Shaping the Water-Harvesting Behavior of Metal–Organic Frameworks Aided by Fine-Tuned GPT Models
We construct a data set of metal–organic framework (MOF) linkers and employ a fine-tuned GPT assistant to propose MOF linker designs by mutating and modifying the existing linker structures. This strategy allows the GPT model to learn the intricate language of chemistry in molecular representations,...
Saved in:
Published in | Journal of the American Chemical Society Vol. 145; no. 51; pp. 28284 - 28295 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.12.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | We construct a data set of metal–organic framework (MOF) linkers and employ a fine-tuned GPT assistant to propose MOF linker designs by mutating and modifying the existing linker structures. This strategy allows the GPT model to learn the intricate language of chemistry in molecular representations, thereby achieving an enhanced accuracy in generating linker structures compared with its base models. Aiming to highlight the significance of linker design strategies in advancing the discovery of water-harvesting MOFs, we conducted a systematic MOF variant expansion upon state-of-the-art MOF-303 utilizing a multidimensional approach that integrates linker extension with multivariate tuning strategies. We synthesized a series of isoreticular aluminum MOFs, termed Long-Arm MOFs (LAMOF-1 to LAMOF-10), featuring linkers that bear various combinations of heteroatoms in their five-membered ring moiety, replacing pyrazole with either thiophene, furan, or thiazole rings or a combination of two. Beyond their consistent and robust architecture, as demonstrated by permanent porosity and thermal stability, the LAMOF series offers a generalizable synthesis strategy. Importantly, these 10 LAMOFs establish new benchmarks for water uptake (up to 0.64 g g–1) and operational humidity ranges (between 13 and 53%), thereby expanding the diversity of water-harvesting MOFs. |
---|---|
AbstractList | We construct a data set of metal–organic framework (MOF) linkers and employ a fine-tuned GPT assistant to propose MOF linker designs by mutating and modifying the existing linker structures. This strategy allows the GPT model to learn the intricate language of chemistry in molecular representations, thereby achieving an enhanced accuracy in generating linker structures compared with its base models. Aiming to highlight the significance of linker design strategies in advancing the discovery of water-harvesting MOFs, we conducted a systematic MOF variant expansion upon state-of-the-art MOF-303 utilizing a multidimensional approach that integrates linker extension with multivariate tuning strategies. We synthesized a series of isoreticular aluminum MOFs, termed Long-Arm MOFs (LAMOF-1 to LAMOF-10), featuring linkers that bear various combinations of heteroatoms in their five-membered ring moiety, replacing pyrazole with either thiophene, furan, or thiazole rings or a combination of two. Beyond their consistent and robust architecture, as demonstrated by permanent porosity and thermal stability, the LAMOF series offers a generalizable synthesis strategy. Importantly, these 10 LAMOFs establish new benchmarks for water uptake (up to 0.64 g g–1) and operational humidity ranges (between 13 and 53%), thereby expanding the diversity of water-harvesting MOFs. We construct a data set of metal-organic framework (MOF) linkers and employ a fine-tuned GPT assistant to propose MOF linker designs by mutating and modifying the existing linker structures. This strategy allows the GPT model to learn the intricate language of chemistry in molecular representations, thereby achieving an enhanced accuracy in generating linker structures compared with its base models. Aiming to highlight the significance of linker design strategies in advancing the discovery of water-harvesting MOFs, we conducted a systematic MOF variant expansion upon state-of-the-art MOF-303 utilizing a multidimensional approach that integrates linker extension with multivariate tuning strategies. We synthesized a series of isoreticular aluminum MOFs, termed Long-Arm MOFs (LAMOF-1 to LAMOF-10), featuring linkers that bear various combinations of heteroatoms in their five-membered ring moiety, replacing pyrazole with either thiophene, furan, or thiazole rings or a combination of two. Beyond their consistent and robust architecture, as demonstrated by permanent porosity and thermal stability, the LAMOF series offers a generalizable synthesis strategy. Importantly, these 10 LAMOFs establish new benchmarks for water uptake (up to 0.64 g g ) and operational humidity ranges (between 13 and 53%), thereby expanding the diversity of water-harvesting MOFs. |
Author | Alawadhi, Ali H. Liu, Shengchao Rong, Zichao Rampal, Nakul Chayes, Jennifer T. Chheda, Saumil Siepmann, J. Ilja Zheng, Zhiling Gagliardi, Laura Borgs, Christian Anandkumar, Anima Lin, Yen-hsu Nguyen, Ha L. Yaghi, Omar M. Neumann, S. Ephraim |
AuthorAffiliation | Department of Chemistry, Pritzker School of Molecular Engineering, Chicago Center for Theoretical Chemistry Computing and Mathematical Sciences Department of Electrical Engineering and Computer Sciences Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society Department of Chemical Engineering and Materials Science, Department of Chemistry, and Chemical Theory Center University of California Department of Mathematics Department of Chemistry KACST−UC Berkeley Center of Excellence for Nanomaterials for Clean Energy Applications NVIDIA Corporation Department of Statistics School of Information Kavli Energy Nanoscience Institute King Abdulaziz City for Science and Technology |
AuthorAffiliation_xml | – name: Department of Chemistry – name: Department of Electrical Engineering and Computer Sciences – name: Department of Statistics – name: Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society – name: School of Information – name: Department of Chemical Engineering and Materials Science, Department of Chemistry, and Chemical Theory Center – name: Department of Chemistry, Pritzker School of Molecular Engineering, Chicago Center for Theoretical Chemistry – name: NVIDIA Corporation – name: Computing and Mathematical Sciences – name: University of California – name: KACST−UC Berkeley Center of Excellence for Nanomaterials for Clean Energy Applications – name: King Abdulaziz City for Science and Technology – name: Department of Mathematics – name: Kavli Energy Nanoscience Institute |
Author_xml | – sequence: 1 givenname: Zhiling orcidid: 0000-0001-6090-2258 surname: Zheng fullname: Zheng, Zhiling organization: Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society – sequence: 2 givenname: Ali H. orcidid: 0000-0003-2680-5221 surname: Alawadhi fullname: Alawadhi, Ali H. organization: Kavli Energy Nanoscience Institute – sequence: 3 givenname: Saumil orcidid: 0000-0002-0989-5707 surname: Chheda fullname: Chheda, Saumil organization: Department of Chemical Engineering and Materials Science, Department of Chemistry, and Chemical Theory Center – sequence: 4 givenname: S. Ephraim orcidid: 0000-0002-8515-9621 surname: Neumann fullname: Neumann, S. Ephraim organization: Kavli Energy Nanoscience Institute – sequence: 5 givenname: Nakul surname: Rampal fullname: Rampal, Nakul organization: Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society – sequence: 6 givenname: Shengchao surname: Liu fullname: Liu, Shengchao organization: Department of Electrical Engineering and Computer Sciences – sequence: 7 givenname: Ha L. orcidid: 0000-0002-4977-925X surname: Nguyen fullname: Nguyen, Ha L. organization: Kavli Energy Nanoscience Institute – sequence: 8 givenname: Yen-hsu surname: Lin fullname: Lin, Yen-hsu organization: Kavli Energy Nanoscience Institute – sequence: 9 givenname: Zichao orcidid: 0000-0002-9014-9540 surname: Rong fullname: Rong, Zichao organization: Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society – sequence: 10 givenname: J. Ilja orcidid: 0000-0003-2534-4507 surname: Siepmann fullname: Siepmann, J. Ilja organization: Department of Chemical Engineering and Materials Science, Department of Chemistry, and Chemical Theory Center – sequence: 11 givenname: Laura orcidid: 0000-0001-5227-1396 surname: Gagliardi fullname: Gagliardi, Laura organization: Department of Chemistry, Pritzker School of Molecular Engineering, Chicago Center for Theoretical Chemistry – sequence: 12 givenname: Anima surname: Anandkumar fullname: Anandkumar, Anima organization: NVIDIA Corporation – sequence: 13 givenname: Christian surname: Borgs fullname: Borgs, Christian organization: Department of Electrical Engineering and Computer Sciences – sequence: 14 givenname: Jennifer T. surname: Chayes fullname: Chayes, Jennifer T. organization: School of Information – sequence: 15 givenname: Omar M. orcidid: 0000-0002-5611-3325 surname: Yaghi fullname: Yaghi, Omar M. email: yaghi@berkeley.edu organization: King Abdulaziz City for Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38090755$$D View this record in MEDLINE/PubMed |
BookMark | eNptkM1OwzAQhC1URH_gxhn5yIEU20kc51gq2iK1KhJFHCMnWbcpaVzspKg33oE35ElI1AIXTqtZzc5qvi5qFboAhC4p6VPC6O1aJrbvJpQRwU9Qh_qMOD5lvIU6hBDmBIK7bdS1dl1Ljwl6htquICEJfL-D4qeV3GbFEpcrwC-yBONMpNmBLZvlHazkLtMGa4VnUMr86-NzbpayyBI8MnID79q8WjzIUkhxvMejrABnURW1Gj8u8EynkNtzdKpkbuHiOHvoeXS_GE6c6Xz8MBxMHekyr3QECN9TPIwDReIwFJSIIPRiBVywhLiMgeLUr7cQJyQFkAwY5UHAUhIwxcHtoetD7tbot6puEG0ym0CeywJ0ZSMWEhZyTj2vtt4crInR1hpQ0dZkG2n2ESVRQzVqqEZHqrX96phcxRtIf80_GP9eN1drXZmiLvp_1jfySIHl |
CitedBy_id | crossref_primary_10_1088_1674_1056_ad3c30 crossref_primary_10_1039_D3DD00239J crossref_primary_10_3390_molecules29112698 crossref_primary_10_1021_acs_jchemed_4c00226 crossref_primary_10_1021_jacs_4c02327 crossref_primary_10_1007_s12274_024_6621_6 crossref_primary_10_1002_adma_202310683 crossref_primary_10_1007_s10853_024_09379_w crossref_primary_10_1021_jacs_4c06088 crossref_primary_10_1021_jacs_3c14699 crossref_primary_10_1016_j_seppur_2024_126987 crossref_primary_10_1021_acs_chemrev_3c00450 crossref_primary_10_1021_acs_jctc_4c00149 crossref_primary_10_1016_j_isci_2024_109451 crossref_primary_10_1039_D4CS00423J |
Cites_doi | 10.48550/arXiv.2305.18090 10.26434/chemrxiv-2023-frr55 10.1016/j.nantod.2021.101283 10.1039/D2DD00087C 10.1021/acscentsci.0c00678 10.1038/s41570-023-00502-0 10.1038/s41560-018-0261-6 10.1038/s41893-017-0006-8 10.1038/s41467-019-10960-0 10.1002/adma.202110079 10.1039/C8DT04688C 10.1142/9789814287005_0035 10.1021/acsami.9b02605 10.1021/acs.chemrev.6b00346 10.1021/jacs.3c05819 10.2113/gselements.7.3.157 10.1021/acscentsci.7b00186 10.1038/s41596-022-00756-w 10.1021/ja500330a 10.1016/j.micromeso.2017.04.054 10.1002/adma.201502418 10.1038/s41598-020-58405-9 10.1002/advs.202301311 10.1038/s41586-021-03900-w 10.1002/wrcr.20249 10.1126/sciadv.aat3198 10.1038/s41467-020-18968-7 10.1021/acs.chemmater.9b00617 10.1016/j.gee.2022.02.004 10.1039/9781849733069 10.1021/acscentsci.3c00018 10.48550/arXiv:2304.02213 10.1016/j.crci.2004.10.011 10.1039/C6TA01757F 10.1002/adma.202209073 10.1073/pnas.1011615108 10.1038/s41565-020-0673-x 10.1021/acs.jcim.0c00675 10.1039/D2EE03079A 10.1039/D2TA07392G 10.26434/chemrxiv-2023-fw8n4 10.1016/S0043-1354(00)00247-5 10.1016/j.micromeso.2011.08.020 10.1039/D0DT01044H 10.1021/jacs.6b04608 10.1016/j.chempr.2021.07.006 10.1017/S0376892902000097 10.24294/can.v3i2.551 10.1126/science.abj0890 10.1038/s44221-023-00103-7 10.1016/j.ccr.2020.213542 10.1126/science.1220131 10.26434/chemrxiv-2023-s1x5p 10.1021/acs.jpca.1c02086 10.1021/acsmaterialslett.0c00130 10.1007/s10450-020-00286-5 10.1088/2632-2153/aba947 10.1002/adma.202210957 10.1142/S2529732523400011 10.1038/s41591-023-02448-8 10.1002/adma.202211302 10.1021/cr5002589 10.1021/acscentsci.3c01087 10.1021/acs.jchemed.3c00690 10.1021/ci00057a005 10.1021/acsami.3c08929 10.1063/5.0021955 10.1002/anie.202311983 10.1021/acscentsci.9b00745 10.48550/arXiv.2212.10789 10.1016/j.chempr.2017.11.005 10.1038/s41578-019-0140-1 10.48550/arXiv:2303.08774 10.48550/arXiv:2303.12712 10.1016/j.ijheatmasstransfer.2017.06.086 10.1021/jacs.2c09756 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1021/jacs.3c12086 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 28295 |
ExternalDocumentID | 10_1021_jacs_3c12086 38090755 b78137837 |
Genre | Journal Article |
GroupedDBID | --- -DZ -ET -~X .DC .K2 4.4 55A 5GY 5RE 5VS 7~N 85S AABXI ABFRP ABJNI ABMVS ABPPZ ABPTK ABQRX ABUCX ACBEA ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGHSJ AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 EBS ED~ F5P GGK GNL IH2 IH9 JG~ LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YQT YZZ ZCA ~02 53G AAHBH CUPRZ NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a324t-8e854f69b7f0b998108794bfe682c0322ef615108ebc0deea2e216772d072f6e3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 |
IngestDate | Fri Aug 16 08:45:22 EDT 2024 Fri Aug 23 01:00:33 EDT 2024 Sat Nov 02 12:21:20 EDT 2024 Thu Dec 28 06:18:52 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a324t-8e854f69b7f0b998108794bfe682c0322ef615108ebc0deea2e216772d072f6e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6090-2258 0000-0002-4977-925X 0000-0003-2534-4507 0000-0002-5611-3325 0000-0002-8515-9621 0000-0002-0989-5707 0000-0001-5227-1396 0000-0003-2680-5221 0000-0002-9014-9540 |
PMID | 38090755 |
PQID | 2902966144 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2902966144 crossref_primary_10_1021_jacs_3c12086 pubmed_primary_38090755 acs_journals_10_1021_jacs_3c12086 |
PublicationCentury | 2000 |
PublicationDate | 2023-12-27 |
PublicationDateYYYYMMDD | 2023-12-27 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref59/cit59 doi: 10.48550/arXiv.2305.18090 – ident: ref74/cit74 doi: 10.26434/chemrxiv-2023-frr55 – ident: ref28/cit28 doi: 10.1016/j.nantod.2021.101283 – ident: ref55/cit55 doi: 10.1039/D2DD00087C – ident: ref14/cit14 doi: 10.1021/acscentsci.0c00678 – ident: ref53/cit53 doi: 10.1038/s41570-023-00502-0 – ident: ref70/cit70 doi: 10.1038/s41560-018-0261-6 – ident: ref2/cit2 doi: 10.1038/s41893-017-0006-8 – ident: ref72/cit72 doi: 10.1038/s41467-019-10960-0 – ident: ref10/cit10 doi: 10.1002/adma.202110079 – ident: ref64/cit64 doi: 10.1039/C8DT04688C – ident: ref6/cit6 doi: 10.1142/9789814287005_0035 – ident: ref69/cit69 doi: 10.1021/acsami.9b02605 – ident: ref77/cit77 doi: 10.1021/acs.chemrev.6b00346 – ident: ref50/cit50 doi: 10.1021/jacs.3c05819 – ident: ref7/cit7 doi: 10.2113/gselements.7.3.157 – ident: ref20/cit20 doi: 10.1021/acscentsci.7b00186 – ident: ref17/cit17 doi: 10.1038/s41596-022-00756-w – ident: ref32/cit32 doi: 10.1021/ja500330a – ident: ref39/cit39 doi: 10.1016/j.micromeso.2017.04.054 – ident: ref31/cit31 doi: 10.1002/adma.201502418 – ident: ref22/cit22 doi: 10.1038/s41598-020-58405-9 – ident: ref43/cit43 doi: 10.1002/advs.202301311 – ident: ref9/cit9 doi: 10.1038/s41586-021-03900-w – ident: ref3/cit3 doi: 10.1002/wrcr.20249 – ident: ref5/cit5 – ident: ref27/cit27 doi: 10.1126/sciadv.aat3198 – ident: ref30/cit30 doi: 10.1038/s41467-020-18968-7 – ident: ref44/cit44 doi: 10.1021/acs.chemmater.9b00617 – ident: ref46/cit46 doi: 10.1016/j.gee.2022.02.004 – ident: ref49/cit49 doi: 10.1039/9781849733069 – ident: ref19/cit19 doi: 10.1021/acscentsci.3c00018 – ident: ref62/cit62 doi: 10.48550/arXiv:2304.02213 – ident: ref38/cit38 doi: 10.1016/j.crci.2004.10.011 – ident: ref68/cit68 doi: 10.1039/C6TA01757F – ident: ref12/cit12 doi: 10.1002/adma.202209073 – ident: ref1/cit1 doi: 10.1073/pnas.1011615108 – ident: ref35/cit35 doi: 10.1038/s41565-020-0673-x – ident: ref63/cit63 doi: 10.1021/acs.jcim.0c00675 – ident: ref11/cit11 doi: 10.1039/D2EE03079A – ident: ref71/cit71 doi: 10.1039/D2TA07392G – ident: ref60/cit60 – ident: ref51/cit51 doi: 10.26434/chemrxiv-2023-fw8n4 – ident: ref8/cit8 doi: 10.1016/S0043-1354(00)00247-5 – ident: ref75/cit75 doi: 10.1016/j.micromeso.2011.08.020 – ident: ref45/cit45 doi: 10.1039/D0DT01044H – ident: ref65/cit65 – ident: ref40/cit40 doi: 10.1021/jacs.6b04608 – ident: ref76/cit76 doi: 10.1016/j.chempr.2021.07.006 – ident: ref4/cit4 doi: 10.1017/S0376892902000097 – ident: ref37/cit37 doi: 10.24294/can.v3i2.551 – ident: ref29/cit29 doi: 10.1126/science.abj0890 – ident: ref25/cit25 doi: 10.1038/s44221-023-00103-7 – ident: ref36/cit36 doi: 10.1016/j.ccr.2020.213542 – ident: ref41/cit41 doi: 10.1126/science.1220131 – ident: ref54/cit54 doi: 10.26434/chemrxiv-2023-s1x5p – ident: ref78/cit78 doi: 10.1021/acs.jpca.1c02086 – ident: ref15/cit15 doi: 10.1021/acsmaterialslett.0c00130 – ident: ref67/cit67 doi: 10.1007/s10450-020-00286-5 – ident: ref48/cit48 doi: 10.1088/2632-2153/aba947 – ident: ref13/cit13 doi: 10.1002/adma.202210957 – ident: ref21/cit21 doi: 10.1142/S2529732523400011 – ident: ref61/cit61 doi: 10.1038/s41591-023-02448-8 – ident: ref16/cit16 doi: 10.1002/adma.202211302 – ident: ref33/cit33 doi: 10.1021/cr5002589 – ident: ref73/cit73 doi: 10.1021/acscentsci.3c01087 – ident: ref23/cit23 doi: 10.1021/acs.jchemed.3c00690 – ident: ref47/cit47 doi: 10.1021/ci00057a005 – ident: ref18/cit18 doi: 10.1021/acsami.3c08929 – ident: ref80/cit80 doi: 10.1063/5.0021955 – ident: ref57/cit57 doi: 10.1002/anie.202311983 – ident: ref26/cit26 doi: 10.1021/acscentsci.9b00745 – ident: ref79/cit79 doi: 10.48550/arXiv.2212.10789 – ident: ref24/cit24 doi: 10.1016/j.chempr.2017.11.005 – ident: ref34/cit34 doi: 10.1038/s41578-019-0140-1 – ident: ref56/cit56 doi: 10.48550/arXiv:2303.08774 – ident: ref58/cit58 doi: 10.48550/arXiv:2303.12712 – ident: ref52/cit52 – ident: ref66/cit66 doi: 10.1016/j.ijheatmasstransfer.2017.06.086 – ident: ref42/cit42 doi: 10.1021/jacs.2c09756 |
SSID | ssj0004281 |
Score | 2.5792098 |
Snippet | We construct a data set of metal–organic framework (MOF) linkers and employ a fine-tuned GPT assistant to propose MOF linker designs by mutating and modifying... We construct a data set of metal-organic framework (MOF) linkers and employ a fine-tuned GPT assistant to propose MOF linker designs by mutating and modifying... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 28284 |
Title | Shaping the Water-Harvesting Behavior of Metal–Organic Frameworks Aided by Fine-Tuned GPT Models |
URI | http://dx.doi.org/10.1021/jacs.3c12086 https://www.ncbi.nlm.nih.gov/pubmed/38090755 https://search.proquest.com/docview/2902966144 |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1bS8MwFICDzgd98X6ZNzLQx4w0vaWPY9gNQRG24d5KkyYoSidr-6BP_gf_ob_Ek7V1OBn6GtoSTnJ6vsO5IXShYosltsuJI21GnMCxCZdaEtO6znL92EyqMdkWt15_5FyP3fE8QXYxgs9MfyCZtW1pMYDvVbTGfNALg0Ddwbz-kXGrxlyfe3aV4L74tjFAMvtpgJZQ5cy6hFuoV9folEklT-0iF2359rtl4x8b30abFWDiTnkjdtCKSnfReree67aHxOAhNkVSGNAP3wNqTokZEGS6bcBi1S9xiica3ygg88_3j7JeU-KwTuTKcOcxUQkWrzgESiXDAn7WuHc3xGa02nO2j0bh1bDbJ9WkBRIDUOWEK-462guEr6kAB8yiHPRUaOVxJinovNKGfChXQtJEqZgpZnkA5gn1mfaUfYAa6SRVRwhrFoNTrWPwu4QjtQc8rK1A0MRVCZPSaqIWyCWqNCWLZkFwBk6IWa2k1USX9RFFL2XTjSXPterzi0CIJtQRp2pSZBELKAsMejhNdFge7PeXbE4DACX3-B87OUEbZr68yV9h_ilq5NNCnQGF5OJ8dgW_AOuD1VQ |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3JTsMwEEBHLAe4sC9lNRIcjRxnc46oopStQqIIblHs2AKBWtS0BzjxD_whX8JMmoBAQuJqJdZovMwbeRaAfZt5MvdDxQPjSx4kgc-VcYZT6TovjDPqVEPRFp2ofROc3YV3VbI65cKgEAXOVJSP-N_VBahMEA76xpPI4JMwHcZoK4mEmtffaZBSeTXtxiryqzj333-THTLFTzv0B1yWRqY1D50v8crYksfD0VAfmtdflRv_Lf8CzFW4yY7G-2MRJmxvCWaadZe3ZdDX9xmlTDEEQXaL4Dng1C6Iam_gYFU9ccD6jl1a5PSPt_dx9qZhrTqsq2BHD7nNmX5hLWRW3h3h1c1OrrqMGq09FStw0zruNtu86rvAM8SrIVdWhYGLEh07odEd84TCU6udjZQ0Am8A64iDhLLaiNzaTFrpRYjpuYili6y_ClO9fs-uA3MyQxfbZeiF6cC4COnYeYkWeWhzaYzXgD3US1qdmyItn8QluiQ0WmmrAQf1SqXP4xIcf3y3Vy9jikqkh4-sZ_ujIpWJkAmBSNCAtfH6fs3kK5EgNoUb_5BkF2ba3cuL9OK0c74Js9R5niJbZLwFU8PByG4jnwz1TrkrPwFNYd25 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1JT-swEIBHUCR4l8fOK6uR4GhkO5tzrAphRwiK4BbFji0QTy1q2gOc-A_8Q34J4zQBgYQEVyexnPH2jWYD2DIZF7kXSOprT1A_9j0qtdXUpa7jQZS5SjXO2-IsPLjyj26CmzHgdSwMDqLAnorSiO929UNuqwwDLlUQPvA0F8jh4zARRLy0zLbalx-hkELymngjGXqVr_vXr91dpIvPd9E3gFleNMk0XLwPsfQvud8ZDtSOfvqSvfFX_zADfyvsJK3ROpmFMdOdg6l2Xe1tHtTlbeZCpwgCIblGAO1TVzbI5eDAxiqLYp_0LDk1yOuvzy-jKE5Nktq9qyCtu9zkRD2SBNmVdoZ4hJP98w5xBdf-Fwtwlex12ge0qr9AM8SsAZVGBr4NYxVZplAt40zi7lXWhFJohieBsY6HmDRKs9yYTBjBQ8T1nEXChsZbhEa31zX_gFiRoaptM9TGlK9tiJRseaxYHphcaM2bsIlySav9U6SlaVygauJaK2k1YbuerfRhlIrjm_c266lMUYjOAJJ1TW9YpCJmInZA4jdhaTTH7z15ksWIT8HyD0ayAZPnu0l6cnh2vAJ_XAF65-AiolVoDPpDs4aYMlDr5cJ8A4kp4DM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shaping+the+Water-Harvesting+Behavior+of+Metal%E2%80%93Organic+Frameworks+Aided+by+Fine-Tuned+GPT+Models&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Zheng%2C+Zhiling&rft.au=Alawadhi%2C+Ali+H.&rft.au=Chheda%2C+Saumil&rft.au=Neumann%2C+S.+Ephraim&rft.date=2023-12-27&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=145&rft.issue=51&rft.spage=28284&rft.epage=28295&rft_id=info:doi/10.1021%2Fjacs.3c12086&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_3c12086 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |