Adsorption and removal of metal ions by smectites nanoparticles: Mechanistic aspects, and impacts of charge location and edge structure
Clay minerals are efficient adsorbents for metal ions and have been widely used to control heavy metals, while a number of critical issues remain elusive. In this study, the fully flexible models for smectites (montmorillonite and beidellite) nanoparticles are developed and then subject to molecular...
Saved in:
Published in | Applied clay science Vol. 201; p. 105957 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Clay minerals are efficient adsorbents for metal ions and have been widely used to control heavy metals, while a number of critical issues remain elusive. In this study, the fully flexible models for smectites (montmorillonite and beidellite) nanoparticles are developed and then subject to molecular dynamics simulations. Edge rather than basal and interlayer surfaces show much higher adsorption efficacy, and therein univalent metal ions always cause excessive adsorption. For montmorillonite, inner-sphere Pb2+ ions emerge and predominate only at edge surfaces, and have higher stability than inner-sphere Na+ ions, manifesting the central role of edge surfaces to remove heavy metals. The peculiar distribution of edge-O atoms causes similar coordination environments for inner- and outer-sphere metal ions, and inner-sphere metal ions are preferred significantly due to bonding with edge-hydroxyls. Metal ions with smaller radii are more favorable to adsorb at edge surfaces, and those with considerable hydration effects (e.g., heavy metals) can be preferred. Edge surfaces of montmorillonite rather than beidellite are more efficient for adsorption, mainly as a result of distinct adsorption behaviors at basal surfaces that show reversed trends. (010) rather than (110) edges are superior for adsorption, which is caused mainly by structural differences. (010) edges are more exposed to adsorbates, and cleavage of smectites nanoparticles along (010) edges enhances removal of heavy metals. Diffusion, mobility and stability of adsorbed metal ions are also discussed, which further understanding of adsorption at edge surfaces. The findings are consistent with experimental observations available and provide new insights to the complicated processes at clay minerals/water interfaces including control of heavy metals.
[Display omitted]
•Fully flexible models for smectites nanoparticles with edges have been developed.•Edges prefer inner-sphere adsorption and play a central role to control heavy metals.•Ionic radius (decisive) and hydration effect affect adsorption of metal ions at edges.•Edges of montmorillonite rather than beidellite are more efficient for adsorption.•(010) rather than (110) edges are obviously superior for adsorption. |
---|---|
AbstractList | Clay minerals are efficient adsorbents for metal ions and have been widely used to control heavy metals, while a number of critical issues remain elusive. In this study, the fully flexible models for smectites (montmorillonite and beidellite) nanoparticles are developed and then subject to molecular dynamics simulations. Edge rather than basal and interlayer surfaces show much higher adsorption efficacy, and therein univalent metal ions always cause excessive adsorption. For montmorillonite, inner-sphere Pb2+ ions emerge and predominate only at edge surfaces, and have higher stability than inner-sphere Na+ ions, manifesting the central role of edge surfaces to remove heavy metals. The peculiar distribution of edge-O atoms causes similar coordination environments for inner- and outer-sphere metal ions, and inner-sphere metal ions are preferred significantly due to bonding with edge-hydroxyls. Metal ions with smaller radii are more favorable to adsorb at edge surfaces, and those with considerable hydration effects (e.g., heavy metals) can be preferred. Edge surfaces of montmorillonite rather than beidellite are more efficient for adsorption, mainly as a result of distinct adsorption behaviors at basal surfaces that show reversed trends. (010) rather than (110) edges are superior for adsorption, which is caused mainly by structural differences. (010) edges are more exposed to adsorbates, and cleavage of smectites nanoparticles along (010) edges enhances removal of heavy metals. Diffusion, mobility and stability of adsorbed metal ions are also discussed, which further understanding of adsorption at edge surfaces. The findings are consistent with experimental observations available and provide new insights to the complicated processes at clay minerals/water interfaces including control of heavy metals.
[Display omitted]
•Fully flexible models for smectites nanoparticles with edges have been developed.•Edges prefer inner-sphere adsorption and play a central role to control heavy metals.•Ionic radius (decisive) and hydration effect affect adsorption of metal ions at edges.•Edges of montmorillonite rather than beidellite are more efficient for adsorption.•(010) rather than (110) edges are obviously superior for adsorption. |
ArticleNumber | 105957 |
Author | Yang, Gang Gu, Peike Liu, Xiantang Liu, Sai Yang, Sen |
Author_xml | – sequence: 1 givenname: Xiantang surname: Liu fullname: Liu, Xiantang – sequence: 2 givenname: Sen surname: Yang fullname: Yang, Sen – sequence: 3 givenname: Peike surname: Gu fullname: Gu, Peike – sequence: 4 givenname: Sai surname: Liu fullname: Liu, Sai – sequence: 5 givenname: Gang surname: Yang fullname: Yang, Gang email: theobiochem@163.com |
BookMark | eNp9kE1OwzAQhS1UJFrgAqx8AFJsJ04axAZV_ElFbGBtTe0JuEriyDaVegKujUMRCxZd2TN-743nm5FJ73ok5IKzOWe8vNrMdQu7uWBibMhaVkdkyheVyGom8wmZJlGd8ZxXJ2QWwoYxLhaynpKvWxOcH6J1PYXeUI-d20JLXUM7jOmSHgJd72joUEcbMdAeejeAj1a3GK7pM-oP6G1INYUwJFW4_Imy3QCpGKOSwr8jbZ2Gv0loUidE_6njp8czctxAG_D89zwlb_d3r8vHbPXy8LS8XWWQizxmDVaQ_l2VjBu50GVR6qqusRBCoFxDAWspOCuMLpoctdAATZMblIZLwyCv81Mi9rnauxA8NmrwtgO_U5ypEaXaqBGlGlGqPcpkWvwzaRt_NokebHvYerO3Ylpqa9GroC32Go31CZUyzh6yfwP5iZT4 |
CitedBy_id | crossref_primary_10_1007_s10311_023_01606_1 crossref_primary_10_1016_j_cej_2024_148958 crossref_primary_10_1016_j_jenvman_2022_116066 crossref_primary_10_1016_j_jcis_2021_06_123 crossref_primary_10_1007_s11696_023_02779_3 crossref_primary_10_1016_j_colsuc_2023_100020 crossref_primary_10_1016_j_cej_2024_151362 crossref_primary_10_1016_j_jenvman_2023_118581 crossref_primary_10_1016_j_clay_2023_107006 crossref_primary_10_1016_j_clay_2022_106579 crossref_primary_10_1016_j_clay_2025_107725 crossref_primary_10_1016_j_seppur_2024_126662 crossref_primary_10_1039_D3CP04206E crossref_primary_10_1016_j_cis_2024_103334 crossref_primary_10_1016_j_clay_2022_106491 crossref_primary_10_2138_am_2022_8834 crossref_primary_10_3390_ma16010179 crossref_primary_10_1016_j_micromeso_2024_113349 crossref_primary_10_1016_j_cherd_2022_11_050 crossref_primary_10_1016_j_apsusc_2021_150108 crossref_primary_10_1016_j_envres_2022_112817 crossref_primary_10_3390_min13111354 crossref_primary_10_1007_s11270_024_07442_5 crossref_primary_10_1016_j_seppur_2021_120099 crossref_primary_10_1039_D4RA05988C crossref_primary_10_1016_j_mineng_2022_107608 crossref_primary_10_1016_j_colsurfa_2022_128556 crossref_primary_10_1016_j_clay_2022_106716 crossref_primary_10_1016_j_still_2024_106257 crossref_primary_10_1007_s10450_024_00515_1 crossref_primary_10_1016_j_scitotenv_2021_149905 crossref_primary_10_1016_j_chemphys_2025_112610 crossref_primary_10_1016_j_envres_2022_114183 crossref_primary_10_1016_j_cej_2021_132263 crossref_primary_10_1016_j_mtchem_2022_100858 crossref_primary_10_1016_j_clay_2022_106789 crossref_primary_10_3390_min11121407 crossref_primary_10_1016_j_clay_2021_106305 crossref_primary_10_1016_j_jhazmat_2022_129112 crossref_primary_10_1016_j_ceja_2023_100467 crossref_primary_10_1007_s10967_021_07674_3 |
Cites_doi | 10.1016/j.jcis.2011.04.063 10.1016/j.gca.2006.11.026 10.1006/jcis.1996.0151 10.1002/saj2.20040 10.1021/acs.est.8b02504 10.1021/jp053874m 10.1346/CCMN.2004.0520307 10.1016/j.gca.2017.01.014 10.1002/anie.200601740 10.1021/ja00131a018 10.1180/claymin.1996.031.4.05 10.1021/acs.jpcc.6b00230 10.1016/j.gca.2016.06.021 10.1021/jp065687+ 10.1021/acs.jpcc.9b11197 10.1021/acs.jpcc.9b10341 10.1016/j.cis.2007.12.008 10.1016/j.clay.2020.105442 10.1021/jp0363287 10.3390/min7050078 10.1016/j.cej.2011.05.015 10.1021/jp508427c 10.1039/C8CS01019F 10.1021/ct100494z 10.1016/j.jcis.2018.03.082 10.1039/C8CP07567K 10.2138/am-2003-11-1243 10.1063/1.466363 10.1021/acs.jpcc.5b03253 10.1016/j.cis.2008.12.002 10.1016/j.jcis.2011.02.039 10.2136/sssaj2018.04.0145 10.1002/jcc.540130812 10.1021/j100308a038 10.1021/acs.jpcc.8b04259 10.1021/jp0264883 10.1016/S0010-4655(00)00215-0 10.2136/sssaj1988.03615995005200010009x 10.1016/j.jcis.2016.11.084 10.3390/min6020025 10.2138/am.2010.3273 10.1021/es204423k 10.1007/s00214-015-1715-6 10.1016/j.jcis.2007.03.062 10.1021/jp500538z 10.1021/acs.jpcc.5b03314 10.1346/CCMN.2003.0510401 10.1039/FT9918702995 10.1021/es950293+ 10.1346/CCMN.2016.0640403 10.1007/s00269-003-0324-4 10.1016/j.gca.2015.12.010 10.1016/j.gca.2011.12.009 10.1346/CCMN.2015.0630403 10.1021/nn100251g 10.1016/j.jcis.2013.04.023 10.1021/es401530n 10.1346/CCMN.1993.0410305 10.1021/es903645a 10.1021/jp0375057 10.1346/CCMN.1988.0360207 10.1039/B915689E 10.1073/pnas.96.7.3358 10.1021/la1032866 10.1016/j.gca.2013.04.008 10.1016/j.gca.2014.05.044 10.1002/jcc.20291 10.1016/j.gca.2017.09.049 10.1016/j.jcis.2019.12.064 10.1021/ed054p540 10.1006/jcis.1998.5947 10.1016/j.apgeochem.2009.06.006 10.1016/j.chemphys.2019.110575 10.1016/j.jcis.2017.04.040 10.1016/j.gca.2007.08.018 10.1021/acs.jpcc.7b12581 10.1021/jp022084z 10.1002/cctc.201600210 10.1346/CCMN.2016.0640402 10.1002/anie.201512025 10.1021/jp408884g 10.1021/es052522q 10.1021/acs.jpcc.5b01169 10.1016/j.gca.2012.04.060 10.1016/j.clay.2015.12.024 10.1021/acs.jpcc.9b01864 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.clay.2020.105957 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Geology Visual Arts Environmental Sciences |
EISSN | 1872-9053 |
ExternalDocumentID | 10_1016_j_clay_2020_105957 S0169131720305226 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABLST ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W JJJVA KCYFY KOM LY3 M24 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SMS SPC SPCBC SSE SSJ SST SSZ T5K WUQ XJT XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-a323t-fe7a8597601d58c646c799e4222e5ba4ab52104dc4f3ec2caaff3de5d15d0a393 |
IEDL.DBID | .~1 |
ISSN | 0169-1317 |
IngestDate | Tue Jul 01 02:29:16 EDT 2025 Thu Apr 24 23:12:00 EDT 2025 Fri Feb 23 02:48:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Selectivity Clay nanoparticles Edge Heavy metals Adsorption mechanism |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a323t-fe7a8597601d58c646c799e4222e5ba4ab52104dc4f3ec2caaff3de5d15d0a393 |
ParticipantIDs | crossref_primary_10_1016_j_clay_2020_105957 crossref_citationtrail_10_1016_j_clay_2020_105957 elsevier_sciencedirect_doi_10_1016_j_clay_2020_105957 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2021 2021-02-00 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationTitle | Applied clay science |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hub, de Groot, van der Spoel (bb0130) 2010; 6 Liu, Lu (bb0190) 2006; 45 Tournassat, Tinnacher, Grangeon, Davis (bb0375) 2018; 220 Marcus (bb0230) 1991; 87 Vasconcelos, Bunker, Cygan (bb0390) 2007; 111 Bhattacharyya, Gupta (bb0015) 2008; 140 Ngouana, Kalinichev (bb0260) 2014; 118 Churakov (bb0065) 2007; 71 Khorshidi, Tan, Liu, Choi (bb0135) 2018; 122 Newton, Kwon, Cheong (bb0250) 2016; 6 Zhang, Liu, Tinnacher, Tournassat (bb0440) 2018; 52 Liu, Harder, Berne (bb0195) 2004; 108 Loganathan, Yazaydin, Bowers, Kalinichev, Kirkpatrick (bb0220) 2016; 120 Yang, Zhou (bb0410) 2020; 563 Kumar, Bouzida, Swendsen, Kollman, Rosenberg (bb0150) 1992; 13 Kwon, Newton (bb0155) 2016; 190 Underwood, Bourg (bb0385) 2020; 124 Greathouse, Cygan (bb0090) 2006; 40 Li, Li, Yang (bb0175) 2017; 501 Tertre, Beaucaire, Coreau, Juery (bb0350) 2009; 24 Bourg, Sposito (bb0035) 2010; 44 Sposito, Skipper, Sutton, Park, Soper, Greathouse (bb0330) 1999; 96 Churakov, Dähn (bb0075) 2012; 46 Sdiri, Higashi, Hatta, Jamoussi, Tase (bb0290) 2011; 172 Churakov (bb0060) 2006; 110 Soni, Sharma (bb0310) 2016; 8 Lammers, Bourg, Okumura, Kolluri, Sposito, Machida (bb0160) 2017; 490 Loewenstein (bb0215) 1954; 39 Sposito (bb0325) 2008 Biswas, Warr, Hilder, Goswami, Rahman, Churchman, Vasilev, Pan, Naidu (bb0025) 2019; 48 Li, Zhu, Jia, Yang (bb0180) 2018; 523 Tournassat, Chapron, Leroy, Bizi, Boulahya (bb0365) 2009; 339 Dang (bb0085) 1995; 117 Schneider, Hanisch, Wedel, Jusufi, Ballauff (bb0285) 2011; 358 Tinnacher, Holmboe, Tournassat, Bourg, Davis (bb0355) 2016; 177 Holmboe, Bourg (bb0115) 2014; 118 Mignon, Ugliengo, Sodupe, Hernandez (bb0240) 2010; 12 White, Zelazny (bb0395) 1988; 30 Hensen, Smit (bb0110) 2002; 106 Marry, Turq (bb0235) 2003; 107 Strawn, Palmer, Furnare, Goodell, Amonette, Kukkadapu (bb0335) 2004; 52 Zhang, Liu, Lu, He, Meijer, Wang (bb0435) 2017; 203 Argyris, Cole, Striolo (bb0005) 2010; 4 Sainz-Diaz, Palin, Hernandez-Laguna, Dove (bb0275) 2003; 30 Liu, Cheng, Sprik, Lu, Wang (bb0210) 2014; 140 Newton, Sposito (bb0245) 2015; 63 Liu, Lu, Sprik, Cheng, Meijer, Wang (bb0205) 2013; 117 Tournassat, Neaman, Villiéras, Bosbach, Charlet (bb0360) 2003; 88 Ziper, Komarneni, Baker (bb0450) 1988; 525 Zhang, Lu, Liu, Zhou, Zhou (bb0425) 2014; 118 Huang, Yang (bb0125) 2020; 529 van der Spoel, Lindahl, Hess, Groenhof, Mark, Berendsen (bb0320) 2005; 26 Tournassat, Bourg, Holmboe, Sposito, Steefel (bb0370) 2016; 64 Rotenberg, Marry, Vuilleumier, Malikova, Simon, Turq (bb0270) 2007; 71 Smith (bb0300) 1977; 54 Hartman (bb0105) 1973 Li, Li, Yang, Yang (bb0185) 2019; 21 Greathouse, Hart, Bowers, Kirkpatrick, Cygan (bb0095) 2015; 119 Zhang, Liu, Lu, Meijer, Wang, He, Wang (bb0430) 2016; 64 Suter, Sprik, Boek (bb0340) 2012; 91 Yang, Li, Li, Gu, Liu, Yang (bb0420) 2020; 124 Kraepiel, Keller, Morel (bb0140) 1999; 210 Zhu, Chen, Zhou, Xi, Zhu, He (bb0445) 2016; 123 Bleam, Welhouse, Janowiak (bb0030) 1993; 41 Cygan, Liang, Kalinichev (bb0080) 2004; 108 Bourg, Sposito (bb0040) 2011; 360 Brown, Goel, Abbas (bb0050) 2016; 55 Lee, Fenter, Park, Sturchio, Nagy (bb0170) 2010; 26 Lyklema (bb0225) 2009; 147-148 Bickmore, Rosso, Nagy, Cygan, Tadanier (bb0020) 2003; 51 Chang, Sposito (bb0055) 1995; 178 Yan, Masliyah, Xu (bb0405) 2013; 404 Undabeytia, Merillo, Maqueda (bb0380) 1996 Willemsen, Myneni, Bourg (bb0400) 2019; 123 Gu, Yang, Liu, Yang (bb0100) 2020; 84 Kraevsky, Tournassat, Vayer, Warmont, Grangeon, Wakou, Kalinichev (bb0145) 2020; 186 Souaille, Roux (bb0315) 2001; 135 Liu, Lu, Meijer, Wang, Zhou (bb0200) 2012; 81 Teich-McGoldrick, Greathouse, Jové-Colón, Cygan (bb0345) 2015; 119 Simonnin, Marry, Noetinger, Nieto-Draghi, Rotenberg (bb0295) 2018; 122 Newton, Lee, Kwon (bb0255) 2017; 7 Yang, Li, Jia, Li, Yang (bb0415) 2018; 82 Scheidegger, Lamble, Sparks (bb0280) 1996; 30 Lavikainen, Hirvi, Kasa, Schatz, Pakkanen (bb0165) 2015; 134 Hsiao, Hedström (bb0120) 2015; 119 Ortega-Castro, Hernandez-Haro, Dove, Hernandez-Laguna, Sainz-Diaz (bb0265) 2010; 95 Churakov (bb0070) 2013; 47 Smith, Dang (bb0305) 1994; 100 Berendsen, Grigera, Straatsma (bb0010) 1987; 91 Bourg, Sposito, Bourg (bb0045) 2007; 312 Churakov (10.1016/j.clay.2020.105957_bb0060) 2006; 110 Liu (10.1016/j.clay.2020.105957_bb0205) 2013; 117 Suter (10.1016/j.clay.2020.105957_bb0340) 2012; 91 Yang (10.1016/j.clay.2020.105957_bb0415) 2018; 82 Bourg (10.1016/j.clay.2020.105957_bb0045) 2007; 312 Hartman (10.1016/j.clay.2020.105957_bb0105) 1973 Loganathan (10.1016/j.clay.2020.105957_bb0220) 2016; 120 Lee (10.1016/j.clay.2020.105957_bb0170) 2010; 26 Tinnacher (10.1016/j.clay.2020.105957_bb0355) 2016; 177 Scheidegger (10.1016/j.clay.2020.105957_bb0280) 1996; 30 Schneider (10.1016/j.clay.2020.105957_bb0285) 2011; 358 Liu (10.1016/j.clay.2020.105957_bb0200) 2012; 81 Sainz-Diaz (10.1016/j.clay.2020.105957_bb0275) 2003; 30 Newton (10.1016/j.clay.2020.105957_bb0245) 2015; 63 Yang (10.1016/j.clay.2020.105957_bb0410) 2020; 563 Cygan (10.1016/j.clay.2020.105957_bb0080) 2004; 108 Liu (10.1016/j.clay.2020.105957_bb0190) 2006; 45 Yang (10.1016/j.clay.2020.105957_bb0420) 2020; 124 Gu (10.1016/j.clay.2020.105957_bb0100) 2020; 84 Kwon (10.1016/j.clay.2020.105957_bb0155) 2016; 190 Chang (10.1016/j.clay.2020.105957_bb0055) 1995; 178 Underwood (10.1016/j.clay.2020.105957_bb0385) 2020; 124 Zhang (10.1016/j.clay.2020.105957_bb0440) 2018; 52 Ngouana (10.1016/j.clay.2020.105957_bb0260) 2014; 118 Biswas (10.1016/j.clay.2020.105957_bb0025) 2019; 48 Hub (10.1016/j.clay.2020.105957_bb0130) 2010; 6 Newton (10.1016/j.clay.2020.105957_bb0250) 2016; 6 Rotenberg (10.1016/j.clay.2020.105957_bb0270) 2007; 71 Sposito (10.1016/j.clay.2020.105957_bb0330) 1999; 96 Willemsen (10.1016/j.clay.2020.105957_bb0400) 2019; 123 Churakov (10.1016/j.clay.2020.105957_bb0070) 2013; 47 Huang (10.1016/j.clay.2020.105957_bb0125) 2020; 529 Teich-McGoldrick (10.1016/j.clay.2020.105957_bb0345) 2015; 119 Tournassat (10.1016/j.clay.2020.105957_bb0375) 2018; 220 Zhang (10.1016/j.clay.2020.105957_bb0425) 2014; 118 Li (10.1016/j.clay.2020.105957_bb0185) 2019; 21 Tournassat (10.1016/j.clay.2020.105957_bb0370) 2016; 64 Li (10.1016/j.clay.2020.105957_bb0180) 2018; 523 Bhattacharyya (10.1016/j.clay.2020.105957_bb0015) 2008; 140 Souaille (10.1016/j.clay.2020.105957_bb0315) 2001; 135 Zhang (10.1016/j.clay.2020.105957_bb0430) 2016; 64 Argyris (10.1016/j.clay.2020.105957_bb0005) 2010; 4 Lammers (10.1016/j.clay.2020.105957_bb0160) 2017; 490 Sposito (10.1016/j.clay.2020.105957_bb0325) 2008 Smith (10.1016/j.clay.2020.105957_bb0305) 1994; 100 Churakov (10.1016/j.clay.2020.105957_bb0065) 2007; 71 Bickmore (10.1016/j.clay.2020.105957_bb0020) 2003; 51 Holmboe (10.1016/j.clay.2020.105957_bb0115) 2014; 118 Simonnin (10.1016/j.clay.2020.105957_bb0295) 2018; 122 Vasconcelos (10.1016/j.clay.2020.105957_bb0390) 2007; 111 White (10.1016/j.clay.2020.105957_bb0395) 1988; 30 Smith (10.1016/j.clay.2020.105957_bb0300) 1977; 54 Lyklema (10.1016/j.clay.2020.105957_bb0225) 2009; 147-148 Marcus (10.1016/j.clay.2020.105957_bb0230) 1991; 87 Zhu (10.1016/j.clay.2020.105957_bb0445) 2016; 123 Hsiao (10.1016/j.clay.2020.105957_bb0120) 2015; 119 Soni (10.1016/j.clay.2020.105957_bb0310) 2016; 8 Tertre (10.1016/j.clay.2020.105957_bb0350) 2009; 24 Brown (10.1016/j.clay.2020.105957_bb0050) 2016; 55 Zhang (10.1016/j.clay.2020.105957_bb0435) 2017; 203 Berendsen (10.1016/j.clay.2020.105957_bb0010) 1987; 91 Marry (10.1016/j.clay.2020.105957_bb0235) 2003; 107 Lavikainen (10.1016/j.clay.2020.105957_bb0165) 2015; 134 Greathouse (10.1016/j.clay.2020.105957_bb0090) 2006; 40 Loewenstein (10.1016/j.clay.2020.105957_bb0215) 1954; 39 Tournassat (10.1016/j.clay.2020.105957_bb0360) 2003; 88 Strawn (10.1016/j.clay.2020.105957_bb0335) 2004; 52 Hensen (10.1016/j.clay.2020.105957_bb0110) 2002; 106 Greathouse (10.1016/j.clay.2020.105957_bb0095) 2015; 119 Liu (10.1016/j.clay.2020.105957_bb0195) 2004; 108 Liu (10.1016/j.clay.2020.105957_bb0210) 2014; 140 van der Spoel (10.1016/j.clay.2020.105957_bb0320) 2005; 26 Li (10.1016/j.clay.2020.105957_bb0175) 2017; 501 Yan (10.1016/j.clay.2020.105957_bb0405) 2013; 404 Bleam (10.1016/j.clay.2020.105957_bb0030) 1993; 41 Kraepiel (10.1016/j.clay.2020.105957_bb0140) 1999; 210 Tournassat (10.1016/j.clay.2020.105957_bb0365) 2009; 339 Ortega-Castro (10.1016/j.clay.2020.105957_bb0265) 2010; 95 Sdiri (10.1016/j.clay.2020.105957_bb0290) 2011; 172 Mignon (10.1016/j.clay.2020.105957_bb0240) 2010; 12 Newton (10.1016/j.clay.2020.105957_bb0255) 2017; 7 Bourg (10.1016/j.clay.2020.105957_bb0040) 2011; 360 Khorshidi (10.1016/j.clay.2020.105957_bb0135) 2018; 122 Bourg (10.1016/j.clay.2020.105957_bb0035) 2010; 44 Churakov (10.1016/j.clay.2020.105957_bb0075) 2012; 46 Dang (10.1016/j.clay.2020.105957_bb0085) 1995; 117 Kumar (10.1016/j.clay.2020.105957_bb0150) 1992; 13 Kraevsky (10.1016/j.clay.2020.105957_bb0145) 2020; 186 Undabeytia (10.1016/j.clay.2020.105957_bb0380) 1996 Ziper (10.1016/j.clay.2020.105957_bb0450) 1988; 525 |
References_xml | – volume: 178 start-page: 555 year: 1995 end-page: 564 ident: bb0055 article-title: The electrical double layer of a disk-shaped clay mineral particle: Effects of electrolyte properties and surface charge density publication-title: J. Colloid Interf. Sci. – volume: 30 start-page: 382 year: 2003 end-page: 392 ident: bb0275 article-title: Octahedral cation ordering of illite and smectite. Theoretical exchange potential determination and Monte Carlo simulations publication-title: Phys. Chem. Miner. – volume: 360 start-page: 701 year: 2011 end-page: 715 ident: bb0040 article-title: Molecular dynamics simulations of the electrical double layer on smectite surfaces contacting concentrated mixed electrolyte (NaCl-CaCl publication-title: J. Colloid Interf. Sci. – volume: 106 start-page: 12664 year: 2002 end-page: 12667 ident: bb0110 article-title: Why clays swell publication-title: J. Phys. Chem. B – volume: 490 start-page: 608 year: 2017 end-page: 620 ident: bb0160 article-title: Molecular dynamics simulations of cesium adsorption on illite nanoparticles publication-title: J. Colloid Interf. Sci. – volume: 220 start-page: 291 year: 2018 end-page: 308 ident: bb0375 article-title: Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: a surface complexation model accounting for the spillover effect on surface potential publication-title: Geochim. Cosmochim. Acta – volume: 24 start-page: 1852 year: 2009 end-page: 1861 ident: bb0350 article-title: Modelling Zn(II) sorption onto clayey sediments using a multi-site ion-exchange model publication-title: Appl. Geochem. – volume: 140 start-page: 410 year: 2014 end-page: 417 ident: bb0210 article-title: Surface acidity of 2:1-type dioctahedral clay minerals from first principles molecular dynamics simulations publication-title: Geochim. Cosmochim. Acta – volume: 135 start-page: 40 year: 2001 end-page: 57 ident: bb0315 article-title: Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations publication-title: Comput. Phys. Commun. – volume: 134 start-page: 1272 year: 2015 ident: bb0165 article-title: Stability of dioctahedral 2:1 phyllosilicate edge structures based on pyrophyllite models publication-title: Theor. Chem. Accounts – volume: 95 start-page: 209 year: 2010 end-page: 220 ident: bb0265 article-title: Density functional theory and Monte Carlo study of octahedral cation ordering of Al/Fe/Mg cations in dioctahedral 2:1 phyllosilicates publication-title: Am. Mineral. – volume: 100 start-page: 3757 year: 1994 end-page: 3766 ident: bb0305 article-title: Computer simulations of NaCl association in polarizable water publication-title: J. Chem. Phys. – volume: 108 start-page: 1255 year: 2004 end-page: 1266 ident: bb0080 article-title: Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field publication-title: J. Phys. Chem. B – volume: 501 start-page: 54 year: 2017 end-page: 59 ident: bb0175 article-title: Electric fields within clay materials: how to affect the adsorption of metal ions publication-title: J. Colloid Interf. Sci. – volume: 110 start-page: 4135 year: 2006 end-page: 4146 ident: bb0060 article-title: Ab initio study of sorption on pyrophyllite: structure and acidity of the edge sites publication-title: J. Phys. Chem. B – volume: 529 year: 2020 ident: bb0125 article-title: Charge reversal and anion effects during adsorption of metal ions at clay surfaces: Mechanistic aspects and influence factors publication-title: Chem. Phys. – year: 1973 ident: bb0105 article-title: Crystal Growth: An Introduction – start-page: 485 year: 1996 end-page: 490 ident: bb0380 article-title: Adsorption of Cd and Zn on montmorillonite in the presence of a cationic pesticide publication-title: Clay Miner. – volume: 118 start-page: 12758 year: 2014 end-page: 12773 ident: bb0260 article-title: Structural arrangements of isomorphic substitutions in smectites: Molecular simulation of the swelling properties, interlayer structure, and dynamics of hydrated Cs-montmorillonite revisited with new clay models publication-title: J. Phys. Chem. C – volume: 108 start-page: 6595 year: 2004 end-page: 6602 ident: bb0195 article-title: On the calculation of diffusion coefficients in confined fluids and interfaces with an application to the liquid-vapor interface of water publication-title: J. Phys. Chem. B – volume: 71 start-page: 5089 year: 2007 end-page: 5101 ident: bb0270 article-title: Water and ions in clays: Unraveling the interlayer/micropore exchange using molecular dynamics publication-title: Geochim. Cosmochim. Acta – volume: 6 start-page: 3713 year: 2010 end-page: 3720 ident: bb0130 article-title: g_wham - a free weighted histogram analysis implementation including robust error and autocorrelation estimates publication-title: J. Chem. Theory Comput. – volume: 140 start-page: 114 year: 2008 end-page: 131 ident: bb0015 article-title: Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review publication-title: Adv. Colloid Interf. Sci. – volume: 123 start-page: 239 year: 2016 end-page: 258 ident: bb0445 article-title: Adsorbents based on montmorillonite for contaminant removal from water: a review publication-title: Appl. Clay Sci. – volume: 525 start-page: 49 year: 1988 end-page: 53 ident: bb0450 article-title: Specific cadmium sorption in relation to the crystal chemistry of clay minerals publication-title: Soil Sci. Soc. Am. J. – volume: 117 start-page: 180 year: 2013 end-page: 190 ident: bb0205 article-title: Acidity of edge surface sites of montmorillonite and kaolinite publication-title: Geochim. Cosmochim. Acta – volume: 124 start-page: 3702 year: 2020 end-page: 3714 ident: bb0385 article-title: Large-scale molecular dynamics simulation of the dehydration of a suspension of smectite clay nanoparticles publication-title: J. Phys. Chem. C – volume: 91 start-page: 6269 year: 1987 end-page: 6271 ident: bb0010 article-title: The missing term in effective pair potentials publication-title: J. Phys. Chem. C – volume: 47 start-page: 9816 year: 2013 end-page: 9823 ident: bb0070 article-title: Mobility of Na and Cs on montmorillonite surface under partially saturated conditions publication-title: Environ. Sci. Technol. – volume: 21 start-page: 1963 year: 2019 end-page: 1971 ident: bb0185 article-title: Swelling of clay minerals: dual characteristics of K publication-title: Phys. Chem. Chem. Phys. – volume: 52 start-page: 321 year: 2004 end-page: 333 ident: bb0335 article-title: Copper sorption mechanisms on smectites publication-title: Clay Clay Miner. – volume: 203 start-page: 54 year: 2017 end-page: 68 ident: bb0435 article-title: Surface complexation of heavy metal cations on clay edges: insights from first principles molecular dynamics simulation of Ni(II) publication-title: Geochim. Cosmochim. Acta – volume: 13 start-page: 1011 year: 1992 end-page: 1021 ident: bb0150 article-title: The weighted histogram analysis method for free-energy calculations on biomolecules. I. the method publication-title: J. Comput. Chem. – volume: 358 start-page: 62 year: 2011 end-page: 67 ident: bb0285 article-title: Experimental study of electrostatically stabilized colloidal particles: colloidal stability and charge reversal publication-title: J. Colloid Interf. Sci. – volume: 26 start-page: 1701 year: 2005 end-page: 1718 ident: bb0320 article-title: GROMACS: Fast, flexible, and free publication-title: J. Comput. Chem. – volume: 87 start-page: 2995 year: 1991 end-page: 2999 ident: bb0230 article-title: Thermodynamics of solvation of ions. Part 5. Gibbs free energy of hydration at 298.15 K publication-title: J. Chem. Soc. Faraday Trans. – volume: 119 start-page: 20880 year: 2015 end-page: 20891 ident: bb0345 article-title: Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: Comparison of temperature, interlayer cation, and charge location effects publication-title: J. Phys. Chem. C – volume: 44 start-page: 2085 year: 2010 end-page: 2091 ident: bb0035 article-title: Connecting the molecular scale to the continuum scale for diffusion processes in smectite-rich porous media publication-title: Environ. Sci. Technol. – volume: 147-148 start-page: 205 year: 2009 end-page: 213 ident: bb0225 article-title: Quest for ion-ion correlations in electric double layers and overcharging phenomena publication-title: Adv. Colloid Interf. Sci. – volume: 7 start-page: 78 year: 2017 ident: bb0255 article-title: Na-montmorillonite edge structure and surface complexes: an atomistic perspective publication-title: Minerals – volume: 41 start-page: 305 year: 1993 end-page: 316 ident: bb0030 article-title: The surface coulomb energy and proton coulomb potentials of pyrophyllite {010}, {110}, {100}, and {130}edges, publication-title: Clay Miner. – volume: 190 start-page: 100 year: 2016 end-page: 114 ident: bb0155 article-title: Structure and stability of pyrophyllite edge surfaces: effect of temperature and water chemical potential publication-title: Geochim. Cosmochim. Acta – volume: 39 start-page: 92 year: 1954 end-page: 97 ident: bb0215 article-title: The distribution of aluminum in the tetrahedra of silicates and aluminates publication-title: Am. Miner. – volume: 26 start-page: 16647 year: 2010 end-page: 16651 ident: bb0170 article-title: Hydrated cation speciation at the muscovite (001)-water interface publication-title: Langmuir – volume: 120 start-page: 12429 year: 2016 end-page: 12439 ident: bb0220 article-title: Cation and water structure, dynamics, and energetics in smectite clays: a molecular dynamics study of Ca-hectorite publication-title: J. Phys. Chem. C – volume: 40 start-page: 3865 year: 2006 end-page: 3871 ident: bb0090 article-title: Water structure and aqueous uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite: results from molecular simulations publication-title: Environ. Sci. Technol. – volume: 64 start-page: 374 year: 2016 end-page: 388 ident: bb0370 article-title: Molecular dynamics simulations of anion exclusion in clay interlayer nanopores publication-title: Clay Clay Miner. – volume: 88 start-page: 1989 year: 2003 end-page: 1995 ident: bb0360 article-title: Nanomorphology of montmorillonite particles publication-title: Am. Miner. – volume: 563 start-page: 8 year: 2020 end-page: 16 ident: bb0410 article-title: Montmorillonite-catalyzed conversions of carbon dioxide to formic acid: active site, competitive mechanisms, influence factors and origin of high catalytic efficiency publication-title: J. Colloid Interf. Sci. – volume: 45 start-page: 6300 year: 2006 end-page: 6303 ident: bb0190 article-title: A thermodynamic understanding of clay-swelling inhibition by potassium ions publication-title: Angew. Chem. Int. Ed. – volume: 81 start-page: 56 year: 2012 end-page: 68 ident: bb0200 article-title: Atomic-scale structures of interfaces between phyllosilicate edges and water publication-title: Geochim. Cosmochim. Acta – volume: 404 start-page: 183 year: 2013 end-page: 191 ident: bb0405 article-title: Interaction of divalent cations with basal planes and edge surfaces of phyllosilicate minerals: Muscovite and talc publication-title: J. Colloid Interf. Sci. – volume: 51 start-page: 359 year: 2003 end-page: 371 ident: bb0020 article-title: Ab initio determination of edge surface structures for dioctahedral 2:1 phyllosilicates: Implications for acid-base for reactivity publication-title: Clay Clay Miner. – volume: 119 start-page: 17352 year: 2015 end-page: 17361 ident: bb0120 article-title: Molecular dynamics simulations of NaCl permeation in bihydrated montmorillonite interlayer nanopores publication-title: J. Phys. Chem. C – volume: 172 start-page: 37 year: 2011 end-page: 46 ident: bb0290 article-title: Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems publication-title: Chem. Eng. J. – volume: 82 start-page: 1384 year: 2018 end-page: 1391 ident: bb0415 article-title: Molecular dynamics simulations for the co-adsorption of binary electrolytes at the interface of montmorillonite and aqueous solutions publication-title: Soil Sci. Soc. Am. J. – volume: 186 year: 2020 ident: bb0145 article-title: Identification of montmorillonite particle edge orientations by atomic-force microscopy publication-title: Appl. Clay Sci. – volume: 107 start-page: 1832 year: 2003 end-page: 1839 ident: bb0235 article-title: Microscopic simulations of interlayer structure and dynamics in bihydrated heteroionic montmorillonites publication-title: J. Phys. Chem. B – volume: 12 start-page: 688 year: 2010 end-page: 697 ident: bb0240 article-title: Ab initio molecular dynamics study of the hydration of Li publication-title: Phys. Chem. Chem. Phys. – volume: 63 start-page: 277 year: 2015 end-page: 289 ident: bb0245 article-title: Molecular dynamics simulations of pyrophyllite edge surfaces: structure, surface energies, and solvent accessibility publication-title: Clay Clay Miner. – volume: 48 start-page: 3740 year: 2019 end-page: 3770 ident: bb0025 article-title: Biocompatible functionalisation of nanoclays for improved environmental remediation publication-title: Chem. Soc. Rev. – volume: 119 start-page: 17126 year: 2015 end-page: 17136 ident: bb0095 article-title: Molecular simulation of structure and diffusion at smectite-water interfaces: using expanded clay interlayers as model nanopores publication-title: J. Phys. Chem. C – volume: 523 start-page: 18 year: 2018 end-page: 26 ident: bb0180 article-title: Confinement effects and mechanistic aspects for montmorillonite nanopores publication-title: J. Colloid Interf. Sci. – volume: 46 start-page: 5713 year: 2012 end-page: 5719 ident: bb0075 article-title: Zinc adsorption on clays inferred from atomistic simulations and EXAFS spectroscopy publication-title: Environ. Sci. Technol. – volume: 122 start-page: 4937 year: 2018 end-page: 4944 ident: bb0135 article-title: Effect of inorganic salt contaminants on the dissolution of kaolinite basal surfaces in alkali media: a molecular dynamics study publication-title: J. Phys. Chem. C – volume: 123 start-page: 13624 year: 2019 end-page: 13636 ident: bb0400 article-title: Molecular dynamics simulations of the adsorption of phthalate esters on smectite clay surfaces publication-title: J. Phys. Chem. C – volume: 91 start-page: 109 year: 2012 end-page: 119 ident: bb0340 article-title: Free energies of absorption of alkali ions onto beidellite and montmorillonite surfaces from constrained molecular dynamics simulations publication-title: Geochim. Cosmochim. Acta – volume: 312 start-page: 297 year: 2007 end-page: 310 ident: bb0045 article-title: Modeling the acid-base surface chemistry of montmorillonite publication-title: J. Colloid Interf. Sci. – volume: 177 start-page: 130 year: 2016 end-page: 149 ident: bb0355 article-title: Ion adsorption and diffusion in smectite: Molecular, pore, and continuum scale views publication-title: Geochim. Cosmochim. Acta – volume: 8 start-page: 1763 year: 2016 end-page: 1768 ident: bb0310 article-title: Palladium-nanoparticles-intercalated montmorillonite clay: a green catalyst for the solvent-free chemoselective hydrogenation of squalene publication-title: ChemCatChem – volume: 64 start-page: 337 year: 2016 end-page: 347 ident: bb0430 article-title: Cadmium(II) complexes adsorbed on clay edge surfaces: Insight from first principles molecular dynamics simulation publication-title: Clay Clay Miner. – volume: 52 start-page: 8501 year: 2018 end-page: 8509 ident: bb0440 article-title: Mechanistic understanding of uranyl ion complexation on montmorillonite edges: a combined first-principles molecular dynamics-surface complexation modeling approach publication-title: Environ. Sci. Technol. – volume: 4 start-page: 2035 year: 2010 end-page: 2042 ident: bb0005 article-title: Ion-specific effects under confinement: the role of interfacial water publication-title: ACS Nano – volume: 30 start-page: 548 year: 1996 end-page: 554 ident: bb0280 article-title: Investigation of Ni sorption on pyrophyllite: an XAFS study publication-title: Environ. Sci. Technol. – volume: 6 start-page: 25 year: 2016 ident: bb0250 article-title: Edge structure of montmorillonite from atomistic simulations publication-title: Minerals – volume: 122 start-page: 18484 year: 2018 end-page: 18492 ident: bb0295 article-title: Mineral- and ion-specific effects at clay-water interfaces: structure, diffusion, and hydrodynamics publication-title: J. Phys. Chem. C – volume: 118 start-page: 1001 year: 2014 end-page: 1013 ident: bb0115 article-title: Molecular dynamics simulations of water and sodium diffusion in smectite interlayer nanopores as a function of pore size and temperature publication-title: J. Phys. Chem. C – volume: 210 start-page: 43 year: 1999 end-page: 54 ident: bb0140 article-title: A model for metal adsorption on montmorillonite publication-title: J. Colloid Interf. Sci. – volume: 84 start-page: 494 year: 2020 end-page: 501 ident: bb0100 article-title: Development of a simple, molecular dynamics-based method to estimate the thickness of electrical double layers publication-title: Soil Sci. Soc. Am. J. – volume: 55 start-page: 3790 year: 2016 end-page: 3794 ident: bb0050 article-title: Effect of electrolyte concentration on the Stern layer thickness at a charged interface publication-title: Angew. Chem. Int. Ed. – volume: 111 start-page: 6753 year: 2007 end-page: 6762 ident: bb0390 article-title: Molecular dynamics modeling of ion adsorption to the basal surfaces of kaolinite publication-title: J. Phys. Chem. C – volume: 30 start-page: 141 year: 1988 end-page: 146 ident: bb0395 article-title: Analysis and implications of the edge structure of dioctahedral phyllosilicates publication-title: Clay Clay Miner. – year: 2008 ident: bb0325 article-title: The Chemistry of Soils – volume: 339 start-page: 533 year: 2009 end-page: 541 ident: bb0365 article-title: Comparison of molecular dynamics simulations with triple layer and modified Gouy-Chapman models in a 0.1M NaCl-montmorillonite system, publication-title: Sci. – volume: 54 start-page: 540 year: 1977 end-page: 542 ident: bb0300 article-title: Ionic hydration enthalpies publication-title: J. Chem. Educ. – volume: 117 start-page: 6954 year: 1995 end-page: 6960 ident: bb0085 article-title: Mechanism and thermodynamics of ion selectivity in aqueous solutions of 18-crown-6 ether: a molecular dynamics study publication-title: J. Am. Chem. Soc. – volume: 124 start-page: 1500 year: 2020 end-page: 1510 ident: bb0420 article-title: Competitive adsorption of metal ions at smectite/water interfaces: Mechanistic aspects, and impacts of co-ions, charge densities, and charge locations publication-title: J. Phys. Chem. C – volume: 71 start-page: 1130 year: 2007 end-page: 1144 ident: bb0065 article-title: Structure and dynamics of the water films confined between edges of pyrophyllite: a first principle study publication-title: Geochim. Cosmochim. Acta – volume: 118 start-page: 29811 year: 2014 end-page: 29821 ident: bb0425 article-title: Hydration and mobility of interlayer ions of (Na publication-title: J. Phys. Chem. C – volume: 96 start-page: 3358 year: 1999 end-page: 3364 ident: bb0330 article-title: Surface geochemistry of the clay minerals publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 360 start-page: 701 year: 2011 ident: 10.1016/j.clay.2020.105957_bb0040 article-title: Molecular dynamics simulations of the electrical double layer on smectite surfaces contacting concentrated mixed electrolyte (NaCl-CaCl2) solutions publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2011.04.063 – volume: 71 start-page: 1130 year: 2007 ident: 10.1016/j.clay.2020.105957_bb0065 article-title: Structure and dynamics of the water films confined between edges of pyrophyllite: a first principle study publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2006.11.026 – volume: 178 start-page: 555 year: 1995 ident: 10.1016/j.clay.2020.105957_bb0055 article-title: The electrical double layer of a disk-shaped clay mineral particle: Effects of electrolyte properties and surface charge density publication-title: J. Colloid Interf. Sci. doi: 10.1006/jcis.1996.0151 – volume: 84 start-page: 494 year: 2020 ident: 10.1016/j.clay.2020.105957_bb0100 article-title: Development of a simple, molecular dynamics-based method to estimate the thickness of electrical double layers publication-title: Soil Sci. Soc. Am. J. doi: 10.1002/saj2.20040 – volume: 52 start-page: 8501 year: 2018 ident: 10.1016/j.clay.2020.105957_bb0440 article-title: Mechanistic understanding of uranyl ion complexation on montmorillonite edges: a combined first-principles molecular dynamics-surface complexation modeling approach publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02504 – volume: 110 start-page: 4135 year: 2006 ident: 10.1016/j.clay.2020.105957_bb0060 article-title: Ab initio study of sorption on pyrophyllite: structure and acidity of the edge sites publication-title: J. Phys. Chem. B doi: 10.1021/jp053874m – volume: 52 start-page: 321 year: 2004 ident: 10.1016/j.clay.2020.105957_bb0335 article-title: Copper sorption mechanisms on smectites publication-title: Clay Clay Miner. doi: 10.1346/CCMN.2004.0520307 – volume: 203 start-page: 54 year: 2017 ident: 10.1016/j.clay.2020.105957_bb0435 article-title: Surface complexation of heavy metal cations on clay edges: insights from first principles molecular dynamics simulation of Ni(II) publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2017.01.014 – volume: 45 start-page: 6300 year: 2006 ident: 10.1016/j.clay.2020.105957_bb0190 article-title: A thermodynamic understanding of clay-swelling inhibition by potassium ions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200601740 – volume: 117 start-page: 6954 year: 1995 ident: 10.1016/j.clay.2020.105957_bb0085 article-title: Mechanism and thermodynamics of ion selectivity in aqueous solutions of 18-crown-6 ether: a molecular dynamics study publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00131a018 – start-page: 485 year: 1996 ident: 10.1016/j.clay.2020.105957_bb0380 article-title: Adsorption of Cd and Zn on montmorillonite in the presence of a cationic pesticide publication-title: Clay Miner. doi: 10.1180/claymin.1996.031.4.05 – volume: 120 start-page: 12429 year: 2016 ident: 10.1016/j.clay.2020.105957_bb0220 article-title: Cation and water structure, dynamics, and energetics in smectite clays: a molecular dynamics study of Ca-hectorite publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b00230 – volume: 190 start-page: 100 year: 2016 ident: 10.1016/j.clay.2020.105957_bb0155 article-title: Structure and stability of pyrophyllite edge surfaces: effect of temperature and water chemical potential publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2016.06.021 – volume: 111 start-page: 6753 year: 2007 ident: 10.1016/j.clay.2020.105957_bb0390 article-title: Molecular dynamics modeling of ion adsorption to the basal surfaces of kaolinite publication-title: J. Phys. Chem. C doi: 10.1021/jp065687+ – volume: 124 start-page: 3702 year: 2020 ident: 10.1016/j.clay.2020.105957_bb0385 article-title: Large-scale molecular dynamics simulation of the dehydration of a suspension of smectite clay nanoparticles publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b11197 – volume: 124 start-page: 1500 year: 2020 ident: 10.1016/j.clay.2020.105957_bb0420 article-title: Competitive adsorption of metal ions at smectite/water interfaces: Mechanistic aspects, and impacts of co-ions, charge densities, and charge locations publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b10341 – volume: 140 start-page: 114 year: 2008 ident: 10.1016/j.clay.2020.105957_bb0015 article-title: Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review publication-title: Adv. Colloid Interf. Sci. doi: 10.1016/j.cis.2007.12.008 – volume: 186 year: 2020 ident: 10.1016/j.clay.2020.105957_bb0145 article-title: Identification of montmorillonite particle edge orientations by atomic-force microscopy publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2020.105442 – volume: 108 start-page: 1255 year: 2004 ident: 10.1016/j.clay.2020.105957_bb0080 article-title: Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field publication-title: J. Phys. Chem. B doi: 10.1021/jp0363287 – volume: 7 start-page: 78 year: 2017 ident: 10.1016/j.clay.2020.105957_bb0255 article-title: Na-montmorillonite edge structure and surface complexes: an atomistic perspective publication-title: Minerals doi: 10.3390/min7050078 – volume: 172 start-page: 37 year: 2011 ident: 10.1016/j.clay.2020.105957_bb0290 article-title: Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.05.015 – volume: 118 start-page: 29811 year: 2014 ident: 10.1016/j.clay.2020.105957_bb0425 article-title: Hydration and mobility of interlayer ions of (NaxCay)-montmorillonite: a molecular dynamics study publication-title: J. Phys. Chem. C doi: 10.1021/jp508427c – volume: 48 start-page: 3740 year: 2019 ident: 10.1016/j.clay.2020.105957_bb0025 article-title: Biocompatible functionalisation of nanoclays for improved environmental remediation publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS01019F – volume: 6 start-page: 3713 year: 2010 ident: 10.1016/j.clay.2020.105957_bb0130 article-title: g_wham - a free weighted histogram analysis implementation including robust error and autocorrelation estimates publication-title: J. Chem. Theory Comput. doi: 10.1021/ct100494z – volume: 339 start-page: 533 year: 2009 ident: 10.1016/j.clay.2020.105957_bb0365 article-title: Comparison of molecular dynamics simulations with triple layer and modified Gouy-Chapman models in a 0.1M NaCl-montmorillonite system, J. Colloid Interf publication-title: Sci. – volume: 523 start-page: 18 year: 2018 ident: 10.1016/j.clay.2020.105957_bb0180 article-title: Confinement effects and mechanistic aspects for montmorillonite nanopores publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2018.03.082 – volume: 21 start-page: 1963 year: 2019 ident: 10.1016/j.clay.2020.105957_bb0185 article-title: Swelling of clay minerals: dual characteristics of K+ ions and exploration of critical influencing factors publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP07567K – volume: 88 start-page: 1989 year: 2003 ident: 10.1016/j.clay.2020.105957_bb0360 article-title: Nanomorphology of montmorillonite particles publication-title: Am. Miner. doi: 10.2138/am-2003-11-1243 – volume: 100 start-page: 3757 year: 1994 ident: 10.1016/j.clay.2020.105957_bb0305 article-title: Computer simulations of NaCl association in polarizable water publication-title: J. Chem. Phys. doi: 10.1063/1.466363 – volume: 119 start-page: 20880 year: 2015 ident: 10.1016/j.clay.2020.105957_bb0345 article-title: Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: Comparison of temperature, interlayer cation, and charge location effects publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b03253 – volume: 147-148 start-page: 205 year: 2009 ident: 10.1016/j.clay.2020.105957_bb0225 article-title: Quest for ion-ion correlations in electric double layers and overcharging phenomena publication-title: Adv. Colloid Interf. Sci. doi: 10.1016/j.cis.2008.12.002 – volume: 358 start-page: 62 year: 2011 ident: 10.1016/j.clay.2020.105957_bb0285 article-title: Experimental study of electrostatically stabilized colloidal particles: colloidal stability and charge reversal publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2011.02.039 – volume: 82 start-page: 1384 year: 2018 ident: 10.1016/j.clay.2020.105957_bb0415 article-title: Molecular dynamics simulations for the co-adsorption of binary electrolytes at the interface of montmorillonite and aqueous solutions publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2018.04.0145 – volume: 13 start-page: 1011 year: 1992 ident: 10.1016/j.clay.2020.105957_bb0150 article-title: The weighted histogram analysis method for free-energy calculations on biomolecules. I. the method publication-title: J. Comput. Chem. doi: 10.1002/jcc.540130812 – volume: 91 start-page: 6269 year: 1987 ident: 10.1016/j.clay.2020.105957_bb0010 article-title: The missing term in effective pair potentials publication-title: J. Phys. Chem. C doi: 10.1021/j100308a038 – year: 1973 ident: 10.1016/j.clay.2020.105957_bb0105 – volume: 122 start-page: 18484 year: 2018 ident: 10.1016/j.clay.2020.105957_bb0295 article-title: Mineral- and ion-specific effects at clay-water interfaces: structure, diffusion, and hydrodynamics publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b04259 – year: 2008 ident: 10.1016/j.clay.2020.105957_bb0325 – volume: 106 start-page: 12664 year: 2002 ident: 10.1016/j.clay.2020.105957_bb0110 article-title: Why clays swell publication-title: J. Phys. Chem. B doi: 10.1021/jp0264883 – volume: 135 start-page: 40 year: 2001 ident: 10.1016/j.clay.2020.105957_bb0315 article-title: Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(00)00215-0 – volume: 525 start-page: 49 year: 1988 ident: 10.1016/j.clay.2020.105957_bb0450 article-title: Specific cadmium sorption in relation to the crystal chemistry of clay minerals publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1988.03615995005200010009x – volume: 490 start-page: 608 year: 2017 ident: 10.1016/j.clay.2020.105957_bb0160 article-title: Molecular dynamics simulations of cesium adsorption on illite nanoparticles publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2016.11.084 – volume: 6 start-page: 25 year: 2016 ident: 10.1016/j.clay.2020.105957_bb0250 article-title: Edge structure of montmorillonite from atomistic simulations publication-title: Minerals doi: 10.3390/min6020025 – volume: 95 start-page: 209 year: 2010 ident: 10.1016/j.clay.2020.105957_bb0265 article-title: Density functional theory and Monte Carlo study of octahedral cation ordering of Al/Fe/Mg cations in dioctahedral 2:1 phyllosilicates publication-title: Am. Mineral. doi: 10.2138/am.2010.3273 – volume: 46 start-page: 5713 year: 2012 ident: 10.1016/j.clay.2020.105957_bb0075 article-title: Zinc adsorption on clays inferred from atomistic simulations and EXAFS spectroscopy publication-title: Environ. Sci. Technol. doi: 10.1021/es204423k – volume: 134 start-page: 1272 year: 2015 ident: 10.1016/j.clay.2020.105957_bb0165 article-title: Stability of dioctahedral 2:1 phyllosilicate edge structures based on pyrophyllite models publication-title: Theor. Chem. Accounts doi: 10.1007/s00214-015-1715-6 – volume: 312 start-page: 297 year: 2007 ident: 10.1016/j.clay.2020.105957_bb0045 article-title: Modeling the acid-base surface chemistry of montmorillonite publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2007.03.062 – volume: 118 start-page: 12758 year: 2014 ident: 10.1016/j.clay.2020.105957_bb0260 article-title: Structural arrangements of isomorphic substitutions in smectites: Molecular simulation of the swelling properties, interlayer structure, and dynamics of hydrated Cs-montmorillonite revisited with new clay models publication-title: J. Phys. Chem. C doi: 10.1021/jp500538z – volume: 119 start-page: 17126 year: 2015 ident: 10.1016/j.clay.2020.105957_bb0095 article-title: Molecular simulation of structure and diffusion at smectite-water interfaces: using expanded clay interlayers as model nanopores publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b03314 – volume: 51 start-page: 359 year: 2003 ident: 10.1016/j.clay.2020.105957_bb0020 article-title: Ab initio determination of edge surface structures for dioctahedral 2:1 phyllosilicates: Implications for acid-base for reactivity publication-title: Clay Clay Miner. doi: 10.1346/CCMN.2003.0510401 – volume: 87 start-page: 2995 year: 1991 ident: 10.1016/j.clay.2020.105957_bb0230 article-title: Thermodynamics of solvation of ions. Part 5. Gibbs free energy of hydration at 298.15 K publication-title: J. Chem. Soc. Faraday Trans. doi: 10.1039/FT9918702995 – volume: 30 start-page: 548 year: 1996 ident: 10.1016/j.clay.2020.105957_bb0280 article-title: Investigation of Ni sorption on pyrophyllite: an XAFS study publication-title: Environ. Sci. Technol. doi: 10.1021/es950293+ – volume: 64 start-page: 374 year: 2016 ident: 10.1016/j.clay.2020.105957_bb0370 article-title: Molecular dynamics simulations of anion exclusion in clay interlayer nanopores publication-title: Clay Clay Miner. doi: 10.1346/CCMN.2016.0640403 – volume: 30 start-page: 382 year: 2003 ident: 10.1016/j.clay.2020.105957_bb0275 article-title: Octahedral cation ordering of illite and smectite. Theoretical exchange potential determination and Monte Carlo simulations publication-title: Phys. Chem. Miner. doi: 10.1007/s00269-003-0324-4 – volume: 177 start-page: 130 year: 2016 ident: 10.1016/j.clay.2020.105957_bb0355 article-title: Ion adsorption and diffusion in smectite: Molecular, pore, and continuum scale views publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2015.12.010 – volume: 81 start-page: 56 year: 2012 ident: 10.1016/j.clay.2020.105957_bb0200 article-title: Atomic-scale structures of interfaces between phyllosilicate edges and water publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2011.12.009 – volume: 63 start-page: 277 year: 2015 ident: 10.1016/j.clay.2020.105957_bb0245 article-title: Molecular dynamics simulations of pyrophyllite edge surfaces: structure, surface energies, and solvent accessibility publication-title: Clay Clay Miner. doi: 10.1346/CCMN.2015.0630403 – volume: 4 start-page: 2035 year: 2010 ident: 10.1016/j.clay.2020.105957_bb0005 article-title: Ion-specific effects under confinement: the role of interfacial water publication-title: ACS Nano doi: 10.1021/nn100251g – volume: 404 start-page: 183 year: 2013 ident: 10.1016/j.clay.2020.105957_bb0405 article-title: Interaction of divalent cations with basal planes and edge surfaces of phyllosilicate minerals: Muscovite and talc publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2013.04.023 – volume: 47 start-page: 9816 year: 2013 ident: 10.1016/j.clay.2020.105957_bb0070 article-title: Mobility of Na and Cs on montmorillonite surface under partially saturated conditions publication-title: Environ. Sci. Technol. doi: 10.1021/es401530n – volume: 41 start-page: 305 year: 1993 ident: 10.1016/j.clay.2020.105957_bb0030 article-title: The surface coulomb energy and proton coulomb potentials of pyrophyllite {010}, {110}, {100}, and {130}edges, Clay publication-title: Clay Miner. doi: 10.1346/CCMN.1993.0410305 – volume: 44 start-page: 2085 year: 2010 ident: 10.1016/j.clay.2020.105957_bb0035 article-title: Connecting the molecular scale to the continuum scale for diffusion processes in smectite-rich porous media publication-title: Environ. Sci. Technol. doi: 10.1021/es903645a – volume: 108 start-page: 6595 year: 2004 ident: 10.1016/j.clay.2020.105957_bb0195 article-title: On the calculation of diffusion coefficients in confined fluids and interfaces with an application to the liquid-vapor interface of water publication-title: J. Phys. Chem. B doi: 10.1021/jp0375057 – volume: 30 start-page: 141 year: 1988 ident: 10.1016/j.clay.2020.105957_bb0395 article-title: Analysis and implications of the edge structure of dioctahedral phyllosilicates publication-title: Clay Clay Miner. doi: 10.1346/CCMN.1988.0360207 – volume: 12 start-page: 688 year: 2010 ident: 10.1016/j.clay.2020.105957_bb0240 article-title: Ab initio molecular dynamics study of the hydration of Li+, Na+ and K+ in a montmorillonite model. Influence of isomorphic substitution publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B915689E – volume: 96 start-page: 3358 year: 1999 ident: 10.1016/j.clay.2020.105957_bb0330 article-title: Surface geochemistry of the clay minerals publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.96.7.3358 – volume: 26 start-page: 16647 year: 2010 ident: 10.1016/j.clay.2020.105957_bb0170 article-title: Hydrated cation speciation at the muscovite (001)-water interface publication-title: Langmuir doi: 10.1021/la1032866 – volume: 117 start-page: 180 year: 2013 ident: 10.1016/j.clay.2020.105957_bb0205 article-title: Acidity of edge surface sites of montmorillonite and kaolinite publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2013.04.008 – volume: 140 start-page: 410 year: 2014 ident: 10.1016/j.clay.2020.105957_bb0210 article-title: Surface acidity of 2:1-type dioctahedral clay minerals from first principles molecular dynamics simulations publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2014.05.044 – volume: 26 start-page: 1701 year: 2005 ident: 10.1016/j.clay.2020.105957_bb0320 article-title: GROMACS: Fast, flexible, and free publication-title: J. Comput. Chem. doi: 10.1002/jcc.20291 – volume: 39 start-page: 92 year: 1954 ident: 10.1016/j.clay.2020.105957_bb0215 article-title: The distribution of aluminum in the tetrahedra of silicates and aluminates publication-title: Am. Miner. – volume: 220 start-page: 291 year: 2018 ident: 10.1016/j.clay.2020.105957_bb0375 article-title: Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: a surface complexation model accounting for the spillover effect on surface potential publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2017.09.049 – volume: 563 start-page: 8 year: 2020 ident: 10.1016/j.clay.2020.105957_bb0410 article-title: Montmorillonite-catalyzed conversions of carbon dioxide to formic acid: active site, competitive mechanisms, influence factors and origin of high catalytic efficiency publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2019.12.064 – volume: 54 start-page: 540 issue: 1977 year: 1977 ident: 10.1016/j.clay.2020.105957_bb0300 article-title: Ionic hydration enthalpies publication-title: J. Chem. Educ. doi: 10.1021/ed054p540 – volume: 210 start-page: 43 year: 1999 ident: 10.1016/j.clay.2020.105957_bb0140 article-title: A model for metal adsorption on montmorillonite publication-title: J. Colloid Interf. Sci. doi: 10.1006/jcis.1998.5947 – volume: 24 start-page: 1852 year: 2009 ident: 10.1016/j.clay.2020.105957_bb0350 article-title: Modelling Zn(II) sorption onto clayey sediments using a multi-site ion-exchange model publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2009.06.006 – volume: 529 year: 2020 ident: 10.1016/j.clay.2020.105957_bb0125 article-title: Charge reversal and anion effects during adsorption of metal ions at clay surfaces: Mechanistic aspects and influence factors publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2019.110575 – volume: 501 start-page: 54 year: 2017 ident: 10.1016/j.clay.2020.105957_bb0175 article-title: Electric fields within clay materials: how to affect the adsorption of metal ions publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2017.04.040 – volume: 71 start-page: 5089 year: 2007 ident: 10.1016/j.clay.2020.105957_bb0270 article-title: Water and ions in clays: Unraveling the interlayer/micropore exchange using molecular dynamics publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2007.08.018 – volume: 122 start-page: 4937 year: 2018 ident: 10.1016/j.clay.2020.105957_bb0135 article-title: Effect of inorganic salt contaminants on the dissolution of kaolinite basal surfaces in alkali media: a molecular dynamics study publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b12581 – volume: 107 start-page: 1832 year: 2003 ident: 10.1016/j.clay.2020.105957_bb0235 article-title: Microscopic simulations of interlayer structure and dynamics in bihydrated heteroionic montmorillonites publication-title: J. Phys. Chem. B doi: 10.1021/jp022084z – volume: 8 start-page: 1763 year: 2016 ident: 10.1016/j.clay.2020.105957_bb0310 article-title: Palladium-nanoparticles-intercalated montmorillonite clay: a green catalyst for the solvent-free chemoselective hydrogenation of squalene publication-title: ChemCatChem doi: 10.1002/cctc.201600210 – volume: 64 start-page: 337 year: 2016 ident: 10.1016/j.clay.2020.105957_bb0430 article-title: Cadmium(II) complexes adsorbed on clay edge surfaces: Insight from first principles molecular dynamics simulation publication-title: Clay Clay Miner. doi: 10.1346/CCMN.2016.0640402 – volume: 55 start-page: 3790 year: 2016 ident: 10.1016/j.clay.2020.105957_bb0050 article-title: Effect of electrolyte concentration on the Stern layer thickness at a charged interface publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201512025 – volume: 118 start-page: 1001 year: 2014 ident: 10.1016/j.clay.2020.105957_bb0115 article-title: Molecular dynamics simulations of water and sodium diffusion in smectite interlayer nanopores as a function of pore size and temperature publication-title: J. Phys. Chem. C doi: 10.1021/jp408884g – volume: 40 start-page: 3865 year: 2006 ident: 10.1016/j.clay.2020.105957_bb0090 article-title: Water structure and aqueous uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite: results from molecular simulations publication-title: Environ. Sci. Technol. doi: 10.1021/es052522q – volume: 119 start-page: 17352 year: 2015 ident: 10.1016/j.clay.2020.105957_bb0120 article-title: Molecular dynamics simulations of NaCl permeation in bihydrated montmorillonite interlayer nanopores publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b01169 – volume: 91 start-page: 109 year: 2012 ident: 10.1016/j.clay.2020.105957_bb0340 article-title: Free energies of absorption of alkali ions onto beidellite and montmorillonite surfaces from constrained molecular dynamics simulations publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2012.04.060 – volume: 123 start-page: 239 year: 2016 ident: 10.1016/j.clay.2020.105957_bb0445 article-title: Adsorbents based on montmorillonite for contaminant removal from water: a review publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2015.12.024 – volume: 123 start-page: 13624 year: 2019 ident: 10.1016/j.clay.2020.105957_bb0400 article-title: Molecular dynamics simulations of the adsorption of phthalate esters on smectite clay surfaces publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b01864 |
SSID | ssj0012859 |
Score | 2.4883654 |
Snippet | Clay minerals are efficient adsorbents for metal ions and have been widely used to control heavy metals, while a number of critical issues remain elusive. In... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105957 |
SubjectTerms | Adsorption mechanism Clay nanoparticles Edge Heavy metals Selectivity |
Title | Adsorption and removal of metal ions by smectites nanoparticles: Mechanistic aspects, and impacts of charge location and edge structure |
URI | https://dx.doi.org/10.1016/j.clay.2020.105957 |
Volume | 201 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9xADLYQFRIcqrIFQR9oDtzadJPMZMP0tkLAAoJLAXGLJjOOtBWbRRs47KXX_u3aM7MLSBUHLjkkthONHduT2J8B9l2Z1k5aTOhqkSjEItFKIh1Qpij53xv3Dl9cDkbX6uy2uF2Bw0UvDJdVRt8ffLr31vFMP65m_3487v9iHJGMwl_ONktZBHewq5Kt_MefZZlHxgBtAd9bJ0wdG2dCjZe9M3PaI-Z-3K3mEPW_4PQs4Bx_gPcxUxTD8DCbsIJtDzae4Qf2YPvoqU2NSON72vVg7cQP7J0Tw824ewxiuo_wd-i66cx7CWFaJ2Y4mZKpiWkjJsgi2AhFPRfdhB0hpaGiNS3tq2P53E9xgdwq7NGdhfFtmt13Lyq0W3YsyqMvoeAwubwTf7YTAaz2cYZbcH18dHU4SuIohsTIXD4kDZaGFpILaFxxYAdqYEutkb8fYVEbZWpKA1LlrGok2twa0zTSYeGywqVGarkNq-20xR0QuR2Uyjjal5WUDblcZ64hGqvVgStNqnchW-igshGnnMdl3FWLgrTfFeutYr1VQW-78G3Jcx9QOl6lLhaqrV7YWkVh5BW-T2_k-wzrOVfC-FrvL7BKa41fKZV5qPe8re7Bu-Hp-ejyH8gp9UE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtswDCa6FMO2w7BlK9b96rDbZsSxpLjaLSjapWuTy9qhN0OWaCBD4xRxe8gT7LVHSkrWAUMPu_hgi7Qh0iQlkR8BPvoyr710mNFTnSlEnRklkS4oc5R89sa1w9PZaHKhvl3qyx043NTCcFplsv3Rpgdrne4M0mwOrufzwXfGERmS-ytYZymKeAC7jE6le7A7PjmdzLaHCYzRFiG-TcYEqXYmpnm5K7umZWIROt4a9lL_8k93fM7xM3iagkUxjt_zHHaw7cOTOxCCfdg7-lOpRkPTr9r14eHX0LN3TQQ_5t1tZNO9gF9j3y1XwVAI23qxwsWStE0sG7FAZsF6KOq16BZsCykSFa1taWmdMui-iClytXAAeBY2VGp2nwOrWHHZMasAwISCPeX2TbxzJyJe7e0KX8LF8dH54SRL3RgyKwt5kzVYWppIzqHx-sCN1MiVxiBvIaGurbI1RQK58k41El3hrG0a6VH7ofa5lUbuQa9dtvgKROFGpbKelmYlBUS-MEPf0Bhn1IEvbW72YbiRQeUSVDl3zLiqNjlpPyuWW8Vyq6Lc9uHTluY6AnXcO1pvRFv9pW4VeZJ76F7_J90HeDQ5n55VZyez0zfwuODEmJD6_RZ6NO_4jiKbm_p90tzfK-z38g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+and+removal+of+metal+ions+by+smectites+nanoparticles%3A+Mechanistic+aspects%2C+and+impacts+of+charge+location+and+edge+structure&rft.jtitle=Applied+clay+science&rft.au=Liu%2C+Xiantang&rft.au=Yang%2C+Sen&rft.au=Gu%2C+Peike&rft.au=Liu%2C+Sai&rft.date=2021-02-01&rft.issn=0169-1317&rft.volume=201&rft.spage=105957&rft_id=info:doi/10.1016%2Fj.clay.2020.105957&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_clay_2020_105957 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-1317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-1317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-1317&client=summon |