Transient electromagnetic inversion to image the shallow subsurface based on convolutional bidirectional long short-term memory neural networks

SUMMARY The conventional transient electromagnetic inversion method has a low calculation speed and precision and is susceptible to falling into local minima, which does not meet the fine detection requirements of urban underground space. In this study, we proposed a novel inversion method based on...

Full description

Saved in:
Bibliographic Details
Published inGeophysical journal international Vol. 239; no. 1; pp. 173 - 191
Main Authors Shi, Yu, Zhang, Jifeng, You, Xiran, Ma, Ziben, Li, Jiachen
Format Journal Article
LanguageEnglish
Published Oxford University Press 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SUMMARY The conventional transient electromagnetic inversion method has a low calculation speed and precision and is susceptible to falling into local minima, which does not meet the fine detection requirements of urban underground space. In this study, we proposed a novel inversion method based on convolutional bidirectional long short-term memory neural networks for shallow subsurface transient electromagnetic inversion. This network structure possessed strong spatial feature extraction capabilities and a proficient understanding of sequential data, thereby addressing the issues of slow conventional inversion computations and inadequate inversion accuracy. Utilizing the apparent resistivity from a three-layer model as the sample input and the real model as the target, the network was trained using batch normalization and dropout techniques to accelerate the convergence rate. The resulting model achieved real-time inversion speeds and high accuracy, with robust generalization capabilities and adaptability to new data. To assess the inversion performance, we used a novel 1-D inversion error calculation index, the correlation area loss error, for a more accurate measurement. Numerical simulation experiments showed that the proposed method required only 2.121 s to invert data from 100 observation points. The inversion efficiency was significantly superior to the conventional methods, maintaining excellent accuracy while effectively discerning subsurface electrical stratification in geophysics. Applying convolutional bidirectional long short-term memory neural networks to multidimensional and field data yielded results superior to those of conventional inversion, demonstrating the promising applicability and generalization of this approach. This study offers an efficient solution for shallow subsurface transient electromagnetic exploration and holds potential for application in other areas.
AbstractList The conventional transient electromagnetic inversion method has a low calculation speed and precision and is susceptible to falling into local minima, which does not meet the fine detection requirements of urban underground space. In this study, we proposed a novel inversion method based on convolutional bidirectional long short-term memory neural networks for shallow subsurface transient electromagnetic inversion. This network structure possessed strong spatial feature extraction capabilities and a proficient understanding of sequential data, thereby addressing the issues of slow conventional inversion computations and inadequate inversion accuracy. Utilizing the apparent resistivity from a three-layer model as the sample input and the real model as the target, the network was trained using batch normalization and dropout techniques to accelerate the convergence rate. The resulting model achieved real-time inversion speeds and high accuracy, with robust generalization capabilities and adaptability to new data. To assess the inversion performance, we used a novel 1-D inversion error calculation index, the correlation area loss error, for a more accurate measurement. Numerical simulation experiments showed that the proposed method required only 2.121 s to invert data from 100 observation points. The inversion efficiency was significantly superior to the conventional methods, maintaining excellent accuracy while effectively discerning subsurface electrical stratification in geophysics. Applying convolutional bidirectional long short-term memory neural networks to multidimensional and field data yielded results superior to those of conventional inversion, demonstrating the promising applicability and generalization of this approach. This study offers an efficient solution for shallow subsurface transient electromagnetic exploration and holds potential for application in other areas.
SUMMARY The conventional transient electromagnetic inversion method has a low calculation speed and precision and is susceptible to falling into local minima, which does not meet the fine detection requirements of urban underground space. In this study, we proposed a novel inversion method based on convolutional bidirectional long short-term memory neural networks for shallow subsurface transient electromagnetic inversion. This network structure possessed strong spatial feature extraction capabilities and a proficient understanding of sequential data, thereby addressing the issues of slow conventional inversion computations and inadequate inversion accuracy. Utilizing the apparent resistivity from a three-layer model as the sample input and the real model as the target, the network was trained using batch normalization and dropout techniques to accelerate the convergence rate. The resulting model achieved real-time inversion speeds and high accuracy, with robust generalization capabilities and adaptability to new data. To assess the inversion performance, we used a novel 1-D inversion error calculation index, the correlation area loss error, for a more accurate measurement. Numerical simulation experiments showed that the proposed method required only 2.121 s to invert data from 100 observation points. The inversion efficiency was significantly superior to the conventional methods, maintaining excellent accuracy while effectively discerning subsurface electrical stratification in geophysics. Applying convolutional bidirectional long short-term memory neural networks to multidimensional and field data yielded results superior to those of conventional inversion, demonstrating the promising applicability and generalization of this approach. This study offers an efficient solution for shallow subsurface transient electromagnetic exploration and holds potential for application in other areas.
Author Li, Jiachen
Zhang, Jifeng
Shi, Yu
Ma, Ziben
You, Xiran
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0009-0001-1544-2042
  surname: Shi
  fullname: Shi, Yu
– sequence: 2
  givenname: Jifeng
  surname: Zhang
  fullname: Zhang, Jifeng
  email: zjf0201@126.com
– sequence: 3
  givenname: Xiran
  surname: You
  fullname: You, Xiran
– sequence: 4
  givenname: Ziben
  surname: Ma
  fullname: Ma, Ziben
– sequence: 5
  givenname: Jiachen
  surname: Li
  fullname: Li, Jiachen
BookMark eNp9kE1qwzAQhUVJoUnaVS-gVTfFjWRbcrwsoX8Q6CaF7MxYlh2lshQkuSGn6JWrkKwK7WqYmffeDN8EjYw1EqFbSh4oKbNZt1WzrgOZsuwCjWnGWZLmfD1CY1IynrCcrK_QxPstITSn-XyMvlcOjFfSBCy1FMHZHjojgxJYmS_pvLIGB4tVHEscNhL7DWht99gPtR9cC0LiGrxscBQKa76sHkI0gca1apSLmadOW9NFs3UhCdL1uJe9dQds5ODiNp7cW_fpr9FlC9rLm3Odoo_np9XiNVm-v7wtHpcJZGkeklo0RZOmadEWTGS8LRm0ZSvmJeXkOKsZyXJaF01RcAYg5nSec054U0Je1MCzKaKnXOGs9062lVABjq8GB0pXlFRHolUkWp2JRs_9L8_ORS7u8If67qS2w-5f4Q9c043o
CitedBy_id crossref_primary_10_1016_j_measurement_2024_116494
Cites_doi 10.1016/j.petrol.2021.108838
10.1029/96GL01671
10.1109/ACCESS.2020.3013626
10.1190/1.1442303
10.6038/cjg2018L0064
10.32389/JEEG19-087
10.1093/gji/ggaa161
10.6038/cjg20170930
10.6038/pg20170323
10.1016/j.cageo.2020.104434
10.6038/cjg20171226
10.1190/1.1440931
10.1190/1.2736195
10.6038/pg2021EE0497
10.1190/geo2021-0335.1
10.1016/j.jappgeo.2021.104290
10.6038/cjg20141033
10.6038/cjg2019M0690
10.11772/j.issn.1001-9081.2018041289
10.11720/wtyht.2023.1547
10.6038/cjg2022P0572
10.1109/LGRS.2019.2900992
10.1038/323533a0
10.1016/j.jappgeo.2022.104675
10.1155/2019/6469089
10.11720/wtyht.2021.1511
10.1111/1365-2478.12302
10.1029/2021GL097165
10.1093/gji/ggz204
10.12363/issn.1001-1986.22.12.1000
10.1046/j.1365-246X.2002.01809.x
10.1016/j.cageo.2020.104681
10.1093/gji/ggad032
10.1093/gji/ggaa424
10.1162/tacl_a_00104
10.6038/cjg20140922
10.1093/gji/ggx495
10.1111/1365-2478.13136
10.3390/math11091985
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2024
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2024
DBID TOX
AAYXX
CITATION
DOI 10.1093/gji/ggae253
DatabaseName Oxford Journals Open Access Collection
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1365-246X
EndPage 191
ExternalDocumentID 10_1093_gji_ggae253
10.1093/gji/ggae253
GroupedDBID -~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
1OC
1TH
29H
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
ABAZT
ABCQN
ABEJV
ABEML
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPTD
ABQLI
ABSMQ
ABVLG
ABXVV
ABZBJ
ACCFJ
ACFRR
ACGFS
ACSCC
ACUFI
ACUKT
ACUTJ
ACUXJ
ACXQS
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZOD
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AEWNT
AFBPY
AFEBI
AFFZL
AFIYH
AFOFC
AFZJQ
AGINJ
AGKRT
AGQPQ
AGSYK
AHEFC
AHGBF
AHXPO
AI.
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APJGH
ASAOO
ATDFG
AXUDD
AZFZN
AZVOD
BAYMD
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
COF
CS3
CXTWN
D-E
D-F
DAKXR
DC6
DCZOG
DFGAJ
DILTD
DR2
D~K
EBS
EE~
EJD
F00
F04
F9B
FA8
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
FZ0
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
JXSIZ
K48
KBUDW
KOP
KQ8
KSI
KSN
LC2
LC3
LH4
LP6
LP7
LW6
MBTAY
MK4
N9A
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OIG
OJQWA
O~Y
P2P
P2X
P4D
PAFKI
PB-
PEELM
Q1.
Q11
Q5Y
QB0
ROL
ROZ
RUSNO
RW1
RX1
RXO
TJP
TOX
UB1
VH1
VOH
W8V
W99
WQJ
WYUIH
XG1
YAYTL
YKOAZ
YXANX
ZCG
ZY4
ZZE
~02
AAYXX
CITATION
ID FETCH-LOGICAL-a324t-bcd7d2227f75c36f95af9fc891607f75b50341b7d7765aac81846606d9a47ba63
IEDL.DBID TOX
ISSN 0956-540X
IngestDate Tue Jul 01 03:21:36 EDT 2025
Thu Apr 24 23:07:55 EDT 2025
Mon Jun 30 08:34:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Neural networks, fuzzy logic
Electromagnetic theory
Electrical resistivity tomography (ERT)
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a324t-bcd7d2227f75c36f95af9fc891607f75b50341b7d7765aac81846606d9a47ba63
ORCID 0009-0001-1544-2042
OpenAccessLink https://dx.doi.org/10.1093/gji/ggae253
PageCount 19
ParticipantIDs crossref_citationtrail_10_1093_gji_ggae253
crossref_primary_10_1093_gji_ggae253
oup_primary_10_1093_gji_ggae253
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Geophysical journal international
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Liang (2024082012212814900_bib17) 2019; 2019
Zhang (2024082012212814900_bib44) 2022; 47
Shan (2024082012212814900_bib25) 2021; 205
Bording (2024082012212814900_bib4) 2021; 187
Paitz (2024082012212814900_bib20) 2018; 212
Moghadas (2024082012212814900_bib18) 2020; 222
Chiu (2024082012212814900_bib7) 2015
Gu (2024082012212814900_bib13) 2023; 51
Wu (2024082012212814900_bib33) 2021; 224
Wu (2024082012212814900_bib34) 2022; 49
Dai (2024082012212814900_bib9) 2017; 32
Wu (2024082012212814900_bib32) 2021; 69
Yin (2024082012212814900_bib40) 2014; 57
Feng (2024082012212814900_bib12) 2020; 25
Li (2024082012212814900_bib15) 2020; 137
Fan (2024082012212814900_bib11) 2022; 65
He (2024082012212814900_bib14) 2022; 19
Wang (2024082012212814900_bib30) 2021; 36
Cheng (2024082012212814900_bib6) 2014; 57
Puzyrev (2024082012212814900_bib22) 2021; 149
Xue (2024082012212814900_bib38) 2008; 23
Constable (2024082012212814900_bib8) 1987; 52
Puzyrev (2024082012212814900_bib21) 2018; 218
Rumelhart (2024082012212814900_bib24) 1986; 323
Zhang (2024082012212814900_bib43) 2023; 11
Qin (2024082012212814900_bib23) 2019; 16
Siami-Namini (2024082012212814900_bib27) 2019
Xue (2024082012212814900_bib37) 2020; 8
Chen (2024082012212814900_bib5) 2017; 60
Li (2024082012212814900_bib16) 2018; 38
Zhang (2024082012212814900_bib42) 2022; 202
Shibutani (2024082012212814900_bib26) 2013; 23
Asif (2024082012212814900_bib2) 2022; 87
You (2024082012212814900_bib41) 2023; 47
Wu (2024082012212814900_bib31) 2021; 45
Xian (2024082012212814900_bib35) 2022; 19
Andersen (2024082012212814900_bib1) 2016; 64
Beaty (2024082012212814900_bib3) 2002; 151
Deleersnyder (2024082012212814900_bib10) 2023; 233
Wang (2024082012212814900_bib29) 2018; 61
Xu (2024082012212814900_bib36) 2017; 60
Nabighian (2024082012212814900_bib19) 1979; 44
Yin (2024082012212814900_bib39) 2007; 72
Sun (2024082012212814900_bib28) 2019; 62
References_xml – volume: 205
  start-page: 108838
  issue: 2
  year: 2021
  ident: 2024082012212814900_bib25
  article-title: CNN-BiLSTM hybrid neural networks with attention mechanism for well log prediction
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2021.108838
– volume: 23
  start-page: 1829
  issue: 14
  year: 2013
  ident: 2024082012212814900_bib26
  article-title: Genetic algorithm inversion for receiver functions with application to crust and uppermost mantle structure beneath eastern australia
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/96GL01671
– volume: 8
  start-page: 146172
  year: 2020
  ident: 2024082012212814900_bib37
  article-title: Development of the inversion method for transient electromagnetic data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3013626
– volume: 52
  start-page: 289
  issue: 3
  year: 1987
  ident: 2024082012212814900_bib8
  article-title: Occam's inversion; a practical algorithm for generating smooth models from electromagnetic sounding data
  publication-title: Geophysics
  doi: 10.1190/1.1442303
– volume: 61
  start-page: 1563
  issue: 4
  year: 2018
  ident: 2024082012212814900_bib29
  article-title: Magnetotelluric inversion based on BP neural network optimized by genetic algorithm
  publication-title: Chinese J. Geophys.
  doi: 10.6038/cjg2018L0064
– volume: 25
  start-page: 355
  issue: 3
  year: 2020
  ident: 2024082012212814900_bib12
  article-title: Resistivity-depth imaging with the airborne transient electromagnetic method based on an artificial neural network
  publication-title: J. Environ. Eng. Geophys.
  doi: 10.32389/JEEG19-087
– volume: 222
  start-page: 247
  issue: 1
  year: 2020
  ident: 2024082012212814900_bib18
  article-title: One-dimensional deep learning inversion of electromagnetic induction data using convolutional neural network
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggaa161
– volume: 19
  start-page: 536
  issue: 4
  year: 2022
  ident: 2024082012212814900_bib35
  article-title: Ground-based towed transient electromagnetic imaging method based on deep learning
  publication-title: Chinese J. Eng. Geophys.
– volume: 23
  start-page: 1165
  issue: 4
  year: 2008
  ident: 2024082012212814900_bib38
  article-title: Research progress in TEM forward modeling and inversion calculation
  publication-title: Prog. Geophys.
– volume: 60
  start-page: 3667
  issue: 9
  year: 2017
  ident: 2024082012212814900_bib5
  article-title: 1D OCCAM inversion of SOTEM data and its application to 3D models
  publication-title: Chinese J. Geophys.
  doi: 10.6038/cjg20170930
– volume: 32
  start-page: 1121
  issue: 3
  year: 2017
  ident: 2024082012212814900_bib9
  article-title: Research on one-dimensional inversion effect of transient electromagnetic method three-dimensional model data
  publication-title: Prog. Geophys.
  doi: 10.6038/pg20170323
– volume: 137
  year: 2020
  ident: 2024082012212814900_bib15
  article-title: BP neural network and improved differential evolution for transient electromagnetic inversion
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2020.104434
– volume: 60
  start-page: 4866
  issue: 12
  year: 2017
  ident: 2024082012212814900_bib36
  article-title: Three-dimensional inversion of frequency-domain em data from a large rectangular loop using the non-linear conjugated gradient method
  publication-title: Chinese J. Geophys.
  doi: 10.6038/cjg20171226
– volume: 44
  start-page: 1700
  year: 1979
  ident: 2024082012212814900_bib19
  article-title: Quasi-static transient response of a conducting half space—an approximate representation
  publication-title: Geophysics
  doi: 10.1190/1.1440931
– volume: 72
  start-page: F189
  issue: 4
  year: 2007
  ident: 2024082012212814900_bib39
  article-title: Simulated annealing for airborne EM inversion
  publication-title: Geophysics
  doi: 10.1190/1.2736195
– volume: 36
  start-page: 2204
  issue: 5
  year: 2021
  ident: 2024082012212814900_bib30
  article-title: Geophysical exploration and application for urban underground space
  publication-title: Prog. Geophys.
  doi: 10.6038/pg2021EE0497
– volume: 87
  start-page: E177
  issue: 4
  year: 2022
  ident: 2024082012212814900_bib2
  article-title: Integrating neural networks in least-squares inversion of airborne time-domain electromagnetic data Br
  publication-title: Geophysics
  doi: 10.1190/geo2021-0335.1
– volume: 187
  start-page: 104290
  year: 2021
  ident: 2024082012212814900_bib4
  article-title: Machine learning based fast forward modelling of ground-based time-domain electromagnetic data
  publication-title: J. appl. Geophys.
  doi: 10.1016/j.jappgeo.2021.104290
– volume: 57
  start-page: 3478
  issue: 10
  year: 2014
  ident: 2024082012212814900_bib6
  article-title: Study on particle swarm optimization inversion of mine transient electromagnetic method in whole-space
  publication-title: Chinese J. Geophys.
  doi: 10.6038/cjg20141033
– volume: 62
  start-page: 4860
  issue: 12
  year: 2019
  ident: 2024082012212814900_bib28
  article-title: L1-norm based nonlinear inversion of transient electromagnetic data
  publication-title: Chinese J. Geophys.
  doi: 10.6038/cjg2019M0690
– volume: 38
  start-page: 3075
  issue: 11
  year: 2018
  ident: 2024082012212814900_bib16
  article-title: Text sentiment analysis based on feature fusion of convolution neural network and bidirectional long short-term memory network
  publication-title: J. Comput. Appl.
  doi: 10.11772/j.issn.1001-9081.2018041289
– volume: 47
  start-page: 1206
  issue: 5
  year: 2023
  ident: 2024082012212814900_bib41
  article-title: Transient electromagnetic imaging method based on artificial neural network
  publication-title: Geophys. Geochem. Explor.
  doi: 10.11720/wtyht.2023.1547
– volume: 65
  start-page: 3650
  issue: 9
  year: 2022
  ident: 2024082012212814900_bib11
  article-title: TEM real-time inversion based on long-short term memory network
  publication-title: Chinese J. Geophys.
  doi: 10.6038/cjg2022P0572
– volume: 16
  start-page: 1373
  issue: 9
  year: 2019
  ident: 2024082012212814900_bib23
  article-title: Fast resistivity imaging of transient electromagnetic using ANN
  publication-title: Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2900992
– year: 2019
  ident: 2024082012212814900_bib27
  article-title: A comparative analysis of forecasting financial time series using ARIMA, LSTM, and BiLSTM
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 2024082012212814900_bib24
  article-title: Learning representations by back propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 202
  year: 2022
  ident: 2024082012212814900_bib42
  article-title: Inversion of airborne transient electromagnetic data based on reference point lateral constraint
  publication-title: J. appl. Geophys.
  doi: 10.1016/j.jappgeo.2022.104675
– volume: 2019
  start-page: 1
  year: 2019
  ident: 2024082012212814900_bib17
  article-title: Research on apparent resistivity imaging of transient electromagnetic method for oil and gas pipelines based on GA-BP neural network
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2019/6469089
– volume: 45
  start-page: 750−757
  issue: 3
  year: 2021
  ident: 2024082012212814900_bib31
  article-title: The calculation of full-region apparent resistivity of central loop TEM based on deep learning
  publication-title: Geophys. Geochem. Explor.
  doi: 10.11720/wtyht.2021.1511
– volume: 64
  start-page: 741
  issue: 3
  year: 2016
  ident: 2024082012212814900_bib1
  article-title: Artificial neural networks for removal of couplings in airborne transient electromagnetic data
  publication-title: Geophys. Prospect.
  doi: 10.1111/1365-2478.12302
– volume: 49
  issue: 10
  year: 2022
  ident: 2024082012212814900_bib34
  article-title: Instantaneous inversion of airborne electromagnetic data based on deep learning
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2021GL097165
– volume: 218
  start-page: 817
  issue: 2
  year: 2018
  ident: 2024082012212814900_bib21
  article-title: Deep learning electromagnetic inversion with convolutional neural networks
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggz204
– volume: 51
  start-page: 134−143
  issue: 10
  year: 2023
  ident: 2024082012212814900_bib13
  article-title: An attention mechanism-based CNN-BiLSTM real-time transient electromagnetic method
  publication-title: Coal Geol. Explor.
  doi: 10.12363/issn.1001-1986.22.12.1000
– volume: 151
  start-page: 622
  issue: 2
  year: 2002
  ident: 2024082012212814900_bib3
  article-title: Simulated annealing inversion of multimode rayleigh wave dispersion curves for geological structure
  publication-title: Geophys. J. R. astr. Soc.
  doi: 10.1046/j.1365-246X.2002.01809.x
– volume: 47
  start-page: 2698
  issue: 7
  year: 2022
  ident: 2024082012212814900_bib44
  article-title: Lateral constrained inversion of E-EX wide field data
  publication-title: J. China Coal Soc.
– volume: 149
  start-page: 104681
  year: 2021
  ident: 2024082012212814900_bib22
  article-title: Inversion of 1D frequency- and time-domain electromagnetic data with convolutional neural networks
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2020.104681
– volume: 233
  start-page: 1847
  issue: 3
  year: 2023
  ident: 2024082012212814900_bib10
  article-title: Flexible quasi-2D inversion of time-domain AEM data, using a wavelet-based complexity measure
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggad032
– volume: 224
  start-page: 669
  issue: 1
  year: 2021
  ident: 2024082012212814900_bib33
  article-title: De-noising of transient electromagnetic data based on the long short-term memory-autoencoder
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggaa424
– start-page: 357
  volume-title: Trans. Assoc. Comput. Linguist.
  year: 2015
  ident: 2024082012212814900_bib7
  article-title: Named entity recognition with bidirectional LSTM-CNNS
  doi: 10.1162/tacl_a_00104
– volume: 57
  start-page: 2971
  issue: 09
  year: 2014
  ident: 2024082012212814900_bib40
  article-title: Trans-dimensional bayesian inversion of frequency-domain airborne EM data
  publication-title: Chinese J. Geophys.
  doi: 10.6038/cjg20140922
– volume: 212
  start-page: 1468
  issue: 2
  year: 2018
  ident: 2024082012212814900_bib20
  article-title: A neural network for noise correlation classification
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggx495
– volume: 69
  start-page: 1761
  issue: 8-9
  year: 2021
  ident: 2024082012212814900_bib32
  article-title: Convolutional neural network inversion of airborne transient electromagnetic data
  publication-title: Geophys. Prospect.
  doi: 10.1111/1365-2478.13136
– volume: 19
  start-page: 559
  issue: 5
  year: 2022
  ident: 2024082012212814900_bib14
  article-title: Geophysical exploration methods for strong interference urban underground space
  publication-title: Chinese J. Eng. Geophys.
– volume: 11
  issue: 9
  year: 2023
  ident: 2024082012212814900_bib43
  article-title: Stock price prediction using CNN-BiLSTM-attention model
  publication-title: Mathematics
  doi: 10.3390/math11091985
SSID ssj0014148
Score 2.4485517
Snippet SUMMARY The conventional transient electromagnetic inversion method has a low calculation speed and precision and is susceptible to falling into local minima,...
The conventional transient electromagnetic inversion method has a low calculation speed and precision and is susceptible to falling into local minima, which...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 173
Title Transient electromagnetic inversion to image the shallow subsurface based on convolutional bidirectional long short-term memory neural networks
Volume 239
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bS8MwFA4yEHwRrzgvMw8-CWVlbZrmUcQxBPVlg76VXEtla2XtFH-Ff9mTJhOVoY9NTwjk9n1JzvkOQleSh1rJUMESZyKIYS0GnFAVKJPqmMESE7ENFH54TCaz-D4jmXeQbTY84bNoWDyXw6LgekSsqCfAr5XInz5lX48F0EK6ltQDApL5MLxfdX8Ajw1m-4Yj4z206wkgvnEjto-2dHWAtjtHTNkcoo8OPGyQIvYZaha8qGykIS6rV3e5hdsal1CsMbA33Nh0KPUbbmALWC0NlxpbaFIYDK1PuZ9b0KYoHYC5r3ldFVAZ6Hdgt2e8sD6379gKXMLfyrmHN0doNr6b3k4CnzQh4MCN2kBIRZUNcDWUyCgxjHDDjEyZVZKDMkFCAC5BFaUJ4VwCYMcJnGIU4zEVPImOUa-qK32CMCehZHDeIMZEMQy14JQLJlNhZfAiI_roet2jufSK4jaxxTx3L9tRDt2f--7vw7xYG784IY3NZpcwNH9ZnP5rcYZ2RkA9nMvdOeq1y5W-AOrQikF35B500-cTd7jIpA
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transient+electromagnetic+inversion+to+image+the+shallow+subsurface+based+on+convolutional+bidirectional+long+short-term+memory+neural+networks&rft.jtitle=Geophysical+journal+international&rft.au=Shi%2C+Yu&rft.au=Zhang%2C+Jifeng&rft.au=You%2C+Xiran&rft.au=Ma%2C+Ziben&rft.date=2024-10-01&rft.pub=Oxford+University+Press&rft.issn=0956-540X&rft.eissn=1365-246X&rft.volume=239&rft.issue=1&rft.spage=173&rft.epage=191&rft_id=info:doi/10.1093%2Fgji%2Fggae253&rft.externalDocID=10.1093%2Fgji%2Fggae253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-540X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-540X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-540X&client=summon