C8SM02285B – ident: ref34/cit34 doi: 10.1103/PhysRevE.80.011910 – ident: ref50/cit50 doi: 10.1016/j.biomaterials.2014.03.087 – ident: ref65/cit65 doi: 10.1073/pnas.1615395114 – ident: ref56/cit56 doi: 10.1103/PhysRevLett.100.018103 – ident: ref73/cit73 doi: 10.1021/cr940534g – ident: ref8/cit8 doi: 10.1021/acs.accounts.8b00001 |
SSID | ssj0009350 |
Score | 2.4896173 |
SecondaryResourceType | review_article |
Snippet | Entropy, one of the central concepts of thermodynamics, can be a predominant contribution to structural formation and transition. Although it is well-known... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5616 |
Title | Entropy at Bio–Nano Interfaces |
URI | http://dx.doi.org/10.1021/acs.nanolett.0c02635 https://www.proquest.com/docview/2426175152 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwED5BWWDgH1H-FCQWhpTEdtJ4hKpVhQQMUKlbdHZsCYGSiqQDTLwDb8iTYKcJpSBUWKPY8tl39ne-83cAJ1wIGfgoXQyFdpmmiWtp4Nwo0dSnivsK7YX-1XXYH7DLYTCcOorfI_jEP0OZt1JMMyNG0fKkZ9lTFmGJhMaOLRTq3E5JdmlZkdUYsXGJeMTqp3K_9GIPJJnPHkiz-3F5yPTW4KZ-qjPJLXlojQvRki8_mRv_OP51WK3wpnM-UZANWFDpJqx8YSHcAqdrs9VHzw4WzsV99v76ZrbczCnvCrXN2NqGQa971-m7VeEEFykJCjPboTZuApGhinQ7YiJRnAXIEQlq2pYh85BQhUr73Lgfok0CzWRgLVgJjZTuQCPNUrULDknMGnIv8ZFLFlGMNPWkcUoElYwqrZtwagSMK8XP4zKmTfzYfqyljiupm0DrmY5lxUBuC2E8zmnlfrYaTRg45vx_XC9ibEzFxj8wVdk4jy0aMWjJIJa9f4x6H5aJ9bEtDS45gEbxNFaHBogU4qjUvg-BgdvI |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4HIADb8SbInHh0NEmadccAQ0N2Ljw0G5VkiYSArUT7Q5w4j_wD_klOF3LAAlNu0ZJZCd2bCfOZ4AjLqUKfKFcEUrjMkMT18LAuVFiqE8197WwF_rdm7B9z656QW8KgvovDBKR40x5-Yg_QhfwT2xbKtIMuSkanvIsiMo0zKI_Qqxgn57fjrB2aVmYFXUZIyMesfrH3D-zWLuk8t926fexXNqaiyV4-KayTDF5agwK2VBvfwAcJ2ZjGRYr79M5HYrLCkzpdBUWfmASroHTsrnr_VdHFM7ZY_b5_oEHcOaUN4fG5m-tw_1F6-687VZlFFxBSVDg2ocGgwaiQh2ZZsRkojkLBBeCCEObKmSeIFQLbXyOwYhsksAwFVh91tIISjdgJs1SvQkOSXBHuZf4gisWUREZ6ikMUSRVjGpjtuAYGYwrNcjj8oWb-LFtrLmOK663gNYLHqsKj9yWxXgeM8r9HtUf4nGM6X9Y72WMimNfQ0Sqs0EeW98EfSf0X7YnoPoA5tp33U7cuby53oF5YqNvC5BLdmGmeBnoPXRRCrlfCuQXURfkKQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gSAgOvBHjWSQuHDraJO2a4xibeE5IMGniUiVpIiFQO9HuACf-A_-QX0LctWNDQhNcoyayazuxY-czQkdMCOm5XNrcF9qmmkQ2wMDZQaSJSxRzFYcL_ZuOf96llz2vN9bqyxCRmpXSPIkPVt2PdIEw4J7AeMzjxHCU1RzpAJDKLJqDzB0od6N59423S_LmrMaeTXTEAlq-mvtlFTibZDp5Nk1uzfl5015GDyNK8zKTp9ogEzX59gPE8V-srKClwgu1GkO1WUUzKl5Di2PYhOvIakENe__V4pl1-ph8vn-YjTix8htEDXVcG6jbbt03z-2inYLNCfYyIwNfm-ABS18Fuh5QESlGPc44x1yTuvSpwzFRXGmXmaBE1LGnqfTArpXQnJBNVImTWG0hC0dGssyJXM4kDQgPNHGkCVUEkZQoravo2DAYFuaQhnmmG7shDJZchwXXVUTKnx7KApcc2mM8T5llj2b1h7gcU74_LOUZGgOCrAiPVTJIQ_BRjA9l_JjtP1B9gOZvz9rh9UXnagctYAjCAScX76JK9jJQe8ZTycR-rpNftlXmrA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropy+at+Bio%E2%80%93Nano+Interfaces&rft.jtitle=Nano+letters&rft.au=Zhu%2C+Guolong&rft.au=Xu%2C+Ziyang&rft.au=Yan%2C+Li-Tang&rft.date=2020-08-12&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=20&rft.issue=8&rft.spage=5616&rft.epage=5624&rft_id=info:doi/10.1021%2Facs.nanolett.0c02635&rft.externalDocID=c502138158 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |