Submicroscopic metallic iron in lunar soils estimated from the in situ spectra of the Chang'E‐3 mission
Submicroscopic metallic iron (SMFe) created by space weathering has strong effects on the optical properties of the lunar surface. Spectra measured in situ by the visible‐near‐infrared spectrometer (VNIS) on board the Chang'E‐3 Yutu rover were used to investigate optical maturity differences at...
Saved in:
Published in | Geophysical research letters Vol. 44; no. 8; pp. 3485 - 3492 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
28.04.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Submicroscopic metallic iron (SMFe) created by space weathering has strong effects on the optical properties of the lunar surface. Spectra measured in situ by the visible‐near‐infrared spectrometer (VNIS) on board the Chang'E‐3 Yutu rover were used to investigate optical maturity differences at the CE‐3 landing site caused by lander exhaust. SMFe abundances were estimated using Hapke's radiative transfer model. Analysis of the spectrum for a minimally disturbed soil indicates that it contains 0.368 wt % SMFe, corresponding to an
I
s
/FeO maturity index of ~53 and indicating that the landing site is submature. The soil at a location that was more disturbed contains 0.217 wt % SMFe, suggesting that the material removed by the rocket blast is more weathered than the regolith that remained behind. We conclude that maturity differences related to removal of the finest, highly mature particles play a major role in the observed reflectance changes associated with rocket blast.
The SMFe abundance in regolith minimally disturbed by the Chang'E‐3 rocket exhaust was derived from in situ spectra and radiative transfer modeling
The SMFe abundance indicates that the CE‐3 landing site is submature
The natural uppermost surficial regolith is more weathered than the regolith that was affected by rocket exhaust
Landed lunar missions can provide essential ground truth for calibration of orbital data as well as being able to investigate the lunar surface at high resolution. The Yutu rover aboard the Chang'E‐3 lunar lander was used to investigate vertical and lateral variations in the optical and compositional properties of the lunar regolith. It was found that rocket exhaust from the landing disturbed the regolith to varying extents. Spectroscopic measurements and optical modeling showed that the abundance of submiscoscopic iron varied with distance from the landing site as well as vertically. The data suggest that space weathering is a rapid process relative to regolith turnover rates. |
---|---|
AbstractList | Submicroscopic metallic iron (SMFe) created by space weathering has strong effects on the optical properties of the lunar surface. Spectra measured in situ by the visible‐near‐infrared spectrometer (VNIS) on board the Chang'E‐3 Yutu rover were used to investigate optical maturity differences at the CE‐3 landing site caused by lander exhaust. SMFe abundances were estimated using Hapke's radiative transfer model. Analysis of the spectrum for a minimally disturbed soil indicates that it contains 0.368 wt % SMFe, corresponding to an Is/FeO maturity index of ~53 and indicating that the landing site is submature. The soil at a location that was more disturbed contains 0.217 wt % SMFe, suggesting that the material removed by the rocket blast is more weathered than the regolith that remained behind. We conclude that maturity differences related to removal of the finest, highly mature particles play a major role in the observed reflectance changes associated with rocket blast. Submicroscopic metallic iron (SMFe) created by space weathering has strong effects on the optical properties of the lunar surface. Spectra measured in situ by the visible‐near‐infrared spectrometer (VNIS) on board the Chang'E‐3 Yutu rover were used to investigate optical maturity differences at the CE‐3 landing site caused by lander exhaust. SMFe abundances were estimated using Hapke's radiative transfer model. Analysis of the spectrum for a minimally disturbed soil indicates that it contains 0.368 wt % SMFe, corresponding to an I s /FeO maturity index of ~53 and indicating that the landing site is submature. The soil at a location that was more disturbed contains 0.217 wt % SMFe, suggesting that the material removed by the rocket blast is more weathered than the regolith that remained behind. We conclude that maturity differences related to removal of the finest, highly mature particles play a major role in the observed reflectance changes associated with rocket blast. The SMFe abundance in regolith minimally disturbed by the Chang'E‐3 rocket exhaust was derived from in situ spectra and radiative transfer modeling The SMFe abundance indicates that the CE‐3 landing site is submature The natural uppermost surficial regolith is more weathered than the regolith that was affected by rocket exhaust Landed lunar missions can provide essential ground truth for calibration of orbital data as well as being able to investigate the lunar surface at high resolution. The Yutu rover aboard the Chang'E‐3 lunar lander was used to investigate vertical and lateral variations in the optical and compositional properties of the lunar regolith. It was found that rocket exhaust from the landing disturbed the regolith to varying extents. Spectroscopic measurements and optical modeling showed that the abundance of submiscoscopic iron varied with distance from the landing site as well as vertically. The data suggest that space weathering is a rapid process relative to regolith turnover rates. |
Author | Blewett, David T. Chen, Jun Zheng, Yongchun Wang, Zhenchao Cloutis, Edward A. Wu, Yunzhao |
Author_xml | – sequence: 1 givenname: Zhenchao orcidid: 0000-0003-4246-1545 surname: Wang fullname: Wang, Zhenchao organization: Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Earth Sciences Nanjing University Nanjing China – sequence: 2 givenname: Yunzhao orcidid: 0000-0001-8408-1204 surname: Wu fullname: Wu, Yunzhao organization: Key Laboratory of Planetary Sciences, Purple Mountain Observatory Chinese Academy of Sciences Nanjing China – sequence: 3 givenname: David T. orcidid: 0000-0002-9241-6358 surname: Blewett fullname: Blewett, David T. organization: Planetary Exploration Group The Johns Hopkins Applied Physics Laboratory Laurel Maryland USA – sequence: 4 givenname: Edward A. orcidid: 0000-0001-7301-0929 surname: Cloutis fullname: Cloutis, Edward A. organization: Department of Geography University of Winnipeg Winnipeg Manitoba Canada – sequence: 5 givenname: Yongchun surname: Zheng fullname: Zheng, Yongchun organization: Key Laboratory of Lunar and Deep Space Exploration National Astronomical Observatories of Chinese Academy of Sciences Beijing China – sequence: 6 givenname: Jun surname: Chen fullname: Chen, Jun organization: Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Earth Sciences Nanjing University Nanjing China |
BookMark | eNptULtOAzEQtFCQSAIdH2CJgoaD9ePOcYmiEJAiUQD1yef4iKM7O9i-go5P4Bv5EhygQIhqR6uZ3ZmZoJHzziB0SuCSANArCkQsVyBoVdIDNCaS82IGIEZoDCAzpqI6QpMYtwDAgJExsg9D01sdfNR-ZzXuTVJdl4EN3mHrcDc4FXD0tovYxGR7lcwat8H3OG3MnhFtGnDcGZ2Cwr79Ws83yj2fLz7e3hnubYzWu2N02KoumpOfOUVPN4vH-W2xul_eza9XhWKUp0KWSlTKmEppU-myIkKxRpOmNdBS2dKKcSYb3UheUqllqbVatzOYlZIzgIazKTr7vrsL_mXIluutH4LLL2sigXAmBMjMot-sffQYTFtrm1TKPnMK29UE6n2l9e9Ks-jij2gXciHh9X_6JycQedo |
CitedBy_id | crossref_primary_10_2138_rmg_2023_89_14 crossref_primary_10_11728_cjss2018_05_598 crossref_primary_10_1134_S0038094621060022 crossref_primary_10_1016_j_rse_2025_114691 crossref_primary_10_1029_2020GL089499 crossref_primary_10_3390_rs13010094 crossref_primary_10_1016_j_epsl_2020_116117 crossref_primary_10_1016_j_icarus_2023_115892 crossref_primary_10_3390_ma14133454 crossref_primary_10_3847_1538_3881_aabaf5 crossref_primary_10_1016_j_epsl_2022_117747 crossref_primary_10_3390_rs14122791 crossref_primary_10_3390_rs12193211 crossref_primary_10_1016_j_ijms_2021_116676 crossref_primary_10_1016_j_actaastro_2023_04_024 crossref_primary_10_1051_0004_6361_202245751 crossref_primary_10_1038_s41550_022_01838_1 crossref_primary_10_1126_scirobotics_abj6660 crossref_primary_10_1088_1674_4527_19_4_51 crossref_primary_10_3390_rs15082195 crossref_primary_10_1016_j_conbuildmat_2024_138707 crossref_primary_10_1126_sciadv_abl9174 crossref_primary_10_1016_j_epsl_2017_12_003 crossref_primary_10_3390_rs15061643 crossref_primary_10_1051_0004_6361_202143012 crossref_primary_10_3390_en14041141 crossref_primary_10_1109_JSTARS_2019_2892650 crossref_primary_10_3390_rs12101603 |
Cites_doi | 10.1029/93JE02467 10.1016/j.icarus.2007.07.021 10.1088/1674-4527/13/7/010 10.1016/j.pss.2015.08.006 10.1016/j.icarus.2015.12.010 10.2138/rmg.2006.60.2 10.1111/j.1945‐5100.2001.tb01808.x 10.1016/S0273-1177(03)00575-1 10.1111/j.1945‐5100.2000.tb01496.x 10.1088/1674-4527/14/12/007 10.1007/s11214-010-9689-0 10.1016/j.icarus.2008.01.003 10.1002/2016JE005051 10.1016/j.epsl.2010.12.028 10.1017/CBO9781139025683 10.1029/2000JE001244 10.1006/icar.1994.1158 10.1016/0034-4257(93)90013-N 10.1126/science.219.4581.127 10.1029/JB086iB04p03039 10.1016/j.icarus.2011.01.022 10.1029/2000JE001338 10.1088/1674-4527/14/12/006 10.1016/j.icarus.2010.08.024 10.1029/2010JE003751 10.1016/j.icarus.2013.09.013 10.1029/2010JE003735 10.1088/1674-4527/14/12/004 10.1016/j.icarus.2012.10.036 10.1016/j.icarus.2008.05.008 10.1016/0012-821X(71)90210-X 10.1126/science.1259866 |
ContentType | Journal Article |
Copyright | 2017. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2017. American Geophysical Union. All Rights Reserved. |
DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
DOI | 10.1002/2017GL072652 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | 3492 |
ExternalDocumentID | 10_1002_2017GL072652 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 AAESR AAFWJ AAHHS AAIHA AASGY AAXRX AAYXX AAZKR ABCUV ABPPZ ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACTHY ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFGKR AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CITATION CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIN WXSBR XSW ZZTAW ~02 ~OA ~~A 7TG 7TN 8FD AAMMB AEFGJ AFPKN AGXDD AIDQK AIDYY F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-a324t-95a76aee6ace6c5617a3bc1bfe0f29f263439bcb94529c95ccadf808594300b43 |
ISSN | 0094-8276 |
IngestDate | Fri Jul 25 10:35:29 EDT 2025 Thu Apr 24 22:53:12 EDT 2025 Tue Jul 01 01:40:39 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a324t-95a76aee6ace6c5617a3bc1bfe0f29f263439bcb94529c95ccadf808594300b43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8408-1204 0000-0002-9241-6358 0000-0003-4246-1545 0000-0001-7301-0929 |
OpenAccessLink | http://hdl.handle.net/10680/1375 |
PQID | 1901437709 |
PQPubID | 54723 |
PageCount | 8 |
ParticipantIDs | proquest_journals_1901437709 crossref_citationtrail_10_1002_2017GL072652 crossref_primary_10_1002_2017GL072652 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-28 |
PublicationDateYYYYMMDD | 2017-04-28 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2017 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 Paquin R. A. (e_1_2_7_36_1) 1995 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Bowell E. (e_1_2_7_6_1) 1989 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 Mustard J. (e_1_2_7_30_1) 1989; 94 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – ident: e_1_2_7_37_1 doi: 10.1029/93JE02467 – ident: e_1_2_7_33_1 doi: 10.1016/j.icarus.2007.07.021 – ident: e_1_2_7_34_1 – ident: e_1_2_7_21_1 doi: 10.1088/1674-4527/13/7/010 – start-page: 35.31 volume-title: Handbook of Optics Volume II: Devices, Measurements, and Properties year: 1995 ident: e_1_2_7_36_1 – ident: e_1_2_7_4_1 doi: 10.1016/j.pss.2015.08.006 – ident: e_1_2_7_9_1 doi: 10.1016/j.icarus.2015.12.010 – ident: e_1_2_7_25_1 doi: 10.2138/rmg.2006.60.2 – ident: e_1_2_7_32_1 doi: 10.1111/j.1945‐5100.2001.tb01808.x – ident: e_1_2_7_40_1 doi: 10.1016/S0273-1177(03)00575-1 – ident: e_1_2_7_29_1 – ident: e_1_2_7_38_1 doi: 10.1111/j.1945‐5100.2000.tb01496.x – ident: e_1_2_7_22_1 doi: 10.1088/1674-4527/14/12/007 – volume: 94 start-page: 619 issue: 13 year: 1989 ident: e_1_2_7_30_1 article-title: Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra publication-title: J. Geophys. Res. – ident: e_1_2_7_35_1 doi: 10.1007/s11214-010-9689-0 – ident: e_1_2_7_3_1 – ident: e_1_2_7_15_1 doi: 10.1016/j.icarus.2008.01.003 – ident: e_1_2_7_28_1 – ident: e_1_2_7_46_1 doi: 10.1002/2016JE005051 – ident: e_1_2_7_27_1 doi: 10.1016/j.epsl.2010.12.028 – ident: e_1_2_7_16_1 doi: 10.1017/CBO9781139025683 – ident: e_1_2_7_18_1 doi: 10.1029/2000JE001244 – ident: e_1_2_7_44_1 – ident: e_1_2_7_10_1 doi: 10.1006/icar.1994.1158 – ident: e_1_2_7_20_1 doi: 10.1016/0034-4257(93)90013-N – ident: e_1_2_7_39_1 doi: 10.1126/science.219.4581.127 – ident: e_1_2_7_13_1 doi: 10.1029/JB086iB04p03039 – ident: e_1_2_7_2_1 – start-page: 524 volume-title: Asteroids II year: 1989 ident: e_1_2_7_6_1 – ident: e_1_2_7_24_1 doi: 10.1016/j.icarus.2011.01.022 – ident: e_1_2_7_14_1 doi: 10.1029/2000JE001338 – ident: e_1_2_7_43_1 – ident: e_1_2_7_17_1 doi: 10.1088/1674-4527/14/12/006 – ident: e_1_2_7_19_1 doi: 10.1016/j.icarus.2010.08.024 – ident: e_1_2_7_7_1 doi: 10.1029/2010JE003751 – ident: e_1_2_7_8_1 doi: 10.1016/j.icarus.2013.09.013 – ident: e_1_2_7_41_1 doi: 10.1029/2010JE003735 – ident: e_1_2_7_42_1 doi: 10.1088/1674-4527/14/12/004 – ident: e_1_2_7_5_1 doi: 10.1016/j.icarus.2012.10.036 – ident: e_1_2_7_23_1 doi: 10.1016/j.icarus.2008.05.008 – ident: e_1_2_7_11_1 doi: 10.1016/0012-821X(71)90210-X – ident: e_1_2_7_26_1 – ident: e_1_2_7_12_1 – ident: e_1_2_7_45_1 doi: 10.1126/science.1259866 – ident: e_1_2_7_31_1 |
SSID | ssj0003031 |
Score | 2.3696373 |
Snippet | Submicroscopic metallic iron (SMFe) created by space weathering has strong effects on the optical properties of the lunar surface. Spectra measured in situ by... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 3485 |
SubjectTerms | Infrared spectrometers Iron Lunar exploration Lunar landing Lunar regolith Lunar roving vehicles Lunar soil Lunar spacecraft Lunar surface Lunar surface vehicles Maturity Near infrared radiation Optical properties Oxygen Radiation Radiative transfer Reflectance Regolith Rocket exhaust Soil Space missions Space weathering Spectra Turnover rate Weathering |
Title | Submicroscopic metallic iron in lunar soils estimated from the in situ spectra of the Chang'E‐3 mission |
URI | https://www.proquest.com/docview/1901437709 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbKrpC4IH7FsgvyAcQhSknjNImPZVW6QohTC6u9RLbrqJGyyapJhNjTPgIPwZPxJIx_YlJUpIVLFFlO1Ga-zHx2Zr5B6NVa0Q6Scl9QTmGBEq99KidwFvIc4tWEy7VW-_wUn62iD-fT89HoxyBrqWv5WFzvrSv5H6vCGNhVVcn-g2XdTWEAzsG-cAQLw_FWNoa3_lIl1KnSkkKobtCsVKLVqnRNbWSUXcW2XlMXZeMpNQ1gp8AvXUUJzGiKtvN0teWW9ekCp2YPOZm7RAjiARqa3oKWyi5kfdUb2UoGbbxSVwc5nv7F7kZfbOCxbVjtxjvt-rvqejD4rpRfbdawzrT3lmP3haSs4TGaygndZdqbjYf7FRADg6iv_7Y-mEZ-GiZWANu4XRrBWGD63_Z-2ehCWvylAydLItPlxwZspa-4NxgYcVn1GxYfgySMjVTurub2H7HQZSgaNecwG159Bx2GsBgBb3o4-7y6WLmIDzTAdGa0_8wWWMD1b4fX71Kf3civ6czyAbpv1yF4ZkD1EI1k9QjdXeg-z9_gTGcGi-YxKnZBhnuQYQUyXFRYgwxrkGEHMqxAhgFNaoYCGbYgw3WuhzXI3sx_3nwn2ILrCVq9ny9Pz3zbn8NnQMNbn05ZEjMpYyZkLICIJ4xwMeG5DPKQ5mFMgO1ywan6uC_oFJzFOk-Vol5EgoBH5Ck6qOpKPkM4FPE0khOZ5LC-pTEFVpwTxvNUJhIYfHyEvP7RZcKK16seKmW2z1BH6LWbfWVEW_4y76S3QmZf6yZTDDkiSRLQ57e8zTG69xvoJ-ig3XbyBVDVlr-0SPkFm8-Ruw |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Submicroscopic+metallic+iron+in+lunar+soils+estimated+from+the+in+situ+spectra+of+the+Chang%27E%E2%80%903+mission&rft.jtitle=Geophysical+research+letters&rft.au=Wang%2C+Zhenchao&rft.au=Wu%2C+Yunzhao&rft.au=Blewett%2C+David+T.&rft.au=Cloutis%2C+Edward+A.&rft.date=2017-04-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=44&rft.issue=8&rft.spage=3485&rft.epage=3492&rft_id=info:doi/10.1002%2F2017GL072652&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_2017GL072652 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |