Enhancing seismic calving event identification in Svalbard through empirical matched field processing and machine learning
SUMMARY Seismic signals generated by iceberg calving can be used to monitor ice loss at tidewater glaciers with high temporal resolution and independent of visibility. We combine the empirical matched field (EMF) method and machine learning using convolutional neural networks (CNNs) for calving even...
Saved in:
Published in | Geophysical journal international Vol. 230; no. 2; pp. 1305 - 1317 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
04.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SUMMARY
Seismic signals generated by iceberg calving can be used to monitor ice loss at tidewater glaciers with high temporal resolution and independent of visibility. We combine the empirical matched field (EMF) method and machine learning using convolutional neural networks (CNNs) for calving event detection at the Spitsbergen (SPITS) seismic array and the single broad-band station KBS on the Arctic Archipelago of Svalbard. EMF detection with seismic arrays seeks to identify all signals generated by events in a confined target region similar to single P and/or S phase templates by assessing the beam power obtained using empirical phase delays between the array stations. The false detection rate depends on threshold settings and therefore needs appropriate tuning or, alternatively, post-processing. We combine the EMF detector at the SPITS array, as well as an STA/LTA (short term average/long term average) detector at the KBS station, with a post-detection classification step using CNNs. The CNN classifier uses waveforms of the three-component record at KBS as input. We apply the methodology to detect and classify calving events at tidewater glaciers close to the KBS station in the Kongsfjord region in Northwestern Svalbard. In a previous study, a simpler method was implemented to find these calving events in KBS data, and we use it as the baseline in our attempt to improve the detection and classification performance. The CNN classifier is trained using classes of confirmed calving signals from four different glaciers in the Kongsfjord region, seismic noise examples and regional tectonic seismic events. Subsequently, we process continuous data of six months in 2016. We test different CNN architectures and data augmentations to deal with the limited training data set available. Targeting Kronebreen, one of the most active glaciers in the Kongsfjord region, we show that the best performing models significantly improve the baseline classifier. This result is achieved for both the STA/LTA detection at KBS followed by CNN classification, as well as EMF detection at SPITS combined with a CNN classifier at KBS, despite of SPITS being located at 100 km distance from the target glacier in contrast to KBS at 15 km distance. Our results will further increase confidence in estimates of ice loss at Kronebreen derived from seismic observations which in turn can help to better understand the impact of climate change in Svalbard. |
---|---|
AbstractList | SUMMARY
Seismic signals generated by iceberg calving can be used to monitor ice loss at tidewater glaciers with high temporal resolution and independent of visibility. We combine the empirical matched field (EMF) method and machine learning using convolutional neural networks (CNNs) for calving event detection at the Spitsbergen (SPITS) seismic array and the single broad-band station KBS on the Arctic Archipelago of Svalbard. EMF detection with seismic arrays seeks to identify all signals generated by events in a confined target region similar to single P and/or S phase templates by assessing the beam power obtained using empirical phase delays between the array stations. The false detection rate depends on threshold settings and therefore needs appropriate tuning or, alternatively, post-processing. We combine the EMF detector at the SPITS array, as well as an STA/LTA (short term average/long term average) detector at the KBS station, with a post-detection classification step using CNNs. The CNN classifier uses waveforms of the three-component record at KBS as input. We apply the methodology to detect and classify calving events at tidewater glaciers close to the KBS station in the Kongsfjord region in Northwestern Svalbard. In a previous study, a simpler method was implemented to find these calving events in KBS data, and we use it as the baseline in our attempt to improve the detection and classification performance. The CNN classifier is trained using classes of confirmed calving signals from four different glaciers in the Kongsfjord region, seismic noise examples and regional tectonic seismic events. Subsequently, we process continuous data of six months in 2016. We test different CNN architectures and data augmentations to deal with the limited training data set available. Targeting Kronebreen, one of the most active glaciers in the Kongsfjord region, we show that the best performing models significantly improve the baseline classifier. This result is achieved for both the STA/LTA detection at KBS followed by CNN classification, as well as EMF detection at SPITS combined with a CNN classifier at KBS, despite of SPITS being located at 100 km distance from the target glacier in contrast to KBS at 15 km distance. Our results will further increase confidence in estimates of ice loss at Kronebreen derived from seismic observations which in turn can help to better understand the impact of climate change in Svalbard. |
Author | Myklebust, E B Köhler, A Mæland, S |
Author_xml | – sequence: 1 givenname: A orcidid: 0000-0002-1060-7637 surname: Köhler fullname: Köhler, A email: andreas.kohler@norsar.no – sequence: 2 givenname: E B surname: Myklebust fullname: Myklebust, E B – sequence: 3 givenname: S surname: Mæland fullname: Mæland, S |
BookMark | eNp9kD1rwzAQhkVJoUnaqX9AU5fiRrJk1xpLSD8g0KEtZDNn6WQr2LKRnED76-uQzl3uuPce3uFZkJnvPRJyy9kDZ0qs6r1b1TVozh8vyJyLPEtSme9mZM5UlieZZLsrsohxzxiXXBZz8rPxDXjtfE0jutg5TTW0x9ONR_QjdWaazjoNo-s9dZ5-HKGtIBg6NqE_1A3FbnBhAlrawagbNNQ6bA0dQq8xxlMXeDM9deM80hYh-Cm8JpcW2og3f3tJvp43n-vXZPv-8rZ-2iYgUjkmosil5pBCaoVRtlI5MsuqKuPaKsWgAGYUTwuJ2uZGyNwyZYVIBQgwWQZiSe7PvTr0MQa05RBcB-G75Kw8aSsnbeWftom-O9P9YfgX_AXI2nQB |
CitedBy_id | crossref_primary_10_5194_tc_17_4979_2023 crossref_primary_10_1146_annurev_earth_071822_100323 crossref_primary_10_5194_tc_17_4447_2023 crossref_primary_10_1093_gji_ggad297 crossref_primary_10_1785_0120230056 crossref_primary_10_26443_seismica_v3i1_1166 |
Cites_doi | 10.1785/0120110109 10.1785/BSSA0880010095 10.3389/feart.2015.00054 10.5194/tc-12-609-2018 10.1038/s41467-020-17591-w 10.1785/0220160047 10.1111/j.1365-246X.2006.02865.x 10.1126/science.1234532 10.1007/s10489-020-02103-6 10.1093/gji/ggy423 10.1785/BSSA07206B0225 10.1111/j.1365-246X.2010.04684.x 10.1109/TCSVT.2019.2935128 10.1002/2016RG000526 10.1785/0220200369 10.1016/j.cageo.2022.105034 10.1029/2012JF002513 10.1785/0220180259 10.3189/2012JoG11J036 10.1088/1361-6633/aa8473 10.1109/TVCG.2021.3057483 10.1016/j.epsl.2019.03.023 10.1038/ncomms9566 10.1002/2016GL070589 10.7914/SN/IU 10.48550/arXiv.1603.04467 10.1017/jog.2018.98 10.1785/0220200178 10.1093/gji/ggx398 10.5194/tc-9-2339-2015 10.3402/polar.v34.26178 10.1029/2011JF002132 10.1785/0120160047 10.5194/tc-13-3117-2019 10.1785/0120180080 10.1016/B978-0-12-809633-8.20351-8 10.1017/jog.2017.25 10.1109/TGRS.2011.2170429 10.1785/0220190018 10.1002/2015JF003641 10.1785/gssrl.81.3.530 10.5880/GIPP.201604.1 10.5194/esurf-7-1-2019 10.2172/900081 10.1016/j.cageo.2008.06.007 10.1007/s10950-021-10026-z 10.1029/2009JF001598 10.1093/oxfordjournals.pan.a004868 10.1017/aog.2019.7 10.1002/2014JF003398 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press on behalf of The Royal Astronomical Society 2022 |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press on behalf of The Royal Astronomical Society 2022 |
DBID | TOX AAYXX CITATION |
DOI | 10.1093/gji/ggac117 |
DatabaseName | Oxford Open Access Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Open Access Journals url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1365-246X |
EndPage | 1317 |
ExternalDocumentID | 10_1093_gji_ggac117 10.1093/gji/ggac117 |
GroupedDBID | -~X .2P .3N .GA .I3 .Y3 0R~ 10A 1OB 1OC 1TH 29H 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABEML ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABSAR ABSMQ ABTAH ABXVV ABZBJ ACCFJ ACFRR ACGFS ACSCC ACUFI ACUTJ ACXQS ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZOD ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AEWNT AFBPY AFEBI AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGKRT AGSYK AHEFC AHXPO AI. AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ATDFG AXUDD AZFZN AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE COF CS3 CXTWN D-E D-F DAKXR DC6 DCZOG DFGAJ DILTD DR2 D~K EBS EE~ EJD F00 F04 F9B FA8 FEDTE FLIZI FLUFQ FOEOM FRJ FZ0 GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN LC2 LC3 LH4 LP6 LP7 LW6 M49 MBTAY MK4 N9A NGC NMDNZ NOMLY NU- O0~ O9- OCL ODMLO OIG OJQWA O~Y P2P P2X P4D PAFKI PB- PEELM Q1. Q11 Q5Y QB0 RHF ROL ROX ROZ RUSNO RW1 RX1 RXO TCN TJP TOX UB1 VH1 VOH W8V W99 WQJ WRC WYUIH XG1 YAYTL YKOAZ YXANX ZCG ZY4 ZZE ~02 AAYXX CITATION |
ID | FETCH-LOGICAL-a324t-3864c1a2a2f3d9fb96e0f0bb51cf990a8a0d91284ecf6d346f09f3323a3ad55a3 |
IEDL.DBID | TOX |
ISSN | 0956-540X |
IngestDate | Thu Sep 12 20:06:55 EDT 2024 Wed Aug 28 03:17:27 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Glaciology Neural networks, fuzzy logic Earthquake monitoring and test-ban treaty verification Arctic region |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a324t-3864c1a2a2f3d9fb96e0f0bb51cf990a8a0d91284ecf6d346f09f3323a3ad55a3 |
ORCID | 0000-0002-1060-7637 |
OpenAccessLink | https://dx.doi.org/10.1093/gji/ggac117 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1093_gji_ggac117 oup_primary_10_1093_gji_ggac117 |
PublicationCentury | 2000 |
PublicationDate | 2022-05-04 |
PublicationDateYYYYMMDD | 2022-05-04 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-04 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | Geophysical journal international |
PublicationYear | 2022 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Abadi (2022050518512297300_bib1) 2015 Bergen (2022050518512297300_bib8) 2019; 90 Ross (2022050518512297300_bib47) 2018; 108 Harris (2022050518512297300_bib24) 2010; 182 Walter (2022050518512297300_bib55) 2012; 117 Harris (2022050518512297300_bib23) 2006 Gardner (2022050518512297300_bib16) 2013; 340 Podolskiy (2022050518512297300_bib45) 2016; 54 Albuquerque Seismological Laboratory (ASL)/USGS (2022050518512297300_bib2) 1988 Carmichael (2022050518512297300_bib11) 2016; 106 Deschamps-Berger (2022050518512297300_bib14) 2019; 65 Kingma (2022050518512297300_bib27) 2017 NORSAR (2022050518512297300_bib41) 1971 Bäuerle (2022050518512297300_bib7) 2021; 27 Beyreuther (2022050518512297300_bib10) 2010; 81 Gibbons (2022050518512297300_bib20) 2016; 87 Schellenberger (2022050518512297300_bib48) 2015; 9 Bartholomaus (2022050518512297300_bib5) 2012; 117 Köhler (2022050518512297300_bib32) 2019 Gibbons (2022050518512297300_bib22) 2017 Berrar (2022050518512297300_bib9) 2019; 1 Köhler (2022050518512297300_bib31) 2019; 13 Aster (2022050518512297300_bib4) 2017; 80 Kong (2022050518512297300_bib33) 2019; 90 Köhler (2022050518512297300_bib28) 2019; 7 NORSAR (2022050518512297300_bib40) 1971 O’Neel (2022050518512297300_bib43) 2010; 115 Gibbons (2022050518512297300_bib18) 2011; 50 Withers (2022050518512297300_bib56) 1998; 88 Yeck (2022050518512297300_bib57) 2021; 92 Takahashi (2022050518512297300_bib52) 2019; 30(9) Bartholomaus (2022050518512297300_bib6) 2015; 120 Gibbons (2022050518512297300_bib21) 2017; 211 Köhler (2022050518512297300_bib29) 2015; 34 Köhler (2022050518512297300_bib30) 2016; 43 Ottemöller (2022050518512297300_bib44) 2021; 92 Nuth (2022050518512297300_bib42) 2012; 58 Vallot (2022050518512297300_bib53) 2018; 12 Schweitzer (2022050518512297300_bib49) 2012 Sergeant (2022050518512297300_bib50) 2019; 60 Allen (2022050518512297300_bib3) 1982; 72 Kværna (2022050518512297300_bib34) 2021; 25 King (2022050518512297300_bib26) 2001; 9 Luckman (2022050518512297300_bib37) 2015; 6 Minowa (2022050518512297300_bib38) 2019; 515 Chollet (2022050518512297300_bib13) 2015 Sun (2022050518512297300_bib51) 2022 Huss (2022050518512297300_bib25) 2015; 3 Vaughan (2022050518512297300_bib54) 2013 La Grassa (2022050518512297300_bib35) 2021; 51 Gibbons (2022050518512297300_bib17) 2006; 165 Gibbons (2022050518512297300_bib19) 2011; 101 Gajek (2022050518512297300_bib15) 2017; 63 Carmichael (2022050518512297300_bib12) 2015; 120 Mousavi (2022050518512297300_bib39) 2020; 11 Prieto (2022050518512297300_bib46) 2009; 35 Le Bras (2022050518512297300_bib36) 1994 Zhu (2022050518512297300_bib58) 2019; 216 |
References_xml | – volume: 101 start-page: 2737 issue: 6 year: 2011 ident: 2022050518512297300_bib19 article-title: Improvements to seismic monitoring of the european arctic using three-component array processing at spits publication-title: Bull. seism. Soc. Am. doi: 10.1785/0120110109 contributor: fullname: Gibbons – volume: 88 start-page: 95 issue: 1 year: 1998 ident: 2022050518512297300_bib56 article-title: A comparison of select trigger algorithms for automated global seismic phase and event detection publication-title: Bull. seism. Soc. Am. doi: 10.1785/BSSA0880010095 contributor: fullname: Withers – volume: 3 issue: 54 year: 2015 ident: 2022050518512297300_bib25 article-title: A new model for global glacier change and sea-level rise publication-title: Front. Earth Sci. doi: 10.3389/feart.2015.00054 contributor: fullname: Huss – volume: 12 start-page: 609 issue: 2 year: 2018 ident: 2022050518512297300_bib53 article-title: Effects of undercutting and sliding on calving: a global approach applied to Kronebreen, Svalbard publication-title: Cryosphere doi: 10.5194/tc-12-609-2018 contributor: fullname: Vallot – volume: 11 start-page: 1 issue: 1 year: 2020 ident: 2022050518512297300_bib39 article-title: Earthquake transformer–an attentive deep-learning model for simultaneous earthquake detection and phase picking publication-title: Nature Commun. doi: 10.1038/s41467-020-17591-w contributor: fullname: Mousavi – year: 1971 ident: 2022050518512297300_bib40 contributor: fullname: NORSAR – volume: 87 start-page: 919 issue: 4 year: 2016 ident: 2022050518512297300_bib20 article-title: Iterative strategies for aftershock classification in automatic seismic processing pipelines publication-title: Seismol. Res. Lett. doi: 10.1785/0220160047 contributor: fullname: Gibbons – volume: 165 start-page: 149 issue: 1 year: 2006 ident: 2022050518512297300_bib17 article-title: The detection of low magnitude seismic events using array-based waveform correlation publication-title: J. geophys. Int. doi: 10.1111/j.1365-246X.2006.02865.x contributor: fullname: Gibbons – volume: 340 start-page: 852 issue: 6134 year: 2013 ident: 2022050518512297300_bib16 article-title: A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009 publication-title: Science doi: 10.1126/science.1234532 contributor: fullname: Gardner – volume: 51 start-page: 6622 issue: 10 year: 2021 ident: 2022050518512297300_bib35 article-title: Learn class hierarchy using convolutional neural networks publication-title: Appl. Intell. doi: 10.1007/s10489-020-02103-6 contributor: fullname: La Grassa – volume: 216 start-page: 261 issue: 1 year: 2019 ident: 2022050518512297300_bib58 article-title: PhaseNet: a deep-neural-network-based seismic arrival-time picking method publication-title: J. geophys. Int. doi: 10.1093/gji/ggy423 contributor: fullname: Zhu – year: 2017 ident: 2022050518512297300_bib22 article-title: Comprehensive seismic detection and estimation using matched field processing contributor: fullname: Gibbons – year: 2017 ident: 2022050518512297300_bib27 article-title: Adam: a method for stochastic optimization contributor: fullname: Kingma – year: 2015 ident: 2022050518512297300_bib13 article-title: Keras contributor: fullname: Chollet – volume: 72 start-page: S225 issue: 6B year: 1982 ident: 2022050518512297300_bib3 article-title: Automatic phase pickers: their present use and future prospects publication-title: Bull. seism. Soc. Am. doi: 10.1785/BSSA07206B0225 contributor: fullname: Allen – volume: 182 start-page: 1455 issue: 3 year: 2010 ident: 2022050518512297300_bib24 article-title: Superresolution with seismic arrays using empirical matched field processing publication-title: J. geophys. Int. doi: 10.1111/j.1365-246X.2010.04684.x contributor: fullname: Harris – volume: 30(9) start-page: 2917 year: 2019 ident: 2022050518512297300_bib52 article-title: Data augmentation using random image cropping and patching for deep CNNs publication-title: IEEE Trans. Circ. Syst. Video Technol. doi: 10.1109/TCSVT.2019.2935128 contributor: fullname: Takahashi – volume: 54 start-page: 708 issue: 4 year: 2016 ident: 2022050518512297300_bib45 article-title: Cryoseismology publication-title: Rev. Geophys. doi: 10.1002/2016RG000526 contributor: fullname: Podolskiy – volume: 92 start-page: 1491 issue: 3 year: 2021 ident: 2022050518512297300_bib44 article-title: UiB-NORSAR EIDA node: integration of seismological data in Norway publication-title: Seism. Soc. Am. doi: 10.1785/0220200369 contributor: fullname: Ottemöller – start-page: 105034 year: 2022 ident: 2022050518512297300_bib51 article-title: A review of earth artificial intelligence publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2022.105034 contributor: fullname: Sun – volume: 117 start-page: F04029 year: 2012 ident: 2022050518512297300_bib5 article-title: Calving seismicity from iceberg–sea surface interactions publication-title: J. geophys. Res. doi: 10.1029/2012JF002513 contributor: fullname: Bartholomaus – volume: 90 start-page: 3 issue: 1 year: 2019 ident: 2022050518512297300_bib33 article-title: Machine learning in seismology: turning data into insights publication-title: Seismol. Res. Lett. doi: 10.1785/0220180259 contributor: fullname: Kong – volume: 58 start-page: 119 issue: 207 year: 2012 ident: 2022050518512297300_bib42 article-title: Estimating the long-term calving flux of Kronebreen, Svalbard, from geodetic elevation changes and mass-balance modelling publication-title: J. Glaciol. doi: 10.3189/2012JoG11J036 contributor: fullname: Nuth – volume: 80 start-page: 126801 issue: 12 year: 2017 ident: 2022050518512297300_bib4 article-title: Glacial seismology publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/aa8473 contributor: fullname: Aster – volume: 27 start-page: 2980 issue: 6 year: 2021 ident: 2022050518512297300_bib7 article-title: Net2Vis—a visual grammar for automatically generating publication-tailored CNN architecture visualizations publication-title: IEEE Trans. Visual. Comput. Graph. doi: 10.1109/TVCG.2021.3057483 contributor: fullname: Bäuerle – volume: 515 start-page: 283 year: 2019 ident: 2022050518512297300_bib38 article-title: Calving flux estimation from tsunami waves publication-title: Earth planet. Sci. Lett. doi: 10.1016/j.epsl.2019.03.023 contributor: fullname: Minowa – volume: 6 issue: 8566 year: 2015 ident: 2022050518512297300_bib37 article-title: Calving rates at tidewater glaciers vary strongly with ocean temperature publication-title: Nature Commun. doi: 10.1038/ncomms9566 contributor: fullname: Luckman – volume: 43 start-page: 12155 year: 2016 ident: 2022050518512297300_bib30 article-title: A 15 year record of frontal glacier ablation rates estimated from seismic data publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL070589 contributor: fullname: Köhler – year: 1994 ident: 2022050518512297300_bib36 article-title: Global association; final report publication-title: Sci. Appl. Inter. Corp. Tech. Rep contributor: fullname: Le Bras – year: 1988 ident: 2022050518512297300_bib2 doi: 10.7914/SN/IU contributor: fullname: Albuquerque Seismological Laboratory (ASL)/USGS – year: 2015 ident: 2022050518512297300_bib1 article-title: TensorFlow: large-scale machine learning on heterogeneous systems doi: 10.48550/arXiv.1603.04467 contributor: fullname: Abadi – volume: 65 start-page: 136 issue: 249 year: 2019 ident: 2022050518512297300_bib14 article-title: Closing the mass budget of a tidewater glacier: the example of Kronebreen, Svalbard publication-title: J. Glaciol. doi: 10.1017/jog.2018.98 contributor: fullname: Deschamps-Berger – volume: 92 start-page: 469 issue: 1 year: 2021 ident: 2022050518512297300_bib57 article-title: Leveraging deep learning in global 24/7 real-time earthquake monitoring at the national earthquake information center publication-title: Seism. Soc. Am. doi: 10.1785/0220200178 contributor: fullname: Yeck – volume: 211 start-page: 1613 issue: 3 year: 2017 ident: 2022050518512297300_bib21 article-title: Locating seismicity on the Arctic plate boundary using multiple-event techniques and empirical signal processing publication-title: J. geophys. Int. doi: 10.1093/gji/ggx398 contributor: fullname: Gibbons – volume: 9 start-page: 2339 issue: 6 year: 2015 ident: 2022050518512297300_bib48 article-title: Surface speed and frontal ablation of Kronebreen and Kongsbreen, NW Svalbard, from SAR offset tracking publication-title: The Cryosphere doi: 10.5194/tc-9-2339-2015 contributor: fullname: Schellenberger – volume: 34 start-page: 1 year: 2015 ident: 2022050518512297300_bib29 article-title: Regional passive seismic monitoring reveals dynamic glacier activity on Spitsbergen, Svalbard publication-title: Polar Res. doi: 10.3402/polar.v34.26178 contributor: fullname: Köhler – volume: 117 issue: F01036 year: 2012 ident: 2022050518512297300_bib55 article-title: Analysis of low-frequency seismic signals generated during a multiple-iceberg calving event at Jakobshavn Isbræ, Greenland publication-title: J. geophys. Res. doi: 10.1029/2011JF002132 contributor: fullname: Walter – volume: 106 start-page: 1998 issue: 5 year: 2016 ident: 2022050518512297300_bib11 article-title: A waveform detector that targets template-decorrelated signals and achieves its predicted performance, Part I: demonstration with IMS data publication-title: Bull. seism. Soc. Am. doi: 10.1785/0120160047 contributor: fullname: Carmichael – volume: 13 start-page: 3117 issue: 11 year: 2019 ident: 2022050518512297300_bib31 article-title: Contribution of calving to frontal ablation quantified from seismic and hydroacoustic observations calibrated with lidar volume measurements publication-title: The Cryosphere doi: 10.5194/tc-13-3117-2019 contributor: fullname: Köhler – volume: 108 start-page: 2894 issue: 5A year: 2018 ident: 2022050518512297300_bib47 article-title: Generalized seismic phase detection with deep learningshort note publication-title: Bull. seism. Soc. Am. doi: 10.1785/0120180080 contributor: fullname: Ross – volume: 1 start-page: 546 year: 2019 ident: 2022050518512297300_bib9 article-title: Performance measures for binary classification publication-title: Reference Module in Life Sciences, Encycl. Bioinform. Comput. Biol. doi: 10.1016/B978-0-12-809633-8.20351-8 contributor: fullname: Berrar – start-page: 1 volume-title: New Manual of Seismological Observatory Practice (NMSOP-2) year: 2012 ident: 2022050518512297300_bib49 article-title: Seismic arrays contributor: fullname: Schweitzer – volume: 63 start-page: 581 issue: 240 year: 2017 ident: 2022050518512297300_bib15 article-title: Automating long-term glacier dynamics monitoring using single-station seismological observations and fuzzy logic classification: a case study from Spitsbergen publication-title: J. Glaciol. doi: 10.1017/jog.2017.25 contributor: fullname: Gajek – volume: 50 start-page: 1897 issue: 5 year: 2011 ident: 2022050518512297300_bib18 article-title: Seismic monitoring of the North Korea nuclear test site using a multichannel correlation detector publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2170429 contributor: fullname: Gibbons – volume: 90 start-page: 477 issue: 2A year: 2019 ident: 2022050518512297300_bib8 article-title: Preface to the focus section on machine learning in seismology publication-title: Seismol. Res. Lett. doi: 10.1785/0220190018 contributor: fullname: Bergen – volume: 120 start-page: 2318 issue: 11 year: 2015 ident: 2022050518512297300_bib6 article-title: Tidal and seasonal variations in calving flux observed with passive seismology publication-title: J. geophys. Res.: Earth Surface doi: 10.1002/2015JF003641 contributor: fullname: Bartholomaus – volume: 81 start-page: 530 issue: 3 year: 2010 ident: 2022050518512297300_bib10 article-title: ObsPy: a Python toolbox for seismology publication-title: Seismol. Res. Lett. doi: 10.1785/gssrl.81.3.530 contributor: fullname: Beyreuther – year: 2019 ident: 2022050518512297300_bib32 article-title: Glacier dynamic ice loss quantified through seismic eyes (calvingseis) – dataset publication-title: GFZ Data Services doi: 10.5880/GIPP.201604.1 contributor: fullname: Köhler – volume-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2013 ident: 2022050518512297300_bib54 article-title: Observations: Cryosphere contributor: fullname: Vaughan – volume: 7 start-page: 1 issue: 1 year: 2019 ident: 2022050518512297300_bib28 article-title: Potentials and pitfalls of permafrost active layer monitoring using the HVSR method: a case study in Svalbard publication-title: Earth Surf. Dynam. doi: 10.5194/esurf-7-1-2019 contributor: fullname: Köhler – year: 2006 ident: 2022050518512297300_bib23 article-title: Subspace detectors: theory doi: 10.2172/900081 contributor: fullname: Harris – volume: 35 start-page: 1701 issue: 8 year: 2009 ident: 2022050518512297300_bib46 article-title: A Fortran 90 library for multitaper spectrum analysis publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2008.06.007 contributor: fullname: Prieto – volume: 25 start-page: 1189 issue: 5 year: 2021 ident: 2022050518512297300_bib34 article-title: Ctbt seismic monitoring using coherent and incoherent array processing publication-title: J. Seismol. doi: 10.1007/s10950-021-10026-z contributor: fullname: Kværna – year: 1971 ident: 2022050518512297300_bib41 contributor: fullname: NORSAR – volume: 115 start-page: F04034 year: 2010 ident: 2022050518512297300_bib43 article-title: Iceberg calving as a primary source of regional-scale glacier-generated seismicity in the St. Elias Mountains publication-title: J. geophys. Res. doi: 10.1029/2009JF001598 contributor: fullname: O’Neel – volume: 9 start-page: 137 year: 2001 ident: 2022050518512297300_bib26 article-title: Logistic regression in rare events data publication-title: Political Anal. doi: 10.1093/oxfordjournals.pan.a004868 contributor: fullname: King – volume: 60 start-page: 75 issue: 79 year: 2019 ident: 2022050518512297300_bib50 article-title: Monitoring Greenland ice sheet buoyancy-driven calving discharge using glacial earthquakes publication-title: Ann. Glaciol. doi: 10.1017/aog.2019.7 contributor: fullname: Sergeant – volume: 120 start-page: 1082 issue: 6 year: 2015 ident: 2022050518512297300_bib12 article-title: Seismicity on the western Greenland Ice Sheet: surface fracture in the vicinity of active moulins publication-title: J. geophys. Res.: Earth Surface doi: 10.1002/2014JF003398 contributor: fullname: Carmichael |
SSID | ssj0014148 |
Score | 2.4482577 |
Snippet | SUMMARY
Seismic signals generated by iceberg calving can be used to monitor ice loss at tidewater glaciers with high temporal resolution and independent of... |
SourceID | crossref oup |
SourceType | Aggregation Database Publisher |
StartPage | 1305 |
Title | Enhancing seismic calving event identification in Svalbard through empirical matched field processing and machine learning |
Volume | 230 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NS8NAEF1EELyIn1g_99BraJJNtslRpKUI6sEWcguzHxMjNBZTL_56ZzdRVETP2eTwZmFmMu-9YWyIUmlASU0OWggSCzKAMUYBYqxkquIs0-5_x-2dnC2SmyIteoJs-8sIPxej6qkeVRXoKHKicWeIRtd2fl98DguSyC_J8pZ6VIAUvQzvx7vfEo8Ts33JI9NdttMXgPyqi9ge27DNPtvyREzdHrC3SfPoLDCaire2bpe15oSi6_q591riten5PR5SXjf8gS6LokDzfucOt8tV7Z0_OJWjFBTDPU-NrzpRgPsWNIYeOh6l5f3iiOqQLaaT-fUs6PcjBEBl0DoQmUx0BDHEKEyOKpc2xFCpNNJISQYyCE3u8o_VKI1IJIY5ChELEGDSFMQR22yeG3vMeDxOLVUmGtFgMobc-9RFyoBEoD4zHbDhB3jlqrPBKLvxtSgJ47LHeMAuCdi_Tpz8e-KUbcdOYuBIhckZ21y_vNpzSvxrdeHD_g4Ei6-x |
link.rule.ids | 315,783,787,1607,27936,27937 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+seismic+calving+event+identification+in+Svalbard+through+empirical+matched+field+processing+and+machine+learning&rft.jtitle=Geophysical+journal+international&rft.au=K%C3%B6hler%2C+A&rft.au=Myklebust%2C+E+B&rft.au=M%C3%A6land%2C+S&rft.date=2022-05-04&rft.issn=0956-540X&rft.eissn=1365-246X&rft.volume=230&rft.issue=2&rft.spage=1305&rft.epage=1317&rft_id=info:doi/10.1093%2Fgji%2Fggac117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_gji_ggac117 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-540X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-540X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-540X&client=summon |