Entropy at Bio–Nano Interfaces

Entropy, one of the central concepts of thermodynamics, can be a predominant contribution to structural formation and transition. Although it is well-known that diverse forces and energies can significantly contribute to the structures and activities at bio–nano interfaces, the potential entropic co...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 20; no. 8; pp. 5616 - 5624
Main Authors Zhu, Guolong, Xu, Ziyang, Yan, Li-Tang
Format Journal Article
LanguageEnglish
Published American Chemical Society 12.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Entropy, one of the central concepts of thermodynamics, can be a predominant contribution to structural formation and transition. Although it is well-known that diverse forces and energies can significantly contribute to the structures and activities at bio–nano interfaces, the potential entropic contribution remains less well understood. Therefore, this review article seeks to provide a conceptual framework demonstrating that entropy can be exploited to shape the physicochemical properties of bio–nano interfaces and thereby regulate the structures, responses, and functions of biological systems. We introduce the typical types of entropy that matter at bio–nano interfaces. Moreover, some key characteristics featuring entropy at bio–nano interfaces, such as the difference between entropic force and energetic interaction and the associated implications for biomimetic research, are discussed. We expect that this review could stimulate further effort in the fundamental research of entropy in biology and in the biological applications of entropic effects in designer biomaterials.
AbstractList Entropy, one of the central concepts of thermodynamics, can be a predominant contribution to structural formation and transition. Although it is well-known that diverse forces and energies can significantly contribute to the structures and activities at bio–nano interfaces, the potential entropic contribution remains less well understood. Therefore, this review article seeks to provide a conceptual framework demonstrating that entropy can be exploited to shape the physicochemical properties of bio–nano interfaces and thereby regulate the structures, responses, and functions of biological systems. We introduce the typical types of entropy that matter at bio–nano interfaces. Moreover, some key characteristics featuring entropy at bio–nano interfaces, such as the difference between entropic force and energetic interaction and the associated implications for biomimetic research, are discussed. We expect that this review could stimulate further effort in the fundamental research of entropy in biology and in the biological applications of entropic effects in designer biomaterials.
Entropy, one of the central concepts of thermodynamics, can be a predominant contribution to structural formation and transition. Although it is well-known that diverse forces and energies can significantly contribute to the structures and activities at bio-nano interfaces, the potential entropic contribution remains less well understood. Therefore, this review article seeks to provide a conceptual framework demonstrating that entropy can be exploited to shape the physicochemical properties of bio-nano interfaces and thereby regulate the structures, responses, and functions of biological systems. We introduce the typical types of entropy that matter at bio-nano interfaces. Moreover, some key characteristics featuring entropy at bio-nano interfaces, such as the difference between entropic force and energetic interaction and the associated implications for biomimetic research, are discussed. We expect that this review could stimulate further effort in the fundamental research of entropy in biology and in the biological applications of entropic effects in designer biomaterials.Entropy, one of the central concepts of thermodynamics, can be a predominant contribution to structural formation and transition. Although it is well-known that diverse forces and energies can significantly contribute to the structures and activities at bio-nano interfaces, the potential entropic contribution remains less well understood. Therefore, this review article seeks to provide a conceptual framework demonstrating that entropy can be exploited to shape the physicochemical properties of bio-nano interfaces and thereby regulate the structures, responses, and functions of biological systems. We introduce the typical types of entropy that matter at bio-nano interfaces. Moreover, some key characteristics featuring entropy at bio-nano interfaces, such as the difference between entropic force and energetic interaction and the associated implications for biomimetic research, are discussed. We expect that this review could stimulate further effort in the fundamental research of entropy in biology and in the biological applications of entropic effects in designer biomaterials.
Author Zhu, Guolong
Xu, Ziyang
Yan, Li-Tang
AuthorAffiliation State Key Laboratory of Chemical Engineering, Department of Chemical Engineering
AuthorAffiliation_xml – name: State Key Laboratory of Chemical Engineering, Department of Chemical Engineering
Author_xml – sequence: 1
  givenname: Guolong
  surname: Zhu
  fullname: Zhu, Guolong
– sequence: 2
  givenname: Ziyang
  surname: Xu
  fullname: Xu, Ziyang
– sequence: 3
  givenname: Li-Tang
  orcidid: 0000-0002-6090-3039
  surname: Yan
  fullname: Yan, Li-Tang
  email: ltyan@mail.tsinghua.edu.cn
BookMark eNqFkLtOAzEQRS0UJJLAH1BsSbPBz33QQZRApAgaqK1ZM5Y22tjBdop0_AN_yJewUQIFBVQz0txzpTkjMnDeISGXjE4Y5ewaTJw4cL7DlCbUUF4IdUKGTAmaF3XNBz97Jc_IKMYVpbQWig5JNnMp-M0ug5Tdtf7z_eOxL8oWLmGwYDCek1MLXcSL4xyTl_nsefqQL5_uF9PbZQ6Cq5RXrLClLLkpsLJlJZtXrKWCGoCDFaUpJAUuENCyWvKqKbmy0qiGUomNBSHG5OrQuwn-bYsx6XUbDXYdOPTbqLnkBSsVU7yP3hyiJvgYA1pt2gSp9f0r0HaaUb3Xonst-luLPmrpYfkL3oR2DWH3H0YP2P668tvgehl_I193GH3M
CitedBy_id crossref_primary_10_1021_acsmacrolett_2c00610
crossref_primary_10_1039_D2NH00156J
crossref_primary_10_1126_sciadv_adp2179
crossref_primary_10_1021_acs_analchem_1c02919
crossref_primary_10_1021_acsbiomaterials_1c00388
crossref_primary_10_1103_PhysRevLett_131_134002
crossref_primary_10_1039_D1NR01443A
crossref_primary_10_1021_acs_jpclett_1c03295
crossref_primary_10_1016_j_canlet_2025_217585
crossref_primary_10_1039_D3CS00347G
crossref_primary_10_1021_acs_langmuir_3c02701
crossref_primary_10_1021_acs_nanolett_1c03127
crossref_primary_10_1016_j_colsurfb_2022_113120
crossref_primary_10_1021_acs_langmuir_3c01410
crossref_primary_10_1021_acsnano_2c04774
crossref_primary_10_1016_j_fmre_2021_06_014
crossref_primary_10_1007_s40242_023_3174_2
crossref_primary_10_1002_smsc_202300078
crossref_primary_10_1016_j_progpolymsci_2023_101710
crossref_primary_10_1021_acsnano_0c08877
crossref_primary_10_1017_S0033583522000038
crossref_primary_10_1021_acs_analchem_2c00837
crossref_primary_10_1021_acs_nanolett_2c04939
crossref_primary_10_1021_acsnano_1c01173
crossref_primary_10_1021_acsnano_4c09675
crossref_primary_10_1002_aisy_202300716
crossref_primary_10_2174_0929867329666220929152644
crossref_primary_10_1016_j_seh_2023_100002
crossref_primary_10_1021_acs_langmuir_2c01192
crossref_primary_10_1021_acsbiomaterials_3c01367
Cites_doi 10.1126/science.1088469
10.1103/PhysRevLett.124.198102
10.1038/nature06603
10.1103/PhysRevLett.112.068102
10.1142/8333
10.1126/science.1253751
10.1021/ja0535099
10.1073/pnas.1720139115
10.1016/j.molcel.2015.09.006
10.1038/nmat4072
10.1101/cshperspect.a004648
10.1126/science.8134835
10.1021/acs.jpclett.9b03253
10.1038/nnano.2008.130
10.15252/embj.201593517
10.1039/C9SM02338K
10.1002/andp.18652010702
10.1021/acs.jpcb.9b04042
10.1016/j.molcel.2015.01.013
10.1021/nn4057353
10.1002/smll.201501885
10.1021/nn204012y
10.1063/1.1743956
10.1073/pnas.1822092116
10.1073/pnas.1222276110
10.1038/nmat2206
10.1073/pnas.0405747102
10.1039/C9SM01262A
10.1038/s41598-018-37659-4
10.1038/nature05959
10.1126/science.1093783
10.1021/acs.macromol.5b01290
10.1021/jacs.9b03927
10.1146/annurev-cellbio-100913-013325
10.1073/pnas.1305766110
10.1515/zna-1978-0308
10.1038/srep03271
10.1111/j.1749-6632.1949.tb27296.x
10.1103/PhysRevLett.91.245701
10.1007/JHEP04(2011)029
10.1126/sciadv.aaw0514
10.1021/acsnano.5b03184
10.2307/4444260
10.1073/pnas.1222033110
10.1016/j.bpj.2012.11.3813
10.1039/C5NR06134B
10.1021/acs.nanolett.5b02129
10.1021/acsnano.5b04181
10.1038/nmat4178
10.1038/nrm.2017.7
10.1038/s42003-019-0471-x
10.1039/C6TB03310E
10.1038/nmat2344
10.1021/acsnano.8b04753
10.1021/nl5029396
10.1126/science.1100369
10.1016/j.cell.2015.08.010
10.1126/sciadv.aaw3192
10.1038/nmat2442
10.1073/pnas.1418159111
10.1021/acscentsci.7b00626
10.1002/andp.19013090310
10.1073/pnas.1805443115
10.1002/smll.201603155
10.1039/C8SM02285B
10.1103/PhysRevE.80.011910
10.1016/j.biomaterials.2014.03.087
10.1073/pnas.1615395114
10.1103/PhysRevLett.100.018103
10.1021/cr940534g
10.1021/acs.accounts.8b00001
ContentType Journal Article
DBID AAYXX
CITATION
7X8
DOI 10.1021/acs.nanolett.0c02635
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 5624
ExternalDocumentID 10_1021_acs_nanolett_0c02635
c502138158
GroupedDBID -
.K2
123
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
4.4
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
7X8
ID FETCH-LOGICAL-a325t-816f7472c6e8f784bde945a9aa2af37c640a23eaef19428b725f4c5b004ebfa33
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Fri Jul 11 08:24:53 EDT 2025
Tue Jul 01 04:09:47 EDT 2025
Thu Apr 24 23:12:43 EDT 2025
Thu Aug 27 13:41:55 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords biophysicochemical interaction
superentropic effect
nanomedicine
entropy
bio−nano interface
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a325t-816f7472c6e8f784bde945a9aa2af37c640a23eaef19428b725f4c5b004ebfa33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6090-3039
PQID 2426175152
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2426175152
crossref_citationtrail_10_1021_acs_nanolett_0c02635
crossref_primary_10_1021_acs_nanolett_0c02635
acs_journals_10_1021_acs_nanolett_0c02635
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200812
2020-08-12
PublicationDateYYYYMMDD 2020-08-12
PublicationDate_xml – month: 08
  year: 2020
  text: 20200812
  day: 12
PublicationDecade 2020
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
Prausnitz J. M. P. (ref67/cit67) 1998
ref52/cit52
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
Gibbs J. W. (ref23/cit23) 1902
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
Boltzmann L. (ref22/cit22) 1896
ref28/cit28
ref40/cit40
ref68/cit68
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
Ben-Naim A. (ref26/cit26) 2012
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
Clausius R. (ref21/cit21) 1864
References_xml – ident: ref3/cit3
  doi: 10.1126/science.1088469
– ident: ref52/cit52
  doi: 10.1103/PhysRevLett.124.198102
– ident: ref28/cit28
  doi: 10.1038/nature06603
– ident: ref48/cit48
  doi: 10.1103/PhysRevLett.112.068102
– volume-title: Entropy and the Second Law: Interpretation and Miss-Interpretations
  year: 2012
  ident: ref26/cit26
  doi: 10.1142/8333
– ident: ref14/cit14
  doi: 10.1126/science.1253751
– ident: ref31/cit31
  doi: 10.1021/ja0535099
– ident: ref42/cit42
  doi: 10.1073/pnas.1720139115
– ident: ref63/cit63
  doi: 10.1016/j.molcel.2015.09.006
– ident: ref13/cit13
  doi: 10.1038/nmat4072
– ident: ref19/cit19
  doi: 10.1101/cshperspect.a004648
– ident: ref1/cit1
  doi: 10.1126/science.8134835
– volume-title: Molecular Thermodynamics of Fluid-Phase Equilibria
  year: 1998
  ident: ref67/cit67
– ident: ref32/cit32
  doi: 10.1021/acs.jpclett.9b03253
– ident: ref47/cit47
  doi: 10.1038/nnano.2008.130
– ident: ref60/cit60
  doi: 10.15252/embj.201593517
– ident: ref55/cit55
  doi: 10.1039/C9SM02338K
– ident: ref25/cit25
  doi: 10.1002/andp.18652010702
– ident: ref54/cit54
  doi: 10.1021/acs.jpcb.9b04042
– ident: ref58/cit58
  doi: 10.1016/j.molcel.2015.01.013
– ident: ref41/cit41
  doi: 10.1021/nn4057353
– ident: ref75/cit75
  doi: 10.1002/smll.201501885
– ident: ref40/cit40
  doi: 10.1021/nn204012y
– ident: ref9/cit9
  doi: 10.1063/1.1743956
– ident: ref44/cit44
  doi: 10.1073/pnas.1822092116
– ident: ref53/cit53
  doi: 10.1073/pnas.1222276110
– ident: ref5/cit5
  doi: 10.1038/nmat2206
– ident: ref71/cit71
  doi: 10.1073/pnas.0405747102
– ident: ref74/cit74
  doi: 10.1039/C9SM01262A
– ident: ref33/cit33
  doi: 10.1038/s41598-018-37659-4
– ident: ref17/cit17
  doi: 10.1038/nature05959
– ident: ref70/cit70
  doi: 10.1126/science.1093783
– ident: ref16/cit16
  doi: 10.1021/acs.macromol.5b01290
– volume-title: Abhandlungen Über Die Mechanische Wärmetheorie
  year: 1864
  ident: ref21/cit21
– ident: ref29/cit29
  doi: 10.1021/jacs.9b03927
– ident: ref59/cit59
  doi: 10.1146/annurev-cellbio-100913-013325
– ident: ref30/cit30
  doi: 10.1073/pnas.1305766110
– volume-title: Vorlesungen über Gastheorie
  year: 1896
  ident: ref22/cit22
– ident: ref39/cit39
  doi: 10.1515/zna-1978-0308
– ident: ref46/cit46
  doi: 10.1038/srep03271
– ident: ref10/cit10
  doi: 10.1111/j.1749-6632.1949.tb27296.x
– ident: ref64/cit64
  doi: 10.1103/PhysRevLett.91.245701
– ident: ref27/cit27
  doi: 10.1007/JHEP04(2011)029
– ident: ref12/cit12
  doi: 10.1126/sciadv.aaw0514
– ident: ref6/cit6
  doi: 10.1021/acsnano.5b03184
– volume-title: Elementary Principles in Statistical Mechanics
  year: 1902
  ident: ref23/cit23
– ident: ref20/cit20
  doi: 10.2307/4444260
– ident: ref18/cit18
  doi: 10.1073/pnas.1222033110
– ident: ref38/cit38
  doi: 10.1016/j.bpj.2012.11.3813
– ident: ref69/cit69
  doi: 10.1039/C5NR06134B
– ident: ref35/cit35
  doi: 10.1021/acs.nanolett.5b02129
– ident: ref43/cit43
  doi: 10.1021/acsnano.5b04181
– ident: ref7/cit7
  doi: 10.1038/nmat4178
– ident: ref61/cit61
  doi: 10.1038/nrm.2017.7
– ident: ref37/cit37
  doi: 10.1038/s42003-019-0471-x
– ident: ref51/cit51
  doi: 10.1039/C6TB03310E
– ident: ref72/cit72
  doi: 10.1038/nmat2344
– ident: ref36/cit36
  doi: 10.1021/acsnano.8b04753
– ident: ref15/cit15
  doi: 10.1021/nl5029396
– ident: ref2/cit2
  doi: 10.1126/science.1100369
– ident: ref66/cit66
  doi: 10.1016/j.cell.2015.08.010
– ident: ref49/cit49
  doi: 10.1126/sciadv.aaw3192
– ident: ref4/cit4
  doi: 10.1038/nmat2442
– ident: ref11/cit11
  doi: 10.1073/pnas.1418159111
– ident: ref57/cit57
  doi: 10.1021/acscentsci.7b00626
– ident: ref24/cit24
  doi: 10.1002/andp.19013090310
– ident: ref45/cit45
  doi: 10.1073/pnas.1805443115
– ident: ref68/cit68
  doi: 10.1002/smll.201603155
– ident: ref62/cit62
  doi: 10.1039/C8SM02285B
– ident: ref34/cit34
  doi: 10.1103/PhysRevE.80.011910
– ident: ref50/cit50
  doi: 10.1016/j.biomaterials.2014.03.087
– ident: ref65/cit65
  doi: 10.1073/pnas.1615395114
– ident: ref56/cit56
  doi: 10.1103/PhysRevLett.100.018103
– ident: ref73/cit73
  doi: 10.1021/cr940534g
– ident: ref8/cit8
  doi: 10.1021/acs.accounts.8b00001
SSID ssj0009350
Score 2.4896173
SecondaryResourceType review_article
Snippet Entropy, one of the central concepts of thermodynamics, can be a predominant contribution to structural formation and transition. Although it is well-known...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5616
Title Entropy at Bio–Nano Interfaces
URI http://dx.doi.org/10.1021/acs.nanolett.0c02635
https://www.proquest.com/docview/2426175152
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwED5BWWDgH1H-FCQWhpTEdtJ4hKpVhQQMUKlbdHZsCYGSiqQDTLwDb8iTYKcJpSBUWKPY8tl39ne-83cAJ1wIGfgoXQyFdpmmiWtp4Nwo0dSnivsK7YX-1XXYH7DLYTCcOorfI_jEP0OZt1JMMyNG0fKkZ9lTFmGJhMaOLRTq3E5JdmlZkdUYsXGJeMTqp3K_9GIPJJnPHkiz-3F5yPTW4KZ-qjPJLXlojQvRki8_mRv_OP51WK3wpnM-UZANWFDpJqx8YSHcAqdrs9VHzw4WzsV99v76ZrbczCnvCrXN2NqGQa971-m7VeEEFykJCjPboTZuApGhinQ7YiJRnAXIEQlq2pYh85BQhUr73Lgfok0CzWRgLVgJjZTuQCPNUrULDknMGnIv8ZFLFlGMNPWkcUoElYwqrZtwagSMK8XP4zKmTfzYfqyljiupm0DrmY5lxUBuC2E8zmnlfrYaTRg45vx_XC9ibEzFxj8wVdk4jy0aMWjJIJa9f4x6H5aJ9bEtDS45gEbxNFaHBogU4qjUvg-BgdvI
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4HIADb8SbInHh0NEmadccAQ0N2Ljw0G5VkiYSArUT7Q5w4j_wD_klOF3LAAlNu0ZJZCd2bCfOZ4AjLqUKfKFcEUrjMkMT18LAuVFiqE8197WwF_rdm7B9z656QW8KgvovDBKR40x5-Yg_QhfwT2xbKtIMuSkanvIsiMo0zKI_Qqxgn57fjrB2aVmYFXUZIyMesfrH3D-zWLuk8t926fexXNqaiyV4-KayTDF5agwK2VBvfwAcJ2ZjGRYr79M5HYrLCkzpdBUWfmASroHTsrnr_VdHFM7ZY_b5_oEHcOaUN4fG5m-tw_1F6-687VZlFFxBSVDg2ocGgwaiQh2ZZsRkojkLBBeCCEObKmSeIFQLbXyOwYhsksAwFVh91tIISjdgJs1SvQkOSXBHuZf4gisWUREZ6ikMUSRVjGpjtuAYGYwrNcjj8oWb-LFtrLmOK663gNYLHqsKj9yWxXgeM8r9HtUf4nGM6X9Y72WMimNfQ0Sqs0EeW98EfSf0X7YnoPoA5tp33U7cuby53oF5YqNvC5BLdmGmeBnoPXRRCrlfCuQXURfkKQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gSAgOvBHjWSQuHDraJO2a4xibeE5IMGniUiVpIiFQO9HuACf-A_-QX0LctWNDQhNcoyayazuxY-czQkdMCOm5XNrcF9qmmkQ2wMDZQaSJSxRzFYcL_ZuOf96llz2vN9bqyxCRmpXSPIkPVt2PdIEw4J7AeMzjxHCU1RzpAJDKLJqDzB0od6N59423S_LmrMaeTXTEAlq-mvtlFTibZDp5Nk1uzfl5015GDyNK8zKTp9ogEzX59gPE8V-srKClwgu1GkO1WUUzKl5Di2PYhOvIakENe__V4pl1-ph8vn-YjTix8htEDXVcG6jbbt03z-2inYLNCfYyIwNfm-ABS18Fuh5QESlGPc44x1yTuvSpwzFRXGmXmaBE1LGnqfTArpXQnJBNVImTWG0hC0dGssyJXM4kDQgPNHGkCVUEkZQoravo2DAYFuaQhnmmG7shDJZchwXXVUTKnx7KApcc2mM8T5llj2b1h7gcU74_LOUZGgOCrAiPVTJIQ_BRjA9l_JjtP1B9gOZvz9rh9UXnagctYAjCAScX76JK9jJQe8ZTycR-rpNftlXmrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropy+at+Bio%E2%80%93Nano+Interfaces&rft.jtitle=Nano+letters&rft.au=Zhu%2C+Guolong&rft.au=Xu%2C+Ziyang&rft.au=Yan%2C+Li-Tang&rft.date=2020-08-12&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=20&rft.issue=8&rft.spage=5616&rft.epage=5624&rft_id=info:doi/10.1021%2Facs.nanolett.0c02635&rft.externalDocID=c502138158
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon