Mild Hyperthermia-Assisted ROS Scavenging Hydrogels Achieve Diabetic Wound Healing
Excessive reactive oxygen species (ROS) production induces oxidative damage to biomolecules, which can lead to the development of chronic diseases. Biocompatible hydrogel antioxidants composed of natural materials, such as polysaccharides and polyphenols, are of significant option for ROS scavenging...
Saved in:
Published in | ACS macro letters Vol. 11; no. 7; pp. 861 - 867 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
19.07.2022
|
Online Access | Get full text |
ISSN | 2161-1653 2161-1653 |
DOI | 10.1021/acsmacrolett.2c00290 |
Cover
Loading…
Abstract | Excessive reactive oxygen species (ROS) production induces oxidative damage to biomolecules, which can lead to the development of chronic diseases. Biocompatible hydrogel antioxidants composed of natural materials, such as polysaccharides and polyphenols, are of significant option for ROS scavenging. However, rapidly achieving hydrogel antioxidants with convenient, economical, safe, and efficient features remains challenging. Herein, facile synthesis of a physically cross-linked polyphenol/polysaccharide hydrogel by introducing tannic acid microsize particles (TAMP) into a cationic guar gum (CG) matrix is reported. Combining antioxidant/photothermal properties of TAMP and mechanical support from injectable CG, the formulated TAMP/CG is explored for treating diabetic wounds. Both in vitro and in vivo assays verify that TAMP/CG can protect the cells from ROS-induced oxidative damage, which can also be strengthened by the local photothermal heating (42 °C) triggered by near-infrared light. Overall, this study establishes the paradigm of enhanced diabetic wound healing by mild hyperthermia-assisted ROS scavenging hydrogels. |
---|---|
AbstractList | Excessive reactive oxygen species (ROS) production induces oxidative damage to biomolecules, which can lead to the development of chronic diseases. Biocompatible hydrogel antioxidants composed of natural materials, such as polysaccharides and polyphenols, are of significant option for ROS scavenging. However, rapidly achieving hydrogel antioxidants with convenient, economical, safe, and efficient features remains challenging. Herein, facile synthesis of a physically cross-linked polyphenol/polysaccharide hydrogel by introducing tannic acid microsize particles (TAMP) into a cationic guar gum (CG) matrix is reported. Combining antioxidant/photothermal properties of TAMP and mechanical support from injectable CG, the formulated TAMP/CG is explored for treating diabetic wounds. Both in vitro and in vivo assays verify that TAMP/CG can protect the cells from ROS-induced oxidative damage, which can also be strengthened by the local photothermal heating (42 °C) triggered by near-infrared light. Overall, this study establishes the paradigm of enhanced diabetic wound healing by mild hyperthermia-assisted ROS scavenging hydrogels.Excessive reactive oxygen species (ROS) production induces oxidative damage to biomolecules, which can lead to the development of chronic diseases. Biocompatible hydrogel antioxidants composed of natural materials, such as polysaccharides and polyphenols, are of significant option for ROS scavenging. However, rapidly achieving hydrogel antioxidants with convenient, economical, safe, and efficient features remains challenging. Herein, facile synthesis of a physically cross-linked polyphenol/polysaccharide hydrogel by introducing tannic acid microsize particles (TAMP) into a cationic guar gum (CG) matrix is reported. Combining antioxidant/photothermal properties of TAMP and mechanical support from injectable CG, the formulated TAMP/CG is explored for treating diabetic wounds. Both in vitro and in vivo assays verify that TAMP/CG can protect the cells from ROS-induced oxidative damage, which can also be strengthened by the local photothermal heating (42 °C) triggered by near-infrared light. Overall, this study establishes the paradigm of enhanced diabetic wound healing by mild hyperthermia-assisted ROS scavenging hydrogels. Excessive reactive oxygen species (ROS) production induces oxidative damage to biomolecules, which can lead to the development of chronic diseases. Biocompatible hydrogel antioxidants composed of natural materials, such as polysaccharides and polyphenols, are of significant option for ROS scavenging. However, rapidly achieving hydrogel antioxidants with convenient, economical, safe, and efficient features remains challenging. Herein, facile synthesis of a physically cross-linked polyphenol/polysaccharide hydrogel by introducing tannic acid microsize particles (TAMP) into a cationic guar gum (CG) matrix is reported. Combining antioxidant/photothermal properties of TAMP and mechanical support from injectable CG, the formulated TAMP/CG is explored for treating diabetic wounds. Both in vitro and in vivo assays verify that TAMP/CG can protect the cells from ROS-induced oxidative damage, which can also be strengthened by the local photothermal heating (42 °C) triggered by near-infrared light. Overall, this study establishes the paradigm of enhanced diabetic wound healing by mild hyperthermia-assisted ROS scavenging hydrogels. |
Author | Pan, Wenhao Hu, Rongdang Zhang, Chenhao Cai, Erya You, Shengye Shen, Jianliang Tong, Xianqin Qi, Xiaoliang Mao, Ruiting |
AuthorAffiliation | State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) School and Hospital of Stomatology Wenzhou Institute University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: University of Chinese Academy of Sciences – name: Wenzhou Institute – name: Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) – name: School and Hospital of Stomatology – name: State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering |
Author_xml | – sequence: 1 givenname: Xiaoliang orcidid: 0000-0002-2480-7242 surname: Qi fullname: Qi, Xiaoliang organization: State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering – sequence: 2 givenname: Xianqin surname: Tong fullname: Tong, Xianqin organization: School and Hospital of Stomatology – sequence: 3 givenname: Shengye surname: You fullname: You, Shengye organization: School and Hospital of Stomatology – sequence: 4 givenname: Ruiting surname: Mao fullname: Mao, Ruiting organization: School and Hospital of Stomatology – sequence: 5 givenname: Erya surname: Cai fullname: Cai, Erya organization: School and Hospital of Stomatology – sequence: 6 givenname: Wenhao surname: Pan fullname: Pan, Wenhao organization: School and Hospital of Stomatology – sequence: 7 givenname: Chenhao surname: Zhang fullname: Zhang, Chenhao organization: School and Hospital of Stomatology – sequence: 8 givenname: Rongdang surname: Hu fullname: Hu, Rongdang email: hurongdang@hotmail.com organization: School and Hospital of Stomatology – sequence: 9 givenname: Jianliang orcidid: 0000-0003-4351-4872 surname: Shen fullname: Shen, Jianliang email: shenjl@wibe.ac.cn organization: Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) |
BookMark | eNqFkE1PAjEQhhuDiYj8Aw979LLYbrsfeCP4gQmGBDQem253CiW7XWy7JPx7a-BAPOhcZpJ5n_fwXKOeaQ0gdEvwiOCE3AvpGiFtW4P3o0RinIzxBeonJCMxyVLaO7uv0NC5LQ6TZqQYsz5avum6imaHHVi_AdtoEU-c085DFS0Xq2glxR7MWpt1CFW2XUPtooncaNhD9KhFCV7L6LPtTGgBUYfgDbpUonYwPO0B-nh-ep_O4vni5XU6mceCJqmPCcayyqsqZxktSyqkSigTKielLMcpYypjOKVS5ioVRKUUJyovZEYpLYiAStEBujv27mz71YHzvNFOQl0LA23neJIVpCCUMhyi7BgNnpyzoPjO6kbYAyeY_1jk5xb5yWLAHn5hUnvhdWu8Fbr-D8ZHOHz5tu2sCTL-Rr4Bp_2QEQ |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2023_158578 crossref_primary_10_1073_pnas_2318391121 crossref_primary_10_1016_j_ijbiomac_2023_128027 crossref_primary_10_1016_j_ccr_2023_215426 crossref_primary_10_1016_j_ijbiomac_2024_130225 crossref_primary_10_1016_j_ijbiomac_2022_12_116 crossref_primary_10_2174_1389201024666221104142457 crossref_primary_10_1021_acs_jafc_3c08466 crossref_primary_10_1021_acs_biomac_4c00080 crossref_primary_10_1016_j_mtbio_2023_100788 crossref_primary_10_1016_j_heliyon_2024_e24909 crossref_primary_10_1016_j_ijbiomac_2023_126010 crossref_primary_10_1016_j_ijbiomac_2024_137819 crossref_primary_10_1016_j_matdes_2025_113631 crossref_primary_10_3390_ijms25041982 crossref_primary_10_1002_advs_202304641 crossref_primary_10_1016_j_ijbiomac_2022_12_063 crossref_primary_10_1039_D3BM00095H crossref_primary_10_3390_foods13111711 crossref_primary_10_1016_j_cej_2023_141852 crossref_primary_10_1007_s40820_023_01099_1 crossref_primary_10_1021_acsnano_3c10552 crossref_primary_10_1016_j_ijbiomac_2024_130851 crossref_primary_10_1016_j_colsurfb_2022_113119 crossref_primary_10_1002_advs_202300816 crossref_primary_10_3390_pharmaceutics16101244 crossref_primary_10_1002_advs_202404143 crossref_primary_10_1016_j_clindermatol_2024_11_002 crossref_primary_10_3390_jfb14020072 crossref_primary_10_1016_j_envres_2023_117087 crossref_primary_10_1002_adfm_202305154 crossref_primary_10_1166_jbt_2023_3343 crossref_primary_10_1016_j_addr_2023_114764 crossref_primary_10_1016_j_mtbio_2024_101330 crossref_primary_10_3390_jcs6090247 crossref_primary_10_1016_j_ijbiomac_2023_125062 crossref_primary_10_1016_j_ijbiomac_2022_09_284 crossref_primary_10_1016_j_ijbiomac_2023_125184 crossref_primary_10_1016_j_ijbiomac_2023_127366 crossref_primary_10_1016_j_cej_2023_144266 crossref_primary_10_1016_j_eurpolymj_2025_113723 crossref_primary_10_1166_jbt_2023_3339 crossref_primary_10_1016_j_ijbiomac_2022_10_255 crossref_primary_10_1016_j_molliq_2024_124239 crossref_primary_10_1016_j_eurpolymj_2024_113026 crossref_primary_10_1002_smll_202309485 crossref_primary_10_1016_j_polymer_2023_126358 crossref_primary_10_1016_j_ijbiomac_2024_135567 crossref_primary_10_3390_gels10040256 crossref_primary_10_3390_jcm12175605 crossref_primary_10_1016_j_ijbiomac_2022_12_129 crossref_primary_10_1016_j_addr_2023_114778 crossref_primary_10_1016_j_actbio_2023_05_025 crossref_primary_10_1016_j_cej_2025_160379 crossref_primary_10_1021_acs_biomac_4c01331 crossref_primary_10_1016_j_cis_2025_103425 crossref_primary_10_1016_j_ijbiomac_2023_123696 crossref_primary_10_1016_j_ijbiomac_2023_125353 crossref_primary_10_1016_j_jconrel_2024_11_027 crossref_primary_10_1016_j_ijbiomac_2024_130386 crossref_primary_10_1002_adhm_202402236 crossref_primary_10_1016_j_cej_2024_150372 crossref_primary_10_1016_j_colsurfb_2023_113440 crossref_primary_10_1016_j_ijbiomac_2023_123449 crossref_primary_10_1016_j_ijbiomac_2023_123323 crossref_primary_10_2174_2666731202666230609142801 crossref_primary_10_3390_nano13172470 crossref_primary_10_1016_j_ijbiomac_2022_11_115 crossref_primary_10_1016_j_jconrel_2023_11_019 crossref_primary_10_1016_j_ijbiomac_2022_12_140 crossref_primary_10_1016_j_actbio_2023_01_059 crossref_primary_10_1016_j_bioactmat_2023_04_007 crossref_primary_10_1016_j_ijbiomac_2024_131106 crossref_primary_10_1016_j_ijbiomac_2023_125528 crossref_primary_10_1016_j_cej_2023_144649 crossref_primary_10_1016_j_ijbiomac_2022_08_187 crossref_primary_10_1021_acsomega_3c05682 crossref_primary_10_1016_j_bioadv_2023_213395 crossref_primary_10_1016_j_matdes_2023_112355 crossref_primary_10_1016_j_cclet_2024_109819 crossref_primary_10_1016_j_ijbiomac_2023_128367 crossref_primary_10_3390_pharmaceutics16091233 crossref_primary_10_1093_burnst_tkad040 crossref_primary_10_1016_j_ijbiomac_2023_125138 crossref_primary_10_1016_j_ijbiomac_2023_128801 crossref_primary_10_1016_j_ijbiomac_2024_133517 crossref_primary_10_1016_j_cej_2024_150632 crossref_primary_10_1016_j_ijbiomac_2025_140328 crossref_primary_10_1016_j_carbpol_2023_120723 crossref_primary_10_1016_j_jconrel_2024_12_055 crossref_primary_10_1021_acsami_2c18664 crossref_primary_10_1002_adhm_202302566 crossref_primary_10_1016_j_cej_2024_156869 crossref_primary_10_1016_j_actbio_2023_11_045 crossref_primary_10_3390_ijms241411475 crossref_primary_10_3390_ijms242216286 crossref_primary_10_1016_j_ijbiomac_2023_125028 crossref_primary_10_1016_j_eurpolymj_2022_111763 crossref_primary_10_3390_polym15173648 crossref_primary_10_1016_j_aiepr_2024_10_001 crossref_primary_10_1016_j_ijbiomac_2023_125949 crossref_primary_10_1016_j_cej_2024_152252 crossref_primary_10_1016_j_colsurfb_2023_113430 crossref_primary_10_1021_acsmacrolett_3c00482 crossref_primary_10_1016_j_cej_2024_149493 crossref_primary_10_1002_adhm_202301885 crossref_primary_10_1002_smll_202300111 crossref_primary_10_1016_j_ijbiomac_2023_123256 |
Cites_doi | 10.1016/j.biomaterials.2020.120286 10.1161/CIRCRESAHA.117.311401 10.1016/j.febslet.2007.04.082 10.1002/adfm.202102583 10.1089/wound.2018.0853 10.1016/j.biopha.2020.110047 10.1016/j.jconrel.2019.06.038 10.1016/j.biomaterials.2020.120414 10.1038/s41580-020-0230-3 10.7150/thno.39471 10.1089/ars.2009.2463 10.2203/dose-response.08-014.Rattan 10.1021/acs.biomac.0c00454 10.1038/sj.onc.1209936 10.1126/sciadv.aba5785 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acsmacrolett.2c00290 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2161-1653 |
EndPage | 867 |
ExternalDocumentID | 10_1021_acsmacrolett_2c00290 c14578803 |
GroupedDBID | 55A 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ ED GGK GNL IH9 JG ROL UI2 VF5 VG9 W1F AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV BAANH CITATION CUPRZ EBS ED~ JG~ 7X8 |
ID | FETCH-LOGICAL-a325t-100cd7dd7463bb3acf234af71bcb9544f64053cc7f5a1f5302f78c633381aedf3 |
IEDL.DBID | ACS |
ISSN | 2161-1653 |
IngestDate | Fri Jul 11 10:32:30 EDT 2025 Tue Jul 01 01:35:18 EDT 2025 Thu Apr 24 23:03:54 EDT 2025 Thu Jul 21 03:36:55 EDT 2022 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a325t-100cd7dd7463bb3acf234af71bcb9544f64053cc7f5a1f5302f78c633381aedf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2480-7242 0000-0003-4351-4872 |
PQID | 2681813340 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2681813340 crossref_primary_10_1021_acsmacrolett_2c00290 crossref_citationtrail_10_1021_acsmacrolett_2c00290 acs_journals_10_1021_acsmacrolett_2c00290 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-19 |
PublicationDateYYYYMMDD | 2022-07-19 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-19 day: 19 |
PublicationDecade | 2020 |
PublicationTitle | ACS macro letters |
PublicationTitleAlternate | ACS Macro Lett |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref10/cit10 ref3/cit3 ref11/cit11 ref12/cit12 ref15/cit15 ref13/cit13 ref14/cit14 ref8/cit8 ref5/cit5 ref2/cit2 ref4/cit4 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref2/cit2 doi: 10.1016/j.biomaterials.2020.120286 – ident: ref3/cit3 doi: 10.1161/CIRCRESAHA.117.311401 – ident: ref10/cit10 doi: 10.1016/j.febslet.2007.04.082 – ident: ref14/cit14 doi: 10.1002/adfm.202102583 – ident: ref6/cit6 doi: 10.1089/wound.2018.0853 – ident: ref7/cit7 doi: 10.1016/j.biopha.2020.110047 – ident: ref8/cit8 doi: 10.1016/j.jconrel.2019.06.038 – ident: ref11/cit11 doi: 10.1016/j.biomaterials.2020.120414 – ident: ref1/cit1 doi: 10.1038/s41580-020-0230-3 – ident: ref9/cit9 doi: 10.7150/thno.39471 – ident: ref5/cit5 doi: 10.1089/ars.2009.2463 – ident: ref15/cit15 doi: 10.2203/dose-response.08-014.Rattan – ident: ref13/cit13 doi: 10.1021/acs.biomac.0c00454 – ident: ref4/cit4 doi: 10.1038/sj.onc.1209936 – ident: ref12/cit12 doi: 10.1126/sciadv.aba5785 |
SSID | ssj0000561894 |
Score | 2.5995436 |
Snippet | Excessive reactive oxygen species (ROS) production induces oxidative damage to biomolecules, which can lead to the development of chronic diseases.... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 861 |
Title | Mild Hyperthermia-Assisted ROS Scavenging Hydrogels Achieve Diabetic Wound Healing |
URI | http://dx.doi.org/10.1021/acsmacrolett.2c00290 https://www.proquest.com/docview/2681813340 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4QHODCG_FWkLhw6GiTNN2OaAJNSIDEQHCrEieBibGhrePAr8feWp5CwN2pWjuxP9exP8b2pQPwsYsRublGpIz2kfWJj6R2CJ5Bp8ZRN_LZuW5dq9Pb9PY9UfxawRfJoYHhowG6a1cUNQFURsIUfUZoPMcEhZrtt38qhIbrY-5DgUAmSnQqq265Hx5EMQmGn2PSZ5c8jjMnC-yi6taZXC95qI0KW4OX78Mb__gJi2y-hJz8aLJHltiU7y2z2WbF9LbCLs86XcdbmJEOCA4-dkyEViP7O3550eZtIM55YjNCITfo32E85Udw3_HPnk-u1HSA3xBBE6e2JhRcZdcnx1fNVlRyLURGirRAbxyDy5zLlJbWSgNBSGVClliwjVSpoBHZSYAspCYJRDUUsjpoiRluYrwLco1N9_o9v864Nc4bWfexdla5uGEhGCOTYJxEFyLUBjtAheTlWRnm4zK4SPKPWspLLW0wWVkmh3JoOXFndH9ZFb2tepoM7fhFfq8yeo6qp5KJ6fn-aJjjLkMIJKWKN__x1ltsTlCXBM3fbGyz6WIw8juIXQq7O96wr1hp7n4 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQHOBSoKUqtAVX6qWHbBPbcXaPq1XR0rJUYnndInts01X3UW2yPfDrmckmS0GqENfItpzxxPNN5vEx9lk6AB-7GJGb60TKaB9Zn_hIaofgGXRqHFUjD850_1J9v0lv1lja1MLgJgpcqaiC-A_dBZKv-GxigFLuyrIlgKJJ6KlvIB4RpNjd3nD1a4VAcbuiQBSIZ6JEp7IpmvvPQmSaoHhsmh7fzJW5Od5mV6uNVlkmv1uL0rbg7kkPxxe_yQ57VQNQ3l1qzC5b89PXbLPX8L69YeeD0djxPvqncwKHk5GJ8AxJGxw__znkQyAGeuI2wkFuPrtF68q78Gvk_3q-TLAZAb8muiZORU44cI9dHn-76PWjmnkhMlKkJd7NMbjMuUxpaa00EIRUJmSJBdtJlQoacZ4EyEJqkkDEQyFrg5bo7ybGuyDfsvXpbOrfMW6N80a2faydVS7uWAjGyCQYJ_FCEWqffUGB5PWXU-RVUFwk-b9Symsp7TPZHFAOdQtzYtIYPzMrWs36s2zh8cz4T83Z5yh6CqCYqZ8tilxohDfo1Kv44AW7PmKb_YvBaX56cvbjPdsSVD9BnTk7H9h6OV_4j4hqSntY6fA9IHz23w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYqKhUufQGCPl2pFw4bdtdeb3KM0kZpeRQREIjLyp6x26iQoOymh_76zmw2ESAhRK8r27LHY883O575hPisEMDHGBNyw06krfGR84mPlEECz2Ayi5yNfHBoBqf6-3l2foPqiyZR0khlHcTnU32NoakwkOzS9ysL_OyuqlopcESJvPWnHLlj5e72hsvfKwyM2zUNYkqYJkpMphaJc_cMxOYJytvm6fbtXJuc_gtxsZxs_dLkd2tWuRb8vVPH8b9W81I8b4Co7M4155V44sevxWpvwf-2Lo4PRpcoB-SnThkkXo1sRHvJWoHy-MdQDoGZ6JnjiBrhdPKTrKzswq-R_-Pl_KHNCOQZ0zZJTnaihhvitP_1pDeIGgaGyKo0q-iOjgFzxFwb5ZyyEFKlbcgTB66TaR0M4T0FkIfMJoEJiELeBqPI702sx6A2xcp4MvZbQjqL3qq2jw06jXHHQbBWJcGioosl1dtihwRSNCeoLOrgeJoUN6VUNFLaFmqxSQU0pcyZUePygV7Rstf1vJTHA-0_Lfa_INFzIMWO_WRWFqkhmEPOvY7fPGLWH8Wzoy_9Yv_b4d5bsZZyGgUX6Oy8EyvVdObfE7ip3Idajf8BBtH5Yg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mild+Hyperthermia-Assisted+ROS+Scavenging+Hydrogels+Achieve+Diabetic+Wound+Healing&rft.jtitle=ACS+macro+letters&rft.au=Qi%2C+Xiaoliang&rft.au=Tong%2C+Xianqin&rft.au=You%2C+Shengye&rft.au=Mao%2C+Ruiting&rft.date=2022-07-19&rft.issn=2161-1653&rft.eissn=2161-1653&rft.volume=11&rft.issue=7&rft.spage=861&rft.epage=867&rft_id=info:doi/10.1021%2Facsmacrolett.2c00290&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsmacrolett_2c00290 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-1653&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-1653&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-1653&client=summon |