Transient electromagnetic inversion to image the shallow subsurface based on convolutional bidirectional long short-term memory neural networks
SUMMARY The conventional transient electromagnetic inversion method has a low calculation speed and precision and is susceptible to falling into local minima, which does not meet the fine detection requirements of urban underground space. In this study, we proposed a novel inversion method based on...
Saved in:
Published in | Geophysical journal international Vol. 239; no. 1; pp. 173 - 191 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SUMMARY
The conventional transient electromagnetic inversion method has a low calculation speed and precision and is susceptible to falling into local minima, which does not meet the fine detection requirements of urban underground space. In this study, we proposed a novel inversion method based on convolutional bidirectional long short-term memory neural networks for shallow subsurface transient electromagnetic inversion. This network structure possessed strong spatial feature extraction capabilities and a proficient understanding of sequential data, thereby addressing the issues of slow conventional inversion computations and inadequate inversion accuracy. Utilizing the apparent resistivity from a three-layer model as the sample input and the real model as the target, the network was trained using batch normalization and dropout techniques to accelerate the convergence rate. The resulting model achieved real-time inversion speeds and high accuracy, with robust generalization capabilities and adaptability to new data. To assess the inversion performance, we used a novel 1-D inversion error calculation index, the correlation area loss error, for a more accurate measurement. Numerical simulation experiments showed that the proposed method required only 2.121 s to invert data from 100 observation points. The inversion efficiency was significantly superior to the conventional methods, maintaining excellent accuracy while effectively discerning subsurface electrical stratification in geophysics. Applying convolutional bidirectional long short-term memory neural networks to multidimensional and field data yielded results superior to those of conventional inversion, demonstrating the promising applicability and generalization of this approach. This study offers an efficient solution for shallow subsurface transient electromagnetic exploration and holds potential for application in other areas. |
---|---|
AbstractList | The conventional transient electromagnetic inversion method has a low calculation speed and precision and is susceptible to falling into local minima, which does not meet the fine detection requirements of urban underground space. In this study, we proposed a novel inversion method based on convolutional bidirectional long short-term memory neural networks for shallow subsurface transient electromagnetic inversion. This network structure possessed strong spatial feature extraction capabilities and a proficient understanding of sequential data, thereby addressing the issues of slow conventional inversion computations and inadequate inversion accuracy. Utilizing the apparent resistivity from a three-layer model as the sample input and the real model as the target, the network was trained using batch normalization and dropout techniques to accelerate the convergence rate. The resulting model achieved real-time inversion speeds and high accuracy, with robust generalization capabilities and adaptability to new data. To assess the inversion performance, we used a novel 1-D inversion error calculation index, the correlation area loss error, for a more accurate measurement. Numerical simulation experiments showed that the proposed method required only 2.121 s to invert data from 100 observation points. The inversion efficiency was significantly superior to the conventional methods, maintaining excellent accuracy while effectively discerning subsurface electrical stratification in geophysics. Applying convolutional bidirectional long short-term memory neural networks to multidimensional and field data yielded results superior to those of conventional inversion, demonstrating the promising applicability and generalization of this approach. This study offers an efficient solution for shallow subsurface transient electromagnetic exploration and holds potential for application in other areas. SUMMARY The conventional transient electromagnetic inversion method has a low calculation speed and precision and is susceptible to falling into local minima, which does not meet the fine detection requirements of urban underground space. In this study, we proposed a novel inversion method based on convolutional bidirectional long short-term memory neural networks for shallow subsurface transient electromagnetic inversion. This network structure possessed strong spatial feature extraction capabilities and a proficient understanding of sequential data, thereby addressing the issues of slow conventional inversion computations and inadequate inversion accuracy. Utilizing the apparent resistivity from a three-layer model as the sample input and the real model as the target, the network was trained using batch normalization and dropout techniques to accelerate the convergence rate. The resulting model achieved real-time inversion speeds and high accuracy, with robust generalization capabilities and adaptability to new data. To assess the inversion performance, we used a novel 1-D inversion error calculation index, the correlation area loss error, for a more accurate measurement. Numerical simulation experiments showed that the proposed method required only 2.121 s to invert data from 100 observation points. The inversion efficiency was significantly superior to the conventional methods, maintaining excellent accuracy while effectively discerning subsurface electrical stratification in geophysics. Applying convolutional bidirectional long short-term memory neural networks to multidimensional and field data yielded results superior to those of conventional inversion, demonstrating the promising applicability and generalization of this approach. This study offers an efficient solution for shallow subsurface transient electromagnetic exploration and holds potential for application in other areas. |
Author | Li, Jiachen Zhang, Jifeng Shi, Yu Ma, Ziben You, Xiran |
Author_xml | – sequence: 1 givenname: Yu orcidid: 0009-0001-1544-2042 surname: Shi fullname: Shi, Yu – sequence: 2 givenname: Jifeng surname: Zhang fullname: Zhang, Jifeng email: zjf0201@126.com – sequence: 3 givenname: Xiran surname: You fullname: You, Xiran – sequence: 4 givenname: Ziben surname: Ma fullname: Ma, Ziben – sequence: 5 givenname: Jiachen surname: Li fullname: Li, Jiachen |
BookMark | eNp9kE1qwzAQhUVJoUnaVS-gVTfFjWRbcrwsoX8Q6CaF7MxYlh2lshQkuSGn6JWrkKwK7WqYmffeDN8EjYw1EqFbSh4oKbNZt1WzrgOZsuwCjWnGWZLmfD1CY1IynrCcrK_QxPstITSn-XyMvlcOjFfSBCy1FMHZHjojgxJYmS_pvLIGB4tVHEscNhL7DWht99gPtR9cC0LiGrxscBQKa76sHkI0gca1apSLmadOW9NFs3UhCdL1uJe9dQds5ODiNp7cW_fpr9FlC9rLm3Odoo_np9XiNVm-v7wtHpcJZGkeklo0RZOmadEWTGS8LRm0ZSvmJeXkOKsZyXJaF01RcAYg5nSec054U0Je1MCzKaKnXOGs9062lVABjq8GB0pXlFRHolUkWp2JRs_9L8_ORS7u8If67qS2w-5f4Q9c043o |
CitedBy_id | crossref_primary_10_1016_j_measurement_2024_116494 |
Cites_doi | 10.1016/j.petrol.2021.108838 10.1029/96GL01671 10.1109/ACCESS.2020.3013626 10.1190/1.1442303 10.6038/cjg2018L0064 10.32389/JEEG19-087 10.1093/gji/ggaa161 10.6038/cjg20170930 10.6038/pg20170323 10.1016/j.cageo.2020.104434 10.6038/cjg20171226 10.1190/1.1440931 10.1190/1.2736195 10.6038/pg2021EE0497 10.1190/geo2021-0335.1 10.1016/j.jappgeo.2021.104290 10.6038/cjg20141033 10.6038/cjg2019M0690 10.11772/j.issn.1001-9081.2018041289 10.11720/wtyht.2023.1547 10.6038/cjg2022P0572 10.1109/LGRS.2019.2900992 10.1038/323533a0 10.1016/j.jappgeo.2022.104675 10.1155/2019/6469089 10.11720/wtyht.2021.1511 10.1111/1365-2478.12302 10.1029/2021GL097165 10.1093/gji/ggz204 10.12363/issn.1001-1986.22.12.1000 10.1046/j.1365-246X.2002.01809.x 10.1016/j.cageo.2020.104681 10.1093/gji/ggad032 10.1093/gji/ggaa424 10.1162/tacl_a_00104 10.6038/cjg20140922 10.1093/gji/ggx495 10.1111/1365-2478.13136 10.3390/math11091985 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2024 |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2024 |
DBID | TOX AAYXX CITATION |
DOI | 10.1093/gji/ggae253 |
DatabaseName | Oxford Journals Open Access Collection CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1365-246X |
EndPage | 191 |
ExternalDocumentID | 10_1093_gji_ggae253 10.1093/gji/ggae253 |
GroupedDBID | -~X .2P .3N .GA .I3 .Y3 0R~ 10A 1OC 1TH 29H 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP ABAZT ABCQN ABEJV ABEML ABEUO ABGNP ABIXL ABNGD ABNKS ABPTD ABQLI ABSMQ ABVLG ABXVV ABZBJ ACCFJ ACFRR ACGFS ACSCC ACUFI ACUKT ACUTJ ACUXJ ACXQS ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRTK ADVEK ADYVW ADZOD ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AEWNT AFBPY AFEBI AFFZL AFIYH AFOFC AFZJQ AGINJ AGKRT AGQPQ AGSYK AHEFC AHGBF AHXPO AI. AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APJGH ASAOO ATDFG AXUDD AZFZN AZVOD BAYMD BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE COF CS3 CXTWN D-E D-F DAKXR DC6 DCZOG DFGAJ DILTD DR2 D~K EBS EE~ EJD F00 F04 F9B FA8 FEDTE FLIZI FLUFQ FOEOM FRJ FZ0 GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF JXSIZ K48 KBUDW KOP KQ8 KSI KSN LC2 LC3 LH4 LP6 LP7 LW6 MBTAY MK4 N9A NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OIG OJQWA O~Y P2P P2X P4D PAFKI PB- PEELM Q1. Q11 Q5Y QB0 ROL ROZ RUSNO RW1 RX1 RXO TJP TOX UB1 VH1 VOH W8V W99 WQJ WYUIH XG1 YAYTL YKOAZ YXANX ZCG ZY4 ZZE ~02 AAYXX CITATION |
ID | FETCH-LOGICAL-a324t-bcd7d2227f75c36f95af9fc891607f75b50341b7d7765aac81846606d9a47ba63 |
IEDL.DBID | TOX |
ISSN | 0956-540X |
IngestDate | Tue Jul 01 03:21:36 EDT 2025 Thu Apr 24 23:07:55 EDT 2025 Mon Jun 30 08:34:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Neural networks, fuzzy logic Electromagnetic theory Electrical resistivity tomography (ERT) |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a324t-bcd7d2227f75c36f95af9fc891607f75b50341b7d7765aac81846606d9a47ba63 |
ORCID | 0009-0001-1544-2042 |
OpenAccessLink | https://dx.doi.org/10.1093/gji/ggae253 |
PageCount | 19 |
ParticipantIDs | crossref_citationtrail_10_1093_gji_ggae253 crossref_primary_10_1093_gji_ggae253 oup_primary_10_1093_gji_ggae253 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geophysical journal international |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Liang (2024082012212814900_bib17) 2019; 2019 Zhang (2024082012212814900_bib44) 2022; 47 Shan (2024082012212814900_bib25) 2021; 205 Bording (2024082012212814900_bib4) 2021; 187 Paitz (2024082012212814900_bib20) 2018; 212 Moghadas (2024082012212814900_bib18) 2020; 222 Chiu (2024082012212814900_bib7) 2015 Gu (2024082012212814900_bib13) 2023; 51 Wu (2024082012212814900_bib33) 2021; 224 Wu (2024082012212814900_bib34) 2022; 49 Dai (2024082012212814900_bib9) 2017; 32 Wu (2024082012212814900_bib32) 2021; 69 Yin (2024082012212814900_bib40) 2014; 57 Feng (2024082012212814900_bib12) 2020; 25 Li (2024082012212814900_bib15) 2020; 137 Fan (2024082012212814900_bib11) 2022; 65 He (2024082012212814900_bib14) 2022; 19 Wang (2024082012212814900_bib30) 2021; 36 Cheng (2024082012212814900_bib6) 2014; 57 Puzyrev (2024082012212814900_bib22) 2021; 149 Xue (2024082012212814900_bib38) 2008; 23 Constable (2024082012212814900_bib8) 1987; 52 Puzyrev (2024082012212814900_bib21) 2018; 218 Rumelhart (2024082012212814900_bib24) 1986; 323 Zhang (2024082012212814900_bib43) 2023; 11 Qin (2024082012212814900_bib23) 2019; 16 Siami-Namini (2024082012212814900_bib27) 2019 Xue (2024082012212814900_bib37) 2020; 8 Chen (2024082012212814900_bib5) 2017; 60 Li (2024082012212814900_bib16) 2018; 38 Zhang (2024082012212814900_bib42) 2022; 202 Shibutani (2024082012212814900_bib26) 2013; 23 Asif (2024082012212814900_bib2) 2022; 87 You (2024082012212814900_bib41) 2023; 47 Wu (2024082012212814900_bib31) 2021; 45 Xian (2024082012212814900_bib35) 2022; 19 Andersen (2024082012212814900_bib1) 2016; 64 Beaty (2024082012212814900_bib3) 2002; 151 Deleersnyder (2024082012212814900_bib10) 2023; 233 Wang (2024082012212814900_bib29) 2018; 61 Xu (2024082012212814900_bib36) 2017; 60 Nabighian (2024082012212814900_bib19) 1979; 44 Yin (2024082012212814900_bib39) 2007; 72 Sun (2024082012212814900_bib28) 2019; 62 |
References_xml | – volume: 205 start-page: 108838 issue: 2 year: 2021 ident: 2024082012212814900_bib25 article-title: CNN-BiLSTM hybrid neural networks with attention mechanism for well log prediction publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2021.108838 – volume: 23 start-page: 1829 issue: 14 year: 2013 ident: 2024082012212814900_bib26 article-title: Genetic algorithm inversion for receiver functions with application to crust and uppermost mantle structure beneath eastern australia publication-title: Geophys. Res. Lett. doi: 10.1029/96GL01671 – volume: 8 start-page: 146172 year: 2020 ident: 2024082012212814900_bib37 article-title: Development of the inversion method for transient electromagnetic data publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3013626 – volume: 52 start-page: 289 issue: 3 year: 1987 ident: 2024082012212814900_bib8 article-title: Occam's inversion; a practical algorithm for generating smooth models from electromagnetic sounding data publication-title: Geophysics doi: 10.1190/1.1442303 – volume: 61 start-page: 1563 issue: 4 year: 2018 ident: 2024082012212814900_bib29 article-title: Magnetotelluric inversion based on BP neural network optimized by genetic algorithm publication-title: Chinese J. Geophys. doi: 10.6038/cjg2018L0064 – volume: 25 start-page: 355 issue: 3 year: 2020 ident: 2024082012212814900_bib12 article-title: Resistivity-depth imaging with the airborne transient electromagnetic method based on an artificial neural network publication-title: J. Environ. Eng. Geophys. doi: 10.32389/JEEG19-087 – volume: 222 start-page: 247 issue: 1 year: 2020 ident: 2024082012212814900_bib18 article-title: One-dimensional deep learning inversion of electromagnetic induction data using convolutional neural network publication-title: Geophys. J. Int. doi: 10.1093/gji/ggaa161 – volume: 19 start-page: 536 issue: 4 year: 2022 ident: 2024082012212814900_bib35 article-title: Ground-based towed transient electromagnetic imaging method based on deep learning publication-title: Chinese J. Eng. Geophys. – volume: 23 start-page: 1165 issue: 4 year: 2008 ident: 2024082012212814900_bib38 article-title: Research progress in TEM forward modeling and inversion calculation publication-title: Prog. Geophys. – volume: 60 start-page: 3667 issue: 9 year: 2017 ident: 2024082012212814900_bib5 article-title: 1D OCCAM inversion of SOTEM data and its application to 3D models publication-title: Chinese J. Geophys. doi: 10.6038/cjg20170930 – volume: 32 start-page: 1121 issue: 3 year: 2017 ident: 2024082012212814900_bib9 article-title: Research on one-dimensional inversion effect of transient electromagnetic method three-dimensional model data publication-title: Prog. Geophys. doi: 10.6038/pg20170323 – volume: 137 year: 2020 ident: 2024082012212814900_bib15 article-title: BP neural network and improved differential evolution for transient electromagnetic inversion publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2020.104434 – volume: 60 start-page: 4866 issue: 12 year: 2017 ident: 2024082012212814900_bib36 article-title: Three-dimensional inversion of frequency-domain em data from a large rectangular loop using the non-linear conjugated gradient method publication-title: Chinese J. Geophys. doi: 10.6038/cjg20171226 – volume: 44 start-page: 1700 year: 1979 ident: 2024082012212814900_bib19 article-title: Quasi-static transient response of a conducting half space—an approximate representation publication-title: Geophysics doi: 10.1190/1.1440931 – volume: 72 start-page: F189 issue: 4 year: 2007 ident: 2024082012212814900_bib39 article-title: Simulated annealing for airborne EM inversion publication-title: Geophysics doi: 10.1190/1.2736195 – volume: 36 start-page: 2204 issue: 5 year: 2021 ident: 2024082012212814900_bib30 article-title: Geophysical exploration and application for urban underground space publication-title: Prog. Geophys. doi: 10.6038/pg2021EE0497 – volume: 87 start-page: E177 issue: 4 year: 2022 ident: 2024082012212814900_bib2 article-title: Integrating neural networks in least-squares inversion of airborne time-domain electromagnetic data Br publication-title: Geophysics doi: 10.1190/geo2021-0335.1 – volume: 187 start-page: 104290 year: 2021 ident: 2024082012212814900_bib4 article-title: Machine learning based fast forward modelling of ground-based time-domain electromagnetic data publication-title: J. appl. Geophys. doi: 10.1016/j.jappgeo.2021.104290 – volume: 57 start-page: 3478 issue: 10 year: 2014 ident: 2024082012212814900_bib6 article-title: Study on particle swarm optimization inversion of mine transient electromagnetic method in whole-space publication-title: Chinese J. Geophys. doi: 10.6038/cjg20141033 – volume: 62 start-page: 4860 issue: 12 year: 2019 ident: 2024082012212814900_bib28 article-title: L1-norm based nonlinear inversion of transient electromagnetic data publication-title: Chinese J. Geophys. doi: 10.6038/cjg2019M0690 – volume: 38 start-page: 3075 issue: 11 year: 2018 ident: 2024082012212814900_bib16 article-title: Text sentiment analysis based on feature fusion of convolution neural network and bidirectional long short-term memory network publication-title: J. Comput. Appl. doi: 10.11772/j.issn.1001-9081.2018041289 – volume: 47 start-page: 1206 issue: 5 year: 2023 ident: 2024082012212814900_bib41 article-title: Transient electromagnetic imaging method based on artificial neural network publication-title: Geophys. Geochem. Explor. doi: 10.11720/wtyht.2023.1547 – volume: 65 start-page: 3650 issue: 9 year: 2022 ident: 2024082012212814900_bib11 article-title: TEM real-time inversion based on long-short term memory network publication-title: Chinese J. Geophys. doi: 10.6038/cjg2022P0572 – volume: 16 start-page: 1373 issue: 9 year: 2019 ident: 2024082012212814900_bib23 article-title: Fast resistivity imaging of transient electromagnetic using ANN publication-title: Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2900992 – year: 2019 ident: 2024082012212814900_bib27 article-title: A comparative analysis of forecasting financial time series using ARIMA, LSTM, and BiLSTM – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 2024082012212814900_bib24 article-title: Learning representations by back propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 202 year: 2022 ident: 2024082012212814900_bib42 article-title: Inversion of airborne transient electromagnetic data based on reference point lateral constraint publication-title: J. appl. Geophys. doi: 10.1016/j.jappgeo.2022.104675 – volume: 2019 start-page: 1 year: 2019 ident: 2024082012212814900_bib17 article-title: Research on apparent resistivity imaging of transient electromagnetic method for oil and gas pipelines based on GA-BP neural network publication-title: Math. Probl. Eng. doi: 10.1155/2019/6469089 – volume: 45 start-page: 750−757 issue: 3 year: 2021 ident: 2024082012212814900_bib31 article-title: The calculation of full-region apparent resistivity of central loop TEM based on deep learning publication-title: Geophys. Geochem. Explor. doi: 10.11720/wtyht.2021.1511 – volume: 64 start-page: 741 issue: 3 year: 2016 ident: 2024082012212814900_bib1 article-title: Artificial neural networks for removal of couplings in airborne transient electromagnetic data publication-title: Geophys. Prospect. doi: 10.1111/1365-2478.12302 – volume: 49 issue: 10 year: 2022 ident: 2024082012212814900_bib34 article-title: Instantaneous inversion of airborne electromagnetic data based on deep learning publication-title: Geophys. Res. Lett. doi: 10.1029/2021GL097165 – volume: 218 start-page: 817 issue: 2 year: 2018 ident: 2024082012212814900_bib21 article-title: Deep learning electromagnetic inversion with convolutional neural networks publication-title: Geophys. J. Int. doi: 10.1093/gji/ggz204 – volume: 51 start-page: 134−143 issue: 10 year: 2023 ident: 2024082012212814900_bib13 article-title: An attention mechanism-based CNN-BiLSTM real-time transient electromagnetic method publication-title: Coal Geol. Explor. doi: 10.12363/issn.1001-1986.22.12.1000 – volume: 151 start-page: 622 issue: 2 year: 2002 ident: 2024082012212814900_bib3 article-title: Simulated annealing inversion of multimode rayleigh wave dispersion curves for geological structure publication-title: Geophys. J. R. astr. Soc. doi: 10.1046/j.1365-246X.2002.01809.x – volume: 47 start-page: 2698 issue: 7 year: 2022 ident: 2024082012212814900_bib44 article-title: Lateral constrained inversion of E-EX wide field data publication-title: J. China Coal Soc. – volume: 149 start-page: 104681 year: 2021 ident: 2024082012212814900_bib22 article-title: Inversion of 1D frequency- and time-domain electromagnetic data with convolutional neural networks publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2020.104681 – volume: 233 start-page: 1847 issue: 3 year: 2023 ident: 2024082012212814900_bib10 article-title: Flexible quasi-2D inversion of time-domain AEM data, using a wavelet-based complexity measure publication-title: Geophys. J. Int. doi: 10.1093/gji/ggad032 – volume: 224 start-page: 669 issue: 1 year: 2021 ident: 2024082012212814900_bib33 article-title: De-noising of transient electromagnetic data based on the long short-term memory-autoencoder publication-title: Geophys. J. Int. doi: 10.1093/gji/ggaa424 – start-page: 357 volume-title: Trans. Assoc. Comput. Linguist. year: 2015 ident: 2024082012212814900_bib7 article-title: Named entity recognition with bidirectional LSTM-CNNS doi: 10.1162/tacl_a_00104 – volume: 57 start-page: 2971 issue: 09 year: 2014 ident: 2024082012212814900_bib40 article-title: Trans-dimensional bayesian inversion of frequency-domain airborne EM data publication-title: Chinese J. Geophys. doi: 10.6038/cjg20140922 – volume: 212 start-page: 1468 issue: 2 year: 2018 ident: 2024082012212814900_bib20 article-title: A neural network for noise correlation classification publication-title: Geophys. J. Int. doi: 10.1093/gji/ggx495 – volume: 69 start-page: 1761 issue: 8-9 year: 2021 ident: 2024082012212814900_bib32 article-title: Convolutional neural network inversion of airborne transient electromagnetic data publication-title: Geophys. Prospect. doi: 10.1111/1365-2478.13136 – volume: 19 start-page: 559 issue: 5 year: 2022 ident: 2024082012212814900_bib14 article-title: Geophysical exploration methods for strong interference urban underground space publication-title: Chinese J. Eng. Geophys. – volume: 11 issue: 9 year: 2023 ident: 2024082012212814900_bib43 article-title: Stock price prediction using CNN-BiLSTM-attention model publication-title: Mathematics doi: 10.3390/math11091985 |
SSID | ssj0014148 |
Score | 2.4485517 |
Snippet | SUMMARY
The conventional transient electromagnetic inversion method has a low calculation speed and precision and is susceptible to falling into local minima,... The conventional transient electromagnetic inversion method has a low calculation speed and precision and is susceptible to falling into local minima, which... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 173 |
Title | Transient electromagnetic inversion to image the shallow subsurface based on convolutional bidirectional long short-term memory neural networks |
Volume | 239 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bS8MwFA4yEHwRrzgvMw8-CWVlbZrmUcQxBPVlg76VXEtla2XtFH-Ff9mTJhOVoY9NTwjk9n1JzvkOQleSh1rJUMESZyKIYS0GnFAVKJPqmMESE7ENFH54TCaz-D4jmXeQbTY84bNoWDyXw6LgekSsqCfAr5XInz5lX48F0EK6ltQDApL5MLxfdX8Ajw1m-4Yj4z206wkgvnEjto-2dHWAtjtHTNkcoo8OPGyQIvYZaha8qGykIS6rV3e5hdsal1CsMbA33Nh0KPUbbmALWC0NlxpbaFIYDK1PuZ9b0KYoHYC5r3ldFVAZ6Hdgt2e8sD6379gKXMLfyrmHN0doNr6b3k4CnzQh4MCN2kBIRZUNcDWUyCgxjHDDjEyZVZKDMkFCAC5BFaUJ4VwCYMcJnGIU4zEVPImOUa-qK32CMCehZHDeIMZEMQy14JQLJlNhZfAiI_roet2jufSK4jaxxTx3L9tRDt2f--7vw7xYG784IY3NZpcwNH9ZnP5rcYZ2RkA9nMvdOeq1y5W-AOrQikF35B500-cTd7jIpA |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transient+electromagnetic+inversion+to+image+the+shallow+subsurface+based+on+convolutional+bidirectional+long+short-term+memory+neural+networks&rft.jtitle=Geophysical+journal+international&rft.au=Shi%2C+Yu&rft.au=Zhang%2C+Jifeng&rft.au=You%2C+Xiran&rft.au=Ma%2C+Ziben&rft.date=2024-10-01&rft.pub=Oxford+University+Press&rft.issn=0956-540X&rft.eissn=1365-246X&rft.volume=239&rft.issue=1&rft.spage=173&rft.epage=191&rft_id=info:doi/10.1093%2Fgji%2Fggae253&rft.externalDocID=10.1093%2Fgji%2Fggae253 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-540X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-540X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-540X&client=summon |