Photocatalyzed Enantioselective Functionalization of C(sp3)–H Bonds

Owing to its diverse activation processes including single-electron transfer (SET) and hydrogen-atom transfer (HAT), visible-light photocatalysis has emerged as a sustainable and efficient platform for organic synthesis. These processes provide a powerful avenue for the direct functionalization of C...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 146; no. 2; pp. 1209 - 1223
Main Authors Xu, Guo-Qiang, Wang, Wei David, Xu, Peng-Fei
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 17.01.2024
Online AccessGet full text

Cover

Loading…
Abstract Owing to its diverse activation processes including single-electron transfer (SET) and hydrogen-atom transfer (HAT), visible-light photocatalysis has emerged as a sustainable and efficient platform for organic synthesis. These processes provide a powerful avenue for the direct functionalization of C­(sp3)–H bonds under mild conditions. Over the past decade, there have been remarkable advances in the enantioselective functionalization of the C­(sp3)–H bond via photocatalysis combined with conventional asymmetric catalysis. Herein, we summarize the advances in asymmetric C­(sp3)–H functionalization involving visible-light photocatalysis and discuss two main pathways in this emerging field: (a) SET-driven carbocation intermediates are followed by stereospecific nucleophile attacks; and (b) photodriven alkyl radical intermediates are further enantioselectively captured by (i) chiral π-SOMOphile reagents, (ii) stereoselective transition-metal complexes, and (iii) another distinct stereoscopic radical species. We aim to summarize key advances in reaction design, catalyst development, and mechanistic understanding, to provide new insights into this rapidly evolving area of research.
AbstractList Owing to its diverse activation processes including single-electron transfer (SET) and hydrogen-atom transfer (HAT), visible-light photocatalysis has emerged as a sustainable and efficient platform for organic synthesis. These processes provide a powerful avenue for the direct functionalization of C(sp3)-H bonds under mild conditions. Over the past decade, there have been remarkable advances in the enantioselective functionalization of the C(sp3)-H bond via photocatalysis combined with conventional asymmetric catalysis. Herein, we summarize the advances in asymmetric C(sp3)-H functionalization involving visible-light photocatalysis and discuss two main pathways in this emerging field: (a) SET-driven carbocation intermediates are followed by stereospecific nucleophile attacks; and (b) photodriven alkyl radical intermediates are further enantioselectively captured by (i) chiral π-SOMOphile reagents, (ii) stereoselective transition-metal complexes, and (iii) another distinct stereoscopic radical species. We aim to summarize key advances in reaction design, catalyst development, and mechanistic understanding, to provide new insights into this rapidly evolving area of research.Owing to its diverse activation processes including single-electron transfer (SET) and hydrogen-atom transfer (HAT), visible-light photocatalysis has emerged as a sustainable and efficient platform for organic synthesis. These processes provide a powerful avenue for the direct functionalization of C(sp3)-H bonds under mild conditions. Over the past decade, there have been remarkable advances in the enantioselective functionalization of the C(sp3)-H bond via photocatalysis combined with conventional asymmetric catalysis. Herein, we summarize the advances in asymmetric C(sp3)-H functionalization involving visible-light photocatalysis and discuss two main pathways in this emerging field: (a) SET-driven carbocation intermediates are followed by stereospecific nucleophile attacks; and (b) photodriven alkyl radical intermediates are further enantioselectively captured by (i) chiral π-SOMOphile reagents, (ii) stereoselective transition-metal complexes, and (iii) another distinct stereoscopic radical species. We aim to summarize key advances in reaction design, catalyst development, and mechanistic understanding, to provide new insights into this rapidly evolving area of research.
Owing to its diverse activation processes including single-electron transfer (SET) and hydrogen-atom transfer (HAT), visible-light photocatalysis has emerged as a sustainable and efficient platform for organic synthesis. These processes provide a powerful avenue for the direct functionalization of C(sp )-H bonds under mild conditions. Over the past decade, there have been remarkable advances in the enantioselective functionalization of the C(sp )-H bond via photocatalysis combined with conventional asymmetric catalysis. Herein, we summarize the advances in asymmetric C(sp )-H functionalization involving visible-light photocatalysis and discuss two main pathways in this emerging field: (a) SET-driven carbocation intermediates are followed by stereospecific nucleophile attacks; and (b) photodriven alkyl radical intermediates are further enantioselectively captured by (i) chiral π-SOMOphile reagents, (ii) stereoselective transition-metal complexes, and (iii) another distinct stereoscopic radical species. We aim to summarize key advances in reaction design, catalyst development, and mechanistic understanding, to provide new insights into this rapidly evolving area of research.
Owing to its diverse activation processes including single-electron transfer (SET) and hydrogen-atom transfer (HAT), visible-light photocatalysis has emerged as a sustainable and efficient platform for organic synthesis. These processes provide a powerful avenue for the direct functionalization of C­(sp3)–H bonds under mild conditions. Over the past decade, there have been remarkable advances in the enantioselective functionalization of the C­(sp3)–H bond via photocatalysis combined with conventional asymmetric catalysis. Herein, we summarize the advances in asymmetric C­(sp3)–H functionalization involving visible-light photocatalysis and discuss two main pathways in this emerging field: (a) SET-driven carbocation intermediates are followed by stereospecific nucleophile attacks; and (b) photodriven alkyl radical intermediates are further enantioselectively captured by (i) chiral π-SOMOphile reagents, (ii) stereoselective transition-metal complexes, and (iii) another distinct stereoscopic radical species. We aim to summarize key advances in reaction design, catalyst development, and mechanistic understanding, to provide new insights into this rapidly evolving area of research.
Author Xu, Peng-Fei
Xu, Guo-Qiang
Wang, Wei David
AuthorAffiliation State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center
AuthorAffiliation_xml – name: State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center
Author_xml – sequence: 1
  givenname: Guo-Qiang
  orcidid: 0000-0002-9683-4581
  surname: Xu
  fullname: Xu, Guo-Qiang
  email: gqxu@lzu.edu.cn
– sequence: 2
  givenname: Wei David
  orcidid: 0000-0003-2864-5102
  surname: Wang
  fullname: Wang, Wei David
  email: ww@lzu.edu.cn
– sequence: 3
  givenname: Peng-Fei
  orcidid: 0000-0002-5746-758X
  surname: Xu
  fullname: Xu, Peng-Fei
  email: xupf@lzu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38170467$$D View this record in MEDLINE/PubMed
BookMark eNp1kEtLw0AQgBep2IfePEuOFYzuO8lRS2uFgh70HDabWUxJd2s2EdqT_8F_6C8xsdWD6GkefDPMfEPUs84CQqcEXxJMydVSaX_JNJZEJgdoQATFoSBU9tAAY0zDKJasj4beL9uS05gcoT6LSYS5jAZo-vDsaqdVrcrNFvJgapWtC-ehBF0XrxDMGtsmzqqy2KouCZwJJmO_Zucfb-_z4MbZ3B-jQ6NKDyf7OEJPs-njZB4u7m_vJteLUDHK65ByAyLJueHAwBBNFADOMiE1jkWGqZA8ihkGTGKZJ8wIJjRkkY6E4YoyxUZovNu7rtxLA75OV4XXUJbKgmt8ShPSziacihY926NNtoI8XVfFSlWb9Pv1FrjYAbpy3ldgfhCC085s2plN92ZbnP7CdVF_CakrVZT_De3v7ZpL11StRv83-gkcqIn1
CitedBy_id crossref_primary_10_3390_catal14040219
crossref_primary_10_1002_cctc_202402112
crossref_primary_10_1002_bkcs_12896
crossref_primary_10_1021_acscatal_4c03909
crossref_primary_10_1002_ange_202407640
crossref_primary_10_1021_acs_orglett_4c00994
crossref_primary_10_1039_D4GC02829E
crossref_primary_10_1021_acs_orglett_4c03247
crossref_primary_10_1021_jacs_4c12544
crossref_primary_10_1002_adsc_202400762
crossref_primary_10_1002_cctc_202400658
crossref_primary_10_1016_j_molstruc_2024_139105
crossref_primary_10_1002_adsc_202400442
crossref_primary_10_1038_s41467_024_51334_5
crossref_primary_10_6023_cjoc202406042
crossref_primary_10_1055_s_0043_1773499
crossref_primary_10_1021_acs_orglett_4c02352
crossref_primary_10_1055_s_0043_1775372
crossref_primary_10_1039_D4SC04900D
crossref_primary_10_1039_D4CC05797J
crossref_primary_10_1002_anie_202407640
crossref_primary_10_1021_acs_orglett_4c02805
crossref_primary_10_1021_acs_orglett_5c00221
crossref_primary_10_1002_ange_202421151
crossref_primary_10_1016_j_tetlet_2025_155516
crossref_primary_10_1360_SSC_2024_0266
crossref_primary_10_1002_anie_202421151
crossref_primary_10_6023_cjoc202406036
crossref_primary_10_1016_j_molstruc_2024_140699
crossref_primary_10_1039_D4CC02939A
crossref_primary_10_1021_acs_orglett_4c03933
crossref_primary_10_1038_s41467_024_48350_w
crossref_primary_10_1002_adsc_202401266
crossref_primary_10_1016_j_cclet_2024_110521
crossref_primary_10_1021_acscatal_4c06579
crossref_primary_10_1002_cjoc_202400725
crossref_primary_10_1021_jacs_4c14934
Cites_doi 10.1021/jacs.2c03299
10.1039/D1CS00200G
10.1126/science.aar6376
10.1021/acs.chemrev.1c00263
10.1021/acs.chemrev.6b00057
10.1021/jacs.1c05890
10.1038/s41557-020-0438-z
10.1039/c2cs15323h
10.1038/s41467-019-11392-6
10.1021/jacs.2c01914
10.1021/cr020027w
10.1039/C0CS00070A
10.1002/anie.202200266
10.1038/s41586-022-04456-z
10.1021/acs.chemrev.1c00603
10.1126/science.aaf6635
10.1002/jhet.5570270107
10.1002/anie.202208232
10.1002/anie.201900977
10.1021/acscatal.1c04314
10.1002/anie.201904214
10.1021/jacs.2c12481
10.1021/acs.accounts.1c00285
10.1002/adsc.200404223
10.1055/s-0037-1611658
10.1021/cr400008h
10.1002/anie.201607305
10.1038/s41570-019-0099-x
10.1021/acs.chemrev.1c00383
10.1021/acscatal.7b02659
10.1126/science.1232993
10.1002/anie.201506273
10.1021/jacs.2c09366
10.1021/acs.chemrev.6b00692
10.1126/science.abq1274
10.1002/anie.201710523
10.1021/cr400473a
10.1126/science.1255525
10.3987/REV-88-SR1
10.1002/ddr.10297
10.1021/acscatal.1c02851
10.1039/D0CS00774A
10.1021/cr020050h
10.1021/jacs.1c01556
10.1039/C9CS00400A
10.1126/science.aav9713
10.1038/s41929-019-0357-9
10.1126/science.1239176
10.1002/anie.201700572
10.1021/acs.accounts.1c00672
10.3390/molecules191016190
10.1021/acs.chemrev.9b00045
10.1021/jacs.8b05962
10.1021/cr300503r
10.1021/ja9026902
10.1021/acs.chemrev.2c00703
10.1021/acs.chemrev.1c00467
10.1016/j.progpolymsci.2008.05.003
10.1002/anie.201410432
10.1002/adsc.201200764
10.1002/9783527826445
10.1126/science.aay2204
10.1039/C8SC05677C
10.1039/D1QO00162K
10.1038/nature17438
10.1038/s41467-020-20770-4
10.1038/nature22813
10.1002/anie.200605113
10.1002/anie.200501391
10.1002/adsc.201700875
10.1039/D1CS00895A
10.1021/acs.chemrev.1c00582
10.1039/C7CS00339K
10.1016/j.eurpolymj.2020.110183
10.1021/acs.accounts.6b00270
10.1021/jacs.2c02795
10.1038/nature03955
10.1002/anie.201200223
10.1021/acs.chemrev.2c00767
10.1038/nature25175
10.1039/C5CS00628G
10.1039/C9CS00086K
10.1021/acs.chemrev.7b00022
10.1038/nature14885
10.1002/anie.201710330
10.1126/science.abl4922
10.1002/anie.202203374
10.1021/ja305076b
10.1021/ja3030164
10.1038/s41467-021-23887-2
10.1038/s41557-020-0482-8
10.1021/jm901189z
10.1021/acs.chemrev.1c00247
10.1002/ejoc.201601485
10.1021/acscatal.6b00846
10.1126/science.aao4798
10.1002/anie.202200822
10.1021/jacs.2c06432
10.1021/jm050797a
10.1021/jacs.7b09152
10.1002/anie.202007668
10.1021/cr9409804
10.1039/D0SC04881J
10.1021/cr5002386
10.1021/acscatal.0c00610
10.1038/s41586-018-0366-x
10.1021/jacs.5b09329
10.1021/acs.chemrev.2c00622
10.1002/anie.201509524
10.1039/c3cs60105f
10.1021/acs.chemrev.1c00403
10.1021/jacs.3c02622
10.1002/anie.201201666
10.1126/science.1142696
10.1039/D0CS01575J
10.1021/acs.chemrev.2c00061
10.1039/c0cs00182a
10.1021/acscatal.0c00871
10.1021/acs.chemrev.1c00311
10.1021/acs.joc.6b01449
10.1038/nchem.2797
10.1002/anie.200803611
10.1021/acs.chemrev.1c00272
10.1021/acs.accounts.0c00694
10.1038/s41467-021-22690-3
10.1021/acs.accounts.8b00265
10.1039/D0SC00683A
10.1021/acs.accounts.0c00477
10.1002/anie.202100270
10.1039/c1md00134e
10.1021/acs.chemrev.8b00077
10.1021/acs.chemrev.2c00478
10.1039/C3SC52265B
10.1021/jacs.8b05240
10.1021/jacs.0c10471
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/jacs.3c06169
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 1223
ExternalDocumentID 38170467
10_1021_jacs_3c06169
f11256915
Genre Journal Article
Review
GroupedDBID ---
-DZ
-ET
-~X
.DC
.K2
4.4
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFRP
ABJNI
ABMVS
ABPPZ
ABPTK
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGHSJ
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH2
IH9
JG~
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
ZCA
~02
53G
AAHBH
AAYXX
ABBLG
ABLBI
CITATION
CUPRZ
NPM
7X8
AAYWT
ID FETCH-LOGICAL-a324t-24fe59d4f4e3ef1c1aee0bb56c085b025647830e0186d93f535ceb7c75f4a23a3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Tue Aug 05 11:29:08 EDT 2025
Thu Apr 03 07:00:26 EDT 2025
Tue Jul 01 03:10:44 EDT 2025
Thu Apr 24 22:57:24 EDT 2025
Thu Jan 18 13:56:21 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a324t-24fe59d4f4e3ef1c1aee0bb56c085b025647830e0186d93f535ceb7c75f4a23a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5746-758X
0000-0002-9683-4581
0000-0003-2864-5102
PMID 38170467
PQID 2910189425
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2910189425
pubmed_primary_38170467
crossref_primary_10_1021_jacs_3c06169
crossref_citationtrail_10_1021_jacs_3c06169
acs_journals_10_1021_jacs_3c06169
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-17
PublicationDateYYYYMMDD 2024-01-17
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
Anilkumar G. (ref96/cit96) 2020
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref117/cit117
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref107/cit107
ref120/cit120
ref109/cit109
ref13/cit13
ref122/cit122
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref128/cit128
ref90/cit90
ref124/cit124
ref64/cit64
ref126/cit126
ref54/cit54
ref6/cit6
ref18/cit18
ref136/cit136
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref1145/cit1145
ref28/cit28
ref132/cit132
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref121/cit121
ref33/cit33
ref87/cit87
ref106/cit106
ref129/cit129
ref44/cit44
ref70/cit70
ref98/cit98
ref125/cit125
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref134/cit134
ref135/cit135
ref40/cit40
ref68/cit68
ref94/cit94
ref130/cit130
ref131/cit131
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref127/cit127
ref1/cit1
ref123/cit123
ref7/cit7
References_xml – ident: ref60/cit60
  doi: 10.1021/jacs.2c03299
– ident: ref109/cit109
  doi: 10.1039/D1CS00200G
– ident: ref69/cit69
  doi: 10.1126/science.aar6376
– ident: ref33/cit33
  doi: 10.1021/acs.chemrev.1c00263
– ident: ref21/cit21
  doi: 10.1021/acs.chemrev.6b00057
– ident: ref100/cit100
  doi: 10.1021/jacs.1c05890
– ident: ref127/cit127
  doi: 10.1038/s41557-020-0438-z
– ident: ref29/cit29
  doi: 10.1039/c2cs15323h
– ident: ref78/cit78
  doi: 10.1038/s41467-019-11392-6
– ident: ref133/cit133
  doi: 10.1021/jacs.2c01914
– ident: ref86/cit86
  doi: 10.1021/cr020027w
– ident: ref13/cit13
  doi: 10.1039/C0CS00070A
– ident: ref71/cit71
  doi: 10.1002/anie.202200266
– ident: ref130/cit130
  doi: 10.1038/s41586-022-04456-z
– ident: ref26/cit26
  doi: 10.1021/acs.chemrev.1c00603
– ident: ref75/cit75
  doi: 10.1126/science.aaf6635
– ident: ref62/cit62
  doi: 10.1002/jhet.5570270107
– ident: ref102/cit102
  doi: 10.1002/anie.202208232
– ident: ref64/cit64
  doi: 10.1002/anie.201900977
– ident: ref95/cit95
  doi: 10.1021/acscatal.1c04314
– ident: ref8/cit8
  doi: 10.1002/anie.201904214
– ident: ref80/cit80
  doi: 10.1021/jacs.2c12481
– ident: ref134/cit134
  doi: 10.1021/acs.accounts.1c00285
– ident: ref72/cit72
  doi: 10.1002/adsc.200404223
– ident: ref68/cit68
  doi: 10.1055/s-0037-1611658
– ident: ref92/cit92
  doi: 10.1021/cr400008h
– ident: ref51/cit51
  doi: 10.1002/anie.201607305
– ident: ref11/cit11
  doi: 10.1038/s41570-019-0099-x
– ident: ref25/cit25
  doi: 10.1021/acs.chemrev.1c00383
– ident: ref43/cit43
  doi: 10.1021/acscatal.7b02659
– ident: ref120/cit120
  doi: 10.1126/science.1232993
– ident: ref45/cit45
  doi: 10.1002/anie.201506273
– ident: ref105/cit105
  doi: 10.1021/jacs.2c09366
– ident: ref6/cit6
  doi: 10.1021/acs.chemrev.6b00692
– ident: ref113/cit113
  doi: 10.1126/science.abq1274
– ident: ref126/cit126
  doi: 10.1002/anie.201710523
– ident: ref107/cit107
  doi: 10.1021/cr400473a
– ident: ref74/cit74
  doi: 10.1126/science.1255525
– ident: ref63/cit63
  doi: 10.3987/REV-88-SR1
– ident: ref81/cit81
  doi: 10.1002/ddr.10297
– ident: ref94/cit94
  doi: 10.1021/acscatal.1c02851
– ident: ref31/cit31
  doi: 10.1039/D0CS00774A
– ident: ref89/cit89
  doi: 10.1021/cr020050h
– ident: ref70/cit70
  doi: 10.1021/jacs.1c01556
– ident: ref93/cit93
  doi: 10.1039/C9CS00400A
– ident: ref23/cit23
  doi: 10.1126/science.aav9713
– ident: ref117/cit117
  doi: 10.1038/s41929-019-0357-9
– ident: ref20/cit20
  doi: 10.1126/science.1239176
– ident: ref46/cit46
  doi: 10.1002/anie.201700572
– ident: ref10/cit10
  doi: 10.1021/acs.accounts.1c00672
– ident: ref65/cit65
  doi: 10.3390/molecules191016190
– ident: ref132/cit132
  doi: 10.1021/acs.chemrev.9b00045
– ident: ref47/cit47
  doi: 10.1021/jacs.8b05962
– ident: ref19/cit19
  doi: 10.1021/cr300503r
– ident: ref57/cit57
  doi: 10.1021/ja9026902
– ident: ref136/cit136
  doi: 10.1021/acs.chemrev.2c00703
– ident: ref39/cit39
  doi: 10.1021/acs.chemrev.1c00467
– ident: ref87/cit87
  doi: 10.1016/j.progpolymsci.2008.05.003
– ident: ref66/cit66
  doi: 10.1002/anie.201410432
– ident: ref106/cit106
  doi: 10.1002/adsc.201200764
– volume-title: Copper Catalysis in Organic Synthesis
  year: 2020
  ident: ref96/cit96
  doi: 10.1002/9783527826445
– ident: ref122/cit122
  doi: 10.1126/science.aay2204
– ident: ref1145/cit1145
  doi: 10.1039/C8SC05677C
– ident: ref104/cit104
  doi: 10.1039/D1QO00162K
– ident: ref49/cit49
  doi: 10.1038/nature17438
– ident: ref17/cit17
  doi: 10.1038/s41467-020-20770-4
– ident: ref125/cit125
  doi: 10.1038/nature17438
– ident: ref98/cit98
  doi: 10.1038/nature22813
– ident: ref112/cit112
  doi: 10.1002/anie.200605113
– ident: ref90/cit90
  doi: 10.1002/anie.200501391
– ident: ref103/cit103
  doi: 10.1002/adsc.201700875
– ident: ref12/cit12
  doi: 10.1039/D1CS00895A
– ident: ref15/cit15
  doi: 10.1021/acs.chemrev.1c00582
– ident: ref119/cit119
  doi: 10.1039/C7CS00339K
– ident: ref88/cit88
  doi: 10.1016/j.eurpolymj.2020.110183
– ident: ref30/cit30
  doi: 10.1021/acs.accounts.6b00270
– ident: ref79/cit79
  doi: 10.1021/jacs.2c02795
– ident: ref48/cit48
  doi: 10.1038/nature03955
– ident: ref18/cit18
  doi: 10.1002/anie.201200223
– ident: ref131/cit131
  doi: 10.1021/acs.chemrev.2c00767
– ident: ref37/cit37
  doi: 10.1038/nature25175
– ident: ref3/cit3
  doi: 10.1039/C5CS00628G
– ident: ref99/cit99
  doi: 10.1039/C9CS00086K
– ident: ref5/cit5
  doi: 10.1021/acs.chemrev.7b00022
– ident: ref67/cit67
  doi: 10.1038/nature14885
– ident: ref4/cit4
  doi: 10.1002/anie.201710330
– ident: ref123/cit123
  doi: 10.1126/science.abl4922
– ident: ref118/cit118
  doi: 10.1002/anie.202203374
– ident: ref58/cit58
  doi: 10.1021/ja305076b
– ident: ref40/cit40
  doi: 10.1021/ja3030164
– ident: ref85/cit85
  doi: 10.1038/s41467-021-23887-2
– ident: ref97/cit97
  doi: 10.1038/s41557-020-0482-8
– ident: ref83/cit83
  doi: 10.1021/jm901189z
– ident: ref27/cit27
  doi: 10.1021/acs.chemrev.1c00247
– ident: ref52/cit52
  doi: 10.1002/ejoc.201601485
– ident: ref42/cit42
  doi: 10.1021/acscatal.6b00846
– ident: ref7/cit7
  doi: 10.1126/science.aao4798
– ident: ref101/cit101
  doi: 10.1002/anie.202200822
– ident: ref110/cit110
  doi: 10.1021/jacs.2c06432
– ident: ref82/cit82
  doi: 10.1021/jm050797a
– ident: ref121/cit121
  doi: 10.1021/jacs.7b09152
– ident: ref38/cit38
  doi: 10.1002/anie.202007668
– ident: ref111/cit111
  doi: 10.1021/cr9409804
– ident: ref53/cit53
  doi: 10.1039/D0SC04881J
– ident: ref108/cit108
  doi: 10.1021/cr5002386
– ident: ref54/cit54
  doi: 10.1021/acscatal.0c00610
– ident: ref77/cit77
  doi: 10.1038/s41586-018-0366-x
– ident: ref115/cit115
  doi: 10.1021/jacs.5b09329
– ident: ref16/cit16
  doi: 10.1021/acs.chemrev.2c00622
– ident: ref116/cit116
  doi: 10.1002/anie.201509524
– ident: ref91/cit91
  doi: 10.1039/c3cs60105f
– ident: ref28/cit28
  doi: 10.1021/acs.chemrev.1c00403
– ident: ref124/cit124
  doi: 10.1021/jacs.3c02622
– ident: ref2/cit2
  doi: 10.1002/anie.201201666
– ident: ref56/cit56
  doi: 10.1126/science.1142696
– ident: ref129/cit129
  doi: 10.1039/D0CS01575J
– ident: ref135/cit135
  doi: 10.1021/acs.chemrev.2c00061
– ident: ref1/cit1
  doi: 10.1039/c0cs00182a
– ident: ref114/cit114
  doi: 10.1021/acscatal.0c00871
– ident: ref35/cit35
  doi: 10.1021/acs.chemrev.1c00311
– ident: ref22/cit22
  doi: 10.1021/acs.joc.6b01449
– ident: ref59/cit59
  doi: 10.1038/nchem.2797
– ident: ref73/cit73
  doi: 10.1002/anie.200803611
– ident: ref128/cit128
  doi: 10.1021/acs.chemrev.1c00272
– ident: ref32/cit32
  doi: 10.1021/acs.accounts.0c00694
– ident: ref55/cit55
  doi: 10.1038/s41467-021-22690-3
– ident: ref14/cit14
  doi: 10.1021/acs.accounts.8b00265
– ident: ref44/cit44
  doi: 10.1039/D0SC00683A
– ident: ref76/cit76
  doi: 10.1038/nature22813
– ident: ref9/cit9
  doi: 10.1021/acs.accounts.0c00477
– ident: ref24/cit24
  doi: 10.1002/anie.202100270
– ident: ref61/cit61
  doi: 10.1039/c1md00134e
– ident: ref34/cit34
  doi: 10.1021/acs.chemrev.8b00077
– ident: ref36/cit36
  doi: 10.1021/acs.chemrev.2c00478
– ident: ref41/cit41
  doi: 10.1039/C3SC52265B
– ident: ref50/cit50
  doi: 10.1021/jacs.8b05240
– ident: ref84/cit84
  doi: 10.1021/jacs.0c10471
SSID ssj0004281
Score 2.5995176
SecondaryResourceType review_article
Snippet Owing to its diverse activation processes including single-electron transfer (SET) and hydrogen-atom transfer (HAT), visible-light photocatalysis has emerged...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1209
Title Photocatalyzed Enantioselective Functionalization of C(sp3)–H Bonds
URI http://dx.doi.org/10.1021/jacs.3c06169
https://www.ncbi.nlm.nih.gov/pubmed/38170467
https://www.proquest.com/docview/2910189425
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60HvTi-1FfpKCgSEqyz-QopbUIiqAFb2F3s4uiJMWkB3vyP_gP_SXu5tFipeg1TMJmZ3fnm52ZbwA4YVRQpkjsQq09FxPjsIZEKaMQIakfMwkLtv2bW9of4OtH8jhNkJ2N4EPLDySzNpLG7tBwESxBavavhUCd-2n9Iwz8GuaygKIqwX32bWuAZPbTAM1BlYV16a2Bq7pGp0wqeWmPctGW49-UjX8MfB2sVgDTuSxXxAZYUMkmWO7Ufd22QPfuKc3T4trmfaxip2tTYZ7TrGiIY84-p2dMXXlDWNVoOql2OmfZEJ1_fXz2HduJONsGg173odN3q2YKLjeYKXch1oqEMdZYIaV96XOlPCEIlQZ0CYt8MAuQpzw_oHGINEFEKsEkIxpziDjaAY0kTdQecAjGWIcsFti4M4GvuS0GkQEWiHPEPNgELfPrUbUZsqiIc0PjZ9in1YQ0wUWthUhWbOS2KcbrHOnTifSwZOGYI9eqFRqZWbWxD56odJRFMLTUZKE5oZpgt9T05EsFSaExGPv_GPcBWIEG1thLGJ8dgkb-NlJHBpbk4rhYk98mONsQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58HPTi-7E-KygoUmnzaNqjLLusr0VQwVtp0gRF2YrtHvTkf_Af-kucZLsrCgtewzRMM0nmmyTzDcC-iGQkNM99YkzgM44Ba8K1RoNIFYW5UMSx7V91o84dO7_n93Wyus2FQSVK7Kl0l_g_7AKWJggbqUL3EyWTMI04hNgJfdq8-UmDJHE4RLsijmj9zv3v19YPqfK3HxoDLp2Tac9Dd6See1vydNKv5Il6_8Pc-G_9F2Cuhpve6WB-LMKE7i3BTHNY5W0ZWtcPRVW4Q5y3d517Lfsw5rEoXXkc3Am9Njq-wXlhnbHpFcZrHpYv9Ojr47Pj2brE5QrctVu3zY5fl1bwM0RQlU-Y0TzJmWGaahOqMNM6kJJHCiGYtDiIiZgGOgjjKE-o4ZQrLYUS3LCM0IyuwlSv6Ol18DhjzCQilwyDmzg0mU0NUTGTNMuoCEgD9vDX03pplKm79SYYddjWekAacDw0RqpqbnJbIuN5jPTBSPplwMkxRm5vaNcUR9XehGQ9XfTLlCSWqCzB_aoBawODj3pylIXoPjb-ofcuzHRury7Ty7PuxSbMEgQ89ngmFFswVb329TYClkruuGn6DSdI43E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD5kKWx7abtLu6yXObDBRnGwdbHsx5ImZLcQtgX6ZixZomUjDrXz0D71P-wf9pf0SLEzGgisr7YkJB1J59M5Ot8BeC8iGQnNc58YE_iM44U14VqjQKSKwlwo4tj2v4-j0ZR9OefnLQibWBjsRIktlc6Jb3f1PDc1w4ClCsIfVKEKipInsGU9dnZRn_Z__guFJHHYIF4RR7R-675e2-oiVT7URRsAplM0wx34seqie1_yu7eoZE_drLE3PmoMu7Bdw07vdLlOXkBLz17Cs36T7e0VDCYXRVU4Y871jc69gX0gc1mULk0OnojeEBXg0m5YR256hfH6H8s5_XR3-3fk2fzE5WuYDge_-iO_TrHgZ4ikKp8wo3mSM8M01SZUYaZ1ICWPFEIxafEQEzENdBDGUZ5QwylXWgoluGEZoRndg_asmOk34HHGmElELhlecuLQZDZERMVM0iyjIiAd6OLQ03qLlKnzfhO8fdiv9YR04KQRSKpqjnKbKuPPhtIfVqXnS26ODeW6jWxTnFXrEclmuliUKUksYVmC51YH9pdCX7XkqAtRjbz9j36_g6eTs2H67fP46wE8J4h7rJUmFIfQrq4W-ghxSyWP3Uq9B6o95fQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photocatalyzed+Enantioselective+Functionalization+of+C%28sp+3+%29-H+Bonds&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Xu%2C+Guo-Qiang&rft.au=Wang%2C+Wei+David&rft.au=Xu%2C+Peng-Fei&rft.date=2024-01-17&rft.eissn=1520-5126&rft.volume=146&rft.issue=2&rft.spage=1209&rft_id=info:doi/10.1021%2Fjacs.3c06169&rft_id=info%3Apmid%2F38170467&rft.externalDocID=38170467
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon