Photocatalyzed Enantioselective Functionalization of C(sp3)–H Bonds
Owing to its diverse activation processes including single-electron transfer (SET) and hydrogen-atom transfer (HAT), visible-light photocatalysis has emerged as a sustainable and efficient platform for organic synthesis. These processes provide a powerful avenue for the direct functionalization of C...
Saved in:
Published in | Journal of the American Chemical Society Vol. 146; no. 2; pp. 1209 - 1223 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.01.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | Owing to its diverse activation processes including single-electron transfer (SET) and hydrogen-atom transfer (HAT), visible-light photocatalysis has emerged as a sustainable and efficient platform for organic synthesis. These processes provide a powerful avenue for the direct functionalization of C(sp3)–H bonds under mild conditions. Over the past decade, there have been remarkable advances in the enantioselective functionalization of the C(sp3)–H bond via photocatalysis combined with conventional asymmetric catalysis. Herein, we summarize the advances in asymmetric C(sp3)–H functionalization involving visible-light photocatalysis and discuss two main pathways in this emerging field: (a) SET-driven carbocation intermediates are followed by stereospecific nucleophile attacks; and (b) photodriven alkyl radical intermediates are further enantioselectively captured by (i) chiral π-SOMOphile reagents, (ii) stereoselective transition-metal complexes, and (iii) another distinct stereoscopic radical species. We aim to summarize key advances in reaction design, catalyst development, and mechanistic understanding, to provide new insights into this rapidly evolving area of research. |
---|---|
AbstractList | Owing to its diverse activation processes including single-electron transfer (SET) and hydrogen-atom transfer (HAT), visible-light photocatalysis has emerged as a sustainable and efficient platform for organic synthesis. These processes provide a powerful avenue for the direct functionalization of C(sp3)-H bonds under mild conditions. Over the past decade, there have been remarkable advances in the enantioselective functionalization of the C(sp3)-H bond via photocatalysis combined with conventional asymmetric catalysis. Herein, we summarize the advances in asymmetric C(sp3)-H functionalization involving visible-light photocatalysis and discuss two main pathways in this emerging field: (a) SET-driven carbocation intermediates are followed by stereospecific nucleophile attacks; and (b) photodriven alkyl radical intermediates are further enantioselectively captured by (i) chiral π-SOMOphile reagents, (ii) stereoselective transition-metal complexes, and (iii) another distinct stereoscopic radical species. We aim to summarize key advances in reaction design, catalyst development, and mechanistic understanding, to provide new insights into this rapidly evolving area of research.Owing to its diverse activation processes including single-electron transfer (SET) and hydrogen-atom transfer (HAT), visible-light photocatalysis has emerged as a sustainable and efficient platform for organic synthesis. These processes provide a powerful avenue for the direct functionalization of C(sp3)-H bonds under mild conditions. Over the past decade, there have been remarkable advances in the enantioselective functionalization of the C(sp3)-H bond via photocatalysis combined with conventional asymmetric catalysis. Herein, we summarize the advances in asymmetric C(sp3)-H functionalization involving visible-light photocatalysis and discuss two main pathways in this emerging field: (a) SET-driven carbocation intermediates are followed by stereospecific nucleophile attacks; and (b) photodriven alkyl radical intermediates are further enantioselectively captured by (i) chiral π-SOMOphile reagents, (ii) stereoselective transition-metal complexes, and (iii) another distinct stereoscopic radical species. We aim to summarize key advances in reaction design, catalyst development, and mechanistic understanding, to provide new insights into this rapidly evolving area of research. Owing to its diverse activation processes including single-electron transfer (SET) and hydrogen-atom transfer (HAT), visible-light photocatalysis has emerged as a sustainable and efficient platform for organic synthesis. These processes provide a powerful avenue for the direct functionalization of C(sp )-H bonds under mild conditions. Over the past decade, there have been remarkable advances in the enantioselective functionalization of the C(sp )-H bond via photocatalysis combined with conventional asymmetric catalysis. Herein, we summarize the advances in asymmetric C(sp )-H functionalization involving visible-light photocatalysis and discuss two main pathways in this emerging field: (a) SET-driven carbocation intermediates are followed by stereospecific nucleophile attacks; and (b) photodriven alkyl radical intermediates are further enantioselectively captured by (i) chiral π-SOMOphile reagents, (ii) stereoselective transition-metal complexes, and (iii) another distinct stereoscopic radical species. We aim to summarize key advances in reaction design, catalyst development, and mechanistic understanding, to provide new insights into this rapidly evolving area of research. Owing to its diverse activation processes including single-electron transfer (SET) and hydrogen-atom transfer (HAT), visible-light photocatalysis has emerged as a sustainable and efficient platform for organic synthesis. These processes provide a powerful avenue for the direct functionalization of C(sp3)–H bonds under mild conditions. Over the past decade, there have been remarkable advances in the enantioselective functionalization of the C(sp3)–H bond via photocatalysis combined with conventional asymmetric catalysis. Herein, we summarize the advances in asymmetric C(sp3)–H functionalization involving visible-light photocatalysis and discuss two main pathways in this emerging field: (a) SET-driven carbocation intermediates are followed by stereospecific nucleophile attacks; and (b) photodriven alkyl radical intermediates are further enantioselectively captured by (i) chiral π-SOMOphile reagents, (ii) stereoselective transition-metal complexes, and (iii) another distinct stereoscopic radical species. We aim to summarize key advances in reaction design, catalyst development, and mechanistic understanding, to provide new insights into this rapidly evolving area of research. |
Author | Xu, Peng-Fei Xu, Guo-Qiang Wang, Wei David |
AuthorAffiliation | State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center |
AuthorAffiliation_xml | – name: State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center |
Author_xml | – sequence: 1 givenname: Guo-Qiang orcidid: 0000-0002-9683-4581 surname: Xu fullname: Xu, Guo-Qiang email: gqxu@lzu.edu.cn – sequence: 2 givenname: Wei David orcidid: 0000-0003-2864-5102 surname: Wang fullname: Wang, Wei David email: ww@lzu.edu.cn – sequence: 3 givenname: Peng-Fei orcidid: 0000-0002-5746-758X surname: Xu fullname: Xu, Peng-Fei email: xupf@lzu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38170467$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kEtLw0AQgBep2IfePEuOFYzuO8lRS2uFgh70HDabWUxJd2s2EdqT_8F_6C8xsdWD6GkefDPMfEPUs84CQqcEXxJMydVSaX_JNJZEJgdoQATFoSBU9tAAY0zDKJasj4beL9uS05gcoT6LSYS5jAZo-vDsaqdVrcrNFvJgapWtC-ehBF0XrxDMGtsmzqqy2KouCZwJJmO_Zucfb-_z4MbZ3B-jQ6NKDyf7OEJPs-njZB4u7m_vJteLUDHK65ByAyLJueHAwBBNFADOMiE1jkWGqZA8ihkGTGKZJ8wIJjRkkY6E4YoyxUZovNu7rtxLA75OV4XXUJbKgmt8ShPSziacihY926NNtoI8XVfFSlWb9Pv1FrjYAbpy3ldgfhCC085s2plN92ZbnP7CdVF_CakrVZT_De3v7ZpL11StRv83-gkcqIn1 |
CitedBy_id | crossref_primary_10_3390_catal14040219 crossref_primary_10_1002_cctc_202402112 crossref_primary_10_1002_bkcs_12896 crossref_primary_10_1021_acscatal_4c03909 crossref_primary_10_1002_ange_202407640 crossref_primary_10_1021_acs_orglett_4c00994 crossref_primary_10_1039_D4GC02829E crossref_primary_10_1021_acs_orglett_4c03247 crossref_primary_10_1021_jacs_4c12544 crossref_primary_10_1002_adsc_202400762 crossref_primary_10_1002_cctc_202400658 crossref_primary_10_1016_j_molstruc_2024_139105 crossref_primary_10_1002_adsc_202400442 crossref_primary_10_1038_s41467_024_51334_5 crossref_primary_10_6023_cjoc202406042 crossref_primary_10_1055_s_0043_1773499 crossref_primary_10_1021_acs_orglett_4c02352 crossref_primary_10_1055_s_0043_1775372 crossref_primary_10_1039_D4SC04900D crossref_primary_10_1039_D4CC05797J crossref_primary_10_1002_anie_202407640 crossref_primary_10_1021_acs_orglett_4c02805 crossref_primary_10_1021_acs_orglett_5c00221 crossref_primary_10_1002_ange_202421151 crossref_primary_10_1016_j_tetlet_2025_155516 crossref_primary_10_1360_SSC_2024_0266 crossref_primary_10_1002_anie_202421151 crossref_primary_10_6023_cjoc202406036 crossref_primary_10_1016_j_molstruc_2024_140699 crossref_primary_10_1039_D4CC02939A crossref_primary_10_1021_acs_orglett_4c03933 crossref_primary_10_1038_s41467_024_48350_w crossref_primary_10_1002_adsc_202401266 crossref_primary_10_1016_j_cclet_2024_110521 crossref_primary_10_1021_acscatal_4c06579 crossref_primary_10_1002_cjoc_202400725 crossref_primary_10_1021_jacs_4c14934 |
Cites_doi | 10.1021/jacs.2c03299 10.1039/D1CS00200G 10.1126/science.aar6376 10.1021/acs.chemrev.1c00263 10.1021/acs.chemrev.6b00057 10.1021/jacs.1c05890 10.1038/s41557-020-0438-z 10.1039/c2cs15323h 10.1038/s41467-019-11392-6 10.1021/jacs.2c01914 10.1021/cr020027w 10.1039/C0CS00070A 10.1002/anie.202200266 10.1038/s41586-022-04456-z 10.1021/acs.chemrev.1c00603 10.1126/science.aaf6635 10.1002/jhet.5570270107 10.1002/anie.202208232 10.1002/anie.201900977 10.1021/acscatal.1c04314 10.1002/anie.201904214 10.1021/jacs.2c12481 10.1021/acs.accounts.1c00285 10.1002/adsc.200404223 10.1055/s-0037-1611658 10.1021/cr400008h 10.1002/anie.201607305 10.1038/s41570-019-0099-x 10.1021/acs.chemrev.1c00383 10.1021/acscatal.7b02659 10.1126/science.1232993 10.1002/anie.201506273 10.1021/jacs.2c09366 10.1021/acs.chemrev.6b00692 10.1126/science.abq1274 10.1002/anie.201710523 10.1021/cr400473a 10.1126/science.1255525 10.3987/REV-88-SR1 10.1002/ddr.10297 10.1021/acscatal.1c02851 10.1039/D0CS00774A 10.1021/cr020050h 10.1021/jacs.1c01556 10.1039/C9CS00400A 10.1126/science.aav9713 10.1038/s41929-019-0357-9 10.1126/science.1239176 10.1002/anie.201700572 10.1021/acs.accounts.1c00672 10.3390/molecules191016190 10.1021/acs.chemrev.9b00045 10.1021/jacs.8b05962 10.1021/cr300503r 10.1021/ja9026902 10.1021/acs.chemrev.2c00703 10.1021/acs.chemrev.1c00467 10.1016/j.progpolymsci.2008.05.003 10.1002/anie.201410432 10.1002/adsc.201200764 10.1002/9783527826445 10.1126/science.aay2204 10.1039/C8SC05677C 10.1039/D1QO00162K 10.1038/nature17438 10.1038/s41467-020-20770-4 10.1038/nature22813 10.1002/anie.200605113 10.1002/anie.200501391 10.1002/adsc.201700875 10.1039/D1CS00895A 10.1021/acs.chemrev.1c00582 10.1039/C7CS00339K 10.1016/j.eurpolymj.2020.110183 10.1021/acs.accounts.6b00270 10.1021/jacs.2c02795 10.1038/nature03955 10.1002/anie.201200223 10.1021/acs.chemrev.2c00767 10.1038/nature25175 10.1039/C5CS00628G 10.1039/C9CS00086K 10.1021/acs.chemrev.7b00022 10.1038/nature14885 10.1002/anie.201710330 10.1126/science.abl4922 10.1002/anie.202203374 10.1021/ja305076b 10.1021/ja3030164 10.1038/s41467-021-23887-2 10.1038/s41557-020-0482-8 10.1021/jm901189z 10.1021/acs.chemrev.1c00247 10.1002/ejoc.201601485 10.1021/acscatal.6b00846 10.1126/science.aao4798 10.1002/anie.202200822 10.1021/jacs.2c06432 10.1021/jm050797a 10.1021/jacs.7b09152 10.1002/anie.202007668 10.1021/cr9409804 10.1039/D0SC04881J 10.1021/cr5002386 10.1021/acscatal.0c00610 10.1038/s41586-018-0366-x 10.1021/jacs.5b09329 10.1021/acs.chemrev.2c00622 10.1002/anie.201509524 10.1039/c3cs60105f 10.1021/acs.chemrev.1c00403 10.1021/jacs.3c02622 10.1002/anie.201201666 10.1126/science.1142696 10.1039/D0CS01575J 10.1021/acs.chemrev.2c00061 10.1039/c0cs00182a 10.1021/acscatal.0c00871 10.1021/acs.chemrev.1c00311 10.1021/acs.joc.6b01449 10.1038/nchem.2797 10.1002/anie.200803611 10.1021/acs.chemrev.1c00272 10.1021/acs.accounts.0c00694 10.1038/s41467-021-22690-3 10.1021/acs.accounts.8b00265 10.1039/D0SC00683A 10.1021/acs.accounts.0c00477 10.1002/anie.202100270 10.1039/c1md00134e 10.1021/acs.chemrev.8b00077 10.1021/acs.chemrev.2c00478 10.1039/C3SC52265B 10.1021/jacs.8b05240 10.1021/jacs.0c10471 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/jacs.3c06169 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 1223 |
ExternalDocumentID | 38170467 10_1021_jacs_3c06169 f11256915 |
Genre | Journal Article Review |
GroupedDBID | --- -DZ -ET -~X .DC .K2 4.4 55A 5GY 5RE 5VS 7~N 85S AABXI ABFRP ABJNI ABMVS ABPPZ ABPTK ABQRX ABUCX ACBEA ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGHSJ AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 EBS ED~ F5P GGK GNL IH2 IH9 JG~ LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YQT YZZ ZCA ~02 53G AAHBH AAYXX ABBLG ABLBI CITATION CUPRZ NPM 7X8 AAYWT |
ID | FETCH-LOGICAL-a324t-24fe59d4f4e3ef1c1aee0bb56c085b025647830e0186d93f535ceb7c75f4a23a3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Tue Aug 05 11:29:08 EDT 2025 Thu Apr 03 07:00:26 EDT 2025 Tue Jul 01 03:10:44 EDT 2025 Thu Apr 24 22:57:24 EDT 2025 Thu Jan 18 13:56:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a324t-24fe59d4f4e3ef1c1aee0bb56c085b025647830e0186d93f535ceb7c75f4a23a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5746-758X 0000-0002-9683-4581 0000-0003-2864-5102 |
PMID | 38170467 |
PQID | 2910189425 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2910189425 pubmed_primary_38170467 crossref_primary_10_1021_jacs_3c06169 crossref_citationtrail_10_1021_jacs_3c06169 acs_journals_10_1021_jacs_3c06169 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-17 |
PublicationDateYYYYMMDD | 2024-01-17 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 Anilkumar G. (ref96/cit96) 2020 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref116/cit116 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref107/cit107 ref120/cit120 ref109/cit109 ref13/cit13 ref122/cit122 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref128/cit128 ref90/cit90 ref124/cit124 ref64/cit64 ref126/cit126 ref54/cit54 ref6/cit6 ref18/cit18 ref136/cit136 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref1145/cit1145 ref28/cit28 ref132/cit132 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref121/cit121 ref33/cit33 ref87/cit87 ref106/cit106 ref129/cit129 ref44/cit44 ref70/cit70 ref98/cit98 ref125/cit125 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref134/cit134 ref135/cit135 ref40/cit40 ref68/cit68 ref94/cit94 ref130/cit130 ref131/cit131 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref127/cit127 ref1/cit1 ref123/cit123 ref7/cit7 |
References_xml | – ident: ref60/cit60 doi: 10.1021/jacs.2c03299 – ident: ref109/cit109 doi: 10.1039/D1CS00200G – ident: ref69/cit69 doi: 10.1126/science.aar6376 – ident: ref33/cit33 doi: 10.1021/acs.chemrev.1c00263 – ident: ref21/cit21 doi: 10.1021/acs.chemrev.6b00057 – ident: ref100/cit100 doi: 10.1021/jacs.1c05890 – ident: ref127/cit127 doi: 10.1038/s41557-020-0438-z – ident: ref29/cit29 doi: 10.1039/c2cs15323h – ident: ref78/cit78 doi: 10.1038/s41467-019-11392-6 – ident: ref133/cit133 doi: 10.1021/jacs.2c01914 – ident: ref86/cit86 doi: 10.1021/cr020027w – ident: ref13/cit13 doi: 10.1039/C0CS00070A – ident: ref71/cit71 doi: 10.1002/anie.202200266 – ident: ref130/cit130 doi: 10.1038/s41586-022-04456-z – ident: ref26/cit26 doi: 10.1021/acs.chemrev.1c00603 – ident: ref75/cit75 doi: 10.1126/science.aaf6635 – ident: ref62/cit62 doi: 10.1002/jhet.5570270107 – ident: ref102/cit102 doi: 10.1002/anie.202208232 – ident: ref64/cit64 doi: 10.1002/anie.201900977 – ident: ref95/cit95 doi: 10.1021/acscatal.1c04314 – ident: ref8/cit8 doi: 10.1002/anie.201904214 – ident: ref80/cit80 doi: 10.1021/jacs.2c12481 – ident: ref134/cit134 doi: 10.1021/acs.accounts.1c00285 – ident: ref72/cit72 doi: 10.1002/adsc.200404223 – ident: ref68/cit68 doi: 10.1055/s-0037-1611658 – ident: ref92/cit92 doi: 10.1021/cr400008h – ident: ref51/cit51 doi: 10.1002/anie.201607305 – ident: ref11/cit11 doi: 10.1038/s41570-019-0099-x – ident: ref25/cit25 doi: 10.1021/acs.chemrev.1c00383 – ident: ref43/cit43 doi: 10.1021/acscatal.7b02659 – ident: ref120/cit120 doi: 10.1126/science.1232993 – ident: ref45/cit45 doi: 10.1002/anie.201506273 – ident: ref105/cit105 doi: 10.1021/jacs.2c09366 – ident: ref6/cit6 doi: 10.1021/acs.chemrev.6b00692 – ident: ref113/cit113 doi: 10.1126/science.abq1274 – ident: ref126/cit126 doi: 10.1002/anie.201710523 – ident: ref107/cit107 doi: 10.1021/cr400473a – ident: ref74/cit74 doi: 10.1126/science.1255525 – ident: ref63/cit63 doi: 10.3987/REV-88-SR1 – ident: ref81/cit81 doi: 10.1002/ddr.10297 – ident: ref94/cit94 doi: 10.1021/acscatal.1c02851 – ident: ref31/cit31 doi: 10.1039/D0CS00774A – ident: ref89/cit89 doi: 10.1021/cr020050h – ident: ref70/cit70 doi: 10.1021/jacs.1c01556 – ident: ref93/cit93 doi: 10.1039/C9CS00400A – ident: ref23/cit23 doi: 10.1126/science.aav9713 – ident: ref117/cit117 doi: 10.1038/s41929-019-0357-9 – ident: ref20/cit20 doi: 10.1126/science.1239176 – ident: ref46/cit46 doi: 10.1002/anie.201700572 – ident: ref10/cit10 doi: 10.1021/acs.accounts.1c00672 – ident: ref65/cit65 doi: 10.3390/molecules191016190 – ident: ref132/cit132 doi: 10.1021/acs.chemrev.9b00045 – ident: ref47/cit47 doi: 10.1021/jacs.8b05962 – ident: ref19/cit19 doi: 10.1021/cr300503r – ident: ref57/cit57 doi: 10.1021/ja9026902 – ident: ref136/cit136 doi: 10.1021/acs.chemrev.2c00703 – ident: ref39/cit39 doi: 10.1021/acs.chemrev.1c00467 – ident: ref87/cit87 doi: 10.1016/j.progpolymsci.2008.05.003 – ident: ref66/cit66 doi: 10.1002/anie.201410432 – ident: ref106/cit106 doi: 10.1002/adsc.201200764 – volume-title: Copper Catalysis in Organic Synthesis year: 2020 ident: ref96/cit96 doi: 10.1002/9783527826445 – ident: ref122/cit122 doi: 10.1126/science.aay2204 – ident: ref1145/cit1145 doi: 10.1039/C8SC05677C – ident: ref104/cit104 doi: 10.1039/D1QO00162K – ident: ref49/cit49 doi: 10.1038/nature17438 – ident: ref17/cit17 doi: 10.1038/s41467-020-20770-4 – ident: ref125/cit125 doi: 10.1038/nature17438 – ident: ref98/cit98 doi: 10.1038/nature22813 – ident: ref112/cit112 doi: 10.1002/anie.200605113 – ident: ref90/cit90 doi: 10.1002/anie.200501391 – ident: ref103/cit103 doi: 10.1002/adsc.201700875 – ident: ref12/cit12 doi: 10.1039/D1CS00895A – ident: ref15/cit15 doi: 10.1021/acs.chemrev.1c00582 – ident: ref119/cit119 doi: 10.1039/C7CS00339K – ident: ref88/cit88 doi: 10.1016/j.eurpolymj.2020.110183 – ident: ref30/cit30 doi: 10.1021/acs.accounts.6b00270 – ident: ref79/cit79 doi: 10.1021/jacs.2c02795 – ident: ref48/cit48 doi: 10.1038/nature03955 – ident: ref18/cit18 doi: 10.1002/anie.201200223 – ident: ref131/cit131 doi: 10.1021/acs.chemrev.2c00767 – ident: ref37/cit37 doi: 10.1038/nature25175 – ident: ref3/cit3 doi: 10.1039/C5CS00628G – ident: ref99/cit99 doi: 10.1039/C9CS00086K – ident: ref5/cit5 doi: 10.1021/acs.chemrev.7b00022 – ident: ref67/cit67 doi: 10.1038/nature14885 – ident: ref4/cit4 doi: 10.1002/anie.201710330 – ident: ref123/cit123 doi: 10.1126/science.abl4922 – ident: ref118/cit118 doi: 10.1002/anie.202203374 – ident: ref58/cit58 doi: 10.1021/ja305076b – ident: ref40/cit40 doi: 10.1021/ja3030164 – ident: ref85/cit85 doi: 10.1038/s41467-021-23887-2 – ident: ref97/cit97 doi: 10.1038/s41557-020-0482-8 – ident: ref83/cit83 doi: 10.1021/jm901189z – ident: ref27/cit27 doi: 10.1021/acs.chemrev.1c00247 – ident: ref52/cit52 doi: 10.1002/ejoc.201601485 – ident: ref42/cit42 doi: 10.1021/acscatal.6b00846 – ident: ref7/cit7 doi: 10.1126/science.aao4798 – ident: ref101/cit101 doi: 10.1002/anie.202200822 – ident: ref110/cit110 doi: 10.1021/jacs.2c06432 – ident: ref82/cit82 doi: 10.1021/jm050797a – ident: ref121/cit121 doi: 10.1021/jacs.7b09152 – ident: ref38/cit38 doi: 10.1002/anie.202007668 – ident: ref111/cit111 doi: 10.1021/cr9409804 – ident: ref53/cit53 doi: 10.1039/D0SC04881J – ident: ref108/cit108 doi: 10.1021/cr5002386 – ident: ref54/cit54 doi: 10.1021/acscatal.0c00610 – ident: ref77/cit77 doi: 10.1038/s41586-018-0366-x – ident: ref115/cit115 doi: 10.1021/jacs.5b09329 – ident: ref16/cit16 doi: 10.1021/acs.chemrev.2c00622 – ident: ref116/cit116 doi: 10.1002/anie.201509524 – ident: ref91/cit91 doi: 10.1039/c3cs60105f – ident: ref28/cit28 doi: 10.1021/acs.chemrev.1c00403 – ident: ref124/cit124 doi: 10.1021/jacs.3c02622 – ident: ref2/cit2 doi: 10.1002/anie.201201666 – ident: ref56/cit56 doi: 10.1126/science.1142696 – ident: ref129/cit129 doi: 10.1039/D0CS01575J – ident: ref135/cit135 doi: 10.1021/acs.chemrev.2c00061 – ident: ref1/cit1 doi: 10.1039/c0cs00182a – ident: ref114/cit114 doi: 10.1021/acscatal.0c00871 – ident: ref35/cit35 doi: 10.1021/acs.chemrev.1c00311 – ident: ref22/cit22 doi: 10.1021/acs.joc.6b01449 – ident: ref59/cit59 doi: 10.1038/nchem.2797 – ident: ref73/cit73 doi: 10.1002/anie.200803611 – ident: ref128/cit128 doi: 10.1021/acs.chemrev.1c00272 – ident: ref32/cit32 doi: 10.1021/acs.accounts.0c00694 – ident: ref55/cit55 doi: 10.1038/s41467-021-22690-3 – ident: ref14/cit14 doi: 10.1021/acs.accounts.8b00265 – ident: ref44/cit44 doi: 10.1039/D0SC00683A – ident: ref76/cit76 doi: 10.1038/nature22813 – ident: ref9/cit9 doi: 10.1021/acs.accounts.0c00477 – ident: ref24/cit24 doi: 10.1002/anie.202100270 – ident: ref61/cit61 doi: 10.1039/c1md00134e – ident: ref34/cit34 doi: 10.1021/acs.chemrev.8b00077 – ident: ref36/cit36 doi: 10.1021/acs.chemrev.2c00478 – ident: ref41/cit41 doi: 10.1039/C3SC52265B – ident: ref50/cit50 doi: 10.1021/jacs.8b05240 – ident: ref84/cit84 doi: 10.1021/jacs.0c10471 |
SSID | ssj0004281 |
Score | 2.5995176 |
SecondaryResourceType | review_article |
Snippet | Owing to its diverse activation processes including single-electron transfer (SET) and hydrogen-atom transfer (HAT), visible-light photocatalysis has emerged... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1209 |
Title | Photocatalyzed Enantioselective Functionalization of C(sp3)–H Bonds |
URI | http://dx.doi.org/10.1021/jacs.3c06169 https://www.ncbi.nlm.nih.gov/pubmed/38170467 https://www.proquest.com/docview/2910189425 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60HvTi-1FfpKCgSEqyz-QopbUIiqAFb2F3s4uiJMWkB3vyP_gP_SXu5tFipeg1TMJmZ3fnm52ZbwA4YVRQpkjsQq09FxPjsIZEKaMQIakfMwkLtv2bW9of4OtH8jhNkJ2N4EPLDySzNpLG7tBwESxBavavhUCd-2n9Iwz8GuaygKIqwX32bWuAZPbTAM1BlYV16a2Bq7pGp0wqeWmPctGW49-UjX8MfB2sVgDTuSxXxAZYUMkmWO7Ufd22QPfuKc3T4trmfaxip2tTYZ7TrGiIY84-p2dMXXlDWNVoOql2OmfZEJ1_fXz2HduJONsGg173odN3q2YKLjeYKXch1oqEMdZYIaV96XOlPCEIlQZ0CYt8MAuQpzw_oHGINEFEKsEkIxpziDjaAY0kTdQecAjGWIcsFti4M4GvuS0GkQEWiHPEPNgELfPrUbUZsqiIc0PjZ9in1YQ0wUWthUhWbOS2KcbrHOnTifSwZOGYI9eqFRqZWbWxD56odJRFMLTUZKE5oZpgt9T05EsFSaExGPv_GPcBWIEG1thLGJ8dgkb-NlJHBpbk4rhYk98mONsQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58HPTi-7E-KygoUmnzaNqjLLusr0VQwVtp0gRF2YrtHvTkf_Af-kucZLsrCgtewzRMM0nmmyTzDcC-iGQkNM99YkzgM44Ba8K1RoNIFYW5UMSx7V91o84dO7_n93Wyus2FQSVK7Kl0l_g_7AKWJggbqUL3EyWTMI04hNgJfdq8-UmDJHE4RLsijmj9zv3v19YPqfK3HxoDLp2Tac9Dd6See1vydNKv5Il6_8Pc-G_9F2Cuhpve6WB-LMKE7i3BTHNY5W0ZWtcPRVW4Q5y3d517Lfsw5rEoXXkc3Am9Njq-wXlhnbHpFcZrHpYv9Ojr47Pj2brE5QrctVu3zY5fl1bwM0RQlU-Y0TzJmWGaahOqMNM6kJJHCiGYtDiIiZgGOgjjKE-o4ZQrLYUS3LCM0IyuwlSv6Ol18DhjzCQilwyDmzg0mU0NUTGTNMuoCEgD9vDX03pplKm79SYYddjWekAacDw0RqpqbnJbIuN5jPTBSPplwMkxRm5vaNcUR9XehGQ9XfTLlCSWqCzB_aoBawODj3pylIXoPjb-ofcuzHRury7Ty7PuxSbMEgQ89ngmFFswVb329TYClkruuGn6DSdI43E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD5kKWx7abtLu6yXObDBRnGwdbHsx5ImZLcQtgX6ZixZomUjDrXz0D71P-wf9pf0SLEzGgisr7YkJB1J59M5Ot8BeC8iGQnNc58YE_iM44U14VqjQKSKwlwo4tj2v4-j0ZR9OefnLQibWBjsRIktlc6Jb3f1PDc1w4ClCsIfVKEKipInsGU9dnZRn_Z__guFJHHYIF4RR7R-675e2-oiVT7URRsAplM0wx34seqie1_yu7eoZE_drLE3PmoMu7Bdw07vdLlOXkBLz17Cs36T7e0VDCYXRVU4Y871jc69gX0gc1mULk0OnojeEBXg0m5YR256hfH6H8s5_XR3-3fk2fzE5WuYDge_-iO_TrHgZ4ikKp8wo3mSM8M01SZUYaZ1ICWPFEIxafEQEzENdBDGUZ5QwylXWgoluGEZoRndg_asmOk34HHGmElELhlecuLQZDZERMVM0iyjIiAd6OLQ03qLlKnzfhO8fdiv9YR04KQRSKpqjnKbKuPPhtIfVqXnS26ODeW6jWxTnFXrEclmuliUKUksYVmC51YH9pdCX7XkqAtRjbz9j36_g6eTs2H67fP46wE8J4h7rJUmFIfQrq4W-ghxSyWP3Uq9B6o95fQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photocatalyzed+Enantioselective+Functionalization+of+C%28sp+3+%29-H+Bonds&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Xu%2C+Guo-Qiang&rft.au=Wang%2C+Wei+David&rft.au=Xu%2C+Peng-Fei&rft.date=2024-01-17&rft.eissn=1520-5126&rft.volume=146&rft.issue=2&rft.spage=1209&rft_id=info:doi/10.1021%2Fjacs.3c06169&rft_id=info%3Apmid%2F38170467&rft.externalDocID=38170467 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |