High-Resolution Tracking of Multiple Distributions in Metallic Nanostructures: Advanced Analysis Was Carried Out with Novel 3D Correlation Thermal Field-Flow Fractionation

Multifunctional metallic nanostructures are essential in the architecture of modern technology. However, their characterization remains challenging due to their hybrid nature. In this study, we present a novel photoreduction-based protocol for augmenting the inherent properties of imidazolium-contai...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 95; no. 29; pp. 11085 - 11090
Main Authors Muza, Upenyu L., Ehrlich, Lisa, Pospiech, Doris, Lederer, Albena
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multifunctional metallic nanostructures are essential in the architecture of modern technology. However, their characterization remains challenging due to their hybrid nature. In this study, we present a novel photoreduction-based protocol for augmenting the inherent properties of imidazolium-containing ionic polymers (IIP)­s through orthogonal functionalization with gold nanoparticles (Au NPs) to produce IIP_Au NPs, as well as novel and advanced characterization via three-dimensional correlation thermal field-flow fractionation (3DCoThFFF). Coordination chemistry is applied to anchor Au3+ onto the nitrogen atom of the imidazolium rings, for subsequent photoreduction to Au NPs using UV irradiation. Thermal field-flow fractionation (ThFFF) and the localized surface plasmon resonance (LSPR) of Au NPs are both dependent on size, shape, and composition, thus synergistically co-opted herein to develop mutual correlation for the advanced analysis of 3D spectral data. With 3DCoThFFF, multiple sizes, shapes, compositions, and their respective distributions are synchronously correlated using time-resolved LSPR, as derived from multiple two-dimensional UV–vis spectra per unit ThFFF retention time. As such, higher resolutions and sensitivities are observed relative to those of regular ThFFF and batch UV–vis. In addition, 3DCoThFFF is shown to be highly suitable for monitoring and evaluating the thermostability and dynamics of the metallic nanostructures through the sequential correlation of UV–vis spectra measured under incremental ThFFF temperature gradients. Comparable sizes are measured for IIP and IIP_Au NPs. However, distinct elution profiles and UV–vis absorbances are recorded, thereby reaffirming the versatility of ThFFF as a robust tool for validating the successful functionalization of IIP with Au to produce IIP_Au NPs.
AbstractList Multifunctional metallic nanostructures are essential in the architecture of modern technology. However, their characterization remains challenging due to their hybrid nature. In this study, we present a novel photoreduction-based protocol for augmenting the inherent properties of imidazolium-containing ionic polymers (IIP)­s through orthogonal functionalization with gold nanoparticles (Au NPs) to produce IIP_Au NPs, as well as novel and advanced characterization via three-dimensional correlation thermal field-flow fractionation (3DCoThFFF). Coordination chemistry is applied to anchor Au3+ onto the nitrogen atom of the imidazolium rings, for subsequent photoreduction to Au NPs using UV irradiation. Thermal field-flow fractionation (ThFFF) and the localized surface plasmon resonance (LSPR) of Au NPs are both dependent on size, shape, and composition, thus synergistically co-opted herein to develop mutual correlation for the advanced analysis of 3D spectral data. With 3DCoThFFF, multiple sizes, shapes, compositions, and their respective distributions are synchronously correlated using time-resolved LSPR, as derived from multiple two-dimensional UV–vis spectra per unit ThFFF retention time. As such, higher resolutions and sensitivities are observed relative to those of regular ThFFF and batch UV–vis. In addition, 3DCoThFFF is shown to be highly suitable for monitoring and evaluating the thermostability and dynamics of the metallic nanostructures through the sequential correlation of UV–vis spectra measured under incremental ThFFF temperature gradients. Comparable sizes are measured for IIP and IIP_Au NPs. However, distinct elution profiles and UV–vis absorbances are recorded, thereby reaffirming the versatility of ThFFF as a robust tool for validating the successful functionalization of IIP with Au to produce IIP_Au NPs.
Multifunctional metallic nanostructures are essential in the architecture of modern technology. However, their characterization remains challenging due to their hybrid nature. In this study, we present a novel photoreduction-based protocol for augmenting the inherent properties of imidazolium-containing ionic polymers (IIP)s through orthogonal functionalization with gold nanoparticles (Au NPs) to produce IIP_Au NPs, as well as novel and advanced characterization via three-dimensional correlation thermal field-flow fractionation (3DCoThFFF). Coordination chemistry is applied to anchor Au3+ onto the nitrogen atom of the imidazolium rings, for subsequent photoreduction to Au NPs using UV irradiation. Thermal field-flow fractionation (ThFFF) and the localized surface plasmon resonance (LSPR) of Au NPs are both dependent on size, shape, and composition, thus synergistically co-opted herein to develop mutual correlation for the advanced analysis of 3D spectral data. With 3DCoThFFF, multiple sizes, shapes, compositions, and their respective distributions are synchronously correlated using time-resolved LSPR, as derived from multiple two-dimensional UV–vis spectra per unit ThFFF retention time. As such, higher resolutions and sensitivities are observed relative to those of regular ThFFF and batch UV–vis. In addition, 3DCoThFFF is shown to be highly suitable for monitoring and evaluating the thermostability and dynamics of the metallic nanostructures through the sequential correlation of UV–vis spectra measured under incremental ThFFF temperature gradients. Comparable sizes are measured for IIP and IIP_Au NPs. However, distinct elution profiles and UV–vis absorbances are recorded, thereby reaffirming the versatility of ThFFF as a robust tool for validating the successful functionalization of IIP with Au to produce IIP_Au NPs.
Multifunctional metallic nanostructures are essential in the architecture of modern technology. However, their characterization remains challenging due to their hybrid nature. In this study, we present a novel photoreduction-based protocol for augmenting the inherent properties of imidazolium-containing ionic polymers (IIP)s through orthogonal functionalization with gold nanoparticles (Au NPs) to produce IIP_Au NPs, as well as novel and advanced characterization via three-dimensional correlation thermal field-flow fractionation (3DCoThFFF). Coordination chemistry is applied to anchor Au onto the nitrogen atom of the imidazolium rings, for subsequent photoreduction to Au NPs using UV irradiation. Thermal field-flow fractionation (ThFFF) and the localized surface plasmon resonance (LSPR) of Au NPs are both dependent on size, shape, and composition, thus synergistically co-opted herein to develop mutual correlation for the advanced analysis of 3D spectral data. With 3DCoThFFF, multiple sizes, shapes, compositions, and their respective distributions are synchronously correlated using time-resolved LSPR, as derived from multiple two-dimensional UV-vis spectra per unit ThFFF retention time. As such, higher resolutions and sensitivities are observed relative to those of regular ThFFF and batch UV-vis. In addition, 3DCoThFFF is shown to be highly suitable for monitoring and evaluating the thermostability and dynamics of the metallic nanostructures through the sequential correlation of UV-vis spectra measured under incremental ThFFF temperature gradients. Comparable sizes are measured for IIP and IIP_Au NPs. However, distinct elution profiles and UV-vis absorbances are recorded, thereby reaffirming the versatility of ThFFF as a robust tool for validating the successful functionalization of IIP with Au to produce IIP_Au NPs.
Author Muza, Upenyu L.
Ehrlich, Lisa
Lederer, Albena
Pospiech, Doris
AuthorAffiliation Institute Macromolecular Chemistry
Leibniz-Institut für Polymerforschung Dresden e.V
Department of Chemistry and Polymer Science
Center Macromolecular Structure Analysis
Stellenbosch University
AuthorAffiliation_xml – name: Center Macromolecular Structure Analysis
– name: Stellenbosch University
– name: Department of Chemistry and Polymer Science
– name: Leibniz-Institut für Polymerforschung Dresden e.V
– name: Institute Macromolecular Chemistry
Author_xml – sequence: 1
  givenname: Upenyu L.
  surname: Muza
  fullname: Muza, Upenyu L.
  organization: Center Macromolecular Structure Analysis
– sequence: 2
  givenname: Lisa
  surname: Ehrlich
  fullname: Ehrlich, Lisa
  organization: Institute Macromolecular Chemistry
– sequence: 3
  givenname: Doris
  orcidid: 0000-0003-4209-1759
  surname: Pospiech
  fullname: Pospiech, Doris
  organization: Institute Macromolecular Chemistry
– sequence: 4
  givenname: Albena
  orcidid: 0000-0002-1760-6426
  surname: Lederer
  fullname: Lederer, Albena
  email: lederer@ipfdd.de
  organization: Department of Chemistry and Polymer Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37441802$$D View this record in MEDLINE/PubMed
BookMark eNp9kctuEzEUhi1URNPCGyBkiQ2bCb5MZibsopS0lXqRUBHL0RnPmcbFY6e-tOoz8ZI4TdoFC7w5ks_3n9t_RA6ss0jIR86mnAn-FVSYggWj1jhOpWK8mvE3ZMJnghVV04gDMmGMyULUjB2SoxDuGOM8Y-_IoazLkjdMTMifM327Ln5gcCZF7Sy98aB-a3tL3UAvk4l6Y5Ce6BC97p6JQLWllxjBGK3oFViXc0nF5DF8o4v-AazCni7yaE9BB_oLAl2C9zp_XqdIH3Vc0yv3gIbKE7p03qOBXes1-hEMXWk0fbEy7pGu8jTb3DPwnrwdwAT8sI_H5Ofq-83yrLi4Pj1fLi4KkGIWi3wBLDs5VHKez6DqXlQcOt5BB33eGVFWFe8HmKuBocSyntfAG5zXEmd9J5Q8Jl92dTfe3ScMsR11UGgMWHQptKKRjShFU5YZ_fwPeueSz6tvqVIwmZ_IVLmjlHcheBzajdcj-KeWs3ZrZpvNbF_MbPdmZtmnffHUjdi_il7cywDbAVv5a-P_1vwLPI-y8Q
Cites_doi 10.1021/acs.analchem.9b01384
10.1021/jp508181g
10.1166/jnn.2007.911
10.1038/ncomms6144
10.1002/jssc.202100595
10.1016/j.chroma.2017.12.008
10.1021/acsmacrolett.0c00519
10.1021/acsnano.2c06673
10.1016/j.chroma.2011.04.063
10.1021/nl400777y
10.1366/0003702934067694
10.1088/1361-648X/aa60f3
10.1021/cr900068q
10.1021/jp104366r
10.1039/D2RA04346G
10.1016/j.seppur.2021.118972
10.1002/macp.201800417
10.1021/jp0608628
10.1002/ansa.202100008
10.1021/ma010760+
10.1002/macp.200700174
10.1021/acs.analchem.9b02664
10.1021/acsanm.8b01643
10.1021/acs.macromol.7b01590
10.1021/acs.analchem.0c04352
10.1038/s41598-019-50032-3
10.1002/polb.1990.090281313
10.1021/jacs.9b06785
10.1016/j.chroma.2018.12.012
10.1007/978-3-030-10650-8
10.1021/acs.jpcc.1c07409
10.1016/j.chroma.2020.461082
10.1016/j.chroma.2018.05.065
10.1002/macp.202200317
10.1295/kobunshi.47.816
10.1021/acs.iecr.2c00285
10.3390/catal11060714
10.1002/admt.202101575
10.1038/nature12469
10.1007/s11468-021-01381-1
10.1002/pat.5770
10.1021/ma400350y
10.1016/j.saa.2015.04.088
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright American Chemical Society Jul 25, 2023
Copyright_xml – notice: 2023 American Chemical Society
– notice: Copyright American Chemical Society Jul 25, 2023
DBID NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1021/acs.analchem.3c01651
DatabaseName PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 11090
ExternalDocumentID 10_1021_acs_analchem_3c01651
37441802
b596879278
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.DC
.K2
23M
4.4
55A
5GY
5RE
5VS
6J9
7~N
85S
AABXI
ABFRP
ABHFT
ABHMW
ABMVS
ABOCM
ABPPZ
ABPTK
ABQRX
ABUCX
ACGFO
ACGFS
ACGOD
ACIWK
ACJ
ACKOT
ACNCT
ACPRK
ACS
ADHLV
AEESW
AENEX
AFEFF
AFRAH
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
KZ1
LMP
P2P
PQEST
PQQKQ
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X6Y
XSW
YZZ
ZCA
~02
53G
AAHBH
ABJNI
ACBEA
CUPRZ
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-a325t-152e4b3f639882c7d261ab1babad802ee3661dfa9cf0e3e4797a18e973e5db2c3
IEDL.DBID ACS
ISSN 0003-2700
IngestDate Fri Aug 16 22:16:26 EDT 2024
Thu Oct 10 14:31:09 EDT 2024
Fri Aug 23 01:51:54 EDT 2024
Wed Oct 16 00:38:27 EDT 2024
Thu Jul 27 04:43:19 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a325t-152e4b3f639882c7d261ab1babad802ee3661dfa9cf0e3e4797a18e973e5db2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4209-1759
0000-0002-1760-6426
PMID 37441802
PQID 2842033332
PQPubID 45400
PageCount 6
ParticipantIDs proquest_miscellaneous_2838242844
proquest_journals_2842033332
crossref_primary_10_1021_acs_analchem_3c01651
pubmed_primary_37441802
acs_journals_10_1021_acs_analchem_3c01651
PublicationCentury 2000
PublicationDate 2023-07-25
PublicationDateYYYYMMDD 2023-07-25
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
Schimpf M. E. (ref40/cit40) 2000
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref39/cit39
  doi: 10.1021/acs.analchem.9b01384
– ident: ref41/cit41
  doi: 10.1021/jp508181g
– ident: ref8/cit8
  doi: 10.1166/jnn.2007.911
– ident: ref30/cit30
  doi: 10.1038/ncomms6144
– ident: ref2/cit2
  doi: 10.1002/jssc.202100595
– ident: ref17/cit17
  doi: 10.1016/j.chroma.2017.12.008
– ident: ref11/cit11
  doi: 10.1021/acsmacrolett.0c00519
– ident: ref1/cit1
  doi: 10.1021/acsnano.2c06673
– ident: ref10/cit10
  doi: 10.1016/j.chroma.2011.04.063
– ident: ref35/cit35
  doi: 10.1021/nl400777y
– ident: ref24/cit24
  doi: 10.1366/0003702934067694
– ident: ref37/cit37
  doi: 10.1088/1361-648X/aa60f3
– ident: ref43/cit43
  doi: 10.1021/cr900068q
– ident: ref20/cit20
  doi: 10.1021/jp104366r
– ident: ref22/cit22
  doi: 10.1039/D2RA04346G
– ident: ref5/cit5
  doi: 10.1016/j.seppur.2021.118972
– ident: ref42/cit42
  doi: 10.1002/macp.201800417
– ident: ref21/cit21
  doi: 10.1021/jp0608628
– ident: ref6/cit6
  doi: 10.1002/ansa.202100008
– ident: ref25/cit25
  doi: 10.1021/ma010760+
– ident: ref31/cit31
  doi: 10.1002/macp.200700174
– ident: ref13/cit13
  doi: 10.1021/acs.analchem.9b02664
– ident: ref33/cit33
  doi: 10.1021/acsanm.8b01643
– ident: ref29/cit29
  doi: 10.1021/acs.macromol.7b01590
– ident: ref9/cit9
  doi: 10.1021/acs.analchem.0c04352
– ident: ref36/cit36
  doi: 10.1038/s41598-019-50032-3
– ident: ref32/cit32
  doi: 10.1002/polb.1990.090281313
– ident: ref15/cit15
  doi: 10.1021/jacs.9b06785
– ident: ref26/cit26
  doi: 10.1016/j.chroma.2018.12.012
– ident: ref12/cit12
  doi: 10.1007/978-3-030-10650-8
– ident: ref18/cit18
  doi: 10.1021/acs.jpcc.1c07409
– ident: ref14/cit14
  doi: 10.1016/j.chroma.2020.461082
– volume-title: Field-Flow Fractionation Handbook
  year: 2000
  ident: ref40/cit40
  contributor:
    fullname: Schimpf M. E.
– ident: ref16/cit16
  doi: 10.1016/j.chroma.2018.05.065
– ident: ref28/cit28
  doi: 10.1002/macp.202200317
– ident: ref44/cit44
  doi: 10.1295/kobunshi.47.816
– ident: ref4/cit4
  doi: 10.1021/acs.iecr.2c00285
– ident: ref7/cit7
  doi: 10.3390/catal11060714
– ident: ref3/cit3
  doi: 10.1002/admt.202101575
– ident: ref19/cit19
  doi: 10.1038/nature12469
– ident: ref34/cit34
  doi: 10.1007/s11468-021-01381-1
– ident: ref23/cit23
  doi: 10.1002/pat.5770
– ident: ref27/cit27
  doi: 10.1021/ma400350y
– ident: ref38/cit38
  doi: 10.1016/j.saa.2015.04.088
SSID ssj0011016
Score 2.471044
Snippet Multifunctional metallic nanostructures are essential in the architecture of modern technology. However, their characterization remains challenging due to...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 11085
SubjectTerms Chemistry
Composition
Fractionation
Gold
Irradiation
Nanoparticles
Nanostructure
Photoreduction
Polymers
Retention time
Spectra
Surface plasmon resonance
Temperature gradients
Thermal stability
Three dimensional flow
Ultraviolet radiation
Title High-Resolution Tracking of Multiple Distributions in Metallic Nanostructures: Advanced Analysis Was Carried Out with Novel 3D Correlation Thermal Field-Flow Fractionation
URI http://dx.doi.org/10.1021/acs.analchem.3c01651
https://www.ncbi.nlm.nih.gov/pubmed/37441802
https://www.proquest.com/docview/2842033332
https://search.proquest.com/docview/2838242844
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqcoAeeBQKCwUNUi8cvCR-YIdblRJVlbY9QEVvke1MpKrbBDW7IPGX-JOMN8kWiiogR8eJY3uc-ebN2J6pZeortDxRTnNlTODOmppnXgtqRuJx0aI7O353eKqOzvTZtaB404Iv0rcudFNHi0pzuJzKEMNvSNq5IwydjwiF8o9rq0GURMcKedGgOobK3fKWyJBC9ztDugVlrrhN8YCdjDE7vZPJxXS58NPw_c8Ujv84kYfs_gA8Yb-nlEdsA5ttdjcf671ts61fUhM-Zj-iAwiPyv2eNIGYWohqdWhrmA1eiHAQnx0qZnVw3sAMCczPzwPQX7vtc9MuSaB_D_uDrwGMWVDgs-sgd1ckqldwslxA1AjDcfsV5yAPII9VQ3o_PSBSJvYxhyJ62_Fi3n6D4qoPyFh1eMJOiw-f8kM-FHbgTgq94IQZUHlZEzoigB9MRWKc86l33lU2EYiSUENVuyzUCUpUJjMutZgZibryIsgdttm0DT5jYDV6jVbVSciUUcHpKrPo0EhnCKmmE_aG1r0cDmZXrmzuIi1j47gZ5bAZE8ZHSii_9Lk-_tJ_dySX6wGI3YtE0iUm7PX6Nm1lNMS4Bttl7CMtQSOr1IQ97clsPaA0BFBpEZ7_x4e_YPcEYa-ochZ6l23S7uJLwkoL_2p1QH4Cc4oSuA
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqcigceBQoCwUGiQsHL0lsY4dblRIt0F0OtNBbZDsTqWJJULMLEn-JP8k4jy0gVag5Oo6f48w3D88w9lxXInYlGh5Jq7jU2nNrdMVTpxIqRuJxwaI7X7yanch3p-p0i6nxLgwNoqWW2s6IfxFdIH4ZyiytLU3l61T4cAuHhJ5rShPPDIgo-7gxHgSBdEyUF-yq4425S1oJfMm3f_OlS8Bmx3TyW-zTZridr8mX6Xrlpv7nP5Ecrzyf2-zmAEPhoKebO2wL6122k43Z33bZjT8CFd5lv4I7CA-q_p5QgVicD0p2aCqYDz6JcBi-HfJntXBWwxwJ2i_PPNA_vOkj1a5JvH8NB4PnAYwxUeCzbSGz5yS4l_BhvYKgH4ZF8x2XIA4hCzlEeq89IMImZrKEPPje8XzZ_ID8vL-e0VW4x07yN8fZjA9pHrgViVpxQhAonagIKxHc97okoc662FlnSxMliIIwRFnZ1FcRCpQ61TY2mGqBqnSJF_fZdt3U-ICBUegUGllFPpVaeqvK1KBFLawm3BpP2Ata92I4pm3RWeCTuAiF42YUw2ZMGB8JovjWR_74T_39kWouOiDmn0SCnmTCnm1e01YGs4ytsVmHOsIQUDJSTtheT22bDoUmuEqL8PAKA3_KdmbH86Pi6O3i_SN2PSFUFpTRidpn27TT-JhQ1Mo96c7Mb0z-Gx0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZQkTgeOMq1UGCQeOHBS-IDJ7ytskTl2AUJKipeItuZSBVLUjW7IPGX-JOMcywFqUKQR8fxOc58c3iGscemkrErMeGRsporYzy3ial46rSgYiQeFyy6i-Wz_QP16lAfnkr1RYNoqaW2M-KHU31cVkOEgfhpKLe0vjSdL1Ppw00cEnzOaxN3FtpZ9n5rQAhC6ZgsL9hWx1tzZ7QSeJNvf-dNZwDOjvHkV9mn7ZA7f5PP083aTf33P6I5_tecrrErAxyFWU8_19k5rHfZxWzMArfLLp8KWHiD_QhuITyo_HuCBWJ1PijboalgMfgmwjx8O-TRauGohgUSxF8deaB_edNHrN2QmP8cZoMHAoyxUeCjbSGzJyTAl_B2s4agJ4Zl8xVXIOeQhVwivfceEIETU1lBHnzweL5qvkF-0l_T6CrcZAf5iw_ZPh_SPXArhV5zQhKonKwIMxHs96Yk4c662FlnyyQSiJKwRFnZ1FcRSlQmNTZOMDUSdemEl7fYTt3UeIdBotFpTFQV-VQZ5a0u0wQtGmkN4dd4wp7QuhfDcW2LzhIv4iIUjptRDJsxYXwkiuK4jwDyl_p7I-X86oBAgIgkPWLCHm1f01YG84ytsdmEOjIhwJQoNWG3e4rbdigNwVZahLv_MPCH7MK7eV68ebl8fY9dEgTOgk5a6D22QxuN9wlMrd2D7tj8BCotHZc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Resolution+Tracking+of+Multiple+Distributions+in+Metallic+Nanostructures%3A+Advanced+Analysis+Was+Carried+Out+with+Novel+3D+Correlation+Thermal+Field-Flow+Fractionation&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Muza%2C+Upenyu+L&rft.au=Ehrlich%2C+Lisa&rft.au=Pospiech%2C+Doris&rft.au=Lederer%2C+Albena&rft.date=2023-07-25&rft.eissn=1520-6882&rft.volume=95&rft.issue=29&rft.spage=11085&rft.epage=11090&rft_id=info:doi/10.1021%2Facs.analchem.3c01651&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon