Experimental and Computational Studies of Choline Chloride-Based Deep Eutectic Solvents
Choline-chloride based deep eutectic solvents (DES) have been used for several different applications (e.g., solubility, electrochemistry, and purifications) due to their relative inexpensive and readily available nature. In this work, three choline chloride-based DESs are simulated using molecular...
Saved in:
Published in | Journal of chemical and engineering data Vol. 59; no. 11; pp. 3652 - 3662 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
13.11.2014
|
Online Access | Get full text |
ISSN | 0021-9568 1520-5134 |
DOI | 10.1021/je500520h |
Cover
Loading…
Abstract | Choline-chloride based deep eutectic solvents (DES) have been used for several different applications (e.g., solubility, electrochemistry, and purifications) due to their relative inexpensive and readily available nature. In this work, three choline chloride-based DESs are simulated using molecular dynamics to study the hydrogen bonding interactions of the system. Three hydrogen bond donors (HBD) are studied in order to determine the changes in the hydrogen bonding interactions when the HBD is different in the DES. One dicarboxylic acid and two polyols (with different number of OH groups) were chosen as the HBDs of interest. First, the simulations are validated by comparing simulated and experimental thermodynamic and transport properties, when possible. Then, for maline (choline chloride/malonic acid), the more anomalous system studied here, molecular simulations complement results obtained from an FTIR spectroscopic study in order to further understand this unique system. Good agreement with experimental values was obtained for simulated density, heat capacity, and transport properties. A high relative percent of hydrogen bonding is observed for interactions between the anion and the HBD for the three main systems studied here, consistent with the nature of how these moieties interact in DESs. Comparison is also done with a previous DES studied in our group. From the infrared spectroscopic study conducted on maline films, band assignments were discussed highlighting a “free” carbonyl group of the carboxylic acid group in the eutectic mixture when the OH group is hydrogen bonded to something else. Additionally, a band is assigned to a hydrogen bonded carbonyl group. These band assignments are consistent with findings in the molecular simulations and highlight the predominant interactions of the system. |
---|---|
AbstractList | Choline-chloride based deep eutectic solvents (DES) have been used for several different applications (e.g., solubility, electrochemistry, and purifications) due to their relative inexpensive and readily available nature. In this work, three choline chloride-based DESs are simulated using molecular dynamics to study the hydrogen bonding interactions of the system. Three hydrogen bond donors (HBD) are studied in order to determine the changes in the hydrogen bonding interactions when the HBD is different in the DES. One dicarboxylic acid and two polyols (with different number of OH groups) were chosen as the HBDs of interest. First, the simulations are validated by comparing simulated and experimental thermodynamic and transport properties, when possible. Then, for maline (choline chloride/malonic acid), the more anomalous system studied here, molecular simulations complement results obtained from an FTIR spectroscopic study in order to further understand this unique system. Good agreement with experimental values was obtained for simulated density, heat capacity, and transport properties. A high relative percent of hydrogen bonding is observed for interactions between the anion and the HBD for the three main systems studied here, consistent with the nature of how these moieties interact in DESs. Comparison is also done with a previous DES studied in our group. From the infrared spectroscopic study conducted on maline films, band assignments were discussed highlighting a “free” carbonyl group of the carboxylic acid group in the eutectic mixture when the OH group is hydrogen bonded to something else. Additionally, a band is assigned to a hydrogen bonded carbonyl group. These band assignments are consistent with findings in the molecular simulations and highlight the predominant interactions of the system. |
Author | Perkins, Sasha L Colina, Coray M Painter, Paul |
AuthorAffiliation | The Pennsylvania State University Department of Materials Science and Engineering |
AuthorAffiliation_xml | – name: The Pennsylvania State University – name: Department of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Sasha L surname: Perkins fullname: Perkins, Sasha L – sequence: 2 givenname: Paul surname: Painter fullname: Painter, Paul email: painter@matse.psu.edu – sequence: 3 givenname: Coray M surname: Colina fullname: Colina, Coray M email: colina@matse.psu.edu |
BookMark | eNptkD9PwzAUxC1UJNrCwDfwwsAQasd2Uo8Qwh-pEkNBjJFrP6uu0jiKHQTfHqMiBtTppPd-d9LdDE063wFCl5TcUJLTxQ4EISIn2xM0pUkzQRmfoClJz0yKYnmGZiHsCCG8zOkUvdefPQxuD11ULVadwZXf92NU0fkuXdZxNA4C9hZXW9-6DpK2fnAGsjsVwOB7gB7XYwQdncZr336krHCOTq1qA1z86hy9PdSv1VO2enl8rm5XmWK5iFlpLd1QRqUpreKWASc8t1pAYZeGUlbaghdSErrcaCOJ1EaAlYYZECAU42yOrg-5evAhDGCbPrVRw1dDSfOzSPO3SGIX_1jtDkXjoFx71HF1cCgdmp0fhzRJOMJ9A4cJcfU |
CitedBy_id | crossref_primary_10_1021_jp510420h crossref_primary_10_1016_j_polymer_2022_125314 crossref_primary_10_1002_ceat_201600475 crossref_primary_10_1016_j_cplett_2021_138427 crossref_primary_10_1021_acs_jced_0c00659 crossref_primary_10_1021_acs_jpcb_0c04058 crossref_primary_10_1016_j_fluid_2024_114324 crossref_primary_10_1016_j_carres_2024_109345 crossref_primary_10_1002_celc_201801192 crossref_primary_10_1016_j_jil_2025_100139 crossref_primary_10_1021_acssuschemeng_1c01499 crossref_primary_10_1007_s10973_023_12280_4 crossref_primary_10_1016_j_microc_2023_109675 crossref_primary_10_1039_C8CP00409A crossref_primary_10_1021_acs_jpcb_7b09540 crossref_primary_10_1002_cphc_201600348 crossref_primary_10_1016_j_molliq_2020_112451 crossref_primary_10_1016_j_molliq_2019_111000 crossref_primary_10_1016_j_fluid_2022_113587 crossref_primary_10_3390_molecules26206286 crossref_primary_10_1039_C9CP00036D crossref_primary_10_1021_acssuschemeng_8b03119 crossref_primary_10_1021_acs_jpcb_0c04844 crossref_primary_10_1039_D3SU00470H crossref_primary_10_1021_acs_jced_3c00002 crossref_primary_10_1039_D0CP02605K crossref_primary_10_1016_j_molliq_2021_116669 crossref_primary_10_1021_acs_jpcb_9b09729 crossref_primary_10_1039_D1GC04059F crossref_primary_10_1021_acssuschemeng_9b05755 crossref_primary_10_1016_j_molstruc_2022_134283 crossref_primary_10_1021_acs_jpcb_9b08873 crossref_primary_10_1016_j_jmgm_2021_107908 crossref_primary_10_1021_acs_jpcb_1c01692 crossref_primary_10_1021_acs_joc_0c02039 crossref_primary_10_1016_j_molliq_2021_115790 crossref_primary_10_3389_fchem_2022_911674 crossref_primary_10_1016_j_ces_2024_120231 crossref_primary_10_1016_j_molliq_2024_125314 crossref_primary_10_1021_acs_jcim_1c01181 crossref_primary_10_1007_s11814_024_00288_x crossref_primary_10_1021_acs_iecr_2c02748 crossref_primary_10_1021_acs_jced_9b00774 crossref_primary_10_1021_acs_jpca_0c00851 crossref_primary_10_1021_acs_jpcc_7b07315 crossref_primary_10_1039_C5NJ02677F crossref_primary_10_1063_5_0058561 crossref_primary_10_1063_5_0052569 crossref_primary_10_1016_j_molliq_2019_110956 crossref_primary_10_2139_ssrn_4103040 crossref_primary_10_1021_acs_jpcb_2c01735 crossref_primary_10_1039_D0CP02408B crossref_primary_10_1002_cphc_201900307 crossref_primary_10_1002_jms_4725 crossref_primary_10_1016_j_molliq_2015_07_070 crossref_primary_10_3390_molecules21070924 crossref_primary_10_1515_gps_2021_0065 crossref_primary_10_1002_aic_18093 crossref_primary_10_1039_D0CP01255F crossref_primary_10_1063_5_0189533 crossref_primary_10_1016_j_seppur_2021_119027 crossref_primary_10_1016_j_molliq_2020_114292 crossref_primary_10_1039_C9CP02368B crossref_primary_10_1016_j_jbiosc_2018_03_011 crossref_primary_10_1016_j_biortech_2017_08_043 crossref_primary_10_1002_cssc_202000286 crossref_primary_10_1021_acs_chemrev_0c00385 crossref_primary_10_1080_08927022_2021_1983178 crossref_primary_10_1039_C6CP02815B crossref_primary_10_1007_s00894_020_04587_y crossref_primary_10_1016_j_jelechem_2022_116557 crossref_primary_10_1016_j_biotechadv_2016_11_006 crossref_primary_10_1039_D3CP00875D crossref_primary_10_1016_j_seppur_2021_119994 crossref_primary_10_1016_j_molliq_2017_02_071 crossref_primary_10_1038_s41467_021_27842_z crossref_primary_10_1063_1_5038067 crossref_primary_10_1016_j_molliq_2023_122627 crossref_primary_10_1039_D1CP02413B crossref_primary_10_1039_C8GC04000A crossref_primary_10_1016_j_jmgm_2024_108784 crossref_primary_10_1002_aic_17427 crossref_primary_10_1021_acs_jced_8b00228 crossref_primary_10_1021_acs_jced_9b00548 crossref_primary_10_1021_acs_iecr_1c04923 crossref_primary_10_1039_C7CP01286A crossref_primary_10_1016_j_molstruc_2017_11_064 crossref_primary_10_1039_D2CP01014C crossref_primary_10_1021_acs_jpcb_6b07233 crossref_primary_10_1021_acssuschemeng_0c08288 crossref_primary_10_1021_acs_jced_7b01103 crossref_primary_10_1021_jacs_8b04729 crossref_primary_10_1016_j_coelec_2018_05_016 crossref_primary_10_1016_j_renene_2020_09_121 crossref_primary_10_1021_acs_jced_2c00066 crossref_primary_10_1016_j_indcrop_2022_114990 crossref_primary_10_1016_j_molliq_2022_119959 crossref_primary_10_1016_j_jcis_2024_07_146 crossref_primary_10_1016_j_molliq_2021_117277 crossref_primary_10_1002_wcms_1572 crossref_primary_10_1021_acs_jctc_1c00047 crossref_primary_10_1080_01932691_2024_2372691 crossref_primary_10_1021_acs_jpclett_8b01718 crossref_primary_10_2174_1385272827666230427101210 crossref_primary_10_1016_j_indcrop_2024_119770 crossref_primary_10_3390_molecules29133089 crossref_primary_10_1021_acs_jced_1c00841 crossref_primary_10_3389_fchem_2022_983281 crossref_primary_10_1002_gch2_202000103 crossref_primary_10_1016_j_molliq_2020_113729 crossref_primary_10_1016_j_rser_2025_115358 crossref_primary_10_1021_acs_jpcb_9b03950 crossref_primary_10_1016_j_molliq_2016_10_134 crossref_primary_10_1016_j_seppur_2023_123590 crossref_primary_10_1021_acs_iecr_0c05109 crossref_primary_10_1016_j_measurement_2021_110630 crossref_primary_10_1016_j_fluid_2017_01_001 crossref_primary_10_1016_j_gce_2023_09_003 crossref_primary_10_1016_j_molliq_2021_116716 crossref_primary_10_1021_acs_jpcb_6b04187 crossref_primary_10_1021_acs_jpcc_9b01111 crossref_primary_10_1063_5_0054048 crossref_primary_10_1021_acs_langmuir_8b03990 crossref_primary_10_1088_1742_6596_1893_1_012001 crossref_primary_10_1016_j_biortech_2017_10_019 crossref_primary_10_1016_j_molliq_2023_123605 crossref_primary_10_1021_acs_jpcc_4c08234 crossref_primary_10_1016_j_matpr_2018_10_099 crossref_primary_10_1021_acs_jpcb_0c07934 crossref_primary_10_1021_acs_jpcb_3c00935 crossref_primary_10_1002_wcms_1598 crossref_primary_10_1021_acssuschemeng_9b01378 crossref_primary_10_1142_S2737416522300048 crossref_primary_10_1155_2021_9999406 crossref_primary_10_1039_D3CP03668E crossref_primary_10_3390_molecules24122334 crossref_primary_10_1021_acssuschemeng_8b05072 crossref_primary_10_1016_j_molliq_2021_117019 crossref_primary_10_1016_j_fuel_2018_08_005 crossref_primary_10_1016_j_gce_2023_11_001 crossref_primary_10_1016_j_molliq_2022_120243 crossref_primary_10_1016_j_colsurfa_2017_12_013 crossref_primary_10_1016_j_fluid_2023_113913 crossref_primary_10_1038_s41598_021_85260_z crossref_primary_10_1016_j_molliq_2022_119492 crossref_primary_10_3390_ma16010415 crossref_primary_10_1039_D0GC00762E crossref_primary_10_1016_j_molliq_2018_03_076 crossref_primary_10_1021_ef5028873 crossref_primary_10_1021_acs_jpcb_7b05454 crossref_primary_10_1016_j_scp_2023_101102 crossref_primary_10_1063_5_0047369 crossref_primary_10_1021_acs_jpcb_0c01860 crossref_primary_10_1002_slct_202200068 crossref_primary_10_1021_acs_jcim_3c01738 crossref_primary_10_1021_acs_jpcb_0c00644 crossref_primary_10_1063_1_5010246 crossref_primary_10_1021_acs_jpcc_5b08172 crossref_primary_10_1021_acs_jpclett_1c03907 crossref_primary_10_3390_molecules24203687 crossref_primary_10_1021_acs_jced_4c00505 crossref_primary_10_1007_s11694_020_00744_2 crossref_primary_10_1039_C7CP05911F crossref_primary_10_1016_j_molliq_2021_116139 crossref_primary_10_3390_molecules29030703 crossref_primary_10_3390_met15040350 crossref_primary_10_1080_00268976_2017_1288936 crossref_primary_10_1039_C9CP02548K crossref_primary_10_1021_acs_jpcb_6b09714 crossref_primary_10_1080_08927022_2024_2427794 crossref_primary_10_1016_j_rser_2018_08_007 crossref_primary_10_1021_acs_chemrev_7b00691 crossref_primary_10_1016_j_molliq_2024_126475 crossref_primary_10_1016_j_jorganchem_2022_122271 crossref_primary_10_1016_j_molliq_2025_127389 crossref_primary_10_1021_acssuschemeng_8b04843 crossref_primary_10_1016_j_microc_2024_111644 crossref_primary_10_1016_j_jechem_2023_03_039 crossref_primary_10_1021_acs_jpclett_9b01980 crossref_primary_10_1021_acssuschemeng_3c03461 crossref_primary_10_3390_molecules28145293 crossref_primary_10_1021_acs_jpcb_4c05480 crossref_primary_10_1039_C7RA13557B crossref_primary_10_1021_acs_jpcc_5b04585 crossref_primary_10_1038_s41598_021_85824_z crossref_primary_10_1016_j_jcis_2018_02_078 crossref_primary_10_1016_j_molliq_2017_12_016 crossref_primary_10_1016_j_molliq_2019_112183 crossref_primary_10_1021_acs_jced_9b00134 crossref_primary_10_1016_j_jmgm_2016_05_003 crossref_primary_10_1016_j_molliq_2018_10_131 crossref_primary_10_1016_j_cogsc_2020_100395 crossref_primary_10_1021_acs_jpcb_9b06624 crossref_primary_10_1016_j_molliq_2020_113005 crossref_primary_10_3390_ijms23020645 crossref_primary_10_1021_acs_jpcb_4c06787 crossref_primary_10_1021_acs_jpclett_4c03051 crossref_primary_10_1080_10406638_2018_1485713 crossref_primary_10_1021_acs_jpcb_0c04907 crossref_primary_10_1016_j_foodchem_2017_07_132 crossref_primary_10_1016_j_molliq_2021_116234 crossref_primary_10_1021_acs_jctc_1c00274 crossref_primary_10_1039_D1CP00734C crossref_primary_10_1007_s13369_019_04306_7 crossref_primary_10_1016_j_molliq_2023_121862 crossref_primary_10_1063_5_0062408 crossref_primary_10_1021_acs_jced_6b00608 crossref_primary_10_1016_j_molliq_2024_125604 crossref_primary_10_1021_acs_jpcb_1c09227 crossref_primary_10_1021_acs_jpcb_7b10914 crossref_primary_10_1080_05704928_2024_2390962 crossref_primary_10_1021_acs_jpcb_0c07732 crossref_primary_10_1016_j_molliq_2020_112940 crossref_primary_10_1016_j_jmgm_2024_108805 crossref_primary_10_1021_acs_jpcb_8b06647 crossref_primary_10_1021_acs_iecr_0c00762 crossref_primary_10_1038_s41598_023_33234_8 crossref_primary_10_1016_j_electacta_2021_138859 crossref_primary_10_1039_C5GC02914G crossref_primary_10_2139_ssrn_4016012 crossref_primary_10_1002_cphc_202000165 crossref_primary_10_1063_5_0049064 crossref_primary_10_1016_j_carpta_2024_100596 crossref_primary_10_1002_slct_202303825 crossref_primary_10_1007_s00894_021_05017_3 crossref_primary_10_1016_j_apsusc_2024_161300 crossref_primary_10_1021_acs_energyfuels_4c02301 crossref_primary_10_1021_acs_jpcb_9b10751 crossref_primary_10_1016_j_molliq_2020_113909 crossref_primary_10_1016_j_molliq_2022_120443 crossref_primary_10_1039_C5CP00070J crossref_primary_10_1016_j_heliyon_2024_e40521 crossref_primary_10_1021_acs_langmuir_7b02003 crossref_primary_10_1080_08927022_2020_1810685 crossref_primary_10_1016_j_cclet_2022_107750 crossref_primary_10_1021_acs_jpcb_3c02191 crossref_primary_10_1021_acs_jpca_7b10264 crossref_primary_10_1021_acs_jpcb_4c06523 crossref_primary_10_1016_j_fluid_2024_114121 crossref_primary_10_1039_C9CP04343H crossref_primary_10_1021_acs_jpcb_2c02406 crossref_primary_10_18321_ectj1563 crossref_primary_10_1007_s11356_024_33093_4 crossref_primary_10_1088_1402_4896_ad986b crossref_primary_10_1002_jctb_5491 crossref_primary_10_1016_j_fuel_2024_133278 crossref_primary_10_1016_j_molliq_2018_11_047 crossref_primary_10_1016_j_fluid_2023_113849 crossref_primary_10_1021_acssuschemeng_0c04982 crossref_primary_10_1016_j_jmgm_2022_108152 crossref_primary_10_1016_j_molliq_2024_124011 crossref_primary_10_1021_acssuschemeng_2c01375 crossref_primary_10_1016_j_ejpb_2015_11_002 crossref_primary_10_1002_cphc_202400219 crossref_primary_10_1016_j_tifs_2023_104124 crossref_primary_10_1016_j_arabjc_2023_105579 crossref_primary_10_1016_j_chphi_2024_100777 crossref_primary_10_1016_j_molliq_2020_114307 crossref_primary_10_1016_j_jtice_2025_106041 crossref_primary_10_1021_acs_jpcb_0c04916 crossref_primary_10_1080_00268976_2021_1876263 crossref_primary_10_1021_acs_jpcb_8b11732 crossref_primary_10_1063_5_0053448 crossref_primary_10_1021_acs_jpcb_2c01425 crossref_primary_10_1021_acs_jpcc_5b09836 crossref_primary_10_1007_s12649_023_02218_0 crossref_primary_10_1021_acs_jpcb_3c06407 crossref_primary_10_1021_acs_jced_1c00684 crossref_primary_10_1021_acssuschemeng_1c05395 crossref_primary_10_1016_j_molliq_2024_124940 crossref_primary_10_1016_j_renene_2021_05_157 crossref_primary_10_1021_acs_jpcb_0c03501 crossref_primary_10_1111_jfpp_16250 crossref_primary_10_1016_j_jcis_2021_10_163 crossref_primary_10_1016_j_molliq_2018_09_128 crossref_primary_10_1021_acssuschemeng_8b04255 crossref_primary_10_1021_acs_jpca_1c07809 crossref_primary_10_1021_acs_jpcb_7b08472 crossref_primary_10_1016_j_coelec_2024_101465 crossref_primary_10_1021_acs_jpcb_7b10422 crossref_primary_10_1038_s41598_022_09185_x crossref_primary_10_1021_acs_jpcb_4c02826 crossref_primary_10_1021_acs_jced_0c00588 crossref_primary_10_1021_acs_jpcb_2c03277 crossref_primary_10_1021_acs_jpcb_0c03296 crossref_primary_10_1016_j_carbpol_2017_03_023 crossref_primary_10_1016_j_fluid_2017_04_013 crossref_primary_10_1016_j_jcou_2021_101717 crossref_primary_10_1039_C8CP06728G crossref_primary_10_1016_j_fluid_2017_04_018 crossref_primary_10_1016_j_apmt_2017_11_005 crossref_primary_10_1016_j_electacta_2019_06_161 crossref_primary_10_1016_j_molliq_2021_117779 crossref_primary_10_1016_j_clet_2021_100116 crossref_primary_10_1039_D4CP02739F |
Cites_doi | 10.1021/jp404619x 10.1016/j.cpc.2012.09.022 10.1039/c2cs15362a 10.1016/0009-2614(76)80042-5 10.1021/je700638u 10.1039/c1cp22554e 10.1016/j.comptc.2011.11.003 10.1016/j.cbpa.2010.11.008 10.1039/c2gc36005e 10.1007/s00894-013-1791-2 10.1016/j.tca.2011.10.010 10.1080/10587250008024811 10.1051/jcp/1976730141 10.1021/ma801900m 10.1021/je060038c 10.1021/j100142a004 10.1039/c2cs35178a 10.1021/jp0364699 10.1016/j.electacta.2005.12.030 10.1351/PAC-CON-08-09-24 10.1021/ie300222a 10.1016/0009-2614(84)80548-5 10.1039/C1RA00630D 10.1021/jp0629036 10.1039/b702833d 10.1021/ma200345v 10.1016/0009-2614(80)85052-4 10.1016/j.jtice.2012.01.007 10.1093/nar/gkr288 10.1021/ct200909j 10.1016/j.tca.2011.11.036 10.1039/c0cp00111b 10.1021/ma9913820 10.1179/002029605X17657 10.1021/jp0671998 10.1039/c2cs15353j 10.1002/anie.201207548 10.1021/jp056235k |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1021/je500520h |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-5134 |
EndPage | 3662 |
ExternalDocumentID | 10_1021_je500520h a810187526 |
GroupedDBID | 02 08R 4.4 53G 55A 5GY 7~N AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ACGFS ACJ ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ LG6 P2P ROL UI2 VF5 VG9 W1F WH7 X YZZ -DZ -~X .DC 5VS AAHBH AAYXX ABBLG ABHMW ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ CITATION CUPRZ GGK ~02 |
ID | FETCH-LOGICAL-a325t-7ff1b1319d7fa4f3e4042fc5e6f8d1137f64699018bcd909cd5ef9d3de5e5a343 |
IEDL.DBID | ACS |
ISSN | 0021-9568 |
IngestDate | Tue Jul 01 03:17:08 EDT 2025 Thu Apr 24 22:56:06 EDT 2025 Thu Aug 27 13:42:51 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a325t-7ff1b1319d7fa4f3e4042fc5e6f8d1137f64699018bcd909cd5ef9d3de5e5a343 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1021_je500520h crossref_citationtrail_10_1021_je500520h acs_journals_10_1021_je500520h |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-11-13 |
PublicationDateYYYYMMDD | 2014-11-13 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-13 day: 13 |
PublicationDecade | 2010 |
PublicationTitle | Journal of chemical and engineering data |
PublicationTitleAlternate | J. Chem. Eng. Data |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Abbott A. P. (ref4/cit4) 2005; 83 ref36/cit36 Francisco M. (ref15/cit15) 2013; 52 Abbott A. P. (ref5/cit5) 2007; 9 Vanquelef E. (ref19/cit19) 2011 Ciocirlan O. (ref28/cit28) 2010; 61 Pigenet C. (ref38/cit38) 1976; 73 Rimsza J. M. (ref7/cit7) 2012; 987 Bayly C. I. (ref17/cit17) 1993; 97 Leron R. B. (ref30/cit30) 2012; 43 Cadena C. (ref32/cit32) 2006; 110 Abbott A. P. (ref2/cit2) 2006; 51 Del Pópolo M. G. (ref37/cit37) 2004; 108 ref23/cit23 Vergoten G. (ref42/cit42) 1984; 112 Abbott A. P. (ref3/cit3) 2006; 51 Dupradeau F.-Y. (ref18/cit18) 2010; 12 Cleveland C. S. (ref45/cit45) 2000; 33 Tang S. (ref12/cit12) 2012; 41 Li X. (ref1/cit1) 2008; 53 Maugeri Z. (ref6/cit6) 2012; 2 Götz A. W. (ref25/cit25) 2012; 8 ref20/cit20 Ganguly S. (ref39/cit39) 1980; 69 Shahbaz K. (ref31/cit31) 2012; 527 Zhang Q. (ref10/cit10) 2012; 41 Carriazo D. (ref11/cit11) 2012; 41 ref21/cit21 Perkins S. L. (ref9/cit9) 2013; 117 Gutowski K. E. (ref34/cit34) 2009; 81 Cadena C. (ref33/cit33) 2006; 110 Leron R. B. (ref35/cit35) 2012; 530 Bougeard D. (ref40/cit40) 1988; 44 Domínguez de María P. (ref13/cit13) 2011; 15 Ruß C. (ref14/cit14) 2012; 14 Bosi P. (ref41/cit41) 1976; 38 Larsen G. S. (ref27/cit27) 2011; 44 Sun H. (ref8/cit8) 2013; 19 Abbott A. P. (ref29/cit29) 2007; 111 Painter P. C. (ref44/cit44) 2009; 42 Liu H. (ref22/cit22) 2012; 51 Le Grand S. (ref26/cit26) 2012; 184 ref24/cit24 Painter P. C. (ref43/cit43) 2000; 348 D’Agostino C. (ref16/cit16) 2011; 13 |
References_xml | – volume: 117 start-page: 10250 year: 2013 ident: ref9/cit9 publication-title: J. Phys. Chem. B doi: 10.1021/jp404619x – ident: ref20/cit20 – volume: 184 start-page: 374 year: 2012 ident: ref26/cit26 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.09.022 – volume: 41 start-page: 4030 year: 2012 ident: ref12/cit12 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs15362a – volume: 38 start-page: 571 year: 1976 ident: ref41/cit41 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(76)80042-5 – volume: 53 start-page: 548 year: 2008 ident: ref1/cit1 publication-title: J. Chem. Eng. Data doi: 10.1021/je700638u – ident: ref21/cit21 – volume: 13 start-page: 21383 year: 2011 ident: ref16/cit16 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp22554e – ident: ref36/cit36 – volume: 987 start-page: 57 year: 2012 ident: ref7/cit7 publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2011.11.003 – volume: 15 start-page: 220 year: 2011 ident: ref13/cit13 publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2010.11.008 – volume: 14 start-page: 2969 year: 2012 ident: ref14/cit14 publication-title: Green Chem. doi: 10.1039/c2gc36005e – volume: 19 start-page: 2433 year: 2013 ident: ref8/cit8 publication-title: J. Mol. Model. doi: 10.1007/s00894-013-1791-2 – volume: 527 start-page: 59 year: 2012 ident: ref31/cit31 publication-title: Thermochim. Acta doi: 10.1016/j.tca.2011.10.010 – ident: ref24/cit24 – volume: 348 start-page: 269 year: 2000 ident: ref43/cit43 publication-title: Mol. Cryst. Liq. Cryst. doi: 10.1080/10587250008024811 – volume: 73 start-page: 141 year: 1976 ident: ref38/cit38 publication-title: J. Chim. Phys. doi: 10.1051/jcp/1976730141 – volume: 42 start-page: 435 year: 2009 ident: ref44/cit44 publication-title: Macromolecules doi: 10.1021/ma801900m – volume: 51 start-page: 1280 year: 2006 ident: ref2/cit2 publication-title: J. Chem. Eng. Data doi: 10.1021/je060038c – volume: 97 start-page: 10269 year: 1993 ident: ref17/cit17 publication-title: J. Phys. Chem. doi: 10.1021/j100142a004 – volume: 41 start-page: 7108 year: 2012 ident: ref10/cit10 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35178a – volume: 108 start-page: 1744 year: 2004 ident: ref37/cit37 publication-title: J. Phys. Chem. B doi: 10.1021/jp0364699 – volume: 51 start-page: 4420 year: 2006 ident: ref3/cit3 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2005.12.030 – volume: 81 start-page: 1799 year: 2009 ident: ref34/cit34 publication-title: Pure Appl. Chem. doi: 10.1351/PAC-CON-08-09-24 – volume: 51 start-page: 7242 year: 2012 ident: ref22/cit22 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie300222a – ident: ref23/cit23 – volume: 112 start-page: 272 year: 1984 ident: ref42/cit42 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(84)80548-5 – volume: 2 start-page: 421 year: 2012 ident: ref6/cit6 publication-title: RSC Adv. doi: 10.1039/C1RA00630D – volume: 110 start-page: 18026 year: 2006 ident: ref33/cit33 publication-title: J. Phys. Chem. B doi: 10.1021/jp0629036 – volume: 61 start-page: 721 year: 2010 ident: ref28/cit28 publication-title: Rev. Chim (Bucharest) – volume: 9 start-page: 868 year: 2007 ident: ref5/cit5 publication-title: Green Chem. doi: 10.1039/b702833d – volume: 44 start-page: 6944 year: 2011 ident: ref27/cit27 publication-title: Macromolecules doi: 10.1021/ma200345v – volume: 69 start-page: 227 year: 1980 ident: ref39/cit39 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(80)85052-4 – volume: 43 start-page: 551 year: 2012 ident: ref30/cit30 publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2012.01.007 – start-page: W511 year: 2011 ident: ref19/cit19 publication-title: Nucl. Acids Res. doi: 10.1093/nar/gkr288 – volume: 8 start-page: 1542 year: 2012 ident: ref25/cit25 publication-title: J. Chem. Theory doi: 10.1021/ct200909j – volume: 530 start-page: 52 year: 2012 ident: ref35/cit35 publication-title: Thermochim. Acta doi: 10.1016/j.tca.2011.11.036 – volume: 12 start-page: 7821 year: 2010 ident: ref18/cit18 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp00111b – volume: 33 start-page: 4278 year: 2000 ident: ref45/cit45 publication-title: Macromolecules doi: 10.1021/ma9913820 – volume: 44 start-page: 1281 year: 1988 ident: ref40/cit40 publication-title: Spectrochimistry – volume: 83 start-page: 51 year: 2005 ident: ref4/cit4 publication-title: Trans. Inst. Met. Fin. doi: 10.1179/002029605X17657 – volume: 111 start-page: 4910 year: 2007 ident: ref29/cit29 publication-title: J. Phys. Chem. B doi: 10.1021/jp0671998 – volume: 41 start-page: 4996 year: 2012 ident: ref11/cit11 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs15353j – volume: 52 start-page: 3074 year: 2013 ident: ref15/cit15 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201207548 – volume: 110 start-page: 2821 year: 2006 ident: ref32/cit32 publication-title: J. Phys. Chem. B doi: 10.1021/jp056235k |
SSID | ssj0004721 |
Score | 2.5613947 |
Snippet | Choline-chloride based deep eutectic solvents (DES) have been used for several different applications (e.g., solubility, electrochemistry, and purifications)... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3652 |
Title | Experimental and Computational Studies of Choline Chloride-Based Deep Eutectic Solvents |
URI | http://dx.doi.org/10.1021/je500520h |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwED6VMgADjwKiPCoLGFhS4jjOY4TQqkKCpVR0qxLbpwJVWtF04ddjNwlEKo8pQy5K5PPlPtt33wdwiVL5gWCepbG0sFwm0YqRBpbk1Fd-SPU9s9_x8Oj1Bu79kA9rcPHLCb5Dr18VXxZrjNdg3fF08Br8E_W_mx99J5fFM7UG3AtK-qDqoyb1iHkl9VRySHcH7spOnLx05K29yJK2-FglZvzr83Zhu8CQ5CZ3-h7UVNqAjaiUbmvAVoVlcB-eOxUWfxKnkuRSDsU2IClKCckUSTQ2Gj5KX01hnlTWrU5yktwpNSOdhTlveBGkP52YIsn5AQy6naeoZxV6ClbMHJ5ZPiJNqI456WPsIlOujlgUXHkYSEqZj55eLGuAECRChnYoJFcYSiYVVzxmLjuEejpN1REQoX-LqIS0hS1cDL2Y-lI7Bzl6ArmNTWjpAR8V8TAfLY-6Hb3UKEerCVelL0aiYCM3ohiTn0zPv0xnOQXHqtHxfy88gU2NdVzTRkjZKdSz94U603giS1rL-fQJ4h7FYw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LU8IwEM4oHtCDD9QRH5hxPHgpNk3TtEdEGFTgAozcmJJkB5UBxpaLv96kLdJRZ_TUQ7dtJtntbrK734fQNUjFfUE9S8fSwnKpBCsE4luSEa54QPQ9c97R6Xqtgfs4ZMMMJsf0wuhBRPpNUZLEX6MLkNtXxZKajckm2tJBiGO0uVbvrXsguZOy45mSA-b5KxSh_KPGA4ko54FyrqS5l3ISJYNIKkjeqst4XBUf3_AZ_zfKfbSbRZS4lqrAAdpQsxIq1ldEbiW0k8McPETPjRymPw5nEqfEDtmhIM4KC_EccH1iGH2UvpoyPamsO-3yJL5XaoEbS5N9eBG4N5-aksnoCA2ajX69ZWXsClZIHRZbHICMibZAySF0gSpX2y8IpjzwJSGUg6e3zjpc8MdCBnYgJFMQSCoVUyykLj1Ghdl8pk4QFvonCUpIW9jChcALCZeO5wMDTwCzoYwqerJGmXVEoyTx7eiNx2q2yuhmtSQjkWGTG4qM6W-iV1-iixSQ46fQ6V8fvETFVr_THrUfuk9naFtHQa5pMCT0HBXi96W60JFGPK4kKvYJbVTNxA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgSDwOPAaI8RgR4sClY1maPo5jD43XQBoTu01dEmvA1E10u_DrSbp2VIAEpx7qtlZi13ZsfwY4R6lcTzDH0r60sGwm0QqQepbk1FWuT_U9c95x33ZaXfumx3tJoGh6YTQTkX5TFCfxjVZPJCYIA_TyVfG4bmO4DCsmXWckulrrfPVBupX5hDxTdsAdL0USyj5qrJCIMlYoY06aW_CwYCSuInkrzaaDkvj4htH4f063YTPxLEl1Lgo7sKTCPKzV0oFuedjIYA_uwnMjg-1PglCS-YCH5HCQJAWGZIykNjSTfZS-mnI9qawrbfokqSs1IY2ZyUK8CNIZj0zpZLQH3WbjqdaykikLVsAqfGq5iHRAtSZKFwMbmbK1HqPgykFPUspcdHQIrd0GbyCkX_aF5Ap9yaTiigfMZvuQC8ehOgAi9M8SlZBlURY2-k5AXVlxPOToCORlLEBRL1g_0ZKoHyfAKzoASVerABfptvRFglFuRmWMfiM9W5BO5sAcP4kO__rgKaw-1pv9u-v27RGsa2fINn2GlB1Dbvo-Uyfa4ZgOirGUfQJA6tBH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+Computational+Studies+of+Choline+Chloride-Based+Deep+Eutectic+Solvents&rft.jtitle=Journal+of+chemical+and+engineering+data&rft.au=Perkins%2C+Sasha+L&rft.au=Painter%2C+Paul&rft.au=Colina%2C+Coray+M&rft.date=2014-11-13&rft.pub=American+Chemical+Society&rft.issn=0021-9568&rft.eissn=1520-5134&rft.volume=59&rft.issue=11&rft.spage=3652&rft.epage=3662&rft_id=info:doi/10.1021%2Fje500520h&rft.externalDocID=a810187526 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9568&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9568&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9568&client=summon |