High-Resolution Tracking of Multiple Distributions in Metallic Nanostructures: Advanced Analysis Was Carried Out with Novel 3D Correlation Thermal Field-Flow Fractionation
Multifunctional metallic nanostructures are essential in the architecture of modern technology. However, their characterization remains challenging due to their hybrid nature. In this study, we present a novel photoreduction-based protocol for augmenting the inherent properties of imidazolium-contai...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 95; no. 29; pp. 11085 - 11090 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
25.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multifunctional metallic nanostructures are essential in the architecture of modern technology. However, their characterization remains challenging due to their hybrid nature. In this study, we present a novel photoreduction-based protocol for augmenting the inherent properties of imidazolium-containing ionic polymers (IIP)s through orthogonal functionalization with gold nanoparticles (Au NPs) to produce IIP_Au NPs, as well as novel and advanced characterization via three-dimensional correlation thermal field-flow fractionation (3DCoThFFF). Coordination chemistry is applied to anchor Au3+ onto the nitrogen atom of the imidazolium rings, for subsequent photoreduction to Au NPs using UV irradiation. Thermal field-flow fractionation (ThFFF) and the localized surface plasmon resonance (LSPR) of Au NPs are both dependent on size, shape, and composition, thus synergistically co-opted herein to develop mutual correlation for the advanced analysis of 3D spectral data. With 3DCoThFFF, multiple sizes, shapes, compositions, and their respective distributions are synchronously correlated using time-resolved LSPR, as derived from multiple two-dimensional UV–vis spectra per unit ThFFF retention time. As such, higher resolutions and sensitivities are observed relative to those of regular ThFFF and batch UV–vis. In addition, 3DCoThFFF is shown to be highly suitable for monitoring and evaluating the thermostability and dynamics of the metallic nanostructures through the sequential correlation of UV–vis spectra measured under incremental ThFFF temperature gradients. Comparable sizes are measured for IIP and IIP_Au NPs. However, distinct elution profiles and UV–vis absorbances are recorded, thereby reaffirming the versatility of ThFFF as a robust tool for validating the successful functionalization of IIP with Au to produce IIP_Au NPs. |
---|---|
AbstractList | Multifunctional metallic nanostructures are essential in the architecture of modern technology. However, their characterization remains challenging due to their hybrid nature. In this study, we present a novel photoreduction-based protocol for augmenting the inherent properties of imidazolium-containing ionic polymers (IIP)s through orthogonal functionalization with gold nanoparticles (Au NPs) to produce IIP_Au NPs, as well as novel and advanced characterization via three-dimensional correlation thermal field-flow fractionation (3DCoThFFF). Coordination chemistry is applied to anchor Au3+ onto the nitrogen atom of the imidazolium rings, for subsequent photoreduction to Au NPs using UV irradiation. Thermal field-flow fractionation (ThFFF) and the localized surface plasmon resonance (LSPR) of Au NPs are both dependent on size, shape, and composition, thus synergistically co-opted herein to develop mutual correlation for the advanced analysis of 3D spectral data. With 3DCoThFFF, multiple sizes, shapes, compositions, and their respective distributions are synchronously correlated using time-resolved LSPR, as derived from multiple two-dimensional UV–vis spectra per unit ThFFF retention time. As such, higher resolutions and sensitivities are observed relative to those of regular ThFFF and batch UV–vis. In addition, 3DCoThFFF is shown to be highly suitable for monitoring and evaluating the thermostability and dynamics of the metallic nanostructures through the sequential correlation of UV–vis spectra measured under incremental ThFFF temperature gradients. Comparable sizes are measured for IIP and IIP_Au NPs. However, distinct elution profiles and UV–vis absorbances are recorded, thereby reaffirming the versatility of ThFFF as a robust tool for validating the successful functionalization of IIP with Au to produce IIP_Au NPs. Multifunctional metallic nanostructures are essential in the architecture of modern technology. However, their characterization remains challenging due to their hybrid nature. In this study, we present a novel photoreduction-based protocol for augmenting the inherent properties of imidazolium-containing ionic polymers (IIP)s through orthogonal functionalization with gold nanoparticles (Au NPs) to produce IIP_Au NPs, as well as novel and advanced characterization via three-dimensional correlation thermal field-flow fractionation (3DCoThFFF). Coordination chemistry is applied to anchor Au3+ onto the nitrogen atom of the imidazolium rings, for subsequent photoreduction to Au NPs using UV irradiation. Thermal field-flow fractionation (ThFFF) and the localized surface plasmon resonance (LSPR) of Au NPs are both dependent on size, shape, and composition, thus synergistically co-opted herein to develop mutual correlation for the advanced analysis of 3D spectral data. With 3DCoThFFF, multiple sizes, shapes, compositions, and their respective distributions are synchronously correlated using time-resolved LSPR, as derived from multiple two-dimensional UV–vis spectra per unit ThFFF retention time. As such, higher resolutions and sensitivities are observed relative to those of regular ThFFF and batch UV–vis. In addition, 3DCoThFFF is shown to be highly suitable for monitoring and evaluating the thermostability and dynamics of the metallic nanostructures through the sequential correlation of UV–vis spectra measured under incremental ThFFF temperature gradients. Comparable sizes are measured for IIP and IIP_Au NPs. However, distinct elution profiles and UV–vis absorbances are recorded, thereby reaffirming the versatility of ThFFF as a robust tool for validating the successful functionalization of IIP with Au to produce IIP_Au NPs. Multifunctional metallic nanostructures are essential in the architecture of modern technology. However, their characterization remains challenging due to their hybrid nature. In this study, we present a novel photoreduction-based protocol for augmenting the inherent properties of imidazolium-containing ionic polymers (IIP)s through orthogonal functionalization with gold nanoparticles (Au NPs) to produce IIP_Au NPs, as well as novel and advanced characterization via three-dimensional correlation thermal field-flow fractionation (3DCoThFFF). Coordination chemistry is applied to anchor Au onto the nitrogen atom of the imidazolium rings, for subsequent photoreduction to Au NPs using UV irradiation. Thermal field-flow fractionation (ThFFF) and the localized surface plasmon resonance (LSPR) of Au NPs are both dependent on size, shape, and composition, thus synergistically co-opted herein to develop mutual correlation for the advanced analysis of 3D spectral data. With 3DCoThFFF, multiple sizes, shapes, compositions, and their respective distributions are synchronously correlated using time-resolved LSPR, as derived from multiple two-dimensional UV-vis spectra per unit ThFFF retention time. As such, higher resolutions and sensitivities are observed relative to those of regular ThFFF and batch UV-vis. In addition, 3DCoThFFF is shown to be highly suitable for monitoring and evaluating the thermostability and dynamics of the metallic nanostructures through the sequential correlation of UV-vis spectra measured under incremental ThFFF temperature gradients. Comparable sizes are measured for IIP and IIP_Au NPs. However, distinct elution profiles and UV-vis absorbances are recorded, thereby reaffirming the versatility of ThFFF as a robust tool for validating the successful functionalization of IIP with Au to produce IIP_Au NPs. |
Author | Muza, Upenyu L. Ehrlich, Lisa Lederer, Albena Pospiech, Doris |
AuthorAffiliation | Institute Macromolecular Chemistry Leibniz-Institut für Polymerforschung Dresden e.V Department of Chemistry and Polymer Science Center Macromolecular Structure Analysis Stellenbosch University |
AuthorAffiliation_xml | – name: Center Macromolecular Structure Analysis – name: Stellenbosch University – name: Department of Chemistry and Polymer Science – name: Leibniz-Institut für Polymerforschung Dresden e.V – name: Institute Macromolecular Chemistry |
Author_xml | – sequence: 1 givenname: Upenyu L. surname: Muza fullname: Muza, Upenyu L. organization: Center Macromolecular Structure Analysis – sequence: 2 givenname: Lisa surname: Ehrlich fullname: Ehrlich, Lisa organization: Institute Macromolecular Chemistry – sequence: 3 givenname: Doris orcidid: 0000-0003-4209-1759 surname: Pospiech fullname: Pospiech, Doris organization: Institute Macromolecular Chemistry – sequence: 4 givenname: Albena orcidid: 0000-0002-1760-6426 surname: Lederer fullname: Lederer, Albena email: lederer@ipfdd.de organization: Department of Chemistry and Polymer Science |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37441802$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctuEzEUhi1URNPCGyBkiQ2bCb5MZibsopS0lXqRUBHL0RnPmcbFY6e-tOoz8ZI4TdoFC7w5ks_3n9t_RA6ss0jIR86mnAn-FVSYggWj1jhOpWK8mvE3ZMJnghVV04gDMmGMyULUjB2SoxDuGOM8Y-_IoazLkjdMTMifM327Ln5gcCZF7Sy98aB-a3tL3UAvk4l6Y5Ce6BC97p6JQLWllxjBGK3oFViXc0nF5DF8o4v-AazCni7yaE9BB_oLAl2C9zp_XqdIH3Vc0yv3gIbKE7p03qOBXes1-hEMXWk0fbEy7pGu8jTb3DPwnrwdwAT8sI_H5Ofq-83yrLi4Pj1fLi4KkGIWi3wBLDs5VHKez6DqXlQcOt5BB33eGVFWFe8HmKuBocSyntfAG5zXEmd9J5Q8Jl92dTfe3ScMsR11UGgMWHQptKKRjShFU5YZ_fwPeueSz6tvqVIwmZ_IVLmjlHcheBzajdcj-KeWs3ZrZpvNbF_MbPdmZtmnffHUjdi_il7cywDbAVv5a-P_1vwLPI-y8Q |
Cites_doi | 10.1021/acs.analchem.9b01384 10.1021/jp508181g 10.1166/jnn.2007.911 10.1038/ncomms6144 10.1002/jssc.202100595 10.1016/j.chroma.2017.12.008 10.1021/acsmacrolett.0c00519 10.1021/acsnano.2c06673 10.1016/j.chroma.2011.04.063 10.1021/nl400777y 10.1366/0003702934067694 10.1088/1361-648X/aa60f3 10.1021/cr900068q 10.1021/jp104366r 10.1039/D2RA04346G 10.1016/j.seppur.2021.118972 10.1002/macp.201800417 10.1021/jp0608628 10.1002/ansa.202100008 10.1021/ma010760+ 10.1002/macp.200700174 10.1021/acs.analchem.9b02664 10.1021/acsanm.8b01643 10.1021/acs.macromol.7b01590 10.1021/acs.analchem.0c04352 10.1038/s41598-019-50032-3 10.1002/polb.1990.090281313 10.1021/jacs.9b06785 10.1016/j.chroma.2018.12.012 10.1007/978-3-030-10650-8 10.1021/acs.jpcc.1c07409 10.1016/j.chroma.2020.461082 10.1016/j.chroma.2018.05.065 10.1002/macp.202200317 10.1295/kobunshi.47.816 10.1021/acs.iecr.2c00285 10.3390/catal11060714 10.1002/admt.202101575 10.1038/nature12469 10.1007/s11468-021-01381-1 10.1002/pat.5770 10.1021/ma400350y 10.1016/j.saa.2015.04.088 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society Copyright American Chemical Society Jul 25, 2023 |
Copyright_xml | – notice: 2023 American Chemical Society – notice: Copyright American Chemical Society Jul 25, 2023 |
DBID | NPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1021/acs.analchem.3c01651 |
DatabaseName | PubMed CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 11090 |
ExternalDocumentID | 10_1021_acs_analchem_3c01651 37441802 b596879278 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X .DC .K2 23M 4.4 55A 5GY 5RE 5VS 6J9 7~N 85S AABXI ABFRP ABHFT ABHMW ABMVS ABOCM ABPPZ ABPTK ABQRX ABUCX ACGFO ACGFS ACGOD ACIWK ACJ ACKOT ACNCT ACPRK ACS ADHLV AEESW AENEX AFEFF AFRAH AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L EBS ED~ F5P GGK GNL IH9 IHE JG~ KZ1 LMP P2P PQEST PQQKQ ROL RXW TAE TAF TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X6Y XSW YZZ ZCA ~02 53G AAHBH ABJNI ACBEA CUPRZ NPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-a325t-152e4b3f639882c7d261ab1babad802ee3661dfa9cf0e3e4797a18e973e5db2c3 |
IEDL.DBID | ACS |
ISSN | 0003-2700 |
IngestDate | Fri Aug 16 22:16:26 EDT 2024 Thu Oct 10 14:31:09 EDT 2024 Fri Aug 23 01:51:54 EDT 2024 Wed Oct 16 00:38:27 EDT 2024 Thu Jul 27 04:43:19 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a325t-152e4b3f639882c7d261ab1babad802ee3661dfa9cf0e3e4797a18e973e5db2c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4209-1759 0000-0002-1760-6426 |
PMID | 37441802 |
PQID | 2842033332 |
PQPubID | 45400 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2838242844 proquest_journals_2842033332 crossref_primary_10_1021_acs_analchem_3c01651 pubmed_primary_37441802 acs_journals_10_1021_acs_analchem_3c01651 |
PublicationCentury | 2000 |
PublicationDate | 2023-07-25 |
PublicationDateYYYYMMDD | 2023-07-25 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 Schimpf M. E. (ref40/cit40) 2000 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref39/cit39 doi: 10.1021/acs.analchem.9b01384 – ident: ref41/cit41 doi: 10.1021/jp508181g – ident: ref8/cit8 doi: 10.1166/jnn.2007.911 – ident: ref30/cit30 doi: 10.1038/ncomms6144 – ident: ref2/cit2 doi: 10.1002/jssc.202100595 – ident: ref17/cit17 doi: 10.1016/j.chroma.2017.12.008 – ident: ref11/cit11 doi: 10.1021/acsmacrolett.0c00519 – ident: ref1/cit1 doi: 10.1021/acsnano.2c06673 – ident: ref10/cit10 doi: 10.1016/j.chroma.2011.04.063 – ident: ref35/cit35 doi: 10.1021/nl400777y – ident: ref24/cit24 doi: 10.1366/0003702934067694 – ident: ref37/cit37 doi: 10.1088/1361-648X/aa60f3 – ident: ref43/cit43 doi: 10.1021/cr900068q – ident: ref20/cit20 doi: 10.1021/jp104366r – ident: ref22/cit22 doi: 10.1039/D2RA04346G – ident: ref5/cit5 doi: 10.1016/j.seppur.2021.118972 – ident: ref42/cit42 doi: 10.1002/macp.201800417 – ident: ref21/cit21 doi: 10.1021/jp0608628 – ident: ref6/cit6 doi: 10.1002/ansa.202100008 – ident: ref25/cit25 doi: 10.1021/ma010760+ – ident: ref31/cit31 doi: 10.1002/macp.200700174 – ident: ref13/cit13 doi: 10.1021/acs.analchem.9b02664 – ident: ref33/cit33 doi: 10.1021/acsanm.8b01643 – ident: ref29/cit29 doi: 10.1021/acs.macromol.7b01590 – ident: ref9/cit9 doi: 10.1021/acs.analchem.0c04352 – ident: ref36/cit36 doi: 10.1038/s41598-019-50032-3 – ident: ref32/cit32 doi: 10.1002/polb.1990.090281313 – ident: ref15/cit15 doi: 10.1021/jacs.9b06785 – ident: ref26/cit26 doi: 10.1016/j.chroma.2018.12.012 – ident: ref12/cit12 doi: 10.1007/978-3-030-10650-8 – ident: ref18/cit18 doi: 10.1021/acs.jpcc.1c07409 – ident: ref14/cit14 doi: 10.1016/j.chroma.2020.461082 – volume-title: Field-Flow Fractionation Handbook year: 2000 ident: ref40/cit40 contributor: fullname: Schimpf M. E. – ident: ref16/cit16 doi: 10.1016/j.chroma.2018.05.065 – ident: ref28/cit28 doi: 10.1002/macp.202200317 – ident: ref44/cit44 doi: 10.1295/kobunshi.47.816 – ident: ref4/cit4 doi: 10.1021/acs.iecr.2c00285 – ident: ref7/cit7 doi: 10.3390/catal11060714 – ident: ref3/cit3 doi: 10.1002/admt.202101575 – ident: ref19/cit19 doi: 10.1038/nature12469 – ident: ref34/cit34 doi: 10.1007/s11468-021-01381-1 – ident: ref23/cit23 doi: 10.1002/pat.5770 – ident: ref27/cit27 doi: 10.1021/ma400350y – ident: ref38/cit38 doi: 10.1016/j.saa.2015.04.088 |
SSID | ssj0011016 |
Score | 2.471044 |
Snippet | Multifunctional metallic nanostructures are essential in the architecture of modern technology. However, their characterization remains challenging due to... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 11085 |
SubjectTerms | Chemistry Composition Fractionation Gold Irradiation Nanoparticles Nanostructure Photoreduction Polymers Retention time Spectra Surface plasmon resonance Temperature gradients Thermal stability Three dimensional flow Ultraviolet radiation |
Title | High-Resolution Tracking of Multiple Distributions in Metallic Nanostructures: Advanced Analysis Was Carried Out with Novel 3D Correlation Thermal Field-Flow Fractionation |
URI | http://dx.doi.org/10.1021/acs.analchem.3c01651 https://www.ncbi.nlm.nih.gov/pubmed/37441802 https://www.proquest.com/docview/2842033332 https://search.proquest.com/docview/2838242844 |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqcoAeeBQKCwUNUi8cvCR-YIdblRJVlbY9QEVvke1MpKrbBDW7IPGX-JOMN8kWiiogR8eJY3uc-ebN2J6pZeortDxRTnNlTODOmppnXgtqRuJx0aI7O353eKqOzvTZtaB404Iv0rcudFNHi0pzuJzKEMNvSNq5IwydjwiF8o9rq0GURMcKedGgOobK3fKWyJBC9ztDugVlrrhN8YCdjDE7vZPJxXS58NPw_c8Ujv84kYfs_gA8Yb-nlEdsA5ttdjcf671ts61fUhM-Zj-iAwiPyv2eNIGYWohqdWhrmA1eiHAQnx0qZnVw3sAMCczPzwPQX7vtc9MuSaB_D_uDrwGMWVDgs-sgd1ckqldwslxA1AjDcfsV5yAPII9VQ3o_PSBSJvYxhyJ62_Fi3n6D4qoPyFh1eMJOiw-f8kM-FHbgTgq94IQZUHlZEzoigB9MRWKc86l33lU2EYiSUENVuyzUCUpUJjMutZgZibryIsgdttm0DT5jYDV6jVbVSciUUcHpKrPo0EhnCKmmE_aG1r0cDmZXrmzuIi1j47gZ5bAZE8ZHSii_9Lk-_tJ_dySX6wGI3YtE0iUm7PX6Nm1lNMS4Bttl7CMtQSOr1IQ97clsPaA0BFBpEZ7_x4e_YPcEYa-ochZ6l23S7uJLwkoL_2p1QH4Cc4oSuA |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqcigceBQoCwUGiQsHL0lsY4dblRIt0F0OtNBbZDsTqWJJULMLEn-JP8k4jy0gVag5Oo6f48w3D88w9lxXInYlGh5Jq7jU2nNrdMVTpxIqRuJxwaI7X7yanch3p-p0i6nxLgwNoqWW2s6IfxFdIH4ZyiytLU3l61T4cAuHhJ5rShPPDIgo-7gxHgSBdEyUF-yq4425S1oJfMm3f_OlS8Bmx3TyW-zTZridr8mX6Xrlpv7nP5Ecrzyf2-zmAEPhoKebO2wL6122k43Z33bZjT8CFd5lv4I7CA-q_p5QgVicD0p2aCqYDz6JcBi-HfJntXBWwxwJ2i_PPNA_vOkj1a5JvH8NB4PnAYwxUeCzbSGz5yS4l_BhvYKgH4ZF8x2XIA4hCzlEeq89IMImZrKEPPje8XzZ_ID8vL-e0VW4x07yN8fZjA9pHrgViVpxQhAonagIKxHc97okoc662FlnSxMliIIwRFnZ1FcRCpQ61TY2mGqBqnSJF_fZdt3U-ICBUegUGllFPpVaeqvK1KBFLawm3BpP2Ata92I4pm3RWeCTuAiF42YUw2ZMGB8JovjWR_74T_39kWouOiDmn0SCnmTCnm1e01YGs4ytsVmHOsIQUDJSTtheT22bDoUmuEqL8PAKA3_KdmbH86Pi6O3i_SN2PSFUFpTRidpn27TT-JhQ1Mo96c7Mb0z-Gx0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZQkTgeOMq1UGCQeOHBS-IDJ7ytskTl2AUJKipeItuZSBVLUjW7IPGX-JOMcywFqUKQR8fxOc58c3iGscemkrErMeGRsporYzy3ial46rSgYiQeFyy6i-Wz_QP16lAfnkr1RYNoqaW2M-KHU31cVkOEgfhpKLe0vjSdL1Ppw00cEnzOaxN3FtpZ9n5rQAhC6ZgsL9hWx1tzZ7QSeJNvf-dNZwDOjvHkV9mn7ZA7f5PP083aTf33P6I5_tecrrErAxyFWU8_19k5rHfZxWzMArfLLp8KWHiD_QhuITyo_HuCBWJ1PijboalgMfgmwjx8O-TRauGohgUSxF8deaB_edNHrN2QmP8cZoMHAoyxUeCjbSGzJyTAl_B2s4agJ4Zl8xVXIOeQhVwivfceEIETU1lBHnzweL5qvkF-0l_T6CrcZAf5iw_ZPh_SPXArhV5zQhKonKwIMxHs96Yk4c662FlnyyQSiJKwRFnZ1FcRSlQmNTZOMDUSdemEl7fYTt3UeIdBotFpTFQV-VQZ5a0u0wQtGmkN4dd4wp7QuhfDcW2LzhIv4iIUjptRDJsxYXwkiuK4jwDyl_p7I-X86oBAgIgkPWLCHm1f01YG84ytsdmEOjIhwJQoNWG3e4rbdigNwVZahLv_MPCH7MK7eV68ebl8fY9dEgTOgk5a6D22QxuN9wlMrd2D7tj8BCotHZc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Resolution+Tracking+of+Multiple+Distributions+in+Metallic+Nanostructures%3A+Advanced+Analysis+Was+Carried+Out+with+Novel+3D+Correlation+Thermal+Field-Flow+Fractionation&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Muza%2C+Upenyu+L&rft.au=Ehrlich%2C+Lisa&rft.au=Pospiech%2C+Doris&rft.au=Lederer%2C+Albena&rft.date=2023-07-25&rft.eissn=1520-6882&rft.volume=95&rft.issue=29&rft.spage=11085&rft.epage=11090&rft_id=info:doi/10.1021%2Facs.analchem.3c01651&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |