Phase-Separation-Induced Porous Lithiophilic Polymer Coating for High-Efficiency Lithium Metal Batteries

Solid-electrolyte interphase (SEI) plays a pivotal role in stabilizing lithium (Li) metal anode for rechargeable batteries. However, electrolyte-derived SEI often suffers from poor stability, leading to Li dendrite growth, consumption of electrolyte, and short cycle life. Here, we report a porous li...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 21; no. 11; pp. 4757 - 4764
Main Authors Wang, Dongdong, Liu, Hongxia, Liu, Fang, Ma, Guorong, Yang, Jian, Gu, Xiaodan, Zhou, Meng, Chen, Zheng
Format Journal Article
LanguageEnglish
Published American Chemical Society 09.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solid-electrolyte interphase (SEI) plays a pivotal role in stabilizing lithium (Li) metal anode for rechargeable batteries. However, electrolyte-derived SEI often suffers from poor stability, leading to Li dendrite growth, consumption of electrolyte, and short cycle life. Here, we report a porous lithiophilic polymer coating induced by phase separation of polyvinylidenefluoride–polyacrylonitrile (PVDF–PAN) blends for stabilizing Li metal anode. Different from single polymer coating, PVDF–PAN blends protective layer with porous structures caused by phase separation can provide effective Li+ transport channels and regulate uniform Li+ flux. The lithiophilic functional groups of CN and C–F can promote uniform Li deposition and accelerate Li+ diffusion at the same time during plating/stripping process. As a result, Li||NCM811 full cells using PVDF–PAN coated Li present an apparently improved cycling stability and higher Coulombic efficiency with lean electrolyte (7.5 μL mA h–1), limited Li supply (N/P ratio = 2.4), and high areal capacity (4.0 mA h cm–2).
AbstractList Solid-electrolyte interphase (SEI) plays a pivotal role in stabilizing lithium (Li) metal anode for rechargeable batteries. However, electrolyte-derived SEI often suffers from poor stability, leading to Li dendrite growth, consumption of electrolyte, and short cycle life. Here, we report a porous lithiophilic polymer coating induced by phase separation of polyvinylidenefluoride–polyacrylonitrile (PVDF–PAN) blends for stabilizing Li metal anode. Different from single polymer coating, PVDF–PAN blends protective layer with porous structures caused by phase separation can provide effective Li+ transport channels and regulate uniform Li+ flux. The lithiophilic functional groups of CN and C–F can promote uniform Li deposition and accelerate Li+ diffusion at the same time during plating/stripping process. As a result, Li||NCM811 full cells using PVDF–PAN coated Li present an apparently improved cycling stability and higher Coulombic efficiency with lean electrolyte (7.5 μL mA h–1), limited Li supply (N/P ratio = 2.4), and high areal capacity (4.0 mA h cm–2).
Solid-electrolyte interphase (SEI) plays a pivotal role in stabilizing lithium (Li) metal anode for rechargeable batteries. However, electrolyte-derived SEI often suffers from poor stability, leading to Li dendrite growth, consumption of electrolyte, and short cycle life. Here, we report a porous lithiophilic polymer coating induced by phase separation of polyvinylidenefluoride-polyacrylonitrile (PVDF-PAN) blends for stabilizing Li metal anode. Different from single polymer coating, PVDF-PAN blends protective layer with porous structures caused by phase separation can provide effective Li+ transport channels and regulate uniform Li+ flux. The lithiophilic functional groups of C≡N and C-F can promote uniform Li deposition and accelerate Li+ diffusion at the same time during plating/stripping process. As a result, Li||NCM811 full cells using PVDF-PAN coated Li present an apparently improved cycling stability and higher Coulombic efficiency with lean electrolyte (7.5 μL mA h-1), limited Li supply (N/P ratio = 2.4), and high areal capacity (4.0 mA h cm-2).Solid-electrolyte interphase (SEI) plays a pivotal role in stabilizing lithium (Li) metal anode for rechargeable batteries. However, electrolyte-derived SEI often suffers from poor stability, leading to Li dendrite growth, consumption of electrolyte, and short cycle life. Here, we report a porous lithiophilic polymer coating induced by phase separation of polyvinylidenefluoride-polyacrylonitrile (PVDF-PAN) blends for stabilizing Li metal anode. Different from single polymer coating, PVDF-PAN blends protective layer with porous structures caused by phase separation can provide effective Li+ transport channels and regulate uniform Li+ flux. The lithiophilic functional groups of C≡N and C-F can promote uniform Li deposition and accelerate Li+ diffusion at the same time during plating/stripping process. As a result, Li||NCM811 full cells using PVDF-PAN coated Li present an apparently improved cycling stability and higher Coulombic efficiency with lean electrolyte (7.5 μL mA h-1), limited Li supply (N/P ratio = 2.4), and high areal capacity (4.0 mA h cm-2).
Author Wang, Dongdong
Gu, Xiaodan
Yang, Jian
Ma, Guorong
Liu, Hongxia
Chen, Zheng
Liu, Fang
Zhou, Meng
AuthorAffiliation Sustainable Power and Energy Center
School of Polymer Science and Engineering, Center for Optoelectronic Materials and Device
Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering
Department of Chemical and Materials Engineering
Program of Chemical Engineering
Department of NanoEngineering
Departments of Materials Science and Engineering
AuthorAffiliation_xml – name: Departments of Materials Science and Engineering
– name: Department of Chemical and Materials Engineering
– name: Sustainable Power and Energy Center
– name: Department of NanoEngineering
– name: Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering
– name: School of Polymer Science and Engineering, Center for Optoelectronic Materials and Device
– name: Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology
– name: Program of Chemical Engineering
Author_xml – sequence: 1
  givenname: Dongdong
  orcidid: 0000-0002-0391-8242
  surname: Wang
  fullname: Wang, Dongdong
  organization: Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering
– sequence: 2
  givenname: Hongxia
  surname: Liu
  fullname: Liu, Hongxia
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology
– sequence: 3
  givenname: Fang
  surname: Liu
  fullname: Liu, Fang
  organization: Departments of Materials Science and Engineering
– sequence: 4
  givenname: Guorong
  surname: Ma
  fullname: Ma, Guorong
  organization: School of Polymer Science and Engineering, Center for Optoelectronic Materials and Device
– sequence: 5
  givenname: Jian
  orcidid: 0000-0002-6401-276X
  surname: Yang
  fullname: Yang, Jian
  organization: Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering
– sequence: 6
  givenname: Xiaodan
  orcidid: 0000-0002-1123-3673
  surname: Gu
  fullname: Gu, Xiaodan
  organization: School of Polymer Science and Engineering, Center for Optoelectronic Materials and Device
– sequence: 7
  givenname: Meng
  orcidid: 0000-0002-0150-445X
  surname: Zhou
  fullname: Zhou, Meng
  organization: Department of Chemical and Materials Engineering
– sequence: 8
  givenname: Zheng
  orcidid: 0000-0002-9186-4298
  surname: Chen
  fullname: Chen, Zheng
  email: zhengchen@eng.ucsd.edu
  organization: Sustainable Power and Energy Center
BookMark eNqFkE1PAjEQhhuDiYD-Aw979LLYj93CelOCQoKRRD1vSpmyJbvt2nYP_HuLoAcPeuk0nfeZTJ8B6hlrAKFrgkcEU3IrpB8ZYWwNIYyIxIRm5Az1Sc5wyouC9n7uk-wCDbzfYYwLluM-qlaV8JC-QiucCNqadGE2nYRNsrLOdj5Z6lBp21a61jK-1fsGXDK1MWu2ibIumettlc6U0lKDkfsj0DXJMwRRJw8iBHAa_CU6V6L2cHWqQ_T-OHubztPly9Nier9MBaN5iCtmOScqHkLijRivFQWeqTXnCnK5FlxwUnDJxsCySQ4SOMaUFbJYEyaVZGyIbo5zW2c_OvChbLSXUNfCQPxPSXNGaYbHeBKj2TEqnfXegSpbpxvh9iXB5UFsGcWW32LLk9iI3f3CpA5f7oITuv4Pxkf40N3Zzpko42_kE1thl-M
CitedBy_id crossref_primary_10_1016_j_susmat_2022_e00408
crossref_primary_10_1002_adma_202301414
crossref_primary_10_1002_ange_202212839
crossref_primary_10_1021_acssuschemeng_4c09291
crossref_primary_10_1016_j_mtsust_2022_100128
crossref_primary_10_1016_j_xcrp_2024_102354
crossref_primary_10_1016_j_cej_2022_136352
crossref_primary_10_1016_j_jpowsour_2024_235105
crossref_primary_10_1002_metm_16
crossref_primary_10_1021_acs_nanolett_1c04975
crossref_primary_10_1021_acsnano_3c05413
crossref_primary_10_1016_j_ensm_2024_103729
crossref_primary_10_1007_s41918_023_00185_7
crossref_primary_10_1016_j_electacta_2023_142880
crossref_primary_10_1016_j_jcis_2024_03_166
crossref_primary_10_1016_j_cej_2024_150667
crossref_primary_10_2139_ssrn_4103278
crossref_primary_10_1149_1945_7111_ac42a5
crossref_primary_10_1016_j_est_2025_115686
crossref_primary_10_1126_sciadv_adc9961
crossref_primary_10_1016_j_jpowsour_2024_234094
crossref_primary_10_1016_j_matchemphys_2022_125845
crossref_primary_10_1007_s40820_023_01210_6
crossref_primary_10_1088_1361_6528_ac3fe2
crossref_primary_10_1002_adma_202207908
crossref_primary_10_1016_j_cej_2022_140462
crossref_primary_10_1002_asia_202300453
crossref_primary_10_1021_acs_jpclett_2c03304
crossref_primary_10_1007_s12598_023_02416_8
crossref_primary_10_1016_j_ensm_2025_104005
crossref_primary_10_1016_j_electacta_2023_143380
crossref_primary_10_1002_smll_202203222
crossref_primary_10_1016_j_ssi_2024_116609
crossref_primary_10_1016_j_memsci_2022_121258
crossref_primary_10_1002_aenm_202400035
crossref_primary_10_1016_j_ensm_2022_09_006
crossref_primary_10_1021_acsaem_4c00855
crossref_primary_10_1002_adfm_202417189
crossref_primary_10_1021_acsami_3c16609
crossref_primary_10_1002_eom2_12498
crossref_primary_10_1016_j_coelec_2024_101548
crossref_primary_10_1002_aenm_202204388
crossref_primary_10_1021_acssuschemeng_3c05211
crossref_primary_10_1557_s43578_022_00884_9
crossref_primary_10_1016_j_jcis_2024_10_019
crossref_primary_10_1002_aenm_202402329
crossref_primary_10_1021_acs_nanolett_2c04242
crossref_primary_10_3390_batteries9010030
crossref_primary_10_1016_j_ensm_2022_04_020
crossref_primary_10_1002_adma_202311529
crossref_primary_10_1002_aenm_202402040
crossref_primary_10_1016_j_colsurfa_2022_129104
crossref_primary_10_1016_j_nanoen_2024_109970
crossref_primary_10_26599_EMD_2023_9370005
crossref_primary_10_1002_anie_202212839
crossref_primary_10_1016_j_ensm_2024_103700
crossref_primary_10_1038_s41560_023_01252_5
crossref_primary_10_1080_15440478_2023_2264497
crossref_primary_10_1002_smll_202401940
crossref_primary_10_1016_j_cej_2024_159047
crossref_primary_10_1016_j_jechem_2022_03_039
crossref_primary_10_1021_acsaem_1c04106
crossref_primary_10_20517_energymater_2023_83
crossref_primary_10_1016_j_ensm_2023_102900
crossref_primary_10_1039_D2TA09493B
crossref_primary_10_1002_smll_202303266
Cites_doi 10.1021/acs.chemmater.7b00091
10.1590/S0104-14282006000200006
10.1002/smtd.201700417
10.1002/aenm.201701482
10.1149/2.1441707jes
10.1016/S0013-4686(00)00484-9
10.1016/j.ensm.2018.09.021
10.1021/acsenergylett.6b00456
10.1016/j.memsci.2008.08.047
10.1016/j.mattod.2020.09.035
10.1039/C3EE40795K
10.1002/adma.201804165
10.1016/j.nanoen.2017.09.015
10.1016/j.nanoen.2019.103893
10.1021/ja305366r
10.1039/C5EE01215E
10.1002/adma.201605531
10.1021/acsenergylett.9b00539
10.1038/s41560-019-0428-9
10.1016/S0167-2738(99)00129-0
10.1021/cm503831t
10.1016/j.jpowsour.2011.05.061
10.1002/adma.201603755
10.1016/j.ensm.2018.04.030
10.1039/C7NR09058G
10.1002/advs.201600400
10.1002/adma.201806541
10.1021/acs.chemrev.7b00115
10.3144/expresspolymlett.2009.53
10.1002/adfm.201705838
10.1038/nenergy.2016.114
10.1021/jacs.9b11750
10.1038/s41560-019-0338-x
10.1016/j.ensm.2017.10.015
10.1002/anie.201710806
10.1016/j.joule.2019.02.004
10.1016/j.joule.2019.06.008
10.1021/jacs.8b08963
10.1038/nnano.2017.16
10.1038/s41563-019-0305-8
10.1016/j.polymer.2016.11.008
10.1016/j.memsci.2008.03.007
10.1016/S0032-3861(00)00517-6
10.1016/j.electacta.2005.02.055
10.1021/jacs.6b08730
10.1038/nenergy.2016.10
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acs.nanolett.1c01241
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 4764
ExternalDocumentID 10_1021_acs_nanolett_1c01241
c221537843
GroupedDBID -
.K2
123
3RI
4.4
55A
5VS
7~N
AABXI
ABFRP
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
F5P
GGK
GNL
IH9
IHE
JG
JG~
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
CITATION
CUPRZ
7X8
ID FETCH-LOGICAL-a325t-694561f456ac0da7bf2e64fb66fe5cba6a6196c37e3485ece600239c9b13cfc33
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Fri Jul 11 05:54:37 EDT 2025
Tue Jul 01 04:09:53 EDT 2025
Thu Apr 24 23:01:46 EDT 2025
Fri Jun 11 11:35:13 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords lithiophilic interface
solid-electrolyte interphase
phase separation
PVDF−PAN blends coating
lithium metal anodes
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a325t-694561f456ac0da7bf2e64fb66fe5cba6a6196c37e3485ece600239c9b13cfc33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0391-8242
0000-0002-1123-3673
0000-0002-6401-276X
0000-0002-9186-4298
0000-0002-0150-445X
PQID 2532240708
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2532240708
crossref_primary_10_1021_acs_nanolett_1c01241
crossref_citationtrail_10_1021_acs_nanolett_1c01241
acs_journals_10_1021_acs_nanolett_1c01241
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
3RI
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210609
2021-06-09
PublicationDateYYYYMMDD 2021-06-09
PublicationDate_xml – month: 06
  year: 2021
  text: 20210609
  day: 09
PublicationDecade 2020
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref30/cit30
  doi: 10.1021/acs.chemmater.7b00091
– ident: ref42/cit42
  doi: 10.1590/S0104-14282006000200006
– ident: ref9/cit9
  doi: 10.1002/smtd.201700417
– ident: ref29/cit29
  doi: 10.1002/aenm.201701482
– ident: ref7/cit7
  doi: 10.1149/2.1441707jes
– ident: ref45/cit45
  doi: 10.1016/S0013-4686(00)00484-9
– ident: ref5/cit5
  doi: 10.1016/j.ensm.2018.09.021
– ident: ref28/cit28
  doi: 10.1021/acsenergylett.6b00456
– ident: ref39/cit39
  doi: 10.1016/j.memsci.2008.08.047
– ident: ref15/cit15
  doi: 10.1016/j.mattod.2020.09.035
– ident: ref10/cit10
  doi: 10.1039/C3EE40795K
– ident: ref34/cit34
  doi: 10.1002/adma.201804165
– ident: ref19/cit19
  doi: 10.1016/j.nanoen.2017.09.015
– ident: ref22/cit22
  doi: 10.1016/j.nanoen.2019.103893
– ident: ref6/cit6
  doi: 10.1021/ja305366r
– ident: ref13/cit13
  doi: 10.1039/C5EE01215E
– ident: ref26/cit26
  doi: 10.1002/adma.201605531
– ident: ref20/cit20
  doi: 10.1021/acsenergylett.9b00539
– ident: ref16/cit16
  doi: 10.1038/s41560-019-0428-9
– ident: ref38/cit38
  doi: 10.1016/S0167-2738(99)00129-0
– ident: ref36/cit36
  doi: 10.1021/cm503831t
– ident: ref8/cit8
  doi: 10.1016/j.jpowsour.2011.05.061
– ident: ref27/cit27
  doi: 10.1002/adma.201603755
– ident: ref35/cit35
  doi: 10.1016/j.ensm.2018.04.030
– ident: ref23/cit23
  doi: 10.1039/C7NR09058G
– ident: ref14/cit14
  doi: 10.1002/advs.201600400
– ident: ref25/cit25
  doi: 10.1002/adma.201806541
– ident: ref12/cit12
  doi: 10.1021/acs.chemrev.7b00115
– ident: ref41/cit41
  doi: 10.3144/expresspolymlett.2009.53
– ident: ref18/cit18
  doi: 10.1002/adfm.201705838
– ident: ref11/cit11
  doi: 10.1038/nenergy.2016.114
– ident: ref21/cit21
  doi: 10.1021/jacs.9b11750
– ident: ref3/cit3
  doi: 10.1038/s41560-019-0338-x
– ident: ref32/cit32
  doi: 10.1016/j.ensm.2017.10.015
– ident: ref31/cit31
  doi: 10.1002/anie.201710806
– ident: ref4/cit4
  doi: 10.1016/j.joule.2019.02.004
– ident: ref46/cit46
  doi: 10.1016/j.joule.2019.06.008
– ident: ref17/cit17
  doi: 10.1021/jacs.8b08963
– ident: ref1/cit1
  doi: 10.1038/nnano.2017.16
– ident: ref33/cit33
  doi: 10.1038/s41563-019-0305-8
– ident: ref37/cit37
  doi: 10.1016/j.polymer.2016.11.008
– ident: ref40/cit40
  doi: 10.1016/j.memsci.2008.03.007
– ident: ref43/cit43
  doi: 10.1016/S0032-3861(00)00517-6
– ident: ref44/cit44
  doi: 10.1016/j.electacta.2005.02.055
– ident: ref24/cit24
  doi: 10.1021/jacs.6b08730
– ident: ref2/cit2
  doi: 10.1038/nenergy.2016.10
SSID ssj0009350
Score 2.58652
Snippet Solid-electrolyte interphase (SEI) plays a pivotal role in stabilizing lithium (Li) metal anode for rechargeable batteries. However, electrolyte-derived SEI...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4757
Title Phase-Separation-Induced Porous Lithiophilic Polymer Coating for High-Efficiency Lithium Metal Batteries
URI http://dx.doi.org/10.1021/acs.nanolett.1c01241
https://www.proquest.com/docview/2532240708
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFLcmuIwDYwNEgU2exIWDS2vHbnJEVRGaxoYESNwi--VZRbRJ1aaH8dfznA86mBDsEkVWHDkv79N-7_cYO8qkzKwj7YdO90SUSC-cc17EmfZJJlFj1TPy4pc5v4l-3OrbVaD48gRf9k8sLLq5zQv6jLLbB1KooU59XRqS4-AKDa9WILuq6shKQkwhURJHbancK28JBgkWzw3Sc31cGZmzT-x3W6pT55bcd5el68LDv8iN71z_Ftts_E1-WjPIZ_YB8y9s4y8Uwm02vhyTKRNXWMOAF7kI_TwAM35ZzIvlgv-8K8d3xSxsvQCNTf5Mcc6HhQ0Z05ycXh6SRcSoAqMIlZz1hOWUXyC59ryG8KSIfIfdnI2uh-eiacAgrJK6JBoG98rTxUIvswPnJZrIO2M8anDWWAq_DKgBqijWCGiqWllIXF-BB6V22Vpe5LjHuNXSQ6KdjT1EkU1ig1672NENRICuw46JUGkjQIu0OhuX_TQMttRLG-p1mGr_WAoNknloqDF5Y5Z4mjWrkTzeeP57ywwpiVw4R7E5EtVTqVUVCPfi_f9Y9QH7KEM-TNjBSQ7ZWjlf4ldyaEr3reLiR7WO9oI
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQHCgHoAVU6MuVeunBy64dh-SIVqAFdhESUHGL7MlYiwoJ2mQP8Os7dhJeUoW4RJEVW_Zk7JnxzHzD2K9cytxYOv3Q6r6IUumEtdaJJNcuzSVqDDUjJ6fx6DI6vtJXC0x3uTA0iYpGqoIT_wldYLDr2wpTlLSaujcAOld9uvoS6SPSM_b-8PwJa1eFwqy0l8kySpOoy5j7zyheLkH1Ui69PJaDrDlcY38eZxlCTP725rXtwcMrAMd3L2OdrbbaJ99v2OUjW8DiE1t5hkm4waZnUxJs4hwbUPCyEL66B2DOz8pZOa_4-LqeXpd3_iIGqO3m_hZnfFgaHz_NSQXmPnREHARoCp_X2XSY3_IJkqLPG0BPss832eXhwcVwJNpyDMIoqWsipVe2HD0M9HOzZ53EOHI2jh1qsCY2ZIzFoPZQRYlGwDhkzkJqBwocKLXFFouywM-MGy0dpNqaxEEUmTSJ0WmbWHqBCNBus99EqKzdTlUWPOVykPnGjnpZS71tprofl0GLa-7La9y80Us89rprcD3e-P5nxxMZbUDvVTEFEtUzqVUwi_vJzjtm_YMtjy4m42x8dHryhX2QPlLG3-2kX9liPZvjN1J1avs9MPY_UgH-4w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9wwDDejg7E9bN0XbddtHuxlD77d2XGaPJZbj25ry0FXKHsJtiJzZW1yXHIP3V9fycn1YzDK9hKCiY2tSLZkST8J8bHUunSedj_0dqiSXAflvQ8qK23IS40WY83Iw6N0_yT5dmpPb5X6okk0NFITnfgs1fMy9AgDo8_cXrmqphW1gxHQ3sop6w_Zc8fMvTs-vsHbNbE4K8kzWUd5lqyy5v4yCp9N0Nw9m-5uzfG8mTwTP69nGsNMfg2WrR_A7z9AHP9rKeviaa-Fyt2ObZ6LB1i9EE9uYRO-FLPpjA44dYwdOHhdKa7yAVjKab2ol408OGtnZ_WcL2SA2s4vL3Ahx7XjOGpJqrDkEBK1FyEqOL-z67C8kIdICr_sgD3JTn8lTiZ7P8b7qi_LoJzRtiVystIV6OFgWLodHzSmSfBpGtCCd6kjoywFs4MmySwCpjGDFnI_MhDAmNdiraor3BDSWR0gt95lAZLE5VmKwfrM0wskgH5TfCJCFb1YNUX0mOtRwY0r6hU99TaFWf28Anp8cy6zcX5PL3Xda97he9zz_YcVXxQkiOxdcRUS1QttTTSPh9nWP8z6vXg0_TIpDr4efX8jHmsOmOErnnxbrLWLJb4ljaf17yJvXwFs4QF1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase-Separation-Induced+Porous+Lithiophilic+Polymer+Coating+for+High-Efficiency+Lithium+Metal+Batteries&rft.jtitle=Nano+letters&rft.au=Wang%2C+Dongdong&rft.au=Liu%2C+Hongxia&rft.au=Liu%2C+Fang&rft.au=Ma%2C+Guorong&rft.date=2021-06-09&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=21&rft.issue=11&rft.spage=4757&rft.epage=4764&rft_id=info:doi/10.1021%2Facs.nanolett.1c01241&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_nanolett_1c01241
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon