Adsorption and removal of metal ions by smectites nanoparticles: Mechanistic aspects, and impacts of charge location and edge structure

Clay minerals are efficient adsorbents for metal ions and have been widely used to control heavy metals, while a number of critical issues remain elusive. In this study, the fully flexible models for smectites (montmorillonite and beidellite) nanoparticles are developed and then subject to molecular...

Full description

Saved in:
Bibliographic Details
Published inApplied clay science Vol. 201; p. 105957
Main Authors Liu, Xiantang, Yang, Sen, Gu, Peike, Liu, Sai, Yang, Gang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Clay minerals are efficient adsorbents for metal ions and have been widely used to control heavy metals, while a number of critical issues remain elusive. In this study, the fully flexible models for smectites (montmorillonite and beidellite) nanoparticles are developed and then subject to molecular dynamics simulations. Edge rather than basal and interlayer surfaces show much higher adsorption efficacy, and therein univalent metal ions always cause excessive adsorption. For montmorillonite, inner-sphere Pb2+ ions emerge and predominate only at edge surfaces, and have higher stability than inner-sphere Na+ ions, manifesting the central role of edge surfaces to remove heavy metals. The peculiar distribution of edge-O atoms causes similar coordination environments for inner- and outer-sphere metal ions, and inner-sphere metal ions are preferred significantly due to bonding with edge-hydroxyls. Metal ions with smaller radii are more favorable to adsorb at edge surfaces, and those with considerable hydration effects (e.g., heavy metals) can be preferred. Edge surfaces of montmorillonite rather than beidellite are more efficient for adsorption, mainly as a result of distinct adsorption behaviors at basal surfaces that show reversed trends. (010) rather than (110) edges are superior for adsorption, which is caused mainly by structural differences. (010) edges are more exposed to adsorbates, and cleavage of smectites nanoparticles along (010) edges enhances removal of heavy metals. Diffusion, mobility and stability of adsorbed metal ions are also discussed, which further understanding of adsorption at edge surfaces. The findings are consistent with experimental observations available and provide new insights to the complicated processes at clay minerals/water interfaces including control of heavy metals. [Display omitted] •Fully flexible models for smectites nanoparticles with edges have been developed.•Edges prefer inner-sphere adsorption and play a central role to control heavy metals.•Ionic radius (decisive) and hydration effect affect adsorption of metal ions at edges.•Edges of montmorillonite rather than beidellite are more efficient for adsorption.•(010) rather than (110) edges are obviously superior for adsorption.
AbstractList Clay minerals are efficient adsorbents for metal ions and have been widely used to control heavy metals, while a number of critical issues remain elusive. In this study, the fully flexible models for smectites (montmorillonite and beidellite) nanoparticles are developed and then subject to molecular dynamics simulations. Edge rather than basal and interlayer surfaces show much higher adsorption efficacy, and therein univalent metal ions always cause excessive adsorption. For montmorillonite, inner-sphere Pb2+ ions emerge and predominate only at edge surfaces, and have higher stability than inner-sphere Na+ ions, manifesting the central role of edge surfaces to remove heavy metals. The peculiar distribution of edge-O atoms causes similar coordination environments for inner- and outer-sphere metal ions, and inner-sphere metal ions are preferred significantly due to bonding with edge-hydroxyls. Metal ions with smaller radii are more favorable to adsorb at edge surfaces, and those with considerable hydration effects (e.g., heavy metals) can be preferred. Edge surfaces of montmorillonite rather than beidellite are more efficient for adsorption, mainly as a result of distinct adsorption behaviors at basal surfaces that show reversed trends. (010) rather than (110) edges are superior for adsorption, which is caused mainly by structural differences. (010) edges are more exposed to adsorbates, and cleavage of smectites nanoparticles along (010) edges enhances removal of heavy metals. Diffusion, mobility and stability of adsorbed metal ions are also discussed, which further understanding of adsorption at edge surfaces. The findings are consistent with experimental observations available and provide new insights to the complicated processes at clay minerals/water interfaces including control of heavy metals. [Display omitted] •Fully flexible models for smectites nanoparticles with edges have been developed.•Edges prefer inner-sphere adsorption and play a central role to control heavy metals.•Ionic radius (decisive) and hydration effect affect adsorption of metal ions at edges.•Edges of montmorillonite rather than beidellite are more efficient for adsorption.•(010) rather than (110) edges are obviously superior for adsorption.
ArticleNumber 105957
Author Yang, Gang
Gu, Peike
Liu, Xiantang
Liu, Sai
Yang, Sen
Author_xml – sequence: 1
  givenname: Xiantang
  surname: Liu
  fullname: Liu, Xiantang
– sequence: 2
  givenname: Sen
  surname: Yang
  fullname: Yang, Sen
– sequence: 3
  givenname: Peike
  surname: Gu
  fullname: Gu, Peike
– sequence: 4
  givenname: Sai
  surname: Liu
  fullname: Liu, Sai
– sequence: 5
  givenname: Gang
  surname: Yang
  fullname: Yang, Gang
  email: theobiochem@163.com
BookMark eNp9kE1OwzAQhS1UJFrgAqx8AFJsJ04axAZV_ElFbGBtTe0JuEriyDaVegKujUMRCxZd2TN-743nm5FJ73ok5IKzOWe8vNrMdQu7uWBibMhaVkdkyheVyGom8wmZJlGd8ZxXJ2QWwoYxLhaynpKvWxOcH6J1PYXeUI-d20JLXUM7jOmSHgJd72joUEcbMdAeejeAj1a3GK7pM-oP6G1INYUwJFW4_Imy3QCpGKOSwr8jbZ2Gv0loUidE_6njp8czctxAG_D89zwlb_d3r8vHbPXy8LS8XWWQizxmDVaQ_l2VjBu50GVR6qqusRBCoFxDAWspOCuMLpoctdAATZMblIZLwyCv81Mi9rnauxA8NmrwtgO_U5ypEaXaqBGlGlGqPcpkWvwzaRt_NokebHvYerO3Ylpqa9GroC32Go31CZUyzh6yfwP5iZT4
CitedBy_id crossref_primary_10_1007_s10311_023_01606_1
crossref_primary_10_1016_j_cej_2024_148958
crossref_primary_10_1016_j_jenvman_2022_116066
crossref_primary_10_1016_j_jcis_2021_06_123
crossref_primary_10_1007_s11696_023_02779_3
crossref_primary_10_1016_j_colsuc_2023_100020
crossref_primary_10_1016_j_cej_2024_151362
crossref_primary_10_1016_j_jenvman_2023_118581
crossref_primary_10_1016_j_clay_2023_107006
crossref_primary_10_1016_j_clay_2022_106579
crossref_primary_10_1016_j_clay_2025_107725
crossref_primary_10_1016_j_seppur_2024_126662
crossref_primary_10_1039_D3CP04206E
crossref_primary_10_1016_j_cis_2024_103334
crossref_primary_10_1016_j_clay_2022_106491
crossref_primary_10_2138_am_2022_8834
crossref_primary_10_3390_ma16010179
crossref_primary_10_1016_j_micromeso_2024_113349
crossref_primary_10_1016_j_cherd_2022_11_050
crossref_primary_10_1016_j_apsusc_2021_150108
crossref_primary_10_1016_j_envres_2022_112817
crossref_primary_10_3390_min13111354
crossref_primary_10_1007_s11270_024_07442_5
crossref_primary_10_1016_j_seppur_2021_120099
crossref_primary_10_1039_D4RA05988C
crossref_primary_10_1016_j_mineng_2022_107608
crossref_primary_10_1016_j_colsurfa_2022_128556
crossref_primary_10_1016_j_clay_2022_106716
crossref_primary_10_1016_j_still_2024_106257
crossref_primary_10_1007_s10450_024_00515_1
crossref_primary_10_1016_j_scitotenv_2021_149905
crossref_primary_10_1016_j_chemphys_2025_112610
crossref_primary_10_1016_j_envres_2022_114183
crossref_primary_10_1016_j_cej_2021_132263
crossref_primary_10_1016_j_mtchem_2022_100858
crossref_primary_10_1016_j_clay_2022_106789
crossref_primary_10_3390_min11121407
crossref_primary_10_1016_j_clay_2021_106305
crossref_primary_10_1016_j_jhazmat_2022_129112
crossref_primary_10_1016_j_ceja_2023_100467
crossref_primary_10_1007_s10967_021_07674_3
Cites_doi 10.1016/j.jcis.2011.04.063
10.1016/j.gca.2006.11.026
10.1006/jcis.1996.0151
10.1002/saj2.20040
10.1021/acs.est.8b02504
10.1021/jp053874m
10.1346/CCMN.2004.0520307
10.1016/j.gca.2017.01.014
10.1002/anie.200601740
10.1021/ja00131a018
10.1180/claymin.1996.031.4.05
10.1021/acs.jpcc.6b00230
10.1016/j.gca.2016.06.021
10.1021/jp065687+
10.1021/acs.jpcc.9b11197
10.1021/acs.jpcc.9b10341
10.1016/j.cis.2007.12.008
10.1016/j.clay.2020.105442
10.1021/jp0363287
10.3390/min7050078
10.1016/j.cej.2011.05.015
10.1021/jp508427c
10.1039/C8CS01019F
10.1021/ct100494z
10.1016/j.jcis.2018.03.082
10.1039/C8CP07567K
10.2138/am-2003-11-1243
10.1063/1.466363
10.1021/acs.jpcc.5b03253
10.1016/j.cis.2008.12.002
10.1016/j.jcis.2011.02.039
10.2136/sssaj2018.04.0145
10.1002/jcc.540130812
10.1021/j100308a038
10.1021/acs.jpcc.8b04259
10.1021/jp0264883
10.1016/S0010-4655(00)00215-0
10.2136/sssaj1988.03615995005200010009x
10.1016/j.jcis.2016.11.084
10.3390/min6020025
10.2138/am.2010.3273
10.1021/es204423k
10.1007/s00214-015-1715-6
10.1016/j.jcis.2007.03.062
10.1021/jp500538z
10.1021/acs.jpcc.5b03314
10.1346/CCMN.2003.0510401
10.1039/FT9918702995
10.1021/es950293+
10.1346/CCMN.2016.0640403
10.1007/s00269-003-0324-4
10.1016/j.gca.2015.12.010
10.1016/j.gca.2011.12.009
10.1346/CCMN.2015.0630403
10.1021/nn100251g
10.1016/j.jcis.2013.04.023
10.1021/es401530n
10.1346/CCMN.1993.0410305
10.1021/es903645a
10.1021/jp0375057
10.1346/CCMN.1988.0360207
10.1039/B915689E
10.1073/pnas.96.7.3358
10.1021/la1032866
10.1016/j.gca.2013.04.008
10.1016/j.gca.2014.05.044
10.1002/jcc.20291
10.1016/j.gca.2017.09.049
10.1016/j.jcis.2019.12.064
10.1021/ed054p540
10.1006/jcis.1998.5947
10.1016/j.apgeochem.2009.06.006
10.1016/j.chemphys.2019.110575
10.1016/j.jcis.2017.04.040
10.1016/j.gca.2007.08.018
10.1021/acs.jpcc.7b12581
10.1021/jp022084z
10.1002/cctc.201600210
10.1346/CCMN.2016.0640402
10.1002/anie.201512025
10.1021/jp408884g
10.1021/es052522q
10.1021/acs.jpcc.5b01169
10.1016/j.gca.2012.04.060
10.1016/j.clay.2015.12.024
10.1021/acs.jpcc.9b01864
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.clay.2020.105957
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Geology
Visual Arts
Environmental Sciences
EISSN 1872-9053
ExternalDocumentID 10_1016_j_clay_2020_105957
S0169131720305226
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KCYFY
KOM
LY3
M24
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SMS
SPC
SPCBC
SSE
SSJ
SST
SSZ
T5K
WUQ
XJT
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-a323t-fe7a8597601d58c646c799e4222e5ba4ab52104dc4f3ec2caaff3de5d15d0a393
IEDL.DBID .~1
ISSN 0169-1317
IngestDate Tue Jul 01 02:29:16 EDT 2025
Thu Apr 24 23:12:00 EDT 2025
Fri Feb 23 02:48:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Selectivity
Clay nanoparticles
Edge
Heavy metals
Adsorption mechanism
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a323t-fe7a8597601d58c646c799e4222e5ba4ab52104dc4f3ec2caaff3de5d15d0a393
ParticipantIDs crossref_primary_10_1016_j_clay_2020_105957
crossref_citationtrail_10_1016_j_clay_2020_105957
elsevier_sciencedirect_doi_10_1016_j_clay_2020_105957
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationTitle Applied clay science
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hub, de Groot, van der Spoel (bb0130) 2010; 6
Liu, Lu (bb0190) 2006; 45
Tournassat, Tinnacher, Grangeon, Davis (bb0375) 2018; 220
Marcus (bb0230) 1991; 87
Vasconcelos, Bunker, Cygan (bb0390) 2007; 111
Bhattacharyya, Gupta (bb0015) 2008; 140
Ngouana, Kalinichev (bb0260) 2014; 118
Churakov (bb0065) 2007; 71
Khorshidi, Tan, Liu, Choi (bb0135) 2018; 122
Newton, Kwon, Cheong (bb0250) 2016; 6
Zhang, Liu, Tinnacher, Tournassat (bb0440) 2018; 52
Liu, Harder, Berne (bb0195) 2004; 108
Loganathan, Yazaydin, Bowers, Kalinichev, Kirkpatrick (bb0220) 2016; 120
Yang, Zhou (bb0410) 2020; 563
Kumar, Bouzida, Swendsen, Kollman, Rosenberg (bb0150) 1992; 13
Kwon, Newton (bb0155) 2016; 190
Underwood, Bourg (bb0385) 2020; 124
Greathouse, Cygan (bb0090) 2006; 40
Li, Li, Yang (bb0175) 2017; 501
Tertre, Beaucaire, Coreau, Juery (bb0350) 2009; 24
Bourg, Sposito (bb0035) 2010; 44
Sposito, Skipper, Sutton, Park, Soper, Greathouse (bb0330) 1999; 96
Churakov, Dähn (bb0075) 2012; 46
Sdiri, Higashi, Hatta, Jamoussi, Tase (bb0290) 2011; 172
Churakov (bb0060) 2006; 110
Soni, Sharma (bb0310) 2016; 8
Lammers, Bourg, Okumura, Kolluri, Sposito, Machida (bb0160) 2017; 490
Loewenstein (bb0215) 1954; 39
Sposito (bb0325) 2008
Biswas, Warr, Hilder, Goswami, Rahman, Churchman, Vasilev, Pan, Naidu (bb0025) 2019; 48
Li, Zhu, Jia, Yang (bb0180) 2018; 523
Tournassat, Chapron, Leroy, Bizi, Boulahya (bb0365) 2009; 339
Dang (bb0085) 1995; 117
Schneider, Hanisch, Wedel, Jusufi, Ballauff (bb0285) 2011; 358
Tinnacher, Holmboe, Tournassat, Bourg, Davis (bb0355) 2016; 177
Holmboe, Bourg (bb0115) 2014; 118
Mignon, Ugliengo, Sodupe, Hernandez (bb0240) 2010; 12
White, Zelazny (bb0395) 1988; 30
Hensen, Smit (bb0110) 2002; 106
Marry, Turq (bb0235) 2003; 107
Strawn, Palmer, Furnare, Goodell, Amonette, Kukkadapu (bb0335) 2004; 52
Zhang, Liu, Lu, He, Meijer, Wang (bb0435) 2017; 203
Argyris, Cole, Striolo (bb0005) 2010; 4
Sainz-Diaz, Palin, Hernandez-Laguna, Dove (bb0275) 2003; 30
Liu, Cheng, Sprik, Lu, Wang (bb0210) 2014; 140
Newton, Sposito (bb0245) 2015; 63
Liu, Lu, Sprik, Cheng, Meijer, Wang (bb0205) 2013; 117
Tournassat, Neaman, Villiéras, Bosbach, Charlet (bb0360) 2003; 88
Ziper, Komarneni, Baker (bb0450) 1988; 525
Zhang, Lu, Liu, Zhou, Zhou (bb0425) 2014; 118
Huang, Yang (bb0125) 2020; 529
van der Spoel, Lindahl, Hess, Groenhof, Mark, Berendsen (bb0320) 2005; 26
Tournassat, Bourg, Holmboe, Sposito, Steefel (bb0370) 2016; 64
Rotenberg, Marry, Vuilleumier, Malikova, Simon, Turq (bb0270) 2007; 71
Smith (bb0300) 1977; 54
Hartman (bb0105) 1973
Li, Li, Yang, Yang (bb0185) 2019; 21
Greathouse, Hart, Bowers, Kirkpatrick, Cygan (bb0095) 2015; 119
Zhang, Liu, Lu, Meijer, Wang, He, Wang (bb0430) 2016; 64
Suter, Sprik, Boek (bb0340) 2012; 91
Yang, Li, Li, Gu, Liu, Yang (bb0420) 2020; 124
Kraepiel, Keller, Morel (bb0140) 1999; 210
Zhu, Chen, Zhou, Xi, Zhu, He (bb0445) 2016; 123
Bleam, Welhouse, Janowiak (bb0030) 1993; 41
Cygan, Liang, Kalinichev (bb0080) 2004; 108
Bourg, Sposito (bb0040) 2011; 360
Brown, Goel, Abbas (bb0050) 2016; 55
Lee, Fenter, Park, Sturchio, Nagy (bb0170) 2010; 26
Lyklema (bb0225) 2009; 147-148
Bickmore, Rosso, Nagy, Cygan, Tadanier (bb0020) 2003; 51
Chang, Sposito (bb0055) 1995; 178
Yan, Masliyah, Xu (bb0405) 2013; 404
Undabeytia, Merillo, Maqueda (bb0380) 1996
Willemsen, Myneni, Bourg (bb0400) 2019; 123
Gu, Yang, Liu, Yang (bb0100) 2020; 84
Kraevsky, Tournassat, Vayer, Warmont, Grangeon, Wakou, Kalinichev (bb0145) 2020; 186
Souaille, Roux (bb0315) 2001; 135
Liu, Lu, Meijer, Wang, Zhou (bb0200) 2012; 81
Teich-McGoldrick, Greathouse, Jové-Colón, Cygan (bb0345) 2015; 119
Simonnin, Marry, Noetinger, Nieto-Draghi, Rotenberg (bb0295) 2018; 122
Newton, Lee, Kwon (bb0255) 2017; 7
Yang, Li, Jia, Li, Yang (bb0415) 2018; 82
Scheidegger, Lamble, Sparks (bb0280) 1996; 30
Lavikainen, Hirvi, Kasa, Schatz, Pakkanen (bb0165) 2015; 134
Hsiao, Hedström (bb0120) 2015; 119
Ortega-Castro, Hernandez-Haro, Dove, Hernandez-Laguna, Sainz-Diaz (bb0265) 2010; 95
Churakov (bb0070) 2013; 47
Smith, Dang (bb0305) 1994; 100
Berendsen, Grigera, Straatsma (bb0010) 1987; 91
Bourg, Sposito, Bourg (bb0045) 2007; 312
Churakov (10.1016/j.clay.2020.105957_bb0060) 2006; 110
Liu (10.1016/j.clay.2020.105957_bb0205) 2013; 117
Suter (10.1016/j.clay.2020.105957_bb0340) 2012; 91
Yang (10.1016/j.clay.2020.105957_bb0415) 2018; 82
Bourg (10.1016/j.clay.2020.105957_bb0045) 2007; 312
Hartman (10.1016/j.clay.2020.105957_bb0105) 1973
Loganathan (10.1016/j.clay.2020.105957_bb0220) 2016; 120
Lee (10.1016/j.clay.2020.105957_bb0170) 2010; 26
Tinnacher (10.1016/j.clay.2020.105957_bb0355) 2016; 177
Scheidegger (10.1016/j.clay.2020.105957_bb0280) 1996; 30
Schneider (10.1016/j.clay.2020.105957_bb0285) 2011; 358
Liu (10.1016/j.clay.2020.105957_bb0200) 2012; 81
Sainz-Diaz (10.1016/j.clay.2020.105957_bb0275) 2003; 30
Newton (10.1016/j.clay.2020.105957_bb0245) 2015; 63
Yang (10.1016/j.clay.2020.105957_bb0410) 2020; 563
Cygan (10.1016/j.clay.2020.105957_bb0080) 2004; 108
Liu (10.1016/j.clay.2020.105957_bb0190) 2006; 45
Yang (10.1016/j.clay.2020.105957_bb0420) 2020; 124
Gu (10.1016/j.clay.2020.105957_bb0100) 2020; 84
Kwon (10.1016/j.clay.2020.105957_bb0155) 2016; 190
Chang (10.1016/j.clay.2020.105957_bb0055) 1995; 178
Underwood (10.1016/j.clay.2020.105957_bb0385) 2020; 124
Zhang (10.1016/j.clay.2020.105957_bb0440) 2018; 52
Ngouana (10.1016/j.clay.2020.105957_bb0260) 2014; 118
Biswas (10.1016/j.clay.2020.105957_bb0025) 2019; 48
Hub (10.1016/j.clay.2020.105957_bb0130) 2010; 6
Newton (10.1016/j.clay.2020.105957_bb0250) 2016; 6
Rotenberg (10.1016/j.clay.2020.105957_bb0270) 2007; 71
Sposito (10.1016/j.clay.2020.105957_bb0330) 1999; 96
Willemsen (10.1016/j.clay.2020.105957_bb0400) 2019; 123
Churakov (10.1016/j.clay.2020.105957_bb0070) 2013; 47
Huang (10.1016/j.clay.2020.105957_bb0125) 2020; 529
Teich-McGoldrick (10.1016/j.clay.2020.105957_bb0345) 2015; 119
Tournassat (10.1016/j.clay.2020.105957_bb0375) 2018; 220
Zhang (10.1016/j.clay.2020.105957_bb0425) 2014; 118
Li (10.1016/j.clay.2020.105957_bb0185) 2019; 21
Tournassat (10.1016/j.clay.2020.105957_bb0370) 2016; 64
Li (10.1016/j.clay.2020.105957_bb0180) 2018; 523
Bhattacharyya (10.1016/j.clay.2020.105957_bb0015) 2008; 140
Souaille (10.1016/j.clay.2020.105957_bb0315) 2001; 135
Zhang (10.1016/j.clay.2020.105957_bb0430) 2016; 64
Argyris (10.1016/j.clay.2020.105957_bb0005) 2010; 4
Lammers (10.1016/j.clay.2020.105957_bb0160) 2017; 490
Sposito (10.1016/j.clay.2020.105957_bb0325) 2008
Smith (10.1016/j.clay.2020.105957_bb0305) 1994; 100
Churakov (10.1016/j.clay.2020.105957_bb0065) 2007; 71
Bickmore (10.1016/j.clay.2020.105957_bb0020) 2003; 51
Holmboe (10.1016/j.clay.2020.105957_bb0115) 2014; 118
Simonnin (10.1016/j.clay.2020.105957_bb0295) 2018; 122
Vasconcelos (10.1016/j.clay.2020.105957_bb0390) 2007; 111
White (10.1016/j.clay.2020.105957_bb0395) 1988; 30
Smith (10.1016/j.clay.2020.105957_bb0300) 1977; 54
Lyklema (10.1016/j.clay.2020.105957_bb0225) 2009; 147-148
Marcus (10.1016/j.clay.2020.105957_bb0230) 1991; 87
Zhu (10.1016/j.clay.2020.105957_bb0445) 2016; 123
Hsiao (10.1016/j.clay.2020.105957_bb0120) 2015; 119
Soni (10.1016/j.clay.2020.105957_bb0310) 2016; 8
Tertre (10.1016/j.clay.2020.105957_bb0350) 2009; 24
Brown (10.1016/j.clay.2020.105957_bb0050) 2016; 55
Zhang (10.1016/j.clay.2020.105957_bb0435) 2017; 203
Berendsen (10.1016/j.clay.2020.105957_bb0010) 1987; 91
Marry (10.1016/j.clay.2020.105957_bb0235) 2003; 107
Lavikainen (10.1016/j.clay.2020.105957_bb0165) 2015; 134
Greathouse (10.1016/j.clay.2020.105957_bb0090) 2006; 40
Loewenstein (10.1016/j.clay.2020.105957_bb0215) 1954; 39
Tournassat (10.1016/j.clay.2020.105957_bb0360) 2003; 88
Strawn (10.1016/j.clay.2020.105957_bb0335) 2004; 52
Hensen (10.1016/j.clay.2020.105957_bb0110) 2002; 106
Greathouse (10.1016/j.clay.2020.105957_bb0095) 2015; 119
Liu (10.1016/j.clay.2020.105957_bb0195) 2004; 108
Liu (10.1016/j.clay.2020.105957_bb0210) 2014; 140
van der Spoel (10.1016/j.clay.2020.105957_bb0320) 2005; 26
Li (10.1016/j.clay.2020.105957_bb0175) 2017; 501
Yan (10.1016/j.clay.2020.105957_bb0405) 2013; 404
Bleam (10.1016/j.clay.2020.105957_bb0030) 1993; 41
Kraepiel (10.1016/j.clay.2020.105957_bb0140) 1999; 210
Tournassat (10.1016/j.clay.2020.105957_bb0365) 2009; 339
Ortega-Castro (10.1016/j.clay.2020.105957_bb0265) 2010; 95
Sdiri (10.1016/j.clay.2020.105957_bb0290) 2011; 172
Mignon (10.1016/j.clay.2020.105957_bb0240) 2010; 12
Newton (10.1016/j.clay.2020.105957_bb0255) 2017; 7
Bourg (10.1016/j.clay.2020.105957_bb0040) 2011; 360
Khorshidi (10.1016/j.clay.2020.105957_bb0135) 2018; 122
Bourg (10.1016/j.clay.2020.105957_bb0035) 2010; 44
Churakov (10.1016/j.clay.2020.105957_bb0075) 2012; 46
Dang (10.1016/j.clay.2020.105957_bb0085) 1995; 117
Kumar (10.1016/j.clay.2020.105957_bb0150) 1992; 13
Kraevsky (10.1016/j.clay.2020.105957_bb0145) 2020; 186
Undabeytia (10.1016/j.clay.2020.105957_bb0380) 1996
Ziper (10.1016/j.clay.2020.105957_bb0450) 1988; 525
References_xml – volume: 178
  start-page: 555
  year: 1995
  end-page: 564
  ident: bb0055
  article-title: The electrical double layer of a disk-shaped clay mineral particle: Effects of electrolyte properties and surface charge density
  publication-title: J. Colloid Interf. Sci.
– volume: 30
  start-page: 382
  year: 2003
  end-page: 392
  ident: bb0275
  article-title: Octahedral cation ordering of illite and smectite. Theoretical exchange potential determination and Monte Carlo simulations
  publication-title: Phys. Chem. Miner.
– volume: 360
  start-page: 701
  year: 2011
  end-page: 715
  ident: bb0040
  article-title: Molecular dynamics simulations of the electrical double layer on smectite surfaces contacting concentrated mixed electrolyte (NaCl-CaCl
  publication-title: J. Colloid Interf. Sci.
– volume: 106
  start-page: 12664
  year: 2002
  end-page: 12667
  ident: bb0110
  article-title: Why clays swell
  publication-title: J. Phys. Chem. B
– volume: 490
  start-page: 608
  year: 2017
  end-page: 620
  ident: bb0160
  article-title: Molecular dynamics simulations of cesium adsorption on illite nanoparticles
  publication-title: J. Colloid Interf. Sci.
– volume: 220
  start-page: 291
  year: 2018
  end-page: 308
  ident: bb0375
  article-title: Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: a surface complexation model accounting for the spillover effect on surface potential
  publication-title: Geochim. Cosmochim. Acta
– volume: 24
  start-page: 1852
  year: 2009
  end-page: 1861
  ident: bb0350
  article-title: Modelling Zn(II) sorption onto clayey sediments using a multi-site ion-exchange model
  publication-title: Appl. Geochem.
– volume: 140
  start-page: 410
  year: 2014
  end-page: 417
  ident: bb0210
  article-title: Surface acidity of 2:1-type dioctahedral clay minerals from first principles molecular dynamics simulations
  publication-title: Geochim. Cosmochim. Acta
– volume: 135
  start-page: 40
  year: 2001
  end-page: 57
  ident: bb0315
  article-title: Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations
  publication-title: Comput. Phys. Commun.
– volume: 134
  start-page: 1272
  year: 2015
  ident: bb0165
  article-title: Stability of dioctahedral 2:1 phyllosilicate edge structures based on pyrophyllite models
  publication-title: Theor. Chem. Accounts
– volume: 95
  start-page: 209
  year: 2010
  end-page: 220
  ident: bb0265
  article-title: Density functional theory and Monte Carlo study of octahedral cation ordering of Al/Fe/Mg cations in dioctahedral 2:1 phyllosilicates
  publication-title: Am. Mineral.
– volume: 100
  start-page: 3757
  year: 1994
  end-page: 3766
  ident: bb0305
  article-title: Computer simulations of NaCl association in polarizable water
  publication-title: J. Chem. Phys.
– volume: 108
  start-page: 1255
  year: 2004
  end-page: 1266
  ident: bb0080
  article-title: Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field
  publication-title: J. Phys. Chem. B
– volume: 501
  start-page: 54
  year: 2017
  end-page: 59
  ident: bb0175
  article-title: Electric fields within clay materials: how to affect the adsorption of metal ions
  publication-title: J. Colloid Interf. Sci.
– volume: 110
  start-page: 4135
  year: 2006
  end-page: 4146
  ident: bb0060
  article-title: Ab initio study of sorption on pyrophyllite: structure and acidity of the edge sites
  publication-title: J. Phys. Chem. B
– volume: 529
  year: 2020
  ident: bb0125
  article-title: Charge reversal and anion effects during adsorption of metal ions at clay surfaces: Mechanistic aspects and influence factors
  publication-title: Chem. Phys.
– year: 1973
  ident: bb0105
  article-title: Crystal Growth: An Introduction
– start-page: 485
  year: 1996
  end-page: 490
  ident: bb0380
  article-title: Adsorption of Cd and Zn on montmorillonite in the presence of a cationic pesticide
  publication-title: Clay Miner.
– volume: 118
  start-page: 12758
  year: 2014
  end-page: 12773
  ident: bb0260
  article-title: Structural arrangements of isomorphic substitutions in smectites: Molecular simulation of the swelling properties, interlayer structure, and dynamics of hydrated Cs-montmorillonite revisited with new clay models
  publication-title: J. Phys. Chem. C
– volume: 108
  start-page: 6595
  year: 2004
  end-page: 6602
  ident: bb0195
  article-title: On the calculation of diffusion coefficients in confined fluids and interfaces with an application to the liquid-vapor interface of water
  publication-title: J. Phys. Chem. B
– volume: 71
  start-page: 5089
  year: 2007
  end-page: 5101
  ident: bb0270
  article-title: Water and ions in clays: Unraveling the interlayer/micropore exchange using molecular dynamics
  publication-title: Geochim. Cosmochim. Acta
– volume: 6
  start-page: 3713
  year: 2010
  end-page: 3720
  ident: bb0130
  article-title: g_wham - a free weighted histogram analysis implementation including robust error and autocorrelation estimates
  publication-title: J. Chem. Theory Comput.
– volume: 140
  start-page: 114
  year: 2008
  end-page: 131
  ident: bb0015
  article-title: Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review
  publication-title: Adv. Colloid Interf. Sci.
– volume: 123
  start-page: 239
  year: 2016
  end-page: 258
  ident: bb0445
  article-title: Adsorbents based on montmorillonite for contaminant removal from water: a review
  publication-title: Appl. Clay Sci.
– volume: 525
  start-page: 49
  year: 1988
  end-page: 53
  ident: bb0450
  article-title: Specific cadmium sorption in relation to the crystal chemistry of clay minerals
  publication-title: Soil Sci. Soc. Am. J.
– volume: 117
  start-page: 180
  year: 2013
  end-page: 190
  ident: bb0205
  article-title: Acidity of edge surface sites of montmorillonite and kaolinite
  publication-title: Geochim. Cosmochim. Acta
– volume: 124
  start-page: 3702
  year: 2020
  end-page: 3714
  ident: bb0385
  article-title: Large-scale molecular dynamics simulation of the dehydration of a suspension of smectite clay nanoparticles
  publication-title: J. Phys. Chem. C
– volume: 91
  start-page: 6269
  year: 1987
  end-page: 6271
  ident: bb0010
  article-title: The missing term in effective pair potentials
  publication-title: J. Phys. Chem. C
– volume: 47
  start-page: 9816
  year: 2013
  end-page: 9823
  ident: bb0070
  article-title: Mobility of Na and Cs on montmorillonite surface under partially saturated conditions
  publication-title: Environ. Sci. Technol.
– volume: 21
  start-page: 1963
  year: 2019
  end-page: 1971
  ident: bb0185
  article-title: Swelling of clay minerals: dual characteristics of K
  publication-title: Phys. Chem. Chem. Phys.
– volume: 52
  start-page: 321
  year: 2004
  end-page: 333
  ident: bb0335
  article-title: Copper sorption mechanisms on smectites
  publication-title: Clay Clay Miner.
– volume: 203
  start-page: 54
  year: 2017
  end-page: 68
  ident: bb0435
  article-title: Surface complexation of heavy metal cations on clay edges: insights from first principles molecular dynamics simulation of Ni(II)
  publication-title: Geochim. Cosmochim. Acta
– volume: 13
  start-page: 1011
  year: 1992
  end-page: 1021
  ident: bb0150
  article-title: The weighted histogram analysis method for free-energy calculations on biomolecules. I. the method
  publication-title: J. Comput. Chem.
– volume: 358
  start-page: 62
  year: 2011
  end-page: 67
  ident: bb0285
  article-title: Experimental study of electrostatically stabilized colloidal particles: colloidal stability and charge reversal
  publication-title: J. Colloid Interf. Sci.
– volume: 26
  start-page: 1701
  year: 2005
  end-page: 1718
  ident: bb0320
  article-title: GROMACS: Fast, flexible, and free
  publication-title: J. Comput. Chem.
– volume: 87
  start-page: 2995
  year: 1991
  end-page: 2999
  ident: bb0230
  article-title: Thermodynamics of solvation of ions. Part 5. Gibbs free energy of hydration at 298.15 K
  publication-title: J. Chem. Soc. Faraday Trans.
– volume: 119
  start-page: 20880
  year: 2015
  end-page: 20891
  ident: bb0345
  article-title: Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: Comparison of temperature, interlayer cation, and charge location effects
  publication-title: J. Phys. Chem. C
– volume: 44
  start-page: 2085
  year: 2010
  end-page: 2091
  ident: bb0035
  article-title: Connecting the molecular scale to the continuum scale for diffusion processes in smectite-rich porous media
  publication-title: Environ. Sci. Technol.
– volume: 147-148
  start-page: 205
  year: 2009
  end-page: 213
  ident: bb0225
  article-title: Quest for ion-ion correlations in electric double layers and overcharging phenomena
  publication-title: Adv. Colloid Interf. Sci.
– volume: 7
  start-page: 78
  year: 2017
  ident: bb0255
  article-title: Na-montmorillonite edge structure and surface complexes: an atomistic perspective
  publication-title: Minerals
– volume: 41
  start-page: 305
  year: 1993
  end-page: 316
  ident: bb0030
  article-title: The surface coulomb energy and proton coulomb potentials of pyrophyllite {010}, {110}, {100}, and {130}edges,
  publication-title: Clay Miner.
– volume: 190
  start-page: 100
  year: 2016
  end-page: 114
  ident: bb0155
  article-title: Structure and stability of pyrophyllite edge surfaces: effect of temperature and water chemical potential
  publication-title: Geochim. Cosmochim. Acta
– volume: 39
  start-page: 92
  year: 1954
  end-page: 97
  ident: bb0215
  article-title: The distribution of aluminum in the tetrahedra of silicates and aluminates
  publication-title: Am. Miner.
– volume: 26
  start-page: 16647
  year: 2010
  end-page: 16651
  ident: bb0170
  article-title: Hydrated cation speciation at the muscovite (001)-water interface
  publication-title: Langmuir
– volume: 120
  start-page: 12429
  year: 2016
  end-page: 12439
  ident: bb0220
  article-title: Cation and water structure, dynamics, and energetics in smectite clays: a molecular dynamics study of Ca-hectorite
  publication-title: J. Phys. Chem. C
– volume: 40
  start-page: 3865
  year: 2006
  end-page: 3871
  ident: bb0090
  article-title: Water structure and aqueous uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite: results from molecular simulations
  publication-title: Environ. Sci. Technol.
– volume: 64
  start-page: 374
  year: 2016
  end-page: 388
  ident: bb0370
  article-title: Molecular dynamics simulations of anion exclusion in clay interlayer nanopores
  publication-title: Clay Clay Miner.
– volume: 88
  start-page: 1989
  year: 2003
  end-page: 1995
  ident: bb0360
  article-title: Nanomorphology of montmorillonite particles
  publication-title: Am. Miner.
– volume: 563
  start-page: 8
  year: 2020
  end-page: 16
  ident: bb0410
  article-title: Montmorillonite-catalyzed conversions of carbon dioxide to formic acid: active site, competitive mechanisms, influence factors and origin of high catalytic efficiency
  publication-title: J. Colloid Interf. Sci.
– volume: 45
  start-page: 6300
  year: 2006
  end-page: 6303
  ident: bb0190
  article-title: A thermodynamic understanding of clay-swelling inhibition by potassium ions
  publication-title: Angew. Chem. Int. Ed.
– volume: 81
  start-page: 56
  year: 2012
  end-page: 68
  ident: bb0200
  article-title: Atomic-scale structures of interfaces between phyllosilicate edges and water
  publication-title: Geochim. Cosmochim. Acta
– volume: 404
  start-page: 183
  year: 2013
  end-page: 191
  ident: bb0405
  article-title: Interaction of divalent cations with basal planes and edge surfaces of phyllosilicate minerals: Muscovite and talc
  publication-title: J. Colloid Interf. Sci.
– volume: 51
  start-page: 359
  year: 2003
  end-page: 371
  ident: bb0020
  article-title: Ab initio determination of edge surface structures for dioctahedral 2:1 phyllosilicates: Implications for acid-base for reactivity
  publication-title: Clay Clay Miner.
– volume: 119
  start-page: 17352
  year: 2015
  end-page: 17361
  ident: bb0120
  article-title: Molecular dynamics simulations of NaCl permeation in bihydrated montmorillonite interlayer nanopores
  publication-title: J. Phys. Chem. C
– volume: 172
  start-page: 37
  year: 2011
  end-page: 46
  ident: bb0290
  article-title: Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems
  publication-title: Chem. Eng. J.
– volume: 82
  start-page: 1384
  year: 2018
  end-page: 1391
  ident: bb0415
  article-title: Molecular dynamics simulations for the co-adsorption of binary electrolytes at the interface of montmorillonite and aqueous solutions
  publication-title: Soil Sci. Soc. Am. J.
– volume: 186
  year: 2020
  ident: bb0145
  article-title: Identification of montmorillonite particle edge orientations by atomic-force microscopy
  publication-title: Appl. Clay Sci.
– volume: 107
  start-page: 1832
  year: 2003
  end-page: 1839
  ident: bb0235
  article-title: Microscopic simulations of interlayer structure and dynamics in bihydrated heteroionic montmorillonites
  publication-title: J. Phys. Chem. B
– volume: 12
  start-page: 688
  year: 2010
  end-page: 697
  ident: bb0240
  article-title: Ab initio molecular dynamics study of the hydration of Li
  publication-title: Phys. Chem. Chem. Phys.
– volume: 63
  start-page: 277
  year: 2015
  end-page: 289
  ident: bb0245
  article-title: Molecular dynamics simulations of pyrophyllite edge surfaces: structure, surface energies, and solvent accessibility
  publication-title: Clay Clay Miner.
– volume: 48
  start-page: 3740
  year: 2019
  end-page: 3770
  ident: bb0025
  article-title: Biocompatible functionalisation of nanoclays for improved environmental remediation
  publication-title: Chem. Soc. Rev.
– volume: 119
  start-page: 17126
  year: 2015
  end-page: 17136
  ident: bb0095
  article-title: Molecular simulation of structure and diffusion at smectite-water interfaces: using expanded clay interlayers as model nanopores
  publication-title: J. Phys. Chem. C
– volume: 523
  start-page: 18
  year: 2018
  end-page: 26
  ident: bb0180
  article-title: Confinement effects and mechanistic aspects for montmorillonite nanopores
  publication-title: J. Colloid Interf. Sci.
– volume: 46
  start-page: 5713
  year: 2012
  end-page: 5719
  ident: bb0075
  article-title: Zinc adsorption on clays inferred from atomistic simulations and EXAFS spectroscopy
  publication-title: Environ. Sci. Technol.
– volume: 122
  start-page: 4937
  year: 2018
  end-page: 4944
  ident: bb0135
  article-title: Effect of inorganic salt contaminants on the dissolution of kaolinite basal surfaces in alkali media: a molecular dynamics study
  publication-title: J. Phys. Chem. C
– volume: 123
  start-page: 13624
  year: 2019
  end-page: 13636
  ident: bb0400
  article-title: Molecular dynamics simulations of the adsorption of phthalate esters on smectite clay surfaces
  publication-title: J. Phys. Chem. C
– volume: 91
  start-page: 109
  year: 2012
  end-page: 119
  ident: bb0340
  article-title: Free energies of absorption of alkali ions onto beidellite and montmorillonite surfaces from constrained molecular dynamics simulations
  publication-title: Geochim. Cosmochim. Acta
– volume: 312
  start-page: 297
  year: 2007
  end-page: 310
  ident: bb0045
  article-title: Modeling the acid-base surface chemistry of montmorillonite
  publication-title: J. Colloid Interf. Sci.
– volume: 177
  start-page: 130
  year: 2016
  end-page: 149
  ident: bb0355
  article-title: Ion adsorption and diffusion in smectite: Molecular, pore, and continuum scale views
  publication-title: Geochim. Cosmochim. Acta
– volume: 8
  start-page: 1763
  year: 2016
  end-page: 1768
  ident: bb0310
  article-title: Palladium-nanoparticles-intercalated montmorillonite clay: a green catalyst for the solvent-free chemoselective hydrogenation of squalene
  publication-title: ChemCatChem
– volume: 64
  start-page: 337
  year: 2016
  end-page: 347
  ident: bb0430
  article-title: Cadmium(II) complexes adsorbed on clay edge surfaces: Insight from first principles molecular dynamics simulation
  publication-title: Clay Clay Miner.
– volume: 52
  start-page: 8501
  year: 2018
  end-page: 8509
  ident: bb0440
  article-title: Mechanistic understanding of uranyl ion complexation on montmorillonite edges: a combined first-principles molecular dynamics-surface complexation modeling approach
  publication-title: Environ. Sci. Technol.
– volume: 4
  start-page: 2035
  year: 2010
  end-page: 2042
  ident: bb0005
  article-title: Ion-specific effects under confinement: the role of interfacial water
  publication-title: ACS Nano
– volume: 30
  start-page: 548
  year: 1996
  end-page: 554
  ident: bb0280
  article-title: Investigation of Ni sorption on pyrophyllite: an XAFS study
  publication-title: Environ. Sci. Technol.
– volume: 6
  start-page: 25
  year: 2016
  ident: bb0250
  article-title: Edge structure of montmorillonite from atomistic simulations
  publication-title: Minerals
– volume: 122
  start-page: 18484
  year: 2018
  end-page: 18492
  ident: bb0295
  article-title: Mineral- and ion-specific effects at clay-water interfaces: structure, diffusion, and hydrodynamics
  publication-title: J. Phys. Chem. C
– volume: 118
  start-page: 1001
  year: 2014
  end-page: 1013
  ident: bb0115
  article-title: Molecular dynamics simulations of water and sodium diffusion in smectite interlayer nanopores as a function of pore size and temperature
  publication-title: J. Phys. Chem. C
– volume: 210
  start-page: 43
  year: 1999
  end-page: 54
  ident: bb0140
  article-title: A model for metal adsorption on montmorillonite
  publication-title: J. Colloid Interf. Sci.
– volume: 84
  start-page: 494
  year: 2020
  end-page: 501
  ident: bb0100
  article-title: Development of a simple, molecular dynamics-based method to estimate the thickness of electrical double layers
  publication-title: Soil Sci. Soc. Am. J.
– volume: 55
  start-page: 3790
  year: 2016
  end-page: 3794
  ident: bb0050
  article-title: Effect of electrolyte concentration on the Stern layer thickness at a charged interface
  publication-title: Angew. Chem. Int. Ed.
– volume: 111
  start-page: 6753
  year: 2007
  end-page: 6762
  ident: bb0390
  article-title: Molecular dynamics modeling of ion adsorption to the basal surfaces of kaolinite
  publication-title: J. Phys. Chem. C
– volume: 30
  start-page: 141
  year: 1988
  end-page: 146
  ident: bb0395
  article-title: Analysis and implications of the edge structure of dioctahedral phyllosilicates
  publication-title: Clay Clay Miner.
– year: 2008
  ident: bb0325
  article-title: The Chemistry of Soils
– volume: 339
  start-page: 533
  year: 2009
  end-page: 541
  ident: bb0365
  article-title: Comparison of molecular dynamics simulations with triple layer and modified Gouy-Chapman models in a 0.1M NaCl-montmorillonite system,
  publication-title: Sci.
– volume: 54
  start-page: 540
  year: 1977
  end-page: 542
  ident: bb0300
  article-title: Ionic hydration enthalpies
  publication-title: J. Chem. Educ.
– volume: 117
  start-page: 6954
  year: 1995
  end-page: 6960
  ident: bb0085
  article-title: Mechanism and thermodynamics of ion selectivity in aqueous solutions of 18-crown-6 ether: a molecular dynamics study
  publication-title: J. Am. Chem. Soc.
– volume: 124
  start-page: 1500
  year: 2020
  end-page: 1510
  ident: bb0420
  article-title: Competitive adsorption of metal ions at smectite/water interfaces: Mechanistic aspects, and impacts of co-ions, charge densities, and charge locations
  publication-title: J. Phys. Chem. C
– volume: 71
  start-page: 1130
  year: 2007
  end-page: 1144
  ident: bb0065
  article-title: Structure and dynamics of the water films confined between edges of pyrophyllite: a first principle study
  publication-title: Geochim. Cosmochim. Acta
– volume: 118
  start-page: 29811
  year: 2014
  end-page: 29821
  ident: bb0425
  article-title: Hydration and mobility of interlayer ions of (Na
  publication-title: J. Phys. Chem. C
– volume: 96
  start-page: 3358
  year: 1999
  end-page: 3364
  ident: bb0330
  article-title: Surface geochemistry of the clay minerals
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 360
  start-page: 701
  year: 2011
  ident: 10.1016/j.clay.2020.105957_bb0040
  article-title: Molecular dynamics simulations of the electrical double layer on smectite surfaces contacting concentrated mixed electrolyte (NaCl-CaCl2) solutions
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2011.04.063
– volume: 71
  start-page: 1130
  year: 2007
  ident: 10.1016/j.clay.2020.105957_bb0065
  article-title: Structure and dynamics of the water films confined between edges of pyrophyllite: a first principle study
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2006.11.026
– volume: 178
  start-page: 555
  year: 1995
  ident: 10.1016/j.clay.2020.105957_bb0055
  article-title: The electrical double layer of a disk-shaped clay mineral particle: Effects of electrolyte properties and surface charge density
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1006/jcis.1996.0151
– volume: 84
  start-page: 494
  year: 2020
  ident: 10.1016/j.clay.2020.105957_bb0100
  article-title: Development of a simple, molecular dynamics-based method to estimate the thickness of electrical double layers
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.1002/saj2.20040
– volume: 52
  start-page: 8501
  year: 2018
  ident: 10.1016/j.clay.2020.105957_bb0440
  article-title: Mechanistic understanding of uranyl ion complexation on montmorillonite edges: a combined first-principles molecular dynamics-surface complexation modeling approach
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b02504
– volume: 110
  start-page: 4135
  year: 2006
  ident: 10.1016/j.clay.2020.105957_bb0060
  article-title: Ab initio study of sorption on pyrophyllite: structure and acidity of the edge sites
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp053874m
– volume: 52
  start-page: 321
  year: 2004
  ident: 10.1016/j.clay.2020.105957_bb0335
  article-title: Copper sorption mechanisms on smectites
  publication-title: Clay Clay Miner.
  doi: 10.1346/CCMN.2004.0520307
– volume: 203
  start-page: 54
  year: 2017
  ident: 10.1016/j.clay.2020.105957_bb0435
  article-title: Surface complexation of heavy metal cations on clay edges: insights from first principles molecular dynamics simulation of Ni(II)
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2017.01.014
– volume: 45
  start-page: 6300
  year: 2006
  ident: 10.1016/j.clay.2020.105957_bb0190
  article-title: A thermodynamic understanding of clay-swelling inhibition by potassium ions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200601740
– volume: 117
  start-page: 6954
  year: 1995
  ident: 10.1016/j.clay.2020.105957_bb0085
  article-title: Mechanism and thermodynamics of ion selectivity in aqueous solutions of 18-crown-6 ether: a molecular dynamics study
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00131a018
– start-page: 485
  year: 1996
  ident: 10.1016/j.clay.2020.105957_bb0380
  article-title: Adsorption of Cd and Zn on montmorillonite in the presence of a cationic pesticide
  publication-title: Clay Miner.
  doi: 10.1180/claymin.1996.031.4.05
– volume: 120
  start-page: 12429
  year: 2016
  ident: 10.1016/j.clay.2020.105957_bb0220
  article-title: Cation and water structure, dynamics, and energetics in smectite clays: a molecular dynamics study of Ca-hectorite
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b00230
– volume: 190
  start-page: 100
  year: 2016
  ident: 10.1016/j.clay.2020.105957_bb0155
  article-title: Structure and stability of pyrophyllite edge surfaces: effect of temperature and water chemical potential
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2016.06.021
– volume: 111
  start-page: 6753
  year: 2007
  ident: 10.1016/j.clay.2020.105957_bb0390
  article-title: Molecular dynamics modeling of ion adsorption to the basal surfaces of kaolinite
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp065687+
– volume: 124
  start-page: 3702
  year: 2020
  ident: 10.1016/j.clay.2020.105957_bb0385
  article-title: Large-scale molecular dynamics simulation of the dehydration of a suspension of smectite clay nanoparticles
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b11197
– volume: 124
  start-page: 1500
  year: 2020
  ident: 10.1016/j.clay.2020.105957_bb0420
  article-title: Competitive adsorption of metal ions at smectite/water interfaces: Mechanistic aspects, and impacts of co-ions, charge densities, and charge locations
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b10341
– volume: 140
  start-page: 114
  year: 2008
  ident: 10.1016/j.clay.2020.105957_bb0015
  article-title: Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review
  publication-title: Adv. Colloid Interf. Sci.
  doi: 10.1016/j.cis.2007.12.008
– volume: 186
  year: 2020
  ident: 10.1016/j.clay.2020.105957_bb0145
  article-title: Identification of montmorillonite particle edge orientations by atomic-force microscopy
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2020.105442
– volume: 108
  start-page: 1255
  year: 2004
  ident: 10.1016/j.clay.2020.105957_bb0080
  article-title: Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0363287
– volume: 7
  start-page: 78
  year: 2017
  ident: 10.1016/j.clay.2020.105957_bb0255
  article-title: Na-montmorillonite edge structure and surface complexes: an atomistic perspective
  publication-title: Minerals
  doi: 10.3390/min7050078
– volume: 172
  start-page: 37
  year: 2011
  ident: 10.1016/j.clay.2020.105957_bb0290
  article-title: Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.05.015
– volume: 118
  start-page: 29811
  year: 2014
  ident: 10.1016/j.clay.2020.105957_bb0425
  article-title: Hydration and mobility of interlayer ions of (NaxCay)-montmorillonite: a molecular dynamics study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp508427c
– volume: 48
  start-page: 3740
  year: 2019
  ident: 10.1016/j.clay.2020.105957_bb0025
  article-title: Biocompatible functionalisation of nanoclays for improved environmental remediation
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS01019F
– volume: 6
  start-page: 3713
  year: 2010
  ident: 10.1016/j.clay.2020.105957_bb0130
  article-title: g_wham - a free weighted histogram analysis implementation including robust error and autocorrelation estimates
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct100494z
– volume: 339
  start-page: 533
  year: 2009
  ident: 10.1016/j.clay.2020.105957_bb0365
  article-title: Comparison of molecular dynamics simulations with triple layer and modified Gouy-Chapman models in a 0.1M NaCl-montmorillonite system, J. Colloid Interf
  publication-title: Sci.
– volume: 523
  start-page: 18
  year: 2018
  ident: 10.1016/j.clay.2020.105957_bb0180
  article-title: Confinement effects and mechanistic aspects for montmorillonite nanopores
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2018.03.082
– volume: 21
  start-page: 1963
  year: 2019
  ident: 10.1016/j.clay.2020.105957_bb0185
  article-title: Swelling of clay minerals: dual characteristics of K+ ions and exploration of critical influencing factors
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP07567K
– volume: 88
  start-page: 1989
  year: 2003
  ident: 10.1016/j.clay.2020.105957_bb0360
  article-title: Nanomorphology of montmorillonite particles
  publication-title: Am. Miner.
  doi: 10.2138/am-2003-11-1243
– volume: 100
  start-page: 3757
  year: 1994
  ident: 10.1016/j.clay.2020.105957_bb0305
  article-title: Computer simulations of NaCl association in polarizable water
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.466363
– volume: 119
  start-page: 20880
  year: 2015
  ident: 10.1016/j.clay.2020.105957_bb0345
  article-title: Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: Comparison of temperature, interlayer cation, and charge location effects
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b03253
– volume: 147-148
  start-page: 205
  year: 2009
  ident: 10.1016/j.clay.2020.105957_bb0225
  article-title: Quest for ion-ion correlations in electric double layers and overcharging phenomena
  publication-title: Adv. Colloid Interf. Sci.
  doi: 10.1016/j.cis.2008.12.002
– volume: 358
  start-page: 62
  year: 2011
  ident: 10.1016/j.clay.2020.105957_bb0285
  article-title: Experimental study of electrostatically stabilized colloidal particles: colloidal stability and charge reversal
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2011.02.039
– volume: 82
  start-page: 1384
  year: 2018
  ident: 10.1016/j.clay.2020.105957_bb0415
  article-title: Molecular dynamics simulations for the co-adsorption of binary electrolytes at the interface of montmorillonite and aqueous solutions
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2018.04.0145
– volume: 13
  start-page: 1011
  year: 1992
  ident: 10.1016/j.clay.2020.105957_bb0150
  article-title: The weighted histogram analysis method for free-energy calculations on biomolecules. I. the method
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540130812
– volume: 91
  start-page: 6269
  year: 1987
  ident: 10.1016/j.clay.2020.105957_bb0010
  article-title: The missing term in effective pair potentials
  publication-title: J. Phys. Chem. C
  doi: 10.1021/j100308a038
– year: 1973
  ident: 10.1016/j.clay.2020.105957_bb0105
– volume: 122
  start-page: 18484
  year: 2018
  ident: 10.1016/j.clay.2020.105957_bb0295
  article-title: Mineral- and ion-specific effects at clay-water interfaces: structure, diffusion, and hydrodynamics
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b04259
– year: 2008
  ident: 10.1016/j.clay.2020.105957_bb0325
– volume: 106
  start-page: 12664
  year: 2002
  ident: 10.1016/j.clay.2020.105957_bb0110
  article-title: Why clays swell
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0264883
– volume: 135
  start-page: 40
  year: 2001
  ident: 10.1016/j.clay.2020.105957_bb0315
  article-title: Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(00)00215-0
– volume: 525
  start-page: 49
  year: 1988
  ident: 10.1016/j.clay.2020.105957_bb0450
  article-title: Specific cadmium sorption in relation to the crystal chemistry of clay minerals
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1988.03615995005200010009x
– volume: 490
  start-page: 608
  year: 2017
  ident: 10.1016/j.clay.2020.105957_bb0160
  article-title: Molecular dynamics simulations of cesium adsorption on illite nanoparticles
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2016.11.084
– volume: 6
  start-page: 25
  year: 2016
  ident: 10.1016/j.clay.2020.105957_bb0250
  article-title: Edge structure of montmorillonite from atomistic simulations
  publication-title: Minerals
  doi: 10.3390/min6020025
– volume: 95
  start-page: 209
  year: 2010
  ident: 10.1016/j.clay.2020.105957_bb0265
  article-title: Density functional theory and Monte Carlo study of octahedral cation ordering of Al/Fe/Mg cations in dioctahedral 2:1 phyllosilicates
  publication-title: Am. Mineral.
  doi: 10.2138/am.2010.3273
– volume: 46
  start-page: 5713
  year: 2012
  ident: 10.1016/j.clay.2020.105957_bb0075
  article-title: Zinc adsorption on clays inferred from atomistic simulations and EXAFS spectroscopy
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es204423k
– volume: 134
  start-page: 1272
  year: 2015
  ident: 10.1016/j.clay.2020.105957_bb0165
  article-title: Stability of dioctahedral 2:1 phyllosilicate edge structures based on pyrophyllite models
  publication-title: Theor. Chem. Accounts
  doi: 10.1007/s00214-015-1715-6
– volume: 312
  start-page: 297
  year: 2007
  ident: 10.1016/j.clay.2020.105957_bb0045
  article-title: Modeling the acid-base surface chemistry of montmorillonite
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2007.03.062
– volume: 118
  start-page: 12758
  year: 2014
  ident: 10.1016/j.clay.2020.105957_bb0260
  article-title: Structural arrangements of isomorphic substitutions in smectites: Molecular simulation of the swelling properties, interlayer structure, and dynamics of hydrated Cs-montmorillonite revisited with new clay models
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp500538z
– volume: 119
  start-page: 17126
  year: 2015
  ident: 10.1016/j.clay.2020.105957_bb0095
  article-title: Molecular simulation of structure and diffusion at smectite-water interfaces: using expanded clay interlayers as model nanopores
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b03314
– volume: 51
  start-page: 359
  year: 2003
  ident: 10.1016/j.clay.2020.105957_bb0020
  article-title: Ab initio determination of edge surface structures for dioctahedral 2:1 phyllosilicates: Implications for acid-base for reactivity
  publication-title: Clay Clay Miner.
  doi: 10.1346/CCMN.2003.0510401
– volume: 87
  start-page: 2995
  year: 1991
  ident: 10.1016/j.clay.2020.105957_bb0230
  article-title: Thermodynamics of solvation of ions. Part 5. Gibbs free energy of hydration at 298.15 K
  publication-title: J. Chem. Soc. Faraday Trans.
  doi: 10.1039/FT9918702995
– volume: 30
  start-page: 548
  year: 1996
  ident: 10.1016/j.clay.2020.105957_bb0280
  article-title: Investigation of Ni sorption on pyrophyllite: an XAFS study
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es950293+
– volume: 64
  start-page: 374
  year: 2016
  ident: 10.1016/j.clay.2020.105957_bb0370
  article-title: Molecular dynamics simulations of anion exclusion in clay interlayer nanopores
  publication-title: Clay Clay Miner.
  doi: 10.1346/CCMN.2016.0640403
– volume: 30
  start-page: 382
  year: 2003
  ident: 10.1016/j.clay.2020.105957_bb0275
  article-title: Octahedral cation ordering of illite and smectite. Theoretical exchange potential determination and Monte Carlo simulations
  publication-title: Phys. Chem. Miner.
  doi: 10.1007/s00269-003-0324-4
– volume: 177
  start-page: 130
  year: 2016
  ident: 10.1016/j.clay.2020.105957_bb0355
  article-title: Ion adsorption and diffusion in smectite: Molecular, pore, and continuum scale views
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2015.12.010
– volume: 81
  start-page: 56
  year: 2012
  ident: 10.1016/j.clay.2020.105957_bb0200
  article-title: Atomic-scale structures of interfaces between phyllosilicate edges and water
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2011.12.009
– volume: 63
  start-page: 277
  year: 2015
  ident: 10.1016/j.clay.2020.105957_bb0245
  article-title: Molecular dynamics simulations of pyrophyllite edge surfaces: structure, surface energies, and solvent accessibility
  publication-title: Clay Clay Miner.
  doi: 10.1346/CCMN.2015.0630403
– volume: 4
  start-page: 2035
  year: 2010
  ident: 10.1016/j.clay.2020.105957_bb0005
  article-title: Ion-specific effects under confinement: the role of interfacial water
  publication-title: ACS Nano
  doi: 10.1021/nn100251g
– volume: 404
  start-page: 183
  year: 2013
  ident: 10.1016/j.clay.2020.105957_bb0405
  article-title: Interaction of divalent cations with basal planes and edge surfaces of phyllosilicate minerals: Muscovite and talc
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2013.04.023
– volume: 47
  start-page: 9816
  year: 2013
  ident: 10.1016/j.clay.2020.105957_bb0070
  article-title: Mobility of Na and Cs on montmorillonite surface under partially saturated conditions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es401530n
– volume: 41
  start-page: 305
  year: 1993
  ident: 10.1016/j.clay.2020.105957_bb0030
  article-title: The surface coulomb energy and proton coulomb potentials of pyrophyllite {010}, {110}, {100}, and {130}edges, Clay
  publication-title: Clay Miner.
  doi: 10.1346/CCMN.1993.0410305
– volume: 44
  start-page: 2085
  year: 2010
  ident: 10.1016/j.clay.2020.105957_bb0035
  article-title: Connecting the molecular scale to the continuum scale for diffusion processes in smectite-rich porous media
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es903645a
– volume: 108
  start-page: 6595
  year: 2004
  ident: 10.1016/j.clay.2020.105957_bb0195
  article-title: On the calculation of diffusion coefficients in confined fluids and interfaces with an application to the liquid-vapor interface of water
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0375057
– volume: 30
  start-page: 141
  year: 1988
  ident: 10.1016/j.clay.2020.105957_bb0395
  article-title: Analysis and implications of the edge structure of dioctahedral phyllosilicates
  publication-title: Clay Clay Miner.
  doi: 10.1346/CCMN.1988.0360207
– volume: 12
  start-page: 688
  year: 2010
  ident: 10.1016/j.clay.2020.105957_bb0240
  article-title: Ab initio molecular dynamics study of the hydration of Li+, Na+ and K+ in a montmorillonite model. Influence of isomorphic substitution
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B915689E
– volume: 96
  start-page: 3358
  year: 1999
  ident: 10.1016/j.clay.2020.105957_bb0330
  article-title: Surface geochemistry of the clay minerals
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.96.7.3358
– volume: 26
  start-page: 16647
  year: 2010
  ident: 10.1016/j.clay.2020.105957_bb0170
  article-title: Hydrated cation speciation at the muscovite (001)-water interface
  publication-title: Langmuir
  doi: 10.1021/la1032866
– volume: 117
  start-page: 180
  year: 2013
  ident: 10.1016/j.clay.2020.105957_bb0205
  article-title: Acidity of edge surface sites of montmorillonite and kaolinite
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2013.04.008
– volume: 140
  start-page: 410
  year: 2014
  ident: 10.1016/j.clay.2020.105957_bb0210
  article-title: Surface acidity of 2:1-type dioctahedral clay minerals from first principles molecular dynamics simulations
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2014.05.044
– volume: 26
  start-page: 1701
  year: 2005
  ident: 10.1016/j.clay.2020.105957_bb0320
  article-title: GROMACS: Fast, flexible, and free
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20291
– volume: 39
  start-page: 92
  year: 1954
  ident: 10.1016/j.clay.2020.105957_bb0215
  article-title: The distribution of aluminum in the tetrahedra of silicates and aluminates
  publication-title: Am. Miner.
– volume: 220
  start-page: 291
  year: 2018
  ident: 10.1016/j.clay.2020.105957_bb0375
  article-title: Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: a surface complexation model accounting for the spillover effect on surface potential
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2017.09.049
– volume: 563
  start-page: 8
  year: 2020
  ident: 10.1016/j.clay.2020.105957_bb0410
  article-title: Montmorillonite-catalyzed conversions of carbon dioxide to formic acid: active site, competitive mechanisms, influence factors and origin of high catalytic efficiency
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2019.12.064
– volume: 54
  start-page: 540
  issue: 1977
  year: 1977
  ident: 10.1016/j.clay.2020.105957_bb0300
  article-title: Ionic hydration enthalpies
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed054p540
– volume: 210
  start-page: 43
  year: 1999
  ident: 10.1016/j.clay.2020.105957_bb0140
  article-title: A model for metal adsorption on montmorillonite
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1006/jcis.1998.5947
– volume: 24
  start-page: 1852
  year: 2009
  ident: 10.1016/j.clay.2020.105957_bb0350
  article-title: Modelling Zn(II) sorption onto clayey sediments using a multi-site ion-exchange model
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2009.06.006
– volume: 529
  year: 2020
  ident: 10.1016/j.clay.2020.105957_bb0125
  article-title: Charge reversal and anion effects during adsorption of metal ions at clay surfaces: Mechanistic aspects and influence factors
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2019.110575
– volume: 501
  start-page: 54
  year: 2017
  ident: 10.1016/j.clay.2020.105957_bb0175
  article-title: Electric fields within clay materials: how to affect the adsorption of metal ions
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2017.04.040
– volume: 71
  start-page: 5089
  year: 2007
  ident: 10.1016/j.clay.2020.105957_bb0270
  article-title: Water and ions in clays: Unraveling the interlayer/micropore exchange using molecular dynamics
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2007.08.018
– volume: 122
  start-page: 4937
  year: 2018
  ident: 10.1016/j.clay.2020.105957_bb0135
  article-title: Effect of inorganic salt contaminants on the dissolution of kaolinite basal surfaces in alkali media: a molecular dynamics study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b12581
– volume: 107
  start-page: 1832
  year: 2003
  ident: 10.1016/j.clay.2020.105957_bb0235
  article-title: Microscopic simulations of interlayer structure and dynamics in bihydrated heteroionic montmorillonites
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp022084z
– volume: 8
  start-page: 1763
  year: 2016
  ident: 10.1016/j.clay.2020.105957_bb0310
  article-title: Palladium-nanoparticles-intercalated montmorillonite clay: a green catalyst for the solvent-free chemoselective hydrogenation of squalene
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201600210
– volume: 64
  start-page: 337
  year: 2016
  ident: 10.1016/j.clay.2020.105957_bb0430
  article-title: Cadmium(II) complexes adsorbed on clay edge surfaces: Insight from first principles molecular dynamics simulation
  publication-title: Clay Clay Miner.
  doi: 10.1346/CCMN.2016.0640402
– volume: 55
  start-page: 3790
  year: 2016
  ident: 10.1016/j.clay.2020.105957_bb0050
  article-title: Effect of electrolyte concentration on the Stern layer thickness at a charged interface
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201512025
– volume: 118
  start-page: 1001
  year: 2014
  ident: 10.1016/j.clay.2020.105957_bb0115
  article-title: Molecular dynamics simulations of water and sodium diffusion in smectite interlayer nanopores as a function of pore size and temperature
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp408884g
– volume: 40
  start-page: 3865
  year: 2006
  ident: 10.1016/j.clay.2020.105957_bb0090
  article-title: Water structure and aqueous uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite: results from molecular simulations
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es052522q
– volume: 119
  start-page: 17352
  year: 2015
  ident: 10.1016/j.clay.2020.105957_bb0120
  article-title: Molecular dynamics simulations of NaCl permeation in bihydrated montmorillonite interlayer nanopores
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b01169
– volume: 91
  start-page: 109
  year: 2012
  ident: 10.1016/j.clay.2020.105957_bb0340
  article-title: Free energies of absorption of alkali ions onto beidellite and montmorillonite surfaces from constrained molecular dynamics simulations
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2012.04.060
– volume: 123
  start-page: 239
  year: 2016
  ident: 10.1016/j.clay.2020.105957_bb0445
  article-title: Adsorbents based on montmorillonite for contaminant removal from water: a review
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2015.12.024
– volume: 123
  start-page: 13624
  year: 2019
  ident: 10.1016/j.clay.2020.105957_bb0400
  article-title: Molecular dynamics simulations of the adsorption of phthalate esters on smectite clay surfaces
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b01864
SSID ssj0012859
Score 2.4883654
Snippet Clay minerals are efficient adsorbents for metal ions and have been widely used to control heavy metals, while a number of critical issues remain elusive. In...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105957
SubjectTerms Adsorption mechanism
Clay nanoparticles
Edge
Heavy metals
Selectivity
Title Adsorption and removal of metal ions by smectites nanoparticles: Mechanistic aspects, and impacts of charge location and edge structure
URI https://dx.doi.org/10.1016/j.clay.2020.105957
Volume 201
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9xADLYQFRIcqrIFQR9oDtzadJPMZMP0tkLAAoJLAXGLJjOOtBWbRRs47KXX_u3aM7MLSBUHLjkkthONHduT2J8B9l2Z1k5aTOhqkSjEItFKIh1Qpij53xv3Dl9cDkbX6uy2uF2Bw0UvDJdVRt8ffLr31vFMP65m_3487v9iHJGMwl_ONktZBHewq5Kt_MefZZlHxgBtAd9bJ0wdG2dCjZe9M3PaI-Z-3K3mEPW_4PQs4Bx_gPcxUxTD8DCbsIJtDzae4Qf2YPvoqU2NSON72vVg7cQP7J0Tw824ewxiuo_wd-i66cx7CWFaJ2Y4mZKpiWkjJsgi2AhFPRfdhB0hpaGiNS3tq2P53E9xgdwq7NGdhfFtmt13Lyq0W3YsyqMvoeAwubwTf7YTAaz2cYZbcH18dHU4SuIohsTIXD4kDZaGFpILaFxxYAdqYEutkb8fYVEbZWpKA1LlrGok2twa0zTSYeGywqVGarkNq-20xR0QuR2Uyjjal5WUDblcZ64hGqvVgStNqnchW-igshGnnMdl3FWLgrTfFeutYr1VQW-78G3Jcx9QOl6lLhaqrV7YWkVh5BW-T2_k-wzrOVfC-FrvL7BKa41fKZV5qPe8re7Bu-Hp-ejyH8gp9UE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtswDCa6FMO2w7BlK9b96rDbZsSxpLjaLSjapWuTy9qhN0OWaCBD4xRxe8gT7LVHSkrWAUMPu_hgi7Qh0iQlkR8BPvoyr710mNFTnSlEnRklkS4oc5R89sa1w9PZaHKhvl3qyx043NTCcFplsv3Rpgdrne4M0mwOrufzwXfGERmS-ytYZymKeAC7jE6le7A7PjmdzLaHCYzRFiG-TcYEqXYmpnm5K7umZWIROt4a9lL_8k93fM7xM3iagkUxjt_zHHaw7cOTOxCCfdg7-lOpRkPTr9r14eHX0LN3TQQ_5t1tZNO9gF9j3y1XwVAI23qxwsWStE0sG7FAZsF6KOq16BZsCykSFa1taWmdMui-iClytXAAeBY2VGp2nwOrWHHZMasAwISCPeX2TbxzJyJe7e0KX8LF8dH54SRL3RgyKwt5kzVYWppIzqHx-sCN1MiVxiBvIaGurbI1RQK58k41El3hrG0a6VH7ofa5lUbuQa9dtvgKROFGpbKelmYlBUS-MEPf0Bhn1IEvbW72YbiRQeUSVDl3zLiqNjlpPyuWW8Vyq6Lc9uHTluY6AnXcO1pvRFv9pW4VeZJ76F7_J90HeDQ5n55VZyez0zfwuODEmJD6_RZ6NO_4jiKbm_p90tzfK-z38g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+and+removal+of+metal+ions+by+smectites+nanoparticles%3A+Mechanistic+aspects%2C+and+impacts+of+charge+location+and+edge+structure&rft.jtitle=Applied+clay+science&rft.au=Liu%2C+Xiantang&rft.au=Yang%2C+Sen&rft.au=Gu%2C+Peike&rft.au=Liu%2C+Sai&rft.date=2021-02-01&rft.issn=0169-1317&rft.volume=201&rft.spage=105957&rft_id=info:doi/10.1016%2Fj.clay.2020.105957&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_clay_2020_105957
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-1317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-1317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-1317&client=summon