An Ultrastable Low-Temperature Na Metal Battery Enabled by Synergy between Weakly Solvating Solvents

The low ionic conductivity and high desolvation barrier are the main challenges for organic electrolytes in rechargeable metal batteries, especially at low temperatures. The general strategy is to couple strong-solvation and weak-solvation solvents to give balanced physicochemical properties. Howeve...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 146; no. 6; pp. 3854 - 3860
Main Authors Wang, Shuzhan, Zhang, Xia-Guang, Gu, Yu, Tang, Shuai, Fu, Yongzhu
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.02.2024
Online AccessGet full text

Cover

Loading…
Abstract The low ionic conductivity and high desolvation barrier are the main challenges for organic electrolytes in rechargeable metal batteries, especially at low temperatures. The general strategy is to couple strong-solvation and weak-solvation solvents to give balanced physicochemical properties. However, the two challenges described above cannot be overcome at the same time. Herein, we combine two different kinds of weakly solvating solvents with a very low desolvation energy. Interestingly, the synergy between the weak-solvation solvents can break the locally ordered structure at a low temperature to enable higher ionic conductivity compared to those with individual solvents. Thus, facile desolvation and high ionic conductivity are achieved simultaneously, significantly improving the reversibility of electrode reactions at low temperatures. The Na metal anode can be stably cycled at 2 mA cm–2 at −40 °C for 1000 h. The Na||Na3V2(PO4)3 cell shows the reversible capacity of 64 mAh g–1 at 0.3 C after 300 cycles at −40 °C, and the capacity retention is 86%. This strategy is applicable to other sets of weak-solvation solvents, providing guidance for the development of electrolytes for low-temperature rechargeable metal batteries.
AbstractList The low ionic conductivity and high desolvation barrier are the main challenges for organic electrolytes in rechargeable metal batteries, especially at low temperatures. The general strategy is to couple strong-solvation and weak-solvation solvents to give balanced physicochemical properties. However, the two challenges described above cannot be overcome at the same time. Herein, we combine two different kinds of weakly solvating solvents with a very low desolvation energy. Interestingly, the synergy between the weak-solvation solvents can break the locally ordered structure at a low temperature to enable higher ionic conductivity compared to those with individual solvents. Thus, facile desolvation and high ionic conductivity are achieved simultaneously, significantly improving the reversibility of electrode reactions at low temperatures. The Na metal anode can be stably cycled at 2 mA cm-2 at -40 °C for 1000 h. The Na||Na3V2(PO4)3 cell shows the reversible capacity of 64 mAh g-1 at 0.3 C after 300 cycles at -40 °C, and the capacity retention is 86%. This strategy is applicable to other sets of weak-solvation solvents, providing guidance for the development of electrolytes for low-temperature rechargeable metal batteries.The low ionic conductivity and high desolvation barrier are the main challenges for organic electrolytes in rechargeable metal batteries, especially at low temperatures. The general strategy is to couple strong-solvation and weak-solvation solvents to give balanced physicochemical properties. However, the two challenges described above cannot be overcome at the same time. Herein, we combine two different kinds of weakly solvating solvents with a very low desolvation energy. Interestingly, the synergy between the weak-solvation solvents can break the locally ordered structure at a low temperature to enable higher ionic conductivity compared to those with individual solvents. Thus, facile desolvation and high ionic conductivity are achieved simultaneously, significantly improving the reversibility of electrode reactions at low temperatures. The Na metal anode can be stably cycled at 2 mA cm-2 at -40 °C for 1000 h. The Na||Na3V2(PO4)3 cell shows the reversible capacity of 64 mAh g-1 at 0.3 C after 300 cycles at -40 °C, and the capacity retention is 86%. This strategy is applicable to other sets of weak-solvation solvents, providing guidance for the development of electrolytes for low-temperature rechargeable metal batteries.
The low ionic conductivity and high desolvation barrier are the main challenges for organic electrolytes in rechargeable metal batteries, especially at low temperatures. The general strategy is to couple strong-solvation and weak-solvation solvents to give balanced physicochemical properties. However, the two challenges described above cannot be overcome at the same time. Herein, we combine two different kinds of weakly solvating solvents with a very low desolvation energy. Interestingly, the synergy between the weak-solvation solvents can break the locally ordered structure at a low temperature to enable higher ionic conductivity compared to those with individual solvents. Thus, facile desolvation and high ionic conductivity are achieved simultaneously, significantly improving the reversibility of electrode reactions at low temperatures. The Na metal anode can be stably cycled at 2 mA cm at -40 °C for 1000 h. The Na||Na V (PO ) cell shows the reversible capacity of 64 mAh g at 0.3 C after 300 cycles at -40 °C, and the capacity retention is 86%. This strategy is applicable to other sets of weak-solvation solvents, providing guidance for the development of electrolytes for low-temperature rechargeable metal batteries.
The low ionic conductivity and high desolvation barrier are the main challenges for organic electrolytes in rechargeable metal batteries, especially at low temperatures. The general strategy is to couple strong-solvation and weak-solvation solvents to give balanced physicochemical properties. However, the two challenges described above cannot be overcome at the same time. Herein, we combine two different kinds of weakly solvating solvents with a very low desolvation energy. Interestingly, the synergy between the weak-solvation solvents can break the locally ordered structure at a low temperature to enable higher ionic conductivity compared to those with individual solvents. Thus, facile desolvation and high ionic conductivity are achieved simultaneously, significantly improving the reversibility of electrode reactions at low temperatures. The Na metal anode can be stably cycled at 2 mA cm–2 at −40 °C for 1000 h. The Na||Na3V2(PO4)3 cell shows the reversible capacity of 64 mAh g–1 at 0.3 C after 300 cycles at −40 °C, and the capacity retention is 86%. This strategy is applicable to other sets of weak-solvation solvents, providing guidance for the development of electrolytes for low-temperature rechargeable metal batteries.
Author Zhang, Xia-Guang
Fu, Yongzhu
Tang, Shuai
Wang, Shuzhan
Gu, Yu
AuthorAffiliation College of Chemistry
State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Tan Kah Kee Innovation Laboratory
Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering
AuthorAffiliation_xml – name: Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering
– name: State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Tan Kah Kee Innovation Laboratory
– name: College of Chemistry
Author_xml – sequence: 1
  givenname: Shuzhan
  orcidid: 0009-0003-7936-6303
  surname: Wang
  fullname: Wang, Shuzhan
  organization: College of Chemistry
– sequence: 2
  givenname: Xia-Guang
  orcidid: 0000-0002-9223-0852
  surname: Zhang
  fullname: Zhang, Xia-Guang
  organization: Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering
– sequence: 3
  givenname: Yu
  orcidid: 0000-0002-8099-4716
  surname: Gu
  fullname: Gu, Yu
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Tan Kah Kee Innovation Laboratory
– sequence: 4
  givenname: Shuai
  orcidid: 0000-0003-0179-9101
  surname: Tang
  fullname: Tang, Shuai
  email: stang@zzu.edu.cn
  organization: College of Chemistry
– sequence: 5
  givenname: Yongzhu
  orcidid: 0000-0003-3746-9884
  surname: Fu
  fullname: Fu, Yongzhu
  email: yfu@zzu.edu.cn
  organization: College of Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38305733$$D View this record in MEDLINE/PubMed
BookMark eNp10D1P6zAUgGELgaB8bMzI4x0I2MdJmo5Q8SUVGAAxRsfJCUqv6xTbAeXf40JhuOJOto8eW9a7yzZtZ4mxQylOpAB5OsfKn6hKSqnSDTaSGYgkk5BvspEQApJxkasdtuv9PB5TKOQ221GFEtlYqRGrzyx_MsGhD6gN8Vn3njzSYkkOQ--I3yG_pYCGn2MI5AZ-YVeu5nrgD4Ml9zJwTeGdyPJnwr8mjjvzhqG1L587ssHvs60GjaeD9brHni4vHqfXyez-6mZ6NktQQRqSrNCQ5gqqvNANynHaiIw0ZTXUGD9eT0Q20RpqkTZpNKrRaY4SCqiEritEtcf-fL27dN1rTz6Ui9ZXZAxa6npfwgTyDJSAItKjNe31gupy6doFuqH8LhPB8ReoXOe9o-aHSFGuwper8OU6fOTwD6_aECt0NrZtzf8urf-7Gs673tlY53f6AZyolGk
CitedBy_id crossref_primary_10_1016_j_ensm_2025_104145
crossref_primary_10_1002_anie_202416720
crossref_primary_10_1016_j_ensm_2024_103753
crossref_primary_10_1002_smll_202401215
crossref_primary_10_1002_smll_202407285
crossref_primary_10_1002_adfm_202421802
crossref_primary_10_1016_j_ensm_2025_104023
crossref_primary_10_1016_j_ensm_2025_104122
crossref_primary_10_1021_acs_energyfuels_4c01974
crossref_primary_10_1021_jacs_4c10187
crossref_primary_10_1021_jacs_4c15478
crossref_primary_10_1016_j_cej_2024_158704
crossref_primary_10_1016_j_joule_2024_101811
crossref_primary_10_1021_jacs_4c09027
crossref_primary_10_1002_anie_202424547
crossref_primary_10_1038_s41467_025_57316_5
crossref_primary_10_1021_acsmaterialslett_4c02618
crossref_primary_10_1039_D4EE02060J
crossref_primary_10_1002_ange_202416720
crossref_primary_10_1021_acsnano_4c17836
crossref_primary_10_1016_j_ensm_2024_103741
crossref_primary_10_1016_j_mattod_2025_02_021
crossref_primary_10_1002_ange_202424547
crossref_primary_10_1016_j_nanoen_2025_110769
crossref_primary_10_1002_adma_202408161
crossref_primary_10_1021_jacs_4c16076
crossref_primary_10_1021_acsaem_4c00466
crossref_primary_10_1002_adfm_202409494
crossref_primary_10_1021_acs_langmuir_4c03528
crossref_primary_10_1002_adfm_202413302
crossref_primary_10_1002_adfm_202414652
crossref_primary_10_1016_j_apsusc_2024_161220
crossref_primary_10_1002_adma_202410261
crossref_primary_10_1016_j_jpowsour_2025_236523
crossref_primary_10_1016_j_cej_2025_160012
Cites_doi 10.1021/acsami.9b06760
10.1021/acs.chemrev.9b00482
10.1002/adma.201501527
10.1039/D1EE01404H
10.1016/j.ensm.2022.05.005
10.1002/adma.201807495
10.1021/cm901452z
10.1002/anie.202112550
10.1039/D0CS00033G
10.1016/j.joule.2021.12.018
10.1021/acsenergylett.0c02188
10.1002/adma.202107899
10.1038/451652a
10.1021/acs.accounts.1c00420
10.1021/acsami.7b13887
10.1002/adma.202301817
10.1021/acsami.7b04099
10.1002/anie.202303888
10.1021/acs.chemrev.8b00642
10.1002/eem2.12460
10.1038/s41560-022-01055-0
10.1021/jacs.9b11056
10.1002/anie.201900266
10.1002/aenm.202300053
10.1038/s41467-018-03466-8
10.1002/anie.202206340
10.1021/acsenergylett.9b02190
10.1002/anie.202301169
10.1021/acs.jpcb.2c00557
10.1007/s41918-021-00106-6
10.1002/adma.202209511
10.1002/anie.202011482
10.1021/acs.nanolett.9b03330
10.1002/aenm.202000093
10.1038/35104644
10.1021/acscentsci.5b00328
10.1002/aenm.202001418
10.1038/s41586-022-05627-8
10.1038/s41467-022-32606-4
10.1002/aenm.201800079
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/jacs.3c11134
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 3860
ExternalDocumentID 38305733
10_1021_jacs_3c11134
b533120594
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
.DC
.K2
4.4
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFRP
ABJNI
ABMVS
ABPPZ
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGHSJ
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH2
IH9
JG~
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
ZCA
~02
53G
AAHBH
AAYXX
ABBLG
ABLBI
CITATION
CUPRZ
NPM
7X8
ID FETCH-LOGICAL-a324t-58b24632c68bfa174f05ebe5d2da428d9059bb2d04f4c683fb46a1282c0bdcaa3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 07:50:48 EDT 2025
Thu Apr 03 06:58:49 EDT 2025
Tue Jul 01 03:10:46 EDT 2025
Thu Apr 24 22:57:24 EDT 2025
Thu Feb 15 06:28:30 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a324t-58b24632c68bfa174f05ebe5d2da428d9059bb2d04f4c683fb46a1282c0bdcaa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3746-9884
0000-0002-9223-0852
0000-0002-8099-4716
0000-0003-0179-9101
0009-0003-7936-6303
PMID 38305733
PQID 2926523028
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2926523028
pubmed_primary_38305733
crossref_primary_10_1021_jacs_3c11134
crossref_citationtrail_10_1021_jacs_3c11134
acs_journals_10_1021_jacs_3c11134
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-14
PublicationDateYYYYMMDD 2024-02-14
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref30/cit30
  doi: 10.1021/acsami.9b06760
– ident: ref39/cit39
  doi: 10.1021/acs.chemrev.9b00482
– ident: ref37/cit37
  doi: 10.1002/adma.201501527
– ident: ref21/cit21
  doi: 10.1039/D1EE01404H
– ident: ref26/cit26
  doi: 10.1016/j.ensm.2022.05.005
– ident: ref22/cit22
  doi: 10.1002/adma.201807495
– ident: ref3/cit3
  doi: 10.1021/cm901452z
– ident: ref34/cit34
  doi: 10.1002/anie.202112550
– ident: ref7/cit7
  doi: 10.1039/D0CS00033G
– ident: ref29/cit29
  doi: 10.1016/j.joule.2021.12.018
– ident: ref40/cit40
  doi: 10.1021/acsenergylett.0c02188
– ident: ref5/cit5
  doi: 10.1002/adma.202107899
– ident: ref1/cit1
  doi: 10.1038/451652a
– ident: ref19/cit19
  doi: 10.1021/acs.accounts.1c00420
– ident: ref32/cit32
  doi: 10.1021/acsami.7b13887
– ident: ref25/cit25
  doi: 10.1002/adma.202301817
– ident: ref33/cit33
  doi: 10.1021/acsami.7b04099
– ident: ref4/cit4
  doi: 10.1002/anie.202303888
– ident: ref6/cit6
  doi: 10.1021/acs.chemrev.8b00642
– ident: ref9/cit9
  doi: 10.1002/eem2.12460
– ident: ref16/cit16
  doi: 10.1038/s41560-022-01055-0
– ident: ref17/cit17
  doi: 10.1021/jacs.9b11056
– ident: ref20/cit20
  doi: 10.1002/anie.201900266
– ident: ref13/cit13
  doi: 10.1002/aenm.202300053
– ident: ref23/cit23
  doi: 10.1038/s41467-018-03466-8
– ident: ref36/cit36
  doi: 10.1002/anie.202206340
– ident: ref38/cit38
  doi: 10.1021/acsenergylett.9b02190
– ident: ref15/cit15
  doi: 10.1002/anie.202301169
– ident: ref35/cit35
  doi: 10.1021/acs.jpcb.2c00557
– ident: ref8/cit8
  doi: 10.1007/s41918-021-00106-6
– ident: ref14/cit14
  doi: 10.1002/adma.202209511
– ident: ref18/cit18
  doi: 10.1002/anie.202011482
– ident: ref27/cit27
  doi: 10.1021/acs.nanolett.9b03330
– ident: ref31/cit31
  doi: 10.1002/aenm.202000093
– ident: ref2/cit2
  doi: 10.1038/35104644
– ident: ref11/cit11
  doi: 10.1021/acscentsci.5b00328
– ident: ref10/cit10
  doi: 10.1002/aenm.202001418
– ident: ref28/cit28
  doi: 10.1038/s41586-022-05627-8
– ident: ref24/cit24
  doi: 10.1038/s41467-022-32606-4
– ident: ref12/cit12
  doi: 10.1002/aenm.201800079
SSID ssj0004281
Score 2.6200018
Snippet The low ionic conductivity and high desolvation barrier are the main challenges for organic electrolytes in rechargeable metal batteries, especially at low...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3854
Title An Ultrastable Low-Temperature Na Metal Battery Enabled by Synergy between Weakly Solvating Solvents
URI http://dx.doi.org/10.1021/jacs.3c11134
https://www.ncbi.nlm.nih.gov/pubmed/38305733
https://www.proquest.com/docview/2926523028
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA4-Dnrx_agvIuhJtrTZbHZ7LKVaRL3YYm9LJg8PXbZit0j99U72UbFS9LaEyRJmEuabZOYbQq6A-ZZLCZ7g1nqcW8AjJd3Bky0BiEg4d7XDj0-iN-D3w2D4nSC7-ILPHD-QmtR95Vqi81WyzkQUuiCr3Xn-rn9kUbOCuWEk_DLBfXG2c0Bq8tMBLUGVuXe53SZ3VY1OkVQyqk8zqKvP35SNfyx8h2yVAJO2ix2xS1ZMukc2OlVft32i2ykdJNm7RFwIiaEP4w-vbxA9F-zK9EnSR4OQnBbUmzPazcurNIUZfZ7lpYK0zO6iL0aOEhweJ-5mN33Nv1xqxgEZ3Hb7nZ5X9lrwJEKqzAsiYFz4TIkIrMQwxTYCtG-gmZaoXt1CGAbAdINbjjK-BS4k-jamGqCVlP4hWUvHqTkmtMF0qIzmoFoW4ZmCSNgmk47JPgwDgBq5RM3E5VmZxPkzOMMwxI2W-qqRm8pIsSrJyl3PjGSJ9PVc-q0g6Vgid1nZO0alu6cRmZrxdBKzFhPufpxFNXJUbIT5nzCGz1kjT_6x7lOyyRD1uLTuJj8ja9n71JwjasngIt-yXxlI5qE
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9swDCa67tBd9l6XPVVgPQ0uEllWnMMOQdYiXZNcmmC9eaIeO9RwhtpBkf2X_ZX9tlGynWIFAuxSYDdDIARaoqyPJvkR4APy2AmlMJLCuUgIh3SklD94aiCREIkQvnZ4OpPjhfhykVzswK-2FoaUKGmmMgTxb9gFPE0QDcbad0YXTQ7lmV1fk4dWfjr9TNt5yPnJ8Xw0jpomApEirFBFSYpcyJhrmaJThL9dNyHFE8ONIuhtBoQvELnpCidIJnYopKKPNtddNFqpmOa9B_cJ93Dv2w1H5zdllzzttei6n8q4yau_ra2_93T59723BcyGS-3kEfzeLEfIZbk8WlV4pH_eYor8b9frMTxs4DQb1vb_BHZs8RT2Rm0Xu2dghgVb5NWVIhSMuWWT5XU0t-Qr1FzSbKbY1JIDwmqi0TU7DsVkhuGana9DYSRrctnYV6sucxpe5v4_dvE9PPlElOewuJOXfAG7xbKwL4F1uelrawTqgSMwqjGVrseV5-3v9xPEDhzQTmTNl6HMQtCfk9PlR5v96cDH1jYy3VCz-w4h-Rbpw430j5qSZIvcQWtmGS26DwSpwi5XZcYHXPpoAE87sF_b32amOI0DR-arf9D7PeyN59NJNjmdnb2GB5zwnk9o74k3sFtdrexbwmsVvgunhsG3uza7P_loSlQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1La9wwEB7SFNpe-k67fSrQnIrDrix7vYcelk2WpEmWQrI0N1ejRw8x3hB7Cdt_07-SX5aRLG9IYKGXQG9GFmIsaaRvPDPfAHxBHlshJUapsDYSwiKplHSKJwcpEiIRwuUOH03Svan4fpqcrsHfNheGhKhopMo78Z1Wn2sbGAYcVRC9iJWrji5CHOWBWVySlVZ929-hJd3ifLx7MtqLQiGBSBJeqKMkQy7SmKs0QysJg9tuQsInmmtJ8FsPCGMgct0VVlCf2KJIJR3cXHVRKyljGvcBPHQeQmffDUfHN6mXPOu1CLufpXGIrb8rrbv7VHX77lsBaP3FNn4GV8sp8fEsZ9vzGrfVnztskf_1nD2HpwFWs2GjBy9gzZQv4fGorWb3CvSwZNOivpCEhrEw7HB2GZ0YshkaTmk2kezIkCHCGsLRBdv1SWWa4YIdL3yCJAsxbeynkWcFNc8K9z-7_O2fXEDKa5jey0duwHo5K81bYF2u-8pogWpgCZQqzFLb49Lx9_f7CWIHNmkl8nBCVLl3_nMyvlxrWJ8OfG33R64CRburFFKs6L217H3eUJOs6LfZbrWcJt05hGRpZvMq5wOeOq8AzzrwptmDy5HiLPZcme_-Qe7P8OjHzjg_3J8cvIcnnGCfi2vviQ-wXl_MzUeCbTV-8orD4Nd977pr64pM1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Ultrastable+Low-Temperature+Na+Metal+Battery+Enabled+by+Synergy+between+Weakly+Solvating+Solvents&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Wang%2C+Shuzhan&rft.au=Zhang%2C+Xia-Guang&rft.au=Gu%2C+Yu&rft.au=Tang%2C+Shuai&rft.date=2024-02-14&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=146&rft.issue=6&rft.spage=3854&rft.epage=3860&rft_id=info:doi/10.1021%2Fjacs.3c11134&rft.externalDocID=b533120594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon