Phase-Separation-Induced Porous Lithiophilic Polymer Coating for High-Efficiency Lithium Metal Batteries
Solid-electrolyte interphase (SEI) plays a pivotal role in stabilizing lithium (Li) metal anode for rechargeable batteries. However, electrolyte-derived SEI often suffers from poor stability, leading to Li dendrite growth, consumption of electrolyte, and short cycle life. Here, we report a porous li...
Saved in:
Published in | Nano letters Vol. 21; no. 11; pp. 4757 - 4764 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
09.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solid-electrolyte interphase (SEI) plays a pivotal role in stabilizing lithium (Li) metal anode for rechargeable batteries. However, electrolyte-derived SEI often suffers from poor stability, leading to Li dendrite growth, consumption of electrolyte, and short cycle life. Here, we report a porous lithiophilic polymer coating induced by phase separation of polyvinylidenefluoride–polyacrylonitrile (PVDF–PAN) blends for stabilizing Li metal anode. Different from single polymer coating, PVDF–PAN blends protective layer with porous structures caused by phase separation can provide effective Li+ transport channels and regulate uniform Li+ flux. The lithiophilic functional groups of CN and C–F can promote uniform Li deposition and accelerate Li+ diffusion at the same time during plating/stripping process. As a result, Li||NCM811 full cells using PVDF–PAN coated Li present an apparently improved cycling stability and higher Coulombic efficiency with lean electrolyte (7.5 μL mA h–1), limited Li supply (N/P ratio = 2.4), and high areal capacity (4.0 mA h cm–2). |
---|---|
AbstractList | Solid-electrolyte interphase (SEI) plays a pivotal role in stabilizing lithium (Li) metal anode for rechargeable batteries. However, electrolyte-derived SEI often suffers from poor stability, leading to Li dendrite growth, consumption of electrolyte, and short cycle life. Here, we report a porous lithiophilic polymer coating induced by phase separation of polyvinylidenefluoride–polyacrylonitrile (PVDF–PAN) blends for stabilizing Li metal anode. Different from single polymer coating, PVDF–PAN blends protective layer with porous structures caused by phase separation can provide effective Li+ transport channels and regulate uniform Li+ flux. The lithiophilic functional groups of CN and C–F can promote uniform Li deposition and accelerate Li+ diffusion at the same time during plating/stripping process. As a result, Li||NCM811 full cells using PVDF–PAN coated Li present an apparently improved cycling stability and higher Coulombic efficiency with lean electrolyte (7.5 μL mA h–1), limited Li supply (N/P ratio = 2.4), and high areal capacity (4.0 mA h cm–2). Solid-electrolyte interphase (SEI) plays a pivotal role in stabilizing lithium (Li) metal anode for rechargeable batteries. However, electrolyte-derived SEI often suffers from poor stability, leading to Li dendrite growth, consumption of electrolyte, and short cycle life. Here, we report a porous lithiophilic polymer coating induced by phase separation of polyvinylidenefluoride-polyacrylonitrile (PVDF-PAN) blends for stabilizing Li metal anode. Different from single polymer coating, PVDF-PAN blends protective layer with porous structures caused by phase separation can provide effective Li+ transport channels and regulate uniform Li+ flux. The lithiophilic functional groups of C≡N and C-F can promote uniform Li deposition and accelerate Li+ diffusion at the same time during plating/stripping process. As a result, Li||NCM811 full cells using PVDF-PAN coated Li present an apparently improved cycling stability and higher Coulombic efficiency with lean electrolyte (7.5 μL mA h-1), limited Li supply (N/P ratio = 2.4), and high areal capacity (4.0 mA h cm-2).Solid-electrolyte interphase (SEI) plays a pivotal role in stabilizing lithium (Li) metal anode for rechargeable batteries. However, electrolyte-derived SEI often suffers from poor stability, leading to Li dendrite growth, consumption of electrolyte, and short cycle life. Here, we report a porous lithiophilic polymer coating induced by phase separation of polyvinylidenefluoride-polyacrylonitrile (PVDF-PAN) blends for stabilizing Li metal anode. Different from single polymer coating, PVDF-PAN blends protective layer with porous structures caused by phase separation can provide effective Li+ transport channels and regulate uniform Li+ flux. The lithiophilic functional groups of C≡N and C-F can promote uniform Li deposition and accelerate Li+ diffusion at the same time during plating/stripping process. As a result, Li||NCM811 full cells using PVDF-PAN coated Li present an apparently improved cycling stability and higher Coulombic efficiency with lean electrolyte (7.5 μL mA h-1), limited Li supply (N/P ratio = 2.4), and high areal capacity (4.0 mA h cm-2). |
Author | Wang, Dongdong Gu, Xiaodan Yang, Jian Ma, Guorong Liu, Hongxia Chen, Zheng Liu, Fang Zhou, Meng |
AuthorAffiliation | Sustainable Power and Energy Center School of Polymer Science and Engineering, Center for Optoelectronic Materials and Device Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering Department of Chemical and Materials Engineering Program of Chemical Engineering Department of NanoEngineering Departments of Materials Science and Engineering |
AuthorAffiliation_xml | – name: Departments of Materials Science and Engineering – name: Department of Chemical and Materials Engineering – name: Sustainable Power and Energy Center – name: Department of NanoEngineering – name: Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering – name: School of Polymer Science and Engineering, Center for Optoelectronic Materials and Device – name: Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology – name: Program of Chemical Engineering |
Author_xml | – sequence: 1 givenname: Dongdong orcidid: 0000-0002-0391-8242 surname: Wang fullname: Wang, Dongdong organization: Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering – sequence: 2 givenname: Hongxia surname: Liu fullname: Liu, Hongxia organization: Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology – sequence: 3 givenname: Fang surname: Liu fullname: Liu, Fang organization: Departments of Materials Science and Engineering – sequence: 4 givenname: Guorong surname: Ma fullname: Ma, Guorong organization: School of Polymer Science and Engineering, Center for Optoelectronic Materials and Device – sequence: 5 givenname: Jian orcidid: 0000-0002-6401-276X surname: Yang fullname: Yang, Jian organization: Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering – sequence: 6 givenname: Xiaodan orcidid: 0000-0002-1123-3673 surname: Gu fullname: Gu, Xiaodan organization: School of Polymer Science and Engineering, Center for Optoelectronic Materials and Device – sequence: 7 givenname: Meng orcidid: 0000-0002-0150-445X surname: Zhou fullname: Zhou, Meng organization: Department of Chemical and Materials Engineering – sequence: 8 givenname: Zheng orcidid: 0000-0002-9186-4298 surname: Chen fullname: Chen, Zheng email: zhengchen@eng.ucsd.edu organization: Sustainable Power and Energy Center |
BookMark | eNqFkE1PAjEQhhuDiYD-Aw979LLYj93CelOCQoKRRD1vSpmyJbvt2nYP_HuLoAcPeuk0nfeZTJ8B6hlrAKFrgkcEU3IrpB8ZYWwNIYyIxIRm5Az1Sc5wyouC9n7uk-wCDbzfYYwLluM-qlaV8JC-QiucCNqadGE2nYRNsrLOdj5Z6lBp21a61jK-1fsGXDK1MWu2ibIumettlc6U0lKDkfsj0DXJMwRRJw8iBHAa_CU6V6L2cHWqQ_T-OHubztPly9Nier9MBaN5iCtmOScqHkLijRivFQWeqTXnCnK5FlxwUnDJxsCySQ4SOMaUFbJYEyaVZGyIbo5zW2c_OvChbLSXUNfCQPxPSXNGaYbHeBKj2TEqnfXegSpbpxvh9iXB5UFsGcWW32LLk9iI3f3CpA5f7oITuv4Pxkf40N3Zzpko42_kE1thl-M |
CitedBy_id | crossref_primary_10_1016_j_susmat_2022_e00408 crossref_primary_10_1002_adma_202301414 crossref_primary_10_1002_ange_202212839 crossref_primary_10_1021_acssuschemeng_4c09291 crossref_primary_10_1016_j_mtsust_2022_100128 crossref_primary_10_1016_j_xcrp_2024_102354 crossref_primary_10_1016_j_cej_2022_136352 crossref_primary_10_1016_j_jpowsour_2024_235105 crossref_primary_10_1002_metm_16 crossref_primary_10_1021_acs_nanolett_1c04975 crossref_primary_10_1021_acsnano_3c05413 crossref_primary_10_1016_j_ensm_2024_103729 crossref_primary_10_1007_s41918_023_00185_7 crossref_primary_10_1016_j_electacta_2023_142880 crossref_primary_10_1016_j_jcis_2024_03_166 crossref_primary_10_1016_j_cej_2024_150667 crossref_primary_10_2139_ssrn_4103278 crossref_primary_10_1149_1945_7111_ac42a5 crossref_primary_10_1016_j_est_2025_115686 crossref_primary_10_1126_sciadv_adc9961 crossref_primary_10_1016_j_jpowsour_2024_234094 crossref_primary_10_1016_j_matchemphys_2022_125845 crossref_primary_10_1007_s40820_023_01210_6 crossref_primary_10_1088_1361_6528_ac3fe2 crossref_primary_10_1002_adma_202207908 crossref_primary_10_1016_j_cej_2022_140462 crossref_primary_10_1002_asia_202300453 crossref_primary_10_1021_acs_jpclett_2c03304 crossref_primary_10_1007_s12598_023_02416_8 crossref_primary_10_1016_j_ensm_2025_104005 crossref_primary_10_1016_j_electacta_2023_143380 crossref_primary_10_1002_smll_202203222 crossref_primary_10_1016_j_ssi_2024_116609 crossref_primary_10_1016_j_memsci_2022_121258 crossref_primary_10_1002_aenm_202400035 crossref_primary_10_1016_j_ensm_2022_09_006 crossref_primary_10_1021_acsaem_4c00855 crossref_primary_10_1002_adfm_202417189 crossref_primary_10_1021_acsami_3c16609 crossref_primary_10_1002_eom2_12498 crossref_primary_10_1016_j_coelec_2024_101548 crossref_primary_10_1002_aenm_202204388 crossref_primary_10_1021_acssuschemeng_3c05211 crossref_primary_10_1557_s43578_022_00884_9 crossref_primary_10_1016_j_jcis_2024_10_019 crossref_primary_10_1002_aenm_202402329 crossref_primary_10_1021_acs_nanolett_2c04242 crossref_primary_10_3390_batteries9010030 crossref_primary_10_1016_j_ensm_2022_04_020 crossref_primary_10_1002_adma_202311529 crossref_primary_10_1002_aenm_202402040 crossref_primary_10_1016_j_colsurfa_2022_129104 crossref_primary_10_1016_j_nanoen_2024_109970 crossref_primary_10_26599_EMD_2023_9370005 crossref_primary_10_1002_anie_202212839 crossref_primary_10_1016_j_ensm_2024_103700 crossref_primary_10_1038_s41560_023_01252_5 crossref_primary_10_1080_15440478_2023_2264497 crossref_primary_10_1002_smll_202401940 crossref_primary_10_1016_j_cej_2024_159047 crossref_primary_10_1016_j_jechem_2022_03_039 crossref_primary_10_1021_acsaem_1c04106 crossref_primary_10_20517_energymater_2023_83 crossref_primary_10_1016_j_ensm_2023_102900 crossref_primary_10_1039_D2TA09493B crossref_primary_10_1002_smll_202303266 |
Cites_doi | 10.1021/acs.chemmater.7b00091 10.1590/S0104-14282006000200006 10.1002/smtd.201700417 10.1002/aenm.201701482 10.1149/2.1441707jes 10.1016/S0013-4686(00)00484-9 10.1016/j.ensm.2018.09.021 10.1021/acsenergylett.6b00456 10.1016/j.memsci.2008.08.047 10.1016/j.mattod.2020.09.035 10.1039/C3EE40795K 10.1002/adma.201804165 10.1016/j.nanoen.2017.09.015 10.1016/j.nanoen.2019.103893 10.1021/ja305366r 10.1039/C5EE01215E 10.1002/adma.201605531 10.1021/acsenergylett.9b00539 10.1038/s41560-019-0428-9 10.1016/S0167-2738(99)00129-0 10.1021/cm503831t 10.1016/j.jpowsour.2011.05.061 10.1002/adma.201603755 10.1016/j.ensm.2018.04.030 10.1039/C7NR09058G 10.1002/advs.201600400 10.1002/adma.201806541 10.1021/acs.chemrev.7b00115 10.3144/expresspolymlett.2009.53 10.1002/adfm.201705838 10.1038/nenergy.2016.114 10.1021/jacs.9b11750 10.1038/s41560-019-0338-x 10.1016/j.ensm.2017.10.015 10.1002/anie.201710806 10.1016/j.joule.2019.02.004 10.1016/j.joule.2019.06.008 10.1021/jacs.8b08963 10.1038/nnano.2017.16 10.1038/s41563-019-0305-8 10.1016/j.polymer.2016.11.008 10.1016/j.memsci.2008.03.007 10.1016/S0032-3861(00)00517-6 10.1016/j.electacta.2005.02.055 10.1021/jacs.6b08730 10.1038/nenergy.2016.10 |
ContentType | Journal Article |
Copyright | 2021 American
Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acs.nanolett.1c01241 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 4764 |
ExternalDocumentID | 10_1021_acs_nanolett_1c01241 c221537843 |
GroupedDBID | - .K2 123 3RI 4.4 55A 5VS 7~N AABXI ABFRP ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ F5P GGK GNL IH9 IHE JG JG~ K2 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV CITATION CUPRZ 7X8 |
ID | FETCH-LOGICAL-a325t-694561f456ac0da7bf2e64fb66fe5cba6a6196c37e3485ece600239c9b13cfc33 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Fri Jul 11 05:54:37 EDT 2025 Tue Jul 01 04:09:53 EDT 2025 Thu Apr 24 23:01:46 EDT 2025 Fri Jun 11 11:35:13 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | lithiophilic interface solid-electrolyte interphase phase separation PVDF−PAN blends coating lithium metal anodes |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a325t-694561f456ac0da7bf2e64fb66fe5cba6a6196c37e3485ece600239c9b13cfc33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0391-8242 0000-0002-1123-3673 0000-0002-6401-276X 0000-0002-9186-4298 0000-0002-0150-445X |
PQID | 2532240708 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2532240708 crossref_primary_10_1021_acs_nanolett_1c01241 crossref_citationtrail_10_1021_acs_nanolett_1c01241 acs_journals_10_1021_acs_nanolett_1c01241 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 3RI GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210609 2021-06-09 |
PublicationDateYYYYMMDD | 2021-06-09 |
PublicationDate_xml | – month: 06 year: 2021 text: 20210609 day: 09 |
PublicationDecade | 2020 |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref30/cit30 doi: 10.1021/acs.chemmater.7b00091 – ident: ref42/cit42 doi: 10.1590/S0104-14282006000200006 – ident: ref9/cit9 doi: 10.1002/smtd.201700417 – ident: ref29/cit29 doi: 10.1002/aenm.201701482 – ident: ref7/cit7 doi: 10.1149/2.1441707jes – ident: ref45/cit45 doi: 10.1016/S0013-4686(00)00484-9 – ident: ref5/cit5 doi: 10.1016/j.ensm.2018.09.021 – ident: ref28/cit28 doi: 10.1021/acsenergylett.6b00456 – ident: ref39/cit39 doi: 10.1016/j.memsci.2008.08.047 – ident: ref15/cit15 doi: 10.1016/j.mattod.2020.09.035 – ident: ref10/cit10 doi: 10.1039/C3EE40795K – ident: ref34/cit34 doi: 10.1002/adma.201804165 – ident: ref19/cit19 doi: 10.1016/j.nanoen.2017.09.015 – ident: ref22/cit22 doi: 10.1016/j.nanoen.2019.103893 – ident: ref6/cit6 doi: 10.1021/ja305366r – ident: ref13/cit13 doi: 10.1039/C5EE01215E – ident: ref26/cit26 doi: 10.1002/adma.201605531 – ident: ref20/cit20 doi: 10.1021/acsenergylett.9b00539 – ident: ref16/cit16 doi: 10.1038/s41560-019-0428-9 – ident: ref38/cit38 doi: 10.1016/S0167-2738(99)00129-0 – ident: ref36/cit36 doi: 10.1021/cm503831t – ident: ref8/cit8 doi: 10.1016/j.jpowsour.2011.05.061 – ident: ref27/cit27 doi: 10.1002/adma.201603755 – ident: ref35/cit35 doi: 10.1016/j.ensm.2018.04.030 – ident: ref23/cit23 doi: 10.1039/C7NR09058G – ident: ref14/cit14 doi: 10.1002/advs.201600400 – ident: ref25/cit25 doi: 10.1002/adma.201806541 – ident: ref12/cit12 doi: 10.1021/acs.chemrev.7b00115 – ident: ref41/cit41 doi: 10.3144/expresspolymlett.2009.53 – ident: ref18/cit18 doi: 10.1002/adfm.201705838 – ident: ref11/cit11 doi: 10.1038/nenergy.2016.114 – ident: ref21/cit21 doi: 10.1021/jacs.9b11750 – ident: ref3/cit3 doi: 10.1038/s41560-019-0338-x – ident: ref32/cit32 doi: 10.1016/j.ensm.2017.10.015 – ident: ref31/cit31 doi: 10.1002/anie.201710806 – ident: ref4/cit4 doi: 10.1016/j.joule.2019.02.004 – ident: ref46/cit46 doi: 10.1016/j.joule.2019.06.008 – ident: ref17/cit17 doi: 10.1021/jacs.8b08963 – ident: ref1/cit1 doi: 10.1038/nnano.2017.16 – ident: ref33/cit33 doi: 10.1038/s41563-019-0305-8 – ident: ref37/cit37 doi: 10.1016/j.polymer.2016.11.008 – ident: ref40/cit40 doi: 10.1016/j.memsci.2008.03.007 – ident: ref43/cit43 doi: 10.1016/S0032-3861(00)00517-6 – ident: ref44/cit44 doi: 10.1016/j.electacta.2005.02.055 – ident: ref24/cit24 doi: 10.1021/jacs.6b08730 – ident: ref2/cit2 doi: 10.1038/nenergy.2016.10 |
SSID | ssj0009350 |
Score | 2.58652 |
Snippet | Solid-electrolyte interphase (SEI) plays a pivotal role in stabilizing lithium (Li) metal anode for rechargeable batteries. However, electrolyte-derived SEI... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4757 |
Title | Phase-Separation-Induced Porous Lithiophilic Polymer Coating for High-Efficiency Lithium Metal Batteries |
URI | http://dx.doi.org/10.1021/acs.nanolett.1c01241 https://www.proquest.com/docview/2532240708 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFLcmuIwDYwNEgU2exIWDS2vHbnJEVRGaxoYESNwi--VZRbRJ1aaH8dfznA86mBDsEkVWHDkv79N-7_cYO8qkzKwj7YdO90SUSC-cc17EmfZJJlFj1TPy4pc5v4l-3OrbVaD48gRf9k8sLLq5zQv6jLLbB1KooU59XRqS4-AKDa9WILuq6shKQkwhURJHbancK28JBgkWzw3Sc31cGZmzT-x3W6pT55bcd5el68LDv8iN71z_Ftts_E1-WjPIZ_YB8y9s4y8Uwm02vhyTKRNXWMOAF7kI_TwAM35ZzIvlgv-8K8d3xSxsvQCNTf5Mcc6HhQ0Z05ycXh6SRcSoAqMIlZz1hOWUXyC59ryG8KSIfIfdnI2uh-eiacAgrJK6JBoG98rTxUIvswPnJZrIO2M8anDWWAq_DKgBqijWCGiqWllIXF-BB6V22Vpe5LjHuNXSQ6KdjT1EkU1ig1672NENRICuw46JUGkjQIu0OhuX_TQMttRLG-p1mGr_WAoNknloqDF5Y5Z4mjWrkTzeeP57ywwpiVw4R7E5EtVTqVUVCPfi_f9Y9QH7KEM-TNjBSQ7ZWjlf4ldyaEr3reLiR7WO9oI |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQHCgHoAVU6MuVeunBy64dh-SIVqAFdhESUHGL7MlYiwoJ2mQP8Os7dhJeUoW4RJEVW_Zk7JnxzHzD2K9cytxYOv3Q6r6IUumEtdaJJNcuzSVqDDUjJ6fx6DI6vtJXC0x3uTA0iYpGqoIT_wldYLDr2wpTlLSaujcAOld9uvoS6SPSM_b-8PwJa1eFwqy0l8kySpOoy5j7zyheLkH1Ui69PJaDrDlcY38eZxlCTP725rXtwcMrAMd3L2OdrbbaJ99v2OUjW8DiE1t5hkm4waZnUxJs4hwbUPCyEL66B2DOz8pZOa_4-LqeXpd3_iIGqO3m_hZnfFgaHz_NSQXmPnREHARoCp_X2XSY3_IJkqLPG0BPss832eXhwcVwJNpyDMIoqWsipVe2HD0M9HOzZ53EOHI2jh1qsCY2ZIzFoPZQRYlGwDhkzkJqBwocKLXFFouywM-MGy0dpNqaxEEUmTSJ0WmbWHqBCNBus99EqKzdTlUWPOVykPnGjnpZS71tprofl0GLa-7La9y80Us89rprcD3e-P5nxxMZbUDvVTEFEtUzqVUwi_vJzjtm_YMtjy4m42x8dHryhX2QPlLG3-2kX9liPZvjN1J1avs9MPY_UgH-4w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9wwDDejg7E9bN0XbddtHuxlD77d2XGaPJZbj25ry0FXKHsJtiJzZW1yXHIP3V9fycn1YzDK9hKCiY2tSLZkST8J8bHUunSedj_0dqiSXAflvQ8qK23IS40WY83Iw6N0_yT5dmpPb5X6okk0NFITnfgs1fMy9AgDo8_cXrmqphW1gxHQ3sop6w_Zc8fMvTs-vsHbNbE4K8kzWUd5lqyy5v4yCp9N0Nw9m-5uzfG8mTwTP69nGsNMfg2WrR_A7z9AHP9rKeviaa-Fyt2ObZ6LB1i9EE9uYRO-FLPpjA44dYwdOHhdKa7yAVjKab2ol408OGtnZ_WcL2SA2s4vL3Ahx7XjOGpJqrDkEBK1FyEqOL-z67C8kIdICr_sgD3JTn8lTiZ7P8b7qi_LoJzRtiVystIV6OFgWLodHzSmSfBpGtCCd6kjoywFs4MmySwCpjGDFnI_MhDAmNdiraor3BDSWR0gt95lAZLE5VmKwfrM0wskgH5TfCJCFb1YNUX0mOtRwY0r6hU99TaFWf28Anp8cy6zcX5PL3Xda97he9zz_YcVXxQkiOxdcRUS1QttTTSPh9nWP8z6vXg0_TIpDr4efX8jHmsOmOErnnxbrLWLJb4ljaf17yJvXwFs4QF1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase-Separation-Induced+Porous+Lithiophilic+Polymer+Coating+for+High-Efficiency+Lithium+Metal+Batteries&rft.jtitle=Nano+letters&rft.au=Wang%2C+Dongdong&rft.au=Liu%2C+Hongxia&rft.au=Liu%2C+Fang&rft.au=Ma%2C+Guorong&rft.date=2021-06-09&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=21&rft.issue=11&rft.spage=4757&rft.epage=4764&rft_id=info:doi/10.1021%2Facs.nanolett.1c01241&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_nanolett_1c01241 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |