Submicroscopic metallic iron in lunar soils estimated from the in situ spectra of the Chang'E‐3 mission

Submicroscopic metallic iron (SMFe) created by space weathering has strong effects on the optical properties of the lunar surface. Spectra measured in situ by the visible‐near‐infrared spectrometer (VNIS) on board the Chang'E‐3 Yutu rover were used to investigate optical maturity differences at...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 44; no. 8; pp. 3485 - 3492
Main Authors Wang, Zhenchao, Wu, Yunzhao, Blewett, David T., Cloutis, Edward A., Zheng, Yongchun, Chen, Jun
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 28.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Submicroscopic metallic iron (SMFe) created by space weathering has strong effects on the optical properties of the lunar surface. Spectra measured in situ by the visible‐near‐infrared spectrometer (VNIS) on board the Chang'E‐3 Yutu rover were used to investigate optical maturity differences at the CE‐3 landing site caused by lander exhaust. SMFe abundances were estimated using Hapke's radiative transfer model. Analysis of the spectrum for a minimally disturbed soil indicates that it contains 0.368 wt % SMFe, corresponding to an I s /FeO maturity index of ~53 and indicating that the landing site is submature. The soil at a location that was more disturbed contains 0.217 wt % SMFe, suggesting that the material removed by the rocket blast is more weathered than the regolith that remained behind. We conclude that maturity differences related to removal of the finest, highly mature particles play a major role in the observed reflectance changes associated with rocket blast. The SMFe abundance in regolith minimally disturbed by the Chang'E‐3 rocket exhaust was derived from in situ spectra and radiative transfer modeling The SMFe abundance indicates that the CE‐3 landing site is submature The natural uppermost surficial regolith is more weathered than the regolith that was affected by rocket exhaust Landed lunar missions can provide essential ground truth for calibration of orbital data as well as being able to investigate the lunar surface at high resolution. The Yutu rover aboard the Chang'E‐3 lunar lander was used to investigate vertical and lateral variations in the optical and compositional properties of the lunar regolith. It was found that rocket exhaust from the landing disturbed the regolith to varying extents. Spectroscopic measurements and optical modeling showed that the abundance of submiscoscopic iron varied with distance from the landing site as well as vertically. The data suggest that space weathering is a rapid process relative to regolith turnover rates.
AbstractList Submicroscopic metallic iron (SMFe) created by space weathering has strong effects on the optical properties of the lunar surface. Spectra measured in situ by the visible‐near‐infrared spectrometer (VNIS) on board the Chang'E‐3 Yutu rover were used to investigate optical maturity differences at the CE‐3 landing site caused by lander exhaust. SMFe abundances were estimated using Hapke's radiative transfer model. Analysis of the spectrum for a minimally disturbed soil indicates that it contains 0.368 wt % SMFe, corresponding to an Is/FeO maturity index of ~53 and indicating that the landing site is submature. The soil at a location that was more disturbed contains 0.217 wt % SMFe, suggesting that the material removed by the rocket blast is more weathered than the regolith that remained behind. We conclude that maturity differences related to removal of the finest, highly mature particles play a major role in the observed reflectance changes associated with rocket blast.
Submicroscopic metallic iron (SMFe) created by space weathering has strong effects on the optical properties of the lunar surface. Spectra measured in situ by the visible‐near‐infrared spectrometer (VNIS) on board the Chang'E‐3 Yutu rover were used to investigate optical maturity differences at the CE‐3 landing site caused by lander exhaust. SMFe abundances were estimated using Hapke's radiative transfer model. Analysis of the spectrum for a minimally disturbed soil indicates that it contains 0.368 wt % SMFe, corresponding to an I s /FeO maturity index of ~53 and indicating that the landing site is submature. The soil at a location that was more disturbed contains 0.217 wt % SMFe, suggesting that the material removed by the rocket blast is more weathered than the regolith that remained behind. We conclude that maturity differences related to removal of the finest, highly mature particles play a major role in the observed reflectance changes associated with rocket blast. The SMFe abundance in regolith minimally disturbed by the Chang'E‐3 rocket exhaust was derived from in situ spectra and radiative transfer modeling The SMFe abundance indicates that the CE‐3 landing site is submature The natural uppermost surficial regolith is more weathered than the regolith that was affected by rocket exhaust Landed lunar missions can provide essential ground truth for calibration of orbital data as well as being able to investigate the lunar surface at high resolution. The Yutu rover aboard the Chang'E‐3 lunar lander was used to investigate vertical and lateral variations in the optical and compositional properties of the lunar regolith. It was found that rocket exhaust from the landing disturbed the regolith to varying extents. Spectroscopic measurements and optical modeling showed that the abundance of submiscoscopic iron varied with distance from the landing site as well as vertically. The data suggest that space weathering is a rapid process relative to regolith turnover rates.
Author Blewett, David T.
Chen, Jun
Zheng, Yongchun
Wang, Zhenchao
Cloutis, Edward A.
Wu, Yunzhao
Author_xml – sequence: 1
  givenname: Zhenchao
  orcidid: 0000-0003-4246-1545
  surname: Wang
  fullname: Wang, Zhenchao
  organization: Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Earth Sciences Nanjing University Nanjing China
– sequence: 2
  givenname: Yunzhao
  orcidid: 0000-0001-8408-1204
  surname: Wu
  fullname: Wu, Yunzhao
  organization: Key Laboratory of Planetary Sciences, Purple Mountain Observatory Chinese Academy of Sciences Nanjing China
– sequence: 3
  givenname: David T.
  orcidid: 0000-0002-9241-6358
  surname: Blewett
  fullname: Blewett, David T.
  organization: Planetary Exploration Group The Johns Hopkins Applied Physics Laboratory Laurel Maryland USA
– sequence: 4
  givenname: Edward A.
  orcidid: 0000-0001-7301-0929
  surname: Cloutis
  fullname: Cloutis, Edward A.
  organization: Department of Geography University of Winnipeg Winnipeg Manitoba Canada
– sequence: 5
  givenname: Yongchun
  surname: Zheng
  fullname: Zheng, Yongchun
  organization: Key Laboratory of Lunar and Deep Space Exploration National Astronomical Observatories of Chinese Academy of Sciences Beijing China
– sequence: 6
  givenname: Jun
  surname: Chen
  fullname: Chen, Jun
  organization: Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Earth Sciences Nanjing University Nanjing China
BookMark eNptULtOAzEQtFCQSAIdH2CJgoaD9ePOcYmiEJAiUQD1yef4iKM7O9i-go5P4Bv5EhygQIhqR6uZ3ZmZoJHzziB0SuCSANArCkQsVyBoVdIDNCaS82IGIEZoDCAzpqI6QpMYtwDAgJExsg9D01sdfNR-ZzXuTVJdl4EN3mHrcDc4FXD0tovYxGR7lcwat8H3OG3MnhFtGnDcGZ2Cwr79Ws83yj2fLz7e3hnubYzWu2N02KoumpOfOUVPN4vH-W2xul_eza9XhWKUp0KWSlTKmEppU-myIkKxRpOmNdBS2dKKcSYb3UheUqllqbVatzOYlZIzgIazKTr7vrsL_mXIluutH4LLL2sigXAmBMjMot-sffQYTFtrm1TKPnMK29UE6n2l9e9Ks-jij2gXciHh9X_6JycQedo
CitedBy_id crossref_primary_10_2138_rmg_2023_89_14
crossref_primary_10_11728_cjss2018_05_598
crossref_primary_10_1134_S0038094621060022
crossref_primary_10_1016_j_rse_2025_114691
crossref_primary_10_1029_2020GL089499
crossref_primary_10_3390_rs13010094
crossref_primary_10_1016_j_epsl_2020_116117
crossref_primary_10_1016_j_icarus_2023_115892
crossref_primary_10_3390_ma14133454
crossref_primary_10_3847_1538_3881_aabaf5
crossref_primary_10_1016_j_epsl_2022_117747
crossref_primary_10_3390_rs14122791
crossref_primary_10_3390_rs12193211
crossref_primary_10_1016_j_ijms_2021_116676
crossref_primary_10_1016_j_actaastro_2023_04_024
crossref_primary_10_1051_0004_6361_202245751
crossref_primary_10_1038_s41550_022_01838_1
crossref_primary_10_1126_scirobotics_abj6660
crossref_primary_10_1088_1674_4527_19_4_51
crossref_primary_10_3390_rs15082195
crossref_primary_10_1016_j_conbuildmat_2024_138707
crossref_primary_10_1126_sciadv_abl9174
crossref_primary_10_1016_j_epsl_2017_12_003
crossref_primary_10_3390_rs15061643
crossref_primary_10_1051_0004_6361_202143012
crossref_primary_10_3390_en14041141
crossref_primary_10_1109_JSTARS_2019_2892650
crossref_primary_10_3390_rs12101603
Cites_doi 10.1029/93JE02467
10.1016/j.icarus.2007.07.021
10.1088/1674-4527/13/7/010
10.1016/j.pss.2015.08.006
10.1016/j.icarus.2015.12.010
10.2138/rmg.2006.60.2
10.1111/j.1945‐5100.2001.tb01808.x
10.1016/S0273-1177(03)00575-1
10.1111/j.1945‐5100.2000.tb01496.x
10.1088/1674-4527/14/12/007
10.1007/s11214-010-9689-0
10.1016/j.icarus.2008.01.003
10.1002/2016JE005051
10.1016/j.epsl.2010.12.028
10.1017/CBO9781139025683
10.1029/2000JE001244
10.1006/icar.1994.1158
10.1016/0034-4257(93)90013-N
10.1126/science.219.4581.127
10.1029/JB086iB04p03039
10.1016/j.icarus.2011.01.022
10.1029/2000JE001338
10.1088/1674-4527/14/12/006
10.1016/j.icarus.2010.08.024
10.1029/2010JE003751
10.1016/j.icarus.2013.09.013
10.1029/2010JE003735
10.1088/1674-4527/14/12/004
10.1016/j.icarus.2012.10.036
10.1016/j.icarus.2008.05.008
10.1016/0012-821X(71)90210-X
10.1126/science.1259866
ContentType Journal Article
Copyright 2017. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2017. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1002/2017GL072652
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage 3492
ExternalDocumentID 10_1002_2017GL072652
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
AAESR
AAFWJ
AAHHS
AAIHA
AASGY
AAXRX
AAYXX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACTHY
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFGKR
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CITATION
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIN
WXSBR
XSW
ZZTAW
~02
~OA
~~A
7TG
7TN
8FD
AAMMB
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-a324t-95a76aee6ace6c5617a3bc1bfe0f29f263439bcb94529c95ccadf808594300b43
ISSN 0094-8276
IngestDate Fri Jul 25 10:35:29 EDT 2025
Thu Apr 24 22:53:12 EDT 2025
Tue Jul 01 01:40:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a324t-95a76aee6ace6c5617a3bc1bfe0f29f263439bcb94529c95ccadf808594300b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8408-1204
0000-0002-9241-6358
0000-0003-4246-1545
0000-0001-7301-0929
OpenAccessLink http://hdl.handle.net/10680/1375
PQID 1901437709
PQPubID 54723
PageCount 8
ParticipantIDs proquest_journals_1901437709
crossref_citationtrail_10_1002_2017GL072652
crossref_primary_10_1002_2017GL072652
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-28
PublicationDateYYYYMMDD 2017-04-28
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-28
  day: 28
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2017
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
Paquin R. A. (e_1_2_7_36_1) 1995
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Bowell E. (e_1_2_7_6_1) 1989
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
Mustard J. (e_1_2_7_30_1) 1989; 94
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – ident: e_1_2_7_37_1
  doi: 10.1029/93JE02467
– ident: e_1_2_7_33_1
  doi: 10.1016/j.icarus.2007.07.021
– ident: e_1_2_7_34_1
– ident: e_1_2_7_21_1
  doi: 10.1088/1674-4527/13/7/010
– start-page: 35.31
  volume-title: Handbook of Optics Volume II: Devices, Measurements, and Properties
  year: 1995
  ident: e_1_2_7_36_1
– ident: e_1_2_7_4_1
  doi: 10.1016/j.pss.2015.08.006
– ident: e_1_2_7_9_1
  doi: 10.1016/j.icarus.2015.12.010
– ident: e_1_2_7_25_1
  doi: 10.2138/rmg.2006.60.2
– ident: e_1_2_7_32_1
  doi: 10.1111/j.1945‐5100.2001.tb01808.x
– ident: e_1_2_7_40_1
  doi: 10.1016/S0273-1177(03)00575-1
– ident: e_1_2_7_29_1
– ident: e_1_2_7_38_1
  doi: 10.1111/j.1945‐5100.2000.tb01496.x
– ident: e_1_2_7_22_1
  doi: 10.1088/1674-4527/14/12/007
– volume: 94
  start-page: 619
  issue: 13
  year: 1989
  ident: e_1_2_7_30_1
  article-title: Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra
  publication-title: J. Geophys. Res.
– ident: e_1_2_7_35_1
  doi: 10.1007/s11214-010-9689-0
– ident: e_1_2_7_3_1
– ident: e_1_2_7_15_1
  doi: 10.1016/j.icarus.2008.01.003
– ident: e_1_2_7_28_1
– ident: e_1_2_7_46_1
  doi: 10.1002/2016JE005051
– ident: e_1_2_7_27_1
  doi: 10.1016/j.epsl.2010.12.028
– ident: e_1_2_7_16_1
  doi: 10.1017/CBO9781139025683
– ident: e_1_2_7_18_1
  doi: 10.1029/2000JE001244
– ident: e_1_2_7_44_1
– ident: e_1_2_7_10_1
  doi: 10.1006/icar.1994.1158
– ident: e_1_2_7_20_1
  doi: 10.1016/0034-4257(93)90013-N
– ident: e_1_2_7_39_1
  doi: 10.1126/science.219.4581.127
– ident: e_1_2_7_13_1
  doi: 10.1029/JB086iB04p03039
– ident: e_1_2_7_2_1
– start-page: 524
  volume-title: Asteroids II
  year: 1989
  ident: e_1_2_7_6_1
– ident: e_1_2_7_24_1
  doi: 10.1016/j.icarus.2011.01.022
– ident: e_1_2_7_14_1
  doi: 10.1029/2000JE001338
– ident: e_1_2_7_43_1
– ident: e_1_2_7_17_1
  doi: 10.1088/1674-4527/14/12/006
– ident: e_1_2_7_19_1
  doi: 10.1016/j.icarus.2010.08.024
– ident: e_1_2_7_7_1
  doi: 10.1029/2010JE003751
– ident: e_1_2_7_8_1
  doi: 10.1016/j.icarus.2013.09.013
– ident: e_1_2_7_41_1
  doi: 10.1029/2010JE003735
– ident: e_1_2_7_42_1
  doi: 10.1088/1674-4527/14/12/004
– ident: e_1_2_7_5_1
  doi: 10.1016/j.icarus.2012.10.036
– ident: e_1_2_7_23_1
  doi: 10.1016/j.icarus.2008.05.008
– ident: e_1_2_7_11_1
  doi: 10.1016/0012-821X(71)90210-X
– ident: e_1_2_7_26_1
– ident: e_1_2_7_12_1
– ident: e_1_2_7_45_1
  doi: 10.1126/science.1259866
– ident: e_1_2_7_31_1
SSID ssj0003031
Score 2.3696373
Snippet Submicroscopic metallic iron (SMFe) created by space weathering has strong effects on the optical properties of the lunar surface. Spectra measured in situ by...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 3485
SubjectTerms Infrared spectrometers
Iron
Lunar exploration
Lunar landing
Lunar regolith
Lunar roving vehicles
Lunar soil
Lunar spacecraft
Lunar surface
Lunar surface vehicles
Maturity
Near infrared radiation
Optical properties
Oxygen
Radiation
Radiative transfer
Reflectance
Regolith
Rocket exhaust
Soil
Space missions
Space weathering
Spectra
Turnover rate
Weathering
Title Submicroscopic metallic iron in lunar soils estimated from the in situ spectra of the Chang'E‐3 mission
URI https://www.proquest.com/docview/1901437709
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbKrpC4IH7FsgvyAcQhSknjNImPZVW6QohTC6u9RLbrqJGyyapJhNjTPgIPwZPxJIx_YlJUpIVLFFlO1Ga-zHx2Zr5B6NVa0Q6Scl9QTmGBEq99KidwFvIc4tWEy7VW-_wUn62iD-fT89HoxyBrqWv5WFzvrSv5H6vCGNhVVcn-g2XdTWEAzsG-cAQLw_FWNoa3_lIl1KnSkkKobtCsVKLVqnRNbWSUXcW2XlMXZeMpNQ1gp8AvXUUJzGiKtvN0teWW9ekCp2YPOZm7RAjiARqa3oKWyi5kfdUb2UoGbbxSVwc5nv7F7kZfbOCxbVjtxjvt-rvqejD4rpRfbdawzrT3lmP3haSs4TGaygndZdqbjYf7FRADg6iv_7Y-mEZ-GiZWANu4XRrBWGD63_Z-2ehCWvylAydLItPlxwZspa-4NxgYcVn1GxYfgySMjVTurub2H7HQZSgaNecwG159Bx2GsBgBb3o4-7y6WLmIDzTAdGa0_8wWWMD1b4fX71Kf3civ6czyAbpv1yF4ZkD1EI1k9QjdXeg-z9_gTGcGi-YxKnZBhnuQYQUyXFRYgwxrkGEHMqxAhgFNaoYCGbYgw3WuhzXI3sx_3nwn2ILrCVq9ny9Pz3zbn8NnQMNbn05ZEjMpYyZkLICIJ4xwMeG5DPKQ5mFMgO1ywan6uC_oFJzFOk-Vol5EgoBH5Ck6qOpKPkM4FPE0khOZ5LC-pTEFVpwTxvNUJhIYfHyEvP7RZcKK16seKmW2z1BH6LWbfWVEW_4y76S3QmZf6yZTDDkiSRLQ57e8zTG69xvoJ-ig3XbyBVDVlr-0SPkFm8-Ruw
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Submicroscopic+metallic+iron+in+lunar+soils+estimated+from+the+in+situ+spectra+of+the+Chang%27E%E2%80%903+mission&rft.jtitle=Geophysical+research+letters&rft.au=Wang%2C+Zhenchao&rft.au=Wu%2C+Yunzhao&rft.au=Blewett%2C+David+T.&rft.au=Cloutis%2C+Edward+A.&rft.date=2017-04-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=44&rft.issue=8&rft.spage=3485&rft.epage=3492&rft_id=info:doi/10.1002%2F2017GL072652&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_2017GL072652
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon