Shaping the Water-Harvesting Behavior of Metal–Organic Frameworks Aided by Fine-Tuned GPT Models

We construct a data set of metal–organic framework (MOF) linkers and employ a fine-tuned GPT assistant to propose MOF linker designs by mutating and modifying the existing linker structures. This strategy allows the GPT model to learn the intricate language of chemistry in molecular representations,...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 145; no. 51; pp. 28284 - 28295
Main Authors Zheng, Zhiling, Alawadhi, Ali H., Chheda, Saumil, Neumann, S. Ephraim, Rampal, Nakul, Liu, Shengchao, Nguyen, Ha L., Lin, Yen-hsu, Rong, Zichao, Siepmann, J. Ilja, Gagliardi, Laura, Anandkumar, Anima, Borgs, Christian, Chayes, Jennifer T., Yaghi, Omar M.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.12.2023
Online AccessGet full text

Cover

Loading…
Abstract We construct a data set of metal–organic framework (MOF) linkers and employ a fine-tuned GPT assistant to propose MOF linker designs by mutating and modifying the existing linker structures. This strategy allows the GPT model to learn the intricate language of chemistry in molecular representations, thereby achieving an enhanced accuracy in generating linker structures compared with its base models. Aiming to highlight the significance of linker design strategies in advancing the discovery of water-harvesting MOFs, we conducted a systematic MOF variant expansion upon state-of-the-art MOF-303 utilizing a multidimensional approach that integrates linker extension with multivariate tuning strategies. We synthesized a series of isoreticular aluminum MOFs, termed Long-Arm MOFs (LAMOF-1 to LAMOF-10), featuring linkers that bear various combinations of heteroatoms in their five-membered ring moiety, replacing pyrazole with either thiophene, furan, or thiazole rings or a combination of two. Beyond their consistent and robust architecture, as demonstrated by permanent porosity and thermal stability, the LAMOF series offers a generalizable synthesis strategy. Importantly, these 10 LAMOFs establish new benchmarks for water uptake (up to 0.64 g g–1) and operational humidity ranges (between 13 and 53%), thereby expanding the diversity of water-harvesting MOFs.
AbstractList We construct a data set of metal–organic framework (MOF) linkers and employ a fine-tuned GPT assistant to propose MOF linker designs by mutating and modifying the existing linker structures. This strategy allows the GPT model to learn the intricate language of chemistry in molecular representations, thereby achieving an enhanced accuracy in generating linker structures compared with its base models. Aiming to highlight the significance of linker design strategies in advancing the discovery of water-harvesting MOFs, we conducted a systematic MOF variant expansion upon state-of-the-art MOF-303 utilizing a multidimensional approach that integrates linker extension with multivariate tuning strategies. We synthesized a series of isoreticular aluminum MOFs, termed Long-Arm MOFs (LAMOF-1 to LAMOF-10), featuring linkers that bear various combinations of heteroatoms in their five-membered ring moiety, replacing pyrazole with either thiophene, furan, or thiazole rings or a combination of two. Beyond their consistent and robust architecture, as demonstrated by permanent porosity and thermal stability, the LAMOF series offers a generalizable synthesis strategy. Importantly, these 10 LAMOFs establish new benchmarks for water uptake (up to 0.64 g g–1) and operational humidity ranges (between 13 and 53%), thereby expanding the diversity of water-harvesting MOFs.
We construct a data set of metal-organic framework (MOF) linkers and employ a fine-tuned GPT assistant to propose MOF linker designs by mutating and modifying the existing linker structures. This strategy allows the GPT model to learn the intricate language of chemistry in molecular representations, thereby achieving an enhanced accuracy in generating linker structures compared with its base models. Aiming to highlight the significance of linker design strategies in advancing the discovery of water-harvesting MOFs, we conducted a systematic MOF variant expansion upon state-of-the-art MOF-303 utilizing a multidimensional approach that integrates linker extension with multivariate tuning strategies. We synthesized a series of isoreticular aluminum MOFs, termed Long-Arm MOFs (LAMOF-1 to LAMOF-10), featuring linkers that bear various combinations of heteroatoms in their five-membered ring moiety, replacing pyrazole with either thiophene, furan, or thiazole rings or a combination of two. Beyond their consistent and robust architecture, as demonstrated by permanent porosity and thermal stability, the LAMOF series offers a generalizable synthesis strategy. Importantly, these 10 LAMOFs establish new benchmarks for water uptake (up to 0.64 g g ) and operational humidity ranges (between 13 and 53%), thereby expanding the diversity of water-harvesting MOFs.
Author Alawadhi, Ali H.
Liu, Shengchao
Rong, Zichao
Rampal, Nakul
Chayes, Jennifer T.
Chheda, Saumil
Siepmann, J. Ilja
Zheng, Zhiling
Gagliardi, Laura
Borgs, Christian
Anandkumar, Anima
Lin, Yen-hsu
Nguyen, Ha L.
Yaghi, Omar M.
Neumann, S. Ephraim
AuthorAffiliation Department of Chemistry, Pritzker School of Molecular Engineering, Chicago Center for Theoretical Chemistry
Computing and Mathematical Sciences
Department of Electrical Engineering and Computer Sciences
Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society
Department of Chemical Engineering and Materials Science, Department of Chemistry, and Chemical Theory Center
University of California
Department of Mathematics
Department of Chemistry
KACST−UC Berkeley Center of Excellence for Nanomaterials for Clean Energy Applications
NVIDIA Corporation
Department of Statistics
School of Information
Kavli Energy Nanoscience Institute
King Abdulaziz City for Science and Technology
AuthorAffiliation_xml – name: Department of Chemistry
– name: Department of Electrical Engineering and Computer Sciences
– name: Department of Statistics
– name: Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society
– name: School of Information
– name: Department of Chemical Engineering and Materials Science, Department of Chemistry, and Chemical Theory Center
– name: Department of Chemistry, Pritzker School of Molecular Engineering, Chicago Center for Theoretical Chemistry
– name: NVIDIA Corporation
– name: Computing and Mathematical Sciences
– name: University of California
– name: KACST−UC Berkeley Center of Excellence for Nanomaterials for Clean Energy Applications
– name: King Abdulaziz City for Science and Technology
– name: Department of Mathematics
– name: Kavli Energy Nanoscience Institute
Author_xml – sequence: 1
  givenname: Zhiling
  orcidid: 0000-0001-6090-2258
  surname: Zheng
  fullname: Zheng, Zhiling
  organization: Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society
– sequence: 2
  givenname: Ali H.
  orcidid: 0000-0003-2680-5221
  surname: Alawadhi
  fullname: Alawadhi, Ali H.
  organization: Kavli Energy Nanoscience Institute
– sequence: 3
  givenname: Saumil
  orcidid: 0000-0002-0989-5707
  surname: Chheda
  fullname: Chheda, Saumil
  organization: Department of Chemical Engineering and Materials Science, Department of Chemistry, and Chemical Theory Center
– sequence: 4
  givenname: S. Ephraim
  orcidid: 0000-0002-8515-9621
  surname: Neumann
  fullname: Neumann, S. Ephraim
  organization: Kavli Energy Nanoscience Institute
– sequence: 5
  givenname: Nakul
  surname: Rampal
  fullname: Rampal, Nakul
  organization: Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society
– sequence: 6
  givenname: Shengchao
  surname: Liu
  fullname: Liu, Shengchao
  organization: Department of Electrical Engineering and Computer Sciences
– sequence: 7
  givenname: Ha L.
  orcidid: 0000-0002-4977-925X
  surname: Nguyen
  fullname: Nguyen, Ha L.
  organization: Kavli Energy Nanoscience Institute
– sequence: 8
  givenname: Yen-hsu
  surname: Lin
  fullname: Lin, Yen-hsu
  organization: Kavli Energy Nanoscience Institute
– sequence: 9
  givenname: Zichao
  orcidid: 0000-0002-9014-9540
  surname: Rong
  fullname: Rong, Zichao
  organization: Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society
– sequence: 10
  givenname: J. Ilja
  orcidid: 0000-0003-2534-4507
  surname: Siepmann
  fullname: Siepmann, J. Ilja
  organization: Department of Chemical Engineering and Materials Science, Department of Chemistry, and Chemical Theory Center
– sequence: 11
  givenname: Laura
  orcidid: 0000-0001-5227-1396
  surname: Gagliardi
  fullname: Gagliardi, Laura
  organization: Department of Chemistry, Pritzker School of Molecular Engineering, Chicago Center for Theoretical Chemistry
– sequence: 12
  givenname: Anima
  surname: Anandkumar
  fullname: Anandkumar, Anima
  organization: NVIDIA Corporation
– sequence: 13
  givenname: Christian
  surname: Borgs
  fullname: Borgs, Christian
  organization: Department of Electrical Engineering and Computer Sciences
– sequence: 14
  givenname: Jennifer T.
  surname: Chayes
  fullname: Chayes, Jennifer T.
  organization: School of Information
– sequence: 15
  givenname: Omar M.
  orcidid: 0000-0002-5611-3325
  surname: Yaghi
  fullname: Yaghi, Omar M.
  email: yaghi@berkeley.edu
  organization: King Abdulaziz City for Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38090755$$D View this record in MEDLINE/PubMed
BookMark eNptkM1OwzAQhC1URH_gxhn5yIEU20kc51gq2iK1KhJFHCMnWbcpaVzspKg33oE35ElI1AIXTqtZzc5qvi5qFboAhC4p6VPC6O1aJrbvJpQRwU9Qh_qMOD5lvIU6hBDmBIK7bdS1dl1Ljwl6htquICEJfL-D4qeV3GbFEpcrwC-yBONMpNmBLZvlHazkLtMGa4VnUMr86-NzbpayyBI8MnID79q8WjzIUkhxvMejrABnURW1Gj8u8EynkNtzdKpkbuHiOHvoeXS_GE6c6Xz8MBxMHekyr3QECN9TPIwDReIwFJSIIPRiBVywhLiMgeLUr7cQJyQFkAwY5UHAUhIwxcHtoetD7tbot6puEG0ym0CeywJ0ZSMWEhZyTj2vtt4crInR1hpQ0dZkG2n2ESVRQzVqqEZHqrX96phcxRtIf80_GP9eN1drXZmiLvp_1jfySIHl
CitedBy_id crossref_primary_10_1088_1674_1056_ad3c30
crossref_primary_10_1039_D3DD00239J
crossref_primary_10_3390_molecules29112698
crossref_primary_10_1021_acs_jchemed_4c00226
crossref_primary_10_1021_jacs_4c02327
crossref_primary_10_1007_s12274_024_6621_6
crossref_primary_10_1002_adma_202310683
crossref_primary_10_1007_s10853_024_09379_w
crossref_primary_10_1021_jacs_4c06088
crossref_primary_10_1021_jacs_3c14699
crossref_primary_10_1016_j_seppur_2024_126987
crossref_primary_10_1021_acs_chemrev_3c00450
crossref_primary_10_1021_acs_jctc_4c00149
crossref_primary_10_1016_j_isci_2024_109451
crossref_primary_10_1039_D4CS00423J
Cites_doi 10.48550/arXiv.2305.18090
10.26434/chemrxiv-2023-frr55
10.1016/j.nantod.2021.101283
10.1039/D2DD00087C
10.1021/acscentsci.0c00678
10.1038/s41570-023-00502-0
10.1038/s41560-018-0261-6
10.1038/s41893-017-0006-8
10.1038/s41467-019-10960-0
10.1002/adma.202110079
10.1039/C8DT04688C
10.1142/9789814287005_0035
10.1021/acsami.9b02605
10.1021/acs.chemrev.6b00346
10.1021/jacs.3c05819
10.2113/gselements.7.3.157
10.1021/acscentsci.7b00186
10.1038/s41596-022-00756-w
10.1021/ja500330a
10.1016/j.micromeso.2017.04.054
10.1002/adma.201502418
10.1038/s41598-020-58405-9
10.1002/advs.202301311
10.1038/s41586-021-03900-w
10.1002/wrcr.20249
10.1126/sciadv.aat3198
10.1038/s41467-020-18968-7
10.1021/acs.chemmater.9b00617
10.1016/j.gee.2022.02.004
10.1039/9781849733069
10.1021/acscentsci.3c00018
10.48550/arXiv:2304.02213
10.1016/j.crci.2004.10.011
10.1039/C6TA01757F
10.1002/adma.202209073
10.1073/pnas.1011615108
10.1038/s41565-020-0673-x
10.1021/acs.jcim.0c00675
10.1039/D2EE03079A
10.1039/D2TA07392G
10.26434/chemrxiv-2023-fw8n4
10.1016/S0043-1354(00)00247-5
10.1016/j.micromeso.2011.08.020
10.1039/D0DT01044H
10.1021/jacs.6b04608
10.1016/j.chempr.2021.07.006
10.1017/S0376892902000097
10.24294/can.v3i2.551
10.1126/science.abj0890
10.1038/s44221-023-00103-7
10.1016/j.ccr.2020.213542
10.1126/science.1220131
10.26434/chemrxiv-2023-s1x5p
10.1021/acs.jpca.1c02086
10.1021/acsmaterialslett.0c00130
10.1007/s10450-020-00286-5
10.1088/2632-2153/aba947
10.1002/adma.202210957
10.1142/S2529732523400011
10.1038/s41591-023-02448-8
10.1002/adma.202211302
10.1021/cr5002589
10.1021/acscentsci.3c01087
10.1021/acs.jchemed.3c00690
10.1021/ci00057a005
10.1021/acsami.3c08929
10.1063/5.0021955
10.1002/anie.202311983
10.1021/acscentsci.9b00745
10.48550/arXiv.2212.10789
10.1016/j.chempr.2017.11.005
10.1038/s41578-019-0140-1
10.48550/arXiv:2303.08774
10.48550/arXiv:2303.12712
10.1016/j.ijheatmasstransfer.2017.06.086
10.1021/jacs.2c09756
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/jacs.3c12086
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 28295
ExternalDocumentID 10_1021_jacs_3c12086
38090755
b78137837
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
.DC
.K2
4.4
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFRP
ABJNI
ABMVS
ABPPZ
ABPTK
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGHSJ
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH2
IH9
JG~
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
ZCA
~02
53G
AAHBH
CUPRZ
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a324t-8e854f69b7f0b998108794bfe682c0322ef615108ebc0deea2e216772d072f6e3
IEDL.DBID ACS
ISSN 0002-7863
IngestDate Fri Aug 16 08:45:22 EDT 2024
Fri Aug 23 01:00:33 EDT 2024
Sat Nov 02 12:21:20 EDT 2024
Thu Dec 28 06:18:52 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 51
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a324t-8e854f69b7f0b998108794bfe682c0322ef615108ebc0deea2e216772d072f6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6090-2258
0000-0002-4977-925X
0000-0003-2534-4507
0000-0002-5611-3325
0000-0002-8515-9621
0000-0002-0989-5707
0000-0001-5227-1396
0000-0003-2680-5221
0000-0002-9014-9540
PMID 38090755
PQID 2902966144
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2902966144
crossref_primary_10_1021_jacs_3c12086
pubmed_primary_38090755
acs_journals_10_1021_jacs_3c12086
PublicationCentury 2000
PublicationDate 2023-12-27
PublicationDateYYYYMMDD 2023-12-27
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref59/cit59
  doi: 10.48550/arXiv.2305.18090
– ident: ref74/cit74
  doi: 10.26434/chemrxiv-2023-frr55
– ident: ref28/cit28
  doi: 10.1016/j.nantod.2021.101283
– ident: ref55/cit55
  doi: 10.1039/D2DD00087C
– ident: ref14/cit14
  doi: 10.1021/acscentsci.0c00678
– ident: ref53/cit53
  doi: 10.1038/s41570-023-00502-0
– ident: ref70/cit70
  doi: 10.1038/s41560-018-0261-6
– ident: ref2/cit2
  doi: 10.1038/s41893-017-0006-8
– ident: ref72/cit72
  doi: 10.1038/s41467-019-10960-0
– ident: ref10/cit10
  doi: 10.1002/adma.202110079
– ident: ref64/cit64
  doi: 10.1039/C8DT04688C
– ident: ref6/cit6
  doi: 10.1142/9789814287005_0035
– ident: ref69/cit69
  doi: 10.1021/acsami.9b02605
– ident: ref77/cit77
  doi: 10.1021/acs.chemrev.6b00346
– ident: ref50/cit50
  doi: 10.1021/jacs.3c05819
– ident: ref7/cit7
  doi: 10.2113/gselements.7.3.157
– ident: ref20/cit20
  doi: 10.1021/acscentsci.7b00186
– ident: ref17/cit17
  doi: 10.1038/s41596-022-00756-w
– ident: ref32/cit32
  doi: 10.1021/ja500330a
– ident: ref39/cit39
  doi: 10.1016/j.micromeso.2017.04.054
– ident: ref31/cit31
  doi: 10.1002/adma.201502418
– ident: ref22/cit22
  doi: 10.1038/s41598-020-58405-9
– ident: ref43/cit43
  doi: 10.1002/advs.202301311
– ident: ref9/cit9
  doi: 10.1038/s41586-021-03900-w
– ident: ref3/cit3
  doi: 10.1002/wrcr.20249
– ident: ref5/cit5
– ident: ref27/cit27
  doi: 10.1126/sciadv.aat3198
– ident: ref30/cit30
  doi: 10.1038/s41467-020-18968-7
– ident: ref44/cit44
  doi: 10.1021/acs.chemmater.9b00617
– ident: ref46/cit46
  doi: 10.1016/j.gee.2022.02.004
– ident: ref49/cit49
  doi: 10.1039/9781849733069
– ident: ref19/cit19
  doi: 10.1021/acscentsci.3c00018
– ident: ref62/cit62
  doi: 10.48550/arXiv:2304.02213
– ident: ref38/cit38
  doi: 10.1016/j.crci.2004.10.011
– ident: ref68/cit68
  doi: 10.1039/C6TA01757F
– ident: ref12/cit12
  doi: 10.1002/adma.202209073
– ident: ref1/cit1
  doi: 10.1073/pnas.1011615108
– ident: ref35/cit35
  doi: 10.1038/s41565-020-0673-x
– ident: ref63/cit63
  doi: 10.1021/acs.jcim.0c00675
– ident: ref11/cit11
  doi: 10.1039/D2EE03079A
– ident: ref71/cit71
  doi: 10.1039/D2TA07392G
– ident: ref60/cit60
– ident: ref51/cit51
  doi: 10.26434/chemrxiv-2023-fw8n4
– ident: ref8/cit8
  doi: 10.1016/S0043-1354(00)00247-5
– ident: ref75/cit75
  doi: 10.1016/j.micromeso.2011.08.020
– ident: ref45/cit45
  doi: 10.1039/D0DT01044H
– ident: ref65/cit65
– ident: ref40/cit40
  doi: 10.1021/jacs.6b04608
– ident: ref76/cit76
  doi: 10.1016/j.chempr.2021.07.006
– ident: ref4/cit4
  doi: 10.1017/S0376892902000097
– ident: ref37/cit37
  doi: 10.24294/can.v3i2.551
– ident: ref29/cit29
  doi: 10.1126/science.abj0890
– ident: ref25/cit25
  doi: 10.1038/s44221-023-00103-7
– ident: ref36/cit36
  doi: 10.1016/j.ccr.2020.213542
– ident: ref41/cit41
  doi: 10.1126/science.1220131
– ident: ref54/cit54
  doi: 10.26434/chemrxiv-2023-s1x5p
– ident: ref78/cit78
  doi: 10.1021/acs.jpca.1c02086
– ident: ref15/cit15
  doi: 10.1021/acsmaterialslett.0c00130
– ident: ref67/cit67
  doi: 10.1007/s10450-020-00286-5
– ident: ref48/cit48
  doi: 10.1088/2632-2153/aba947
– ident: ref13/cit13
  doi: 10.1002/adma.202210957
– ident: ref21/cit21
  doi: 10.1142/S2529732523400011
– ident: ref61/cit61
  doi: 10.1038/s41591-023-02448-8
– ident: ref16/cit16
  doi: 10.1002/adma.202211302
– ident: ref33/cit33
  doi: 10.1021/cr5002589
– ident: ref73/cit73
  doi: 10.1021/acscentsci.3c01087
– ident: ref23/cit23
  doi: 10.1021/acs.jchemed.3c00690
– ident: ref47/cit47
  doi: 10.1021/ci00057a005
– ident: ref18/cit18
  doi: 10.1021/acsami.3c08929
– ident: ref80/cit80
  doi: 10.1063/5.0021955
– ident: ref57/cit57
  doi: 10.1002/anie.202311983
– ident: ref26/cit26
  doi: 10.1021/acscentsci.9b00745
– ident: ref79/cit79
  doi: 10.48550/arXiv.2212.10789
– ident: ref24/cit24
  doi: 10.1016/j.chempr.2017.11.005
– ident: ref34/cit34
  doi: 10.1038/s41578-019-0140-1
– ident: ref56/cit56
  doi: 10.48550/arXiv:2303.08774
– ident: ref58/cit58
  doi: 10.48550/arXiv:2303.12712
– ident: ref52/cit52
– ident: ref66/cit66
  doi: 10.1016/j.ijheatmasstransfer.2017.06.086
– ident: ref42/cit42
  doi: 10.1021/jacs.2c09756
SSID ssj0004281
Score 2.5792098
Snippet We construct a data set of metal–organic framework (MOF) linkers and employ a fine-tuned GPT assistant to propose MOF linker designs by mutating and modifying...
We construct a data set of metal-organic framework (MOF) linkers and employ a fine-tuned GPT assistant to propose MOF linker designs by mutating and modifying...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 28284
Title Shaping the Water-Harvesting Behavior of Metal–Organic Frameworks Aided by Fine-Tuned GPT Models
URI http://dx.doi.org/10.1021/jacs.3c12086
https://www.ncbi.nlm.nih.gov/pubmed/38090755
https://search.proquest.com/docview/2902966144
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1bS8MwFICDzgd98X6ZNzLQx4w0vaWPY9gNQRG24d5KkyYoSidr-6BP_gf_ob_Ek7V1OBn6GtoSTnJ6vsO5IXShYosltsuJI21GnMCxCZdaEtO6znL92EyqMdkWt15_5FyP3fE8QXYxgs9MfyCZtW1pMYDvVbTGfNALg0Ddwbz-kXGrxlyfe3aV4L74tjFAMvtpgJZQ5cy6hFuoV9folEklT-0iF2359rtl4x8b30abFWDiTnkjdtCKSnfReree67aHxOAhNkVSGNAP3wNqTokZEGS6bcBi1S9xiica3ygg88_3j7JeU-KwTuTKcOcxUQkWrzgESiXDAn7WuHc3xGa02nO2j0bh1bDbJ9WkBRIDUOWEK-462guEr6kAB8yiHPRUaOVxJinovNKGfChXQtJEqZgpZnkA5gn1mfaUfYAa6SRVRwhrFoNTrWPwu4QjtQc8rK1A0MRVCZPSaqIWyCWqNCWLZkFwBk6IWa2k1USX9RFFL2XTjSXPterzi0CIJtQRp2pSZBELKAsMejhNdFge7PeXbE4DACX3-B87OUEbZr68yV9h_ilq5NNCnQGF5OJ8dgW_AOuD1VQ
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3JTsMwEEBHLAe4sC9lNRIcjRxnc46oopStQqIIblHs2AKBWtS0BzjxD_whX8JMmoBAQuJqJdZovMwbeRaAfZt5MvdDxQPjSx4kgc-VcYZT6TovjDPqVEPRFp2ofROc3YV3VbI65cKgEAXOVJSP-N_VBahMEA76xpPI4JMwHcZoK4mEmtffaZBSeTXtxiryqzj333-THTLFTzv0B1yWRqY1D50v8crYksfD0VAfmtdflRv_Lf8CzFW4yY7G-2MRJmxvCWaadZe3ZdDX9xmlTDEEQXaL4Dng1C6Iam_gYFU9ccD6jl1a5PSPt_dx9qZhrTqsq2BHD7nNmX5hLWRW3h3h1c1OrrqMGq09FStw0zruNtu86rvAM8SrIVdWhYGLEh07odEd84TCU6udjZQ0Am8A64iDhLLaiNzaTFrpRYjpuYili6y_ClO9fs-uA3MyQxfbZeiF6cC4COnYeYkWeWhzaYzXgD3US1qdmyItn8QluiQ0WmmrAQf1SqXP4xIcf3y3Vy9jikqkh4-sZ_ujIpWJkAmBSNCAtfH6fs3kK5EgNoUb_5BkF2ba3cuL9OK0c74Js9R5niJbZLwFU8PByG4jnwz1TrkrPwFNYd25
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1JT-swEIBHUCR4l8fOK6uR4GhkO5tzrAphRwiK4BbFji0QTy1q2gOc-A_8Q34J4zQBgYQEVyexnPH2jWYD2DIZF7kXSOprT1A_9j0qtdXUpa7jQZS5SjXO2-IsPLjyj26CmzHgdSwMDqLAnorSiO929UNuqwwDLlUQPvA0F8jh4zARRLy0zLbalx-hkELymngjGXqVr_vXr91dpIvPd9E3gFleNMk0XLwPsfQvud8ZDtSOfvqSvfFX_zADfyvsJK3ROpmFMdOdg6l2Xe1tHtTlbeZCpwgCIblGAO1TVzbI5eDAxiqLYp_0LDk1yOuvzy-jKE5Nktq9qyCtu9zkRD2SBNmVdoZ4hJP98w5xBdf-Fwtwlex12ge0qr9AM8SsAZVGBr4NYxVZplAt40zi7lXWhFJohieBsY6HmDRKs9yYTBjBQ8T1nEXChsZbhEa31zX_gFiRoaptM9TGlK9tiJRseaxYHphcaM2bsIlySav9U6SlaVygauJaK2k1YbuerfRhlIrjm_c266lMUYjOAJJ1TW9YpCJmInZA4jdhaTTH7z15ksWIT8HyD0ayAZPnu0l6cnh2vAJ_XAF65-AiolVoDPpDs4aYMlDr5cJ8A4kp4DM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shaping+the+Water-Harvesting+Behavior+of+Metal%E2%80%93Organic+Frameworks+Aided+by+Fine-Tuned+GPT+Models&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Zheng%2C+Zhiling&rft.au=Alawadhi%2C+Ali+H.&rft.au=Chheda%2C+Saumil&rft.au=Neumann%2C+S.+Ephraim&rft.date=2023-12-27&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=145&rft.issue=51&rft.spage=28284&rft.epage=28295&rft_id=info:doi/10.1021%2Fjacs.3c12086&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_3c12086
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon