Mild Hyperthermia-Assisted ROS Scavenging Hydrogels Achieve Diabetic Wound Healing

Excessive reactive oxygen species (ROS) production induces oxidative damage to biomolecules, which can lead to the development of chronic diseases. Biocompatible hydrogel antioxidants composed of natural materials, such as polysaccharides and polyphenols, are of significant option for ROS scavenging...

Full description

Saved in:
Bibliographic Details
Published inACS macro letters Vol. 11; no. 7; pp. 861 - 867
Main Authors Qi, Xiaoliang, Tong, Xianqin, You, Shengye, Mao, Ruiting, Cai, Erya, Pan, Wenhao, Zhang, Chenhao, Hu, Rongdang, Shen, Jianliang
Format Journal Article
LanguageEnglish
Published American Chemical Society 19.07.2022
Online AccessGet full text
ISSN2161-1653
2161-1653
DOI10.1021/acsmacrolett.2c00290

Cover

Loading…
Abstract Excessive reactive oxygen species (ROS) production induces oxidative damage to biomolecules, which can lead to the development of chronic diseases. Biocompatible hydrogel antioxidants composed of natural materials, such as polysaccharides and polyphenols, are of significant option for ROS scavenging. However, rapidly achieving hydrogel antioxidants with convenient, economical, safe, and efficient features remains challenging. Herein, facile synthesis of a physically cross-linked polyphenol/polysaccharide hydrogel by introducing tannic acid microsize particles (TAMP) into a cationic guar gum (CG) matrix is reported. Combining antioxidant/photothermal properties of TAMP and mechanical support from injectable CG, the formulated TAMP/CG is explored for treating diabetic wounds. Both in vitro and in vivo assays verify that TAMP/CG can protect the cells from ROS-induced oxidative damage, which can also be strengthened by the local photothermal heating (42 °C) triggered by near-infrared light. Overall, this study establishes the paradigm of enhanced diabetic wound healing by mild hyperthermia-assisted ROS scavenging hydrogels.
AbstractList Excessive reactive oxygen species (ROS) production induces oxidative damage to biomolecules, which can lead to the development of chronic diseases. Biocompatible hydrogel antioxidants composed of natural materials, such as polysaccharides and polyphenols, are of significant option for ROS scavenging. However, rapidly achieving hydrogel antioxidants with convenient, economical, safe, and efficient features remains challenging. Herein, facile synthesis of a physically cross-linked polyphenol/polysaccharide hydrogel by introducing tannic acid microsize particles (TAMP) into a cationic guar gum (CG) matrix is reported. Combining antioxidant/photothermal properties of TAMP and mechanical support from injectable CG, the formulated TAMP/CG is explored for treating diabetic wounds. Both in vitro and in vivo assays verify that TAMP/CG can protect the cells from ROS-induced oxidative damage, which can also be strengthened by the local photothermal heating (42 °C) triggered by near-infrared light. Overall, this study establishes the paradigm of enhanced diabetic wound healing by mild hyperthermia-assisted ROS scavenging hydrogels.Excessive reactive oxygen species (ROS) production induces oxidative damage to biomolecules, which can lead to the development of chronic diseases. Biocompatible hydrogel antioxidants composed of natural materials, such as polysaccharides and polyphenols, are of significant option for ROS scavenging. However, rapidly achieving hydrogel antioxidants with convenient, economical, safe, and efficient features remains challenging. Herein, facile synthesis of a physically cross-linked polyphenol/polysaccharide hydrogel by introducing tannic acid microsize particles (TAMP) into a cationic guar gum (CG) matrix is reported. Combining antioxidant/photothermal properties of TAMP and mechanical support from injectable CG, the formulated TAMP/CG is explored for treating diabetic wounds. Both in vitro and in vivo assays verify that TAMP/CG can protect the cells from ROS-induced oxidative damage, which can also be strengthened by the local photothermal heating (42 °C) triggered by near-infrared light. Overall, this study establishes the paradigm of enhanced diabetic wound healing by mild hyperthermia-assisted ROS scavenging hydrogels.
Excessive reactive oxygen species (ROS) production induces oxidative damage to biomolecules, which can lead to the development of chronic diseases. Biocompatible hydrogel antioxidants composed of natural materials, such as polysaccharides and polyphenols, are of significant option for ROS scavenging. However, rapidly achieving hydrogel antioxidants with convenient, economical, safe, and efficient features remains challenging. Herein, facile synthesis of a physically cross-linked polyphenol/polysaccharide hydrogel by introducing tannic acid microsize particles (TAMP) into a cationic guar gum (CG) matrix is reported. Combining antioxidant/photothermal properties of TAMP and mechanical support from injectable CG, the formulated TAMP/CG is explored for treating diabetic wounds. Both in vitro and in vivo assays verify that TAMP/CG can protect the cells from ROS-induced oxidative damage, which can also be strengthened by the local photothermal heating (42 °C) triggered by near-infrared light. Overall, this study establishes the paradigm of enhanced diabetic wound healing by mild hyperthermia-assisted ROS scavenging hydrogels.
Author Pan, Wenhao
Hu, Rongdang
Zhang, Chenhao
Cai, Erya
You, Shengye
Shen, Jianliang
Tong, Xianqin
Qi, Xiaoliang
Mao, Ruiting
AuthorAffiliation State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering
Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)
School and Hospital of Stomatology
Wenzhou Institute
University of Chinese Academy of Sciences
AuthorAffiliation_xml – name: University of Chinese Academy of Sciences
– name: Wenzhou Institute
– name: Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)
– name: School and Hospital of Stomatology
– name: State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering
Author_xml – sequence: 1
  givenname: Xiaoliang
  orcidid: 0000-0002-2480-7242
  surname: Qi
  fullname: Qi, Xiaoliang
  organization: State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering
– sequence: 2
  givenname: Xianqin
  surname: Tong
  fullname: Tong, Xianqin
  organization: School and Hospital of Stomatology
– sequence: 3
  givenname: Shengye
  surname: You
  fullname: You, Shengye
  organization: School and Hospital of Stomatology
– sequence: 4
  givenname: Ruiting
  surname: Mao
  fullname: Mao, Ruiting
  organization: School and Hospital of Stomatology
– sequence: 5
  givenname: Erya
  surname: Cai
  fullname: Cai, Erya
  organization: School and Hospital of Stomatology
– sequence: 6
  givenname: Wenhao
  surname: Pan
  fullname: Pan, Wenhao
  organization: School and Hospital of Stomatology
– sequence: 7
  givenname: Chenhao
  surname: Zhang
  fullname: Zhang, Chenhao
  organization: School and Hospital of Stomatology
– sequence: 8
  givenname: Rongdang
  surname: Hu
  fullname: Hu, Rongdang
  email: hurongdang@hotmail.com
  organization: School and Hospital of Stomatology
– sequence: 9
  givenname: Jianliang
  orcidid: 0000-0003-4351-4872
  surname: Shen
  fullname: Shen, Jianliang
  email: shenjl@wibe.ac.cn
  organization: Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)
BookMark eNqFkE1PAjEQhhuDiYj8Aw979LLYbrsfeCP4gQmGBDQem253CiW7XWy7JPx7a-BAPOhcZpJ5n_fwXKOeaQ0gdEvwiOCE3AvpGiFtW4P3o0RinIzxBeonJCMxyVLaO7uv0NC5LQ6TZqQYsz5avum6imaHHVi_AdtoEU-c085DFS0Xq2glxR7MWpt1CFW2XUPtooncaNhD9KhFCV7L6LPtTGgBUYfgDbpUonYwPO0B-nh-ep_O4vni5XU6mceCJqmPCcayyqsqZxktSyqkSigTKielLMcpYypjOKVS5ioVRKUUJyovZEYpLYiAStEBujv27mz71YHzvNFOQl0LA23neJIVpCCUMhyi7BgNnpyzoPjO6kbYAyeY_1jk5xb5yWLAHn5hUnvhdWu8Fbr-D8ZHOHz5tu2sCTL-Rr4Bp_2QEQ
CitedBy_id crossref_primary_10_1016_j_apsusc_2023_158578
crossref_primary_10_1073_pnas_2318391121
crossref_primary_10_1016_j_ijbiomac_2023_128027
crossref_primary_10_1016_j_ccr_2023_215426
crossref_primary_10_1016_j_ijbiomac_2024_130225
crossref_primary_10_1016_j_ijbiomac_2022_12_116
crossref_primary_10_2174_1389201024666221104142457
crossref_primary_10_1021_acs_jafc_3c08466
crossref_primary_10_1021_acs_biomac_4c00080
crossref_primary_10_1016_j_mtbio_2023_100788
crossref_primary_10_1016_j_heliyon_2024_e24909
crossref_primary_10_1016_j_ijbiomac_2023_126010
crossref_primary_10_1016_j_ijbiomac_2024_137819
crossref_primary_10_1016_j_matdes_2025_113631
crossref_primary_10_3390_ijms25041982
crossref_primary_10_1002_advs_202304641
crossref_primary_10_1016_j_ijbiomac_2022_12_063
crossref_primary_10_1039_D3BM00095H
crossref_primary_10_3390_foods13111711
crossref_primary_10_1016_j_cej_2023_141852
crossref_primary_10_1007_s40820_023_01099_1
crossref_primary_10_1021_acsnano_3c10552
crossref_primary_10_1016_j_ijbiomac_2024_130851
crossref_primary_10_1016_j_colsurfb_2022_113119
crossref_primary_10_1002_advs_202300816
crossref_primary_10_3390_pharmaceutics16101244
crossref_primary_10_1002_advs_202404143
crossref_primary_10_1016_j_clindermatol_2024_11_002
crossref_primary_10_3390_jfb14020072
crossref_primary_10_1016_j_envres_2023_117087
crossref_primary_10_1002_adfm_202305154
crossref_primary_10_1166_jbt_2023_3343
crossref_primary_10_1016_j_addr_2023_114764
crossref_primary_10_1016_j_mtbio_2024_101330
crossref_primary_10_3390_jcs6090247
crossref_primary_10_1016_j_ijbiomac_2023_125062
crossref_primary_10_1016_j_ijbiomac_2022_09_284
crossref_primary_10_1016_j_ijbiomac_2023_125184
crossref_primary_10_1016_j_ijbiomac_2023_127366
crossref_primary_10_1016_j_cej_2023_144266
crossref_primary_10_1016_j_eurpolymj_2025_113723
crossref_primary_10_1166_jbt_2023_3339
crossref_primary_10_1016_j_ijbiomac_2022_10_255
crossref_primary_10_1016_j_molliq_2024_124239
crossref_primary_10_1016_j_eurpolymj_2024_113026
crossref_primary_10_1002_smll_202309485
crossref_primary_10_1016_j_polymer_2023_126358
crossref_primary_10_1016_j_ijbiomac_2024_135567
crossref_primary_10_3390_gels10040256
crossref_primary_10_3390_jcm12175605
crossref_primary_10_1016_j_ijbiomac_2022_12_129
crossref_primary_10_1016_j_addr_2023_114778
crossref_primary_10_1016_j_actbio_2023_05_025
crossref_primary_10_1016_j_cej_2025_160379
crossref_primary_10_1021_acs_biomac_4c01331
crossref_primary_10_1016_j_cis_2025_103425
crossref_primary_10_1016_j_ijbiomac_2023_123696
crossref_primary_10_1016_j_ijbiomac_2023_125353
crossref_primary_10_1016_j_jconrel_2024_11_027
crossref_primary_10_1016_j_ijbiomac_2024_130386
crossref_primary_10_1002_adhm_202402236
crossref_primary_10_1016_j_cej_2024_150372
crossref_primary_10_1016_j_colsurfb_2023_113440
crossref_primary_10_1016_j_ijbiomac_2023_123449
crossref_primary_10_1016_j_ijbiomac_2023_123323
crossref_primary_10_2174_2666731202666230609142801
crossref_primary_10_3390_nano13172470
crossref_primary_10_1016_j_ijbiomac_2022_11_115
crossref_primary_10_1016_j_jconrel_2023_11_019
crossref_primary_10_1016_j_ijbiomac_2022_12_140
crossref_primary_10_1016_j_actbio_2023_01_059
crossref_primary_10_1016_j_bioactmat_2023_04_007
crossref_primary_10_1016_j_ijbiomac_2024_131106
crossref_primary_10_1016_j_ijbiomac_2023_125528
crossref_primary_10_1016_j_cej_2023_144649
crossref_primary_10_1016_j_ijbiomac_2022_08_187
crossref_primary_10_1021_acsomega_3c05682
crossref_primary_10_1016_j_bioadv_2023_213395
crossref_primary_10_1016_j_matdes_2023_112355
crossref_primary_10_1016_j_cclet_2024_109819
crossref_primary_10_1016_j_ijbiomac_2023_128367
crossref_primary_10_3390_pharmaceutics16091233
crossref_primary_10_1093_burnst_tkad040
crossref_primary_10_1016_j_ijbiomac_2023_125138
crossref_primary_10_1016_j_ijbiomac_2023_128801
crossref_primary_10_1016_j_ijbiomac_2024_133517
crossref_primary_10_1016_j_cej_2024_150632
crossref_primary_10_1016_j_ijbiomac_2025_140328
crossref_primary_10_1016_j_carbpol_2023_120723
crossref_primary_10_1016_j_jconrel_2024_12_055
crossref_primary_10_1021_acsami_2c18664
crossref_primary_10_1002_adhm_202302566
crossref_primary_10_1016_j_cej_2024_156869
crossref_primary_10_1016_j_actbio_2023_11_045
crossref_primary_10_3390_ijms241411475
crossref_primary_10_3390_ijms242216286
crossref_primary_10_1016_j_ijbiomac_2023_125028
crossref_primary_10_1016_j_eurpolymj_2022_111763
crossref_primary_10_3390_polym15173648
crossref_primary_10_1016_j_aiepr_2024_10_001
crossref_primary_10_1016_j_ijbiomac_2023_125949
crossref_primary_10_1016_j_cej_2024_152252
crossref_primary_10_1016_j_colsurfb_2023_113430
crossref_primary_10_1021_acsmacrolett_3c00482
crossref_primary_10_1016_j_cej_2024_149493
crossref_primary_10_1002_adhm_202301885
crossref_primary_10_1002_smll_202300111
crossref_primary_10_1016_j_ijbiomac_2023_123256
Cites_doi 10.1016/j.biomaterials.2020.120286
10.1161/CIRCRESAHA.117.311401
10.1016/j.febslet.2007.04.082
10.1002/adfm.202102583
10.1089/wound.2018.0853
10.1016/j.biopha.2020.110047
10.1016/j.jconrel.2019.06.038
10.1016/j.biomaterials.2020.120414
10.1038/s41580-020-0230-3
10.7150/thno.39471
10.1089/ars.2009.2463
10.2203/dose-response.08-014.Rattan
10.1021/acs.biomac.0c00454
10.1038/sj.onc.1209936
10.1126/sciadv.aba5785
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acsmacrolett.2c00290
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2161-1653
EndPage 867
ExternalDocumentID 10_1021_acsmacrolett_2c00290
c14578803
GroupedDBID 55A
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
ED
GGK
GNL
IH9
JG
ROL
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
BAANH
CITATION
CUPRZ
EBS
ED~
JG~
7X8
ID FETCH-LOGICAL-a325t-100cd7dd7463bb3acf234af71bcb9544f64053cc7f5a1f5302f78c633381aedf3
IEDL.DBID ACS
ISSN 2161-1653
IngestDate Fri Jul 11 10:32:30 EDT 2025
Tue Jul 01 01:35:18 EDT 2025
Thu Apr 24 23:03:54 EDT 2025
Thu Jul 21 03:36:55 EDT 2022
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a325t-100cd7dd7463bb3acf234af71bcb9544f64053cc7f5a1f5302f78c633381aedf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2480-7242
0000-0003-4351-4872
PQID 2681813340
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2681813340
crossref_primary_10_1021_acsmacrolett_2c00290
crossref_citationtrail_10_1021_acsmacrolett_2c00290
acs_journals_10_1021_acsmacrolett_2c00290
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-19
PublicationDateYYYYMMDD 2022-07-19
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-19
  day: 19
PublicationDecade 2020
PublicationTitle ACS macro letters
PublicationTitleAlternate ACS Macro Lett
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref10/cit10
ref3/cit3
ref11/cit11
ref12/cit12
ref15/cit15
ref13/cit13
ref14/cit14
ref8/cit8
ref5/cit5
ref2/cit2
ref4/cit4
ref1/cit1
ref7/cit7
References_xml – ident: ref2/cit2
  doi: 10.1016/j.biomaterials.2020.120286
– ident: ref3/cit3
  doi: 10.1161/CIRCRESAHA.117.311401
– ident: ref10/cit10
  doi: 10.1016/j.febslet.2007.04.082
– ident: ref14/cit14
  doi: 10.1002/adfm.202102583
– ident: ref6/cit6
  doi: 10.1089/wound.2018.0853
– ident: ref7/cit7
  doi: 10.1016/j.biopha.2020.110047
– ident: ref8/cit8
  doi: 10.1016/j.jconrel.2019.06.038
– ident: ref11/cit11
  doi: 10.1016/j.biomaterials.2020.120414
– ident: ref1/cit1
  doi: 10.1038/s41580-020-0230-3
– ident: ref9/cit9
  doi: 10.7150/thno.39471
– ident: ref5/cit5
  doi: 10.1089/ars.2009.2463
– ident: ref15/cit15
  doi: 10.2203/dose-response.08-014.Rattan
– ident: ref13/cit13
  doi: 10.1021/acs.biomac.0c00454
– ident: ref4/cit4
  doi: 10.1038/sj.onc.1209936
– ident: ref12/cit12
  doi: 10.1126/sciadv.aba5785
SSID ssj0000561894
Score 2.5995436
Snippet Excessive reactive oxygen species (ROS) production induces oxidative damage to biomolecules, which can lead to the development of chronic diseases....
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 861
Title Mild Hyperthermia-Assisted ROS Scavenging Hydrogels Achieve Diabetic Wound Healing
URI http://dx.doi.org/10.1021/acsmacrolett.2c00290
https://www.proquest.com/docview/2681813340
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4QHODCG_FWkLhw6GiTNN2OaAJNSIDEQHCrEieBibGhrePAr8feWp5CwN2pWjuxP9exP8b2pQPwsYsRublGpIz2kfWJj6R2CJ5Bp8ZRN_LZuW5dq9Pb9PY9UfxawRfJoYHhowG6a1cUNQFURsIUfUZoPMcEhZrtt38qhIbrY-5DgUAmSnQqq265Hx5EMQmGn2PSZ5c8jjMnC-yi6taZXC95qI0KW4OX78Mb__gJi2y-hJz8aLJHltiU7y2z2WbF9LbCLs86XcdbmJEOCA4-dkyEViP7O3550eZtIM55YjNCITfo32E85Udw3_HPnk-u1HSA3xBBE6e2JhRcZdcnx1fNVlRyLURGirRAbxyDy5zLlJbWSgNBSGVClliwjVSpoBHZSYAspCYJRDUUsjpoiRluYrwLco1N9_o9v864Nc4bWfexdla5uGEhGCOTYJxEFyLUBjtAheTlWRnm4zK4SPKPWspLLW0wWVkmh3JoOXFndH9ZFb2tepoM7fhFfq8yeo6qp5KJ6fn-aJjjLkMIJKWKN__x1ltsTlCXBM3fbGyz6WIw8juIXQq7O96wr1hp7n4
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQHOBSoKUqtAVX6qWHbBPbcXaPq1XR0rJUYnndInts01X3UW2yPfDrmckmS0GqENfItpzxxPNN5vEx9lk6AB-7GJGb60TKaB9Zn_hIaofgGXRqHFUjD850_1J9v0lv1lja1MLgJgpcqaiC-A_dBZKv-GxigFLuyrIlgKJJ6KlvIB4RpNjd3nD1a4VAcbuiQBSIZ6JEp7IpmvvPQmSaoHhsmh7fzJW5Od5mV6uNVlkmv1uL0rbg7kkPxxe_yQ57VQNQ3l1qzC5b89PXbLPX8L69YeeD0djxPvqncwKHk5GJ8AxJGxw__znkQyAGeuI2wkFuPrtF68q78Gvk_3q-TLAZAb8muiZORU44cI9dHn-76PWjmnkhMlKkJd7NMbjMuUxpaa00EIRUJmSJBdtJlQoacZ4EyEJqkkDEQyFrg5bo7ybGuyDfsvXpbOrfMW6N80a2faydVS7uWAjGyCQYJ_FCEWqffUGB5PWXU-RVUFwk-b9Symsp7TPZHFAOdQtzYtIYPzMrWs36s2zh8cz4T83Z5yh6CqCYqZ8tilxohDfo1Kv44AW7PmKb_YvBaX56cvbjPdsSVD9BnTk7H9h6OV_4j4hqSntY6fA9IHz23w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYqKhUufQGCPl2pFw4bdtdeb3KM0kZpeRQREIjLyp6x26iQoOymh_76zmw2ESAhRK8r27LHY883O575hPisEMDHGBNyw06krfGR84mPlEECz2Ayi5yNfHBoBqf6-3l2foPqiyZR0khlHcTnU32NoakwkOzS9ysL_OyuqlopcESJvPWnHLlj5e72hsvfKwyM2zUNYkqYJkpMphaJc_cMxOYJytvm6fbtXJuc_gtxsZxs_dLkd2tWuRb8vVPH8b9W81I8b4Co7M4155V44sevxWpvwf-2Lo4PRpcoB-SnThkkXo1sRHvJWoHy-MdQDoGZ6JnjiBrhdPKTrKzswq-R_-Pl_KHNCOQZ0zZJTnaihhvitP_1pDeIGgaGyKo0q-iOjgFzxFwb5ZyyEFKlbcgTB66TaR0M4T0FkIfMJoEJiELeBqPI702sx6A2xcp4MvZbQjqL3qq2jw06jXHHQbBWJcGioosl1dtihwRSNCeoLOrgeJoUN6VUNFLaFmqxSQU0pcyZUePygV7Rstf1vJTHA-0_Lfa_INFzIMWO_WRWFqkhmEPOvY7fPGLWH8Wzoy_9Yv_b4d5bsZZyGgUX6Oy8EyvVdObfE7ip3Idajf8BBtH5Yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mild+Hyperthermia-Assisted+ROS+Scavenging+Hydrogels+Achieve+Diabetic+Wound+Healing&rft.jtitle=ACS+macro+letters&rft.au=Qi%2C+Xiaoliang&rft.au=Tong%2C+Xianqin&rft.au=You%2C+Shengye&rft.au=Mao%2C+Ruiting&rft.date=2022-07-19&rft.issn=2161-1653&rft.eissn=2161-1653&rft.volume=11&rft.issue=7&rft.spage=861&rft.epage=867&rft_id=info:doi/10.1021%2Facsmacrolett.2c00290&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsmacrolett_2c00290
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-1653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-1653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-1653&client=summon