An Ultrastable Low-Temperature Na Metal Battery Enabled by Synergy between Weakly Solvating Solvents
The low ionic conductivity and high desolvation barrier are the main challenges for organic electrolytes in rechargeable metal batteries, especially at low temperatures. The general strategy is to couple strong-solvation and weak-solvation solvents to give balanced physicochemical properties. Howeve...
Saved in:
Published in | Journal of the American Chemical Society Vol. 146; no. 6; pp. 3854 - 3860 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
14.02.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | The low ionic conductivity and high desolvation barrier are the main challenges for organic electrolytes in rechargeable metal batteries, especially at low temperatures. The general strategy is to couple strong-solvation and weak-solvation solvents to give balanced physicochemical properties. However, the two challenges described above cannot be overcome at the same time. Herein, we combine two different kinds of weakly solvating solvents with a very low desolvation energy. Interestingly, the synergy between the weak-solvation solvents can break the locally ordered structure at a low temperature to enable higher ionic conductivity compared to those with individual solvents. Thus, facile desolvation and high ionic conductivity are achieved simultaneously, significantly improving the reversibility of electrode reactions at low temperatures. The Na metal anode can be stably cycled at 2 mA cm–2 at −40 °C for 1000 h. The Na||Na3V2(PO4)3 cell shows the reversible capacity of 64 mAh g–1 at 0.3 C after 300 cycles at −40 °C, and the capacity retention is 86%. This strategy is applicable to other sets of weak-solvation solvents, providing guidance for the development of electrolytes for low-temperature rechargeable metal batteries. |
---|---|
AbstractList | The low ionic conductivity and high desolvation barrier are the main challenges for organic electrolytes in rechargeable metal batteries, especially at low temperatures. The general strategy is to couple strong-solvation and weak-solvation solvents to give balanced physicochemical properties. However, the two challenges described above cannot be overcome at the same time. Herein, we combine two different kinds of weakly solvating solvents with a very low desolvation energy. Interestingly, the synergy between the weak-solvation solvents can break the locally ordered structure at a low temperature to enable higher ionic conductivity compared to those with individual solvents. Thus, facile desolvation and high ionic conductivity are achieved simultaneously, significantly improving the reversibility of electrode reactions at low temperatures. The Na metal anode can be stably cycled at 2 mA cm-2 at -40 °C for 1000 h. The Na||Na3V2(PO4)3 cell shows the reversible capacity of 64 mAh g-1 at 0.3 C after 300 cycles at -40 °C, and the capacity retention is 86%. This strategy is applicable to other sets of weak-solvation solvents, providing guidance for the development of electrolytes for low-temperature rechargeable metal batteries.The low ionic conductivity and high desolvation barrier are the main challenges for organic electrolytes in rechargeable metal batteries, especially at low temperatures. The general strategy is to couple strong-solvation and weak-solvation solvents to give balanced physicochemical properties. However, the two challenges described above cannot be overcome at the same time. Herein, we combine two different kinds of weakly solvating solvents with a very low desolvation energy. Interestingly, the synergy between the weak-solvation solvents can break the locally ordered structure at a low temperature to enable higher ionic conductivity compared to those with individual solvents. Thus, facile desolvation and high ionic conductivity are achieved simultaneously, significantly improving the reversibility of electrode reactions at low temperatures. The Na metal anode can be stably cycled at 2 mA cm-2 at -40 °C for 1000 h. The Na||Na3V2(PO4)3 cell shows the reversible capacity of 64 mAh g-1 at 0.3 C after 300 cycles at -40 °C, and the capacity retention is 86%. This strategy is applicable to other sets of weak-solvation solvents, providing guidance for the development of electrolytes for low-temperature rechargeable metal batteries. The low ionic conductivity and high desolvation barrier are the main challenges for organic electrolytes in rechargeable metal batteries, especially at low temperatures. The general strategy is to couple strong-solvation and weak-solvation solvents to give balanced physicochemical properties. However, the two challenges described above cannot be overcome at the same time. Herein, we combine two different kinds of weakly solvating solvents with a very low desolvation energy. Interestingly, the synergy between the weak-solvation solvents can break the locally ordered structure at a low temperature to enable higher ionic conductivity compared to those with individual solvents. Thus, facile desolvation and high ionic conductivity are achieved simultaneously, significantly improving the reversibility of electrode reactions at low temperatures. The Na metal anode can be stably cycled at 2 mA cm at -40 °C for 1000 h. The Na||Na V (PO ) cell shows the reversible capacity of 64 mAh g at 0.3 C after 300 cycles at -40 °C, and the capacity retention is 86%. This strategy is applicable to other sets of weak-solvation solvents, providing guidance for the development of electrolytes for low-temperature rechargeable metal batteries. The low ionic conductivity and high desolvation barrier are the main challenges for organic electrolytes in rechargeable metal batteries, especially at low temperatures. The general strategy is to couple strong-solvation and weak-solvation solvents to give balanced physicochemical properties. However, the two challenges described above cannot be overcome at the same time. Herein, we combine two different kinds of weakly solvating solvents with a very low desolvation energy. Interestingly, the synergy between the weak-solvation solvents can break the locally ordered structure at a low temperature to enable higher ionic conductivity compared to those with individual solvents. Thus, facile desolvation and high ionic conductivity are achieved simultaneously, significantly improving the reversibility of electrode reactions at low temperatures. The Na metal anode can be stably cycled at 2 mA cm–2 at −40 °C for 1000 h. The Na||Na3V2(PO4)3 cell shows the reversible capacity of 64 mAh g–1 at 0.3 C after 300 cycles at −40 °C, and the capacity retention is 86%. This strategy is applicable to other sets of weak-solvation solvents, providing guidance for the development of electrolytes for low-temperature rechargeable metal batteries. |
Author | Zhang, Xia-Guang Fu, Yongzhu Tang, Shuai Wang, Shuzhan Gu, Yu |
AuthorAffiliation | College of Chemistry State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Tan Kah Kee Innovation Laboratory Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – name: Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering – name: State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Tan Kah Kee Innovation Laboratory – name: College of Chemistry |
Author_xml | – sequence: 1 givenname: Shuzhan orcidid: 0009-0003-7936-6303 surname: Wang fullname: Wang, Shuzhan organization: College of Chemistry – sequence: 2 givenname: Xia-Guang orcidid: 0000-0002-9223-0852 surname: Zhang fullname: Zhang, Xia-Guang organization: Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering – sequence: 3 givenname: Yu orcidid: 0000-0002-8099-4716 surname: Gu fullname: Gu, Yu organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Tan Kah Kee Innovation Laboratory – sequence: 4 givenname: Shuai orcidid: 0000-0003-0179-9101 surname: Tang fullname: Tang, Shuai email: stang@zzu.edu.cn organization: College of Chemistry – sequence: 5 givenname: Yongzhu orcidid: 0000-0003-3746-9884 surname: Fu fullname: Fu, Yongzhu email: yfu@zzu.edu.cn organization: College of Chemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38305733$$D View this record in MEDLINE/PubMed |
BookMark | eNp10D1P6zAUgGELgaB8bMzI4x0I2MdJmo5Q8SUVGAAxRsfJCUqv6xTbAeXf40JhuOJOto8eW9a7yzZtZ4mxQylOpAB5OsfKn6hKSqnSDTaSGYgkk5BvspEQApJxkasdtuv9PB5TKOQ221GFEtlYqRGrzyx_MsGhD6gN8Vn3njzSYkkOQ--I3yG_pYCGn2MI5AZ-YVeu5nrgD4Ml9zJwTeGdyPJnwr8mjjvzhqG1L587ssHvs60GjaeD9brHni4vHqfXyez-6mZ6NktQQRqSrNCQ5gqqvNANynHaiIw0ZTXUGD9eT0Q20RpqkTZpNKrRaY4SCqiEritEtcf-fL27dN1rTz6Ui9ZXZAxa6npfwgTyDJSAItKjNe31gupy6doFuqH8LhPB8ReoXOe9o-aHSFGuwper8OU6fOTwD6_aECt0NrZtzf8urf-7Gs673tlY53f6AZyolGk |
CitedBy_id | crossref_primary_10_1016_j_ensm_2025_104145 crossref_primary_10_1002_anie_202416720 crossref_primary_10_1016_j_ensm_2024_103753 crossref_primary_10_1002_smll_202401215 crossref_primary_10_1002_smll_202407285 crossref_primary_10_1002_adfm_202421802 crossref_primary_10_1016_j_ensm_2025_104023 crossref_primary_10_1016_j_ensm_2025_104122 crossref_primary_10_1021_acs_energyfuels_4c01974 crossref_primary_10_1021_jacs_4c10187 crossref_primary_10_1021_jacs_4c15478 crossref_primary_10_1016_j_cej_2024_158704 crossref_primary_10_1016_j_joule_2024_101811 crossref_primary_10_1021_jacs_4c09027 crossref_primary_10_1002_anie_202424547 crossref_primary_10_1038_s41467_025_57316_5 crossref_primary_10_1021_acsmaterialslett_4c02618 crossref_primary_10_1039_D4EE02060J crossref_primary_10_1002_ange_202416720 crossref_primary_10_1021_acsnano_4c17836 crossref_primary_10_1016_j_ensm_2024_103741 crossref_primary_10_1016_j_mattod_2025_02_021 crossref_primary_10_1002_ange_202424547 crossref_primary_10_1016_j_nanoen_2025_110769 crossref_primary_10_1002_adma_202408161 crossref_primary_10_1021_jacs_4c16076 crossref_primary_10_1021_acsaem_4c00466 crossref_primary_10_1002_adfm_202409494 crossref_primary_10_1021_acs_langmuir_4c03528 crossref_primary_10_1002_adfm_202413302 crossref_primary_10_1002_adfm_202414652 crossref_primary_10_1016_j_apsusc_2024_161220 crossref_primary_10_1002_adma_202410261 crossref_primary_10_1016_j_jpowsour_2025_236523 crossref_primary_10_1016_j_cej_2025_160012 |
Cites_doi | 10.1021/acsami.9b06760 10.1021/acs.chemrev.9b00482 10.1002/adma.201501527 10.1039/D1EE01404H 10.1016/j.ensm.2022.05.005 10.1002/adma.201807495 10.1021/cm901452z 10.1002/anie.202112550 10.1039/D0CS00033G 10.1016/j.joule.2021.12.018 10.1021/acsenergylett.0c02188 10.1002/adma.202107899 10.1038/451652a 10.1021/acs.accounts.1c00420 10.1021/acsami.7b13887 10.1002/adma.202301817 10.1021/acsami.7b04099 10.1002/anie.202303888 10.1021/acs.chemrev.8b00642 10.1002/eem2.12460 10.1038/s41560-022-01055-0 10.1021/jacs.9b11056 10.1002/anie.201900266 10.1002/aenm.202300053 10.1038/s41467-018-03466-8 10.1002/anie.202206340 10.1021/acsenergylett.9b02190 10.1002/anie.202301169 10.1021/acs.jpcb.2c00557 10.1007/s41918-021-00106-6 10.1002/adma.202209511 10.1002/anie.202011482 10.1021/acs.nanolett.9b03330 10.1002/aenm.202000093 10.1038/35104644 10.1021/acscentsci.5b00328 10.1002/aenm.202001418 10.1038/s41586-022-05627-8 10.1038/s41467-022-32606-4 10.1002/aenm.201800079 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/jacs.3c11134 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 3860 |
ExternalDocumentID | 38305733 10_1021_jacs_3c11134 b533120594 |
Genre | Journal Article |
GroupedDBID | --- -DZ -ET -~X .DC .K2 4.4 55A 5GY 5RE 5VS 7~N 85S AABXI ABFRP ABJNI ABMVS ABPPZ ABQRX ABUCX ACBEA ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGHSJ AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 EBS ED~ F5P GGK GNL IH2 IH9 JG~ LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YQT YZZ ZCA ~02 53G AAHBH AAYXX ABBLG ABLBI CITATION CUPRZ NPM 7X8 |
ID | FETCH-LOGICAL-a324t-58b24632c68bfa174f05ebe5d2da428d9059bb2d04f4c683fb46a1282c0bdcaa3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 07:50:48 EDT 2025 Thu Apr 03 06:58:49 EDT 2025 Tue Jul 01 03:10:46 EDT 2025 Thu Apr 24 22:57:24 EDT 2025 Thu Feb 15 06:28:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a324t-58b24632c68bfa174f05ebe5d2da428d9059bb2d04f4c683fb46a1282c0bdcaa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3746-9884 0000-0002-9223-0852 0000-0002-8099-4716 0000-0003-0179-9101 0009-0003-7936-6303 |
PMID | 38305733 |
PQID | 2926523028 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2926523028 pubmed_primary_38305733 crossref_primary_10_1021_jacs_3c11134 crossref_citationtrail_10_1021_jacs_3c11134 acs_journals_10_1021_jacs_3c11134 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-14 |
PublicationDateYYYYMMDD | 2024-02-14 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref30/cit30 doi: 10.1021/acsami.9b06760 – ident: ref39/cit39 doi: 10.1021/acs.chemrev.9b00482 – ident: ref37/cit37 doi: 10.1002/adma.201501527 – ident: ref21/cit21 doi: 10.1039/D1EE01404H – ident: ref26/cit26 doi: 10.1016/j.ensm.2022.05.005 – ident: ref22/cit22 doi: 10.1002/adma.201807495 – ident: ref3/cit3 doi: 10.1021/cm901452z – ident: ref34/cit34 doi: 10.1002/anie.202112550 – ident: ref7/cit7 doi: 10.1039/D0CS00033G – ident: ref29/cit29 doi: 10.1016/j.joule.2021.12.018 – ident: ref40/cit40 doi: 10.1021/acsenergylett.0c02188 – ident: ref5/cit5 doi: 10.1002/adma.202107899 – ident: ref1/cit1 doi: 10.1038/451652a – ident: ref19/cit19 doi: 10.1021/acs.accounts.1c00420 – ident: ref32/cit32 doi: 10.1021/acsami.7b13887 – ident: ref25/cit25 doi: 10.1002/adma.202301817 – ident: ref33/cit33 doi: 10.1021/acsami.7b04099 – ident: ref4/cit4 doi: 10.1002/anie.202303888 – ident: ref6/cit6 doi: 10.1021/acs.chemrev.8b00642 – ident: ref9/cit9 doi: 10.1002/eem2.12460 – ident: ref16/cit16 doi: 10.1038/s41560-022-01055-0 – ident: ref17/cit17 doi: 10.1021/jacs.9b11056 – ident: ref20/cit20 doi: 10.1002/anie.201900266 – ident: ref13/cit13 doi: 10.1002/aenm.202300053 – ident: ref23/cit23 doi: 10.1038/s41467-018-03466-8 – ident: ref36/cit36 doi: 10.1002/anie.202206340 – ident: ref38/cit38 doi: 10.1021/acsenergylett.9b02190 – ident: ref15/cit15 doi: 10.1002/anie.202301169 – ident: ref35/cit35 doi: 10.1021/acs.jpcb.2c00557 – ident: ref8/cit8 doi: 10.1007/s41918-021-00106-6 – ident: ref14/cit14 doi: 10.1002/adma.202209511 – ident: ref18/cit18 doi: 10.1002/anie.202011482 – ident: ref27/cit27 doi: 10.1021/acs.nanolett.9b03330 – ident: ref31/cit31 doi: 10.1002/aenm.202000093 – ident: ref2/cit2 doi: 10.1038/35104644 – ident: ref11/cit11 doi: 10.1021/acscentsci.5b00328 – ident: ref10/cit10 doi: 10.1002/aenm.202001418 – ident: ref28/cit28 doi: 10.1038/s41586-022-05627-8 – ident: ref24/cit24 doi: 10.1038/s41467-022-32606-4 – ident: ref12/cit12 doi: 10.1002/aenm.201800079 |
SSID | ssj0004281 |
Score | 2.6200018 |
Snippet | The low ionic conductivity and high desolvation barrier are the main challenges for organic electrolytes in rechargeable metal batteries, especially at low... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3854 |
Title | An Ultrastable Low-Temperature Na Metal Battery Enabled by Synergy between Weakly Solvating Solvents |
URI | http://dx.doi.org/10.1021/jacs.3c11134 https://www.ncbi.nlm.nih.gov/pubmed/38305733 https://www.proquest.com/docview/2926523028 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA4-Dnrx_agvIuhJtrTZbHZ7LKVaRL3YYm9LJg8PXbZit0j99U72UbFS9LaEyRJmEuabZOYbQq6A-ZZLCZ7g1nqcW8AjJd3Bky0BiEg4d7XDj0-iN-D3w2D4nSC7-ILPHD-QmtR95Vqi81WyzkQUuiCr3Xn-rn9kUbOCuWEk_DLBfXG2c0Bq8tMBLUGVuXe53SZ3VY1OkVQyqk8zqKvP35SNfyx8h2yVAJO2ix2xS1ZMukc2OlVft32i2ykdJNm7RFwIiaEP4w-vbxA9F-zK9EnSR4OQnBbUmzPazcurNIUZfZ7lpYK0zO6iL0aOEhweJ-5mN33Nv1xqxgEZ3Hb7nZ5X9lrwJEKqzAsiYFz4TIkIrMQwxTYCtG-gmZaoXt1CGAbAdINbjjK-BS4k-jamGqCVlP4hWUvHqTkmtMF0qIzmoFoW4ZmCSNgmk47JPgwDgBq5RM3E5VmZxPkzOMMwxI2W-qqRm8pIsSrJyl3PjGSJ9PVc-q0g6Vgid1nZO0alu6cRmZrxdBKzFhPufpxFNXJUbIT5nzCGz1kjT_6x7lOyyRD1uLTuJj8ja9n71JwjasngIt-yXxlI5qE |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9swDCa67tBd9l6XPVVgPQ0uEllWnMMOQdYiXZNcmmC9eaIeO9RwhtpBkf2X_ZX9tlGynWIFAuxSYDdDIARaoqyPJvkR4APy2AmlMJLCuUgIh3SklD94aiCREIkQvnZ4OpPjhfhykVzswK-2FoaUKGmmMgTxb9gFPE0QDcbad0YXTQ7lmV1fk4dWfjr9TNt5yPnJ8Xw0jpomApEirFBFSYpcyJhrmaJThL9dNyHFE8ONIuhtBoQvELnpCidIJnYopKKPNtddNFqpmOa9B_cJ93Dv2w1H5zdllzzttei6n8q4yau_ra2_93T59723BcyGS-3kEfzeLEfIZbk8WlV4pH_eYor8b9frMTxs4DQb1vb_BHZs8RT2Rm0Xu2dghgVb5NWVIhSMuWWT5XU0t-Qr1FzSbKbY1JIDwmqi0TU7DsVkhuGana9DYSRrctnYV6sucxpe5v4_dvE9PPlElOewuJOXfAG7xbKwL4F1uelrawTqgSMwqjGVrseV5-3v9xPEDhzQTmTNl6HMQtCfk9PlR5v96cDH1jYy3VCz-w4h-Rbpw430j5qSZIvcQWtmGS26DwSpwi5XZcYHXPpoAE87sF_b32amOI0DR-arf9D7PeyN59NJNjmdnb2GB5zwnk9o74k3sFtdrexbwmsVvgunhsG3uza7P_loSlQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1La9wwEB7SFNpe-k67fSrQnIrDrix7vYcelk2WpEmWQrI0N1ejRw8x3hB7Cdt_07-SX5aRLG9IYKGXQG9GFmIsaaRvPDPfAHxBHlshJUapsDYSwiKplHSKJwcpEiIRwuUOH03Svan4fpqcrsHfNheGhKhopMo78Z1Wn2sbGAYcVRC9iJWrji5CHOWBWVySlVZ929-hJd3ifLx7MtqLQiGBSBJeqKMkQy7SmKs0QysJg9tuQsInmmtJ8FsPCGMgct0VVlCf2KJIJR3cXHVRKyljGvcBPHQeQmffDUfHN6mXPOu1CLufpXGIrb8rrbv7VHX77lsBaP3FNn4GV8sp8fEsZ9vzGrfVnztskf_1nD2HpwFWs2GjBy9gzZQv4fGorWb3CvSwZNOivpCEhrEw7HB2GZ0YshkaTmk2kezIkCHCGsLRBdv1SWWa4YIdL3yCJAsxbeynkWcFNc8K9z-7_O2fXEDKa5jey0duwHo5K81bYF2u-8pogWpgCZQqzFLb49Lx9_f7CWIHNmkl8nBCVLl3_nMyvlxrWJ8OfG33R64CRburFFKs6L217H3eUJOs6LfZbrWcJt05hGRpZvMq5wOeOq8AzzrwptmDy5HiLPZcme_-Qe7P8OjHzjg_3J8cvIcnnGCfi2vviQ-wXl_MzUeCbTV-8orD4Nd977pr64pM1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Ultrastable+Low-Temperature+Na+Metal+Battery+Enabled+by+Synergy+between+Weakly+Solvating+Solvents&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Wang%2C+Shuzhan&rft.au=Zhang%2C+Xia-Guang&rft.au=Gu%2C+Yu&rft.au=Tang%2C+Shuai&rft.date=2024-02-14&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=146&rft.issue=6&rft.spage=3854&rft.epage=3860&rft_id=info:doi/10.1021%2Fjacs.3c11134&rft.externalDocID=b533120594 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |