Multi-scale multi-dimensional characterization of clay-hosted pore networks of shale using FIBSEM, TEM, and X-ray micro-tomography: Implications for methane storage and migration
Gas shales contain a variety of clay-rich materials with multifarious pore networks. Clay-hosted porosity is an essential component and considered to play a crucial role in establishing the original hydrocarbon molecules in place and transport characteristics of the shale gas reservoir. To better un...
Saved in:
Published in | Applied clay science Vol. 213; p. 106239 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gas shales contain a variety of clay-rich materials with multifarious pore networks. Clay-hosted porosity is an essential component and considered to play a crucial role in establishing the original hydrocarbon molecules in place and transport characteristics of the shale gas reservoir. To better understand the petrophysical basis of gas storage and migration mechanisms, we aim to visualize and quantify the nature of the clay-hosted pore networks and across micrometer and nanometer length scales. Core and outcrop samples are provided of various clay-rich shales (Qiongzhusi, Longmaxi, Wufeng, and Shihezi Formation), which are characterized using a synergistic multi-scale multi-dimensional workflow by FIBSEM, TEM, and X-ray micro-tomography (mCT). Clay-hosted pores are observed in three significant modes of occurrence depending on imaging of pores at the 2D-FIBSEM/TEM level. The first pore type is found between clay domains in clay matrix as interparticle pore, with pore size smaller than 1 μm, and includes six subtypes: type a, type b, type c, type d, type e, and type f. The second associated with the admixture belongs to inter-aggregate pore that can be further sub-divided into three classes: type g (organic-clay), type h (pyrite-clay), and type I (organic-pyrite-clay), with pore size above 50 up to 500 nm. The third associated with the clay nanoplatelets is intraparticle pore. The upper pore-size range of such pores is generally less than 1 nm, with most pores being less than 0.4 nm. Using 3D-mCT and 3D-FIBSEM, the data sets were reconstructed, clay structures were segmented and visualized, revealing the well-connected clay-hosted pore networks within the heterogeneous clay matrix and quantitatively computing pore size, pore volume, and porosity at micrometer and nanometer scales. These visual results highlight the significance of clay-hosted pore networks in shale gas reservoirs because they are the dominant controls on the petrophysical properties. The application of this workflow to worldwide clay-rich shale deposits will allow essential insights into estimating porosity and permeability of shale formations and provide insight to the storage and transport of hydrocarbon molecules from shale matrix to predict total gas resources.
•We provide a synergistic workflow for clay microstructural characterization.•Gas shales contain a variety of clay-rich materials with multifarious pore networks.•Three major clay-hosted pore types are identified and classified.•Clay pores and their related capacities of storage and transport for gas are studied. |
---|---|
AbstractList | Gas shales contain a variety of clay-rich materials with multifarious pore networks. Clay-hosted porosity is an essential component and considered to play a crucial role in establishing the original hydrocarbon molecules in place and transport characteristics of the shale gas reservoir. To better understand the petrophysical basis of gas storage and migration mechanisms, we aim to visualize and quantify the nature of the clay-hosted pore networks and across micrometer and nanometer length scales. Core and outcrop samples are provided of various clay-rich shales (Qiongzhusi, Longmaxi, Wufeng, and Shihezi Formation), which are characterized using a synergistic multi-scale multi-dimensional workflow by FIBSEM, TEM, and X-ray micro-tomography (mCT). Clay-hosted pores are observed in three significant modes of occurrence depending on imaging of pores at the 2D-FIBSEM/TEM level. The first pore type is found between clay domains in clay matrix as interparticle pore, with pore size smaller than 1 μm, and includes six subtypes: type a, type b, type c, type d, type e, and type f. The second associated with the admixture belongs to inter-aggregate pore that can be further sub-divided into three classes: type g (organic-clay), type h (pyrite-clay), and type I (organic-pyrite-clay), with pore size above 50 up to 500 nm. The third associated with the clay nanoplatelets is intraparticle pore. The upper pore-size range of such pores is generally less than 1 nm, with most pores being less than 0.4 nm. Using 3D-mCT and 3D-FIBSEM, the data sets were reconstructed, clay structures were segmented and visualized, revealing the well-connected clay-hosted pore networks within the heterogeneous clay matrix and quantitatively computing pore size, pore volume, and porosity at micrometer and nanometer scales. These visual results highlight the significance of clay-hosted pore networks in shale gas reservoirs because they are the dominant controls on the petrophysical properties. The application of this workflow to worldwide clay-rich shale deposits will allow essential insights into estimating porosity and permeability of shale formations and provide insight to the storage and transport of hydrocarbon molecules from shale matrix to predict total gas resources.
•We provide a synergistic workflow for clay microstructural characterization.•Gas shales contain a variety of clay-rich materials with multifarious pore networks.•Three major clay-hosted pore types are identified and classified.•Clay pores and their related capacities of storage and transport for gas are studied. |
ArticleNumber | 106239 |
Author | Lu, Yanjun Zheng, Liming Bu, Hongling Huang, Cheng Ju, Yiwen Yang, Manping Chu, Qingzhong Li, Xiaoshi Zhu, Hongjian Feng, Hongye Qiao, Peng Qi, Yu Ma, Pinghua |
Author_xml | – sequence: 1 givenname: Hongjian surname: Zhu fullname: Zhu, Hongjian email: zhj8641@163.com organization: School of Vehicle and Energy, Yanshan University, Qinhuangdao 066000, China – sequence: 2 givenname: Cheng surname: Huang fullname: Huang, Cheng organization: School of Civil Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China – sequence: 3 givenname: Yiwen surname: Ju fullname: Ju, Yiwen email: juyw@ucas.ac.cn organization: Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China – sequence: 4 givenname: Hongling surname: Bu fullname: Bu, Hongling organization: National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China – sequence: 5 givenname: Xiaoshi surname: Li fullname: Li, Xiaoshi organization: Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China – sequence: 6 givenname: Manping surname: Yang fullname: Yang, Manping email: yangmp@ysu.edu.cn organization: School of Vehicle and Energy, Yanshan University, Qinhuangdao 066000, China – sequence: 7 givenname: Qingzhong surname: Chu fullname: Chu, Qingzhong organization: School of Vehicle and Energy, Yanshan University, Qinhuangdao 066000, China – sequence: 8 givenname: Hongye surname: Feng fullname: Feng, Hongye organization: Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China – sequence: 9 givenname: Peng surname: Qiao fullname: Qiao, Peng organization: Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China – sequence: 10 givenname: Yu surname: Qi fullname: Qi, Yu organization: School of Vehicle and Energy, Yanshan University, Qinhuangdao 066000, China – sequence: 11 givenname: Pinghua surname: Ma fullname: Ma, Pinghua organization: School of Vehicle and Energy, Yanshan University, Qinhuangdao 066000, China – sequence: 12 givenname: Liming surname: Zheng fullname: Zheng, Liming organization: School of Vehicle and Energy, Yanshan University, Qinhuangdao 066000, China – sequence: 13 givenname: Yanjun surname: Lu fullname: Lu, Yanjun organization: School of Vehicle and Energy, Yanshan University, Qinhuangdao 066000, China |
BookMark | eNp9kM1uEzEQxy1UJNLCC3DyA-Dgj2S9i7hA1ZZIrThQJG7W1B5nHXbtyHZB4bH6hOwmnDj0Mh6N_7_5-J-Ts5giEvJW8KXgonm_W9oBDkvJpZgKjVTdC7IQrZas42t1RhaTqGNCCf2KnJey41zIdt0tyNPd41ADKxYGpOMxd2HEWEKKMFDbQwZbMYc_UKcSTZ7Ok1ifSkVH9ykjjVh_p_yzzJ-lnxs9lhC39Hrz-dvV3Tt6PweIjv5gGQ50DDYnVtOYthn2_eED3Yz7IdjjgEJ9ynTE2kNEWmrKsMUjPIZJPktek5cehoJv_r0X5Pv11f3lF3b79WZz-emWgZKqMq-VXHkHDXagtW46vVLqQXmP0gntLHStf2iEkKIRzjW6tR449yBkt4bWrdQFkae-07qlZPRmn8MI-WAEN7PrZmdmL8zsujm5PkHtf5AN9bh2zRCG59GPJxSno34FzKbYgNGiCxltNS6F5_C_llWjyw |
CitedBy_id | crossref_primary_10_1016_j_energy_2024_131342 crossref_primary_10_1021_acsomega_4c10619 crossref_primary_10_3389_feart_2021_765497 crossref_primary_10_3389_feart_2024_1470723 crossref_primary_10_3390_en17143603 crossref_primary_10_1177_01445987231188067 crossref_primary_10_1180_clm_2023_28 crossref_primary_10_3389_feart_2021_757705 crossref_primary_10_3389_feart_2024_1438834 crossref_primary_10_3390_su151511771 crossref_primary_10_1021_acsomega_1c06568 crossref_primary_10_1016_j_marpetgeo_2024_107213 crossref_primary_10_1016_j_marpetgeo_2023_106684 crossref_primary_10_1016_j_jrmge_2024_04_033 crossref_primary_10_1021_acs_energyfuels_2c03723 crossref_primary_10_1002_gj_4548 crossref_primary_10_1016_j_apgeochem_2022_105290 crossref_primary_10_2113_2022_1939833 crossref_primary_10_1016_j_cej_2024_150985 crossref_primary_10_3390_pr12071399 crossref_primary_10_1007_s11053_022_10106_y crossref_primary_10_1016_j_fuel_2021_122811 crossref_primary_10_1021_acs_energyfuels_1c04346 crossref_primary_10_3389_feart_2024_1401455 crossref_primary_10_3389_feart_2024_1421404 crossref_primary_10_1016_j_energy_2021_122176 crossref_primary_10_3389_feart_2024_1399595 crossref_primary_10_3390_min14111136 crossref_primary_10_3389_feart_2024_1503646 crossref_primary_10_3389_feart_2024_1430820 crossref_primary_10_3389_feart_2024_1410437 crossref_primary_10_1007_s12583_023_1828_0 crossref_primary_10_1021_acs_energyfuels_2c01975 crossref_primary_10_1021_acs_energyfuels_3c01864 crossref_primary_10_3389_fenrg_2023_1231338 crossref_primary_10_1021_acs_energyfuels_3c03522 crossref_primary_10_1021_acsomega_3c01036 crossref_primary_10_1016_j_geoderma_2024_116975 crossref_primary_10_1180_clm_2024_19 crossref_primary_10_3389_feart_2022_1040147 crossref_primary_10_3390_nano12234135 crossref_primary_10_1016_j_jseaes_2024_106026 crossref_primary_10_3390_w16162298 crossref_primary_10_3389_feart_2023_1264953 crossref_primary_10_1021_acs_energyfuels_2c00675 crossref_primary_10_3390_su16187897 crossref_primary_10_3390_fractalfract9010002 crossref_primary_10_1016_j_clay_2022_106430 crossref_primary_10_1016_j_heliyon_2024_e39239 crossref_primary_10_3390_jmse12060908 crossref_primary_10_1016_j_petsci_2023_05_012 crossref_primary_10_3389_feart_2021_764052 crossref_primary_10_3389_feart_2024_1445254 crossref_primary_10_3389_feart_2023_1235457 crossref_primary_10_1016_j_earscirev_2023_104598 crossref_primary_10_1021_acs_energyfuels_3c01539 crossref_primary_10_3389_fenrg_2023_1219664 crossref_primary_10_1016_j_petrol_2021_109843 crossref_primary_10_3390_min12080998 crossref_primary_10_1515_geo_2022_0742 crossref_primary_10_3389_feart_2024_1455127 |
Cites_doi | 10.1016/j.marpetgeo.2020.104550 10.1346/CCMN.1986.0340207 10.1306/08171111061 10.1016/j.enggeo.2014.07.004 10.1016/j.mechmat.2007.09.006 10.26804/ager.2017.02.07 10.1016/j.jclepro.2019.03.023 10.1016/j.gca.2006.06.1372 10.1016/j.marpetgeo.2016.09.010 10.1016/j.clay.2018.01.017 10.1038/s41598-019-56885-y 10.1016/j.ceramint.2020.08.057 10.1306/03301110145 10.1038/s41598-017-14810-1 10.1016/j.petrol.2020.107585 10.1016/j.clay.2011.02.003 10.1016/j.jngse.2015.03.021 10.1016/j.fuel.2019.04.054 10.1021/acs.energyfuels.0c01146 10.1016/j.micromeso.2015.01.022 10.1016/j.micromeso.2015.11.035 10.1130/GES00619.1 10.1007/s10854-020-04289-4 10.1180/claymin.2010.045.3.245 10.1016/j.icarus.2017.12.028 10.1002/jgrb.50228 10.1306/10240808059 10.1073/pnas.96.7.3358 10.1016/j.fuel.2019.116358 10.1016/j.clay.2018.11.016 10.1166/jnn.2017.14436 10.1016/j.clay.2018.11.026 10.1306/08151110188 10.1021/acs.energyfuels.6b01777 10.1016/j.fuel.2018.12.108 10.1126/science.1147001 10.1016/j.micromeso.2012.11.029 10.1016/j.clay.2018.02.006 10.1021/acs.langmuir.0c03519 10.1016/j.marpetgeo.2013.10.009 10.1016/j.clay.2019.105190 10.1016/j.ceramint.2020.07.121 10.1016/j.gca.2017.04.045 10.46690/ager.2020.04.04 10.1039/C6RA22803H 10.1016/j.clay.2017.12.046 10.1016/j.ijhydene.2019.05.137 10.1016/j.ijhydene.2020.05.166 10.26804/ager.2019.03.04 10.1016/j.marpetgeo.2015.01.001 10.1180/claymin.2014.049.2.01 10.1306/12190606068 10.1016/j.apenergy.2017.05.039 10.1016/j.energy.2020.117256 10.1016/j.clay.2020.105926 10.1016/j.coal.2017.04.009 10.1016/j.earscirev.2016.04.004 10.2138/am-2002-11-1208 10.1016/j.sedgeo.2016.06.022 10.1016/j.cplett.2005.03.118 10.2110/jsr.2009.092 10.1130/G25319A.1 10.1016/j.coal.2017.01.014 10.1016/j.clay.2018.07.019 10.1051/epjap/2012120093 10.1306/09170404042 10.1016/j.earscirev.2017.06.013 10.1021/acs.energyfuels.6b01776 10.1016/j.fuel.2018.03.061 10.1306/10171111052 10.1016/j.jsg.2014.10.006 10.1016/j.jallcom.2019.04.005 10.1144/SP454.3 10.1016/j.clay.2020.105758 10.5194/ee-4-15-2009 10.1016/j.marpetgeo.2008.06.004 10.1016/j.marpetgeo.2016.02.033 10.1016/j.marpetgeo.2018.08.040 10.1016/j.fuel.2018.04.137 10.1016/j.jclepro.2019.01.026 10.3390/min10060504 10.1016/j.clay.2012.11.006 10.1016/j.clay.2020.105439 10.1016/j.marpetgeo.2019.08.003 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.clay.2021.106239 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Geology Visual Arts Environmental Sciences |
EISSN | 1872-9053 |
ExternalDocumentID | 10_1016_j_clay_2021_106239 S0169131721002635 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BJAXD BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IMUCA J1W JJJVA KCYFY KOM LY3 M24 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SMS SPC SPCBC SSE SSJ SST SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMA HVGLF HZ~ IHE R2- RIG RNS SEP SEW SSH WUQ XJT XPP ZMT |
ID | FETCH-LOGICAL-a323t-f7324fda6e9a777697433b3ffe2d17dca98fb6112161dd678cfa00fa1295a8d43 |
IEDL.DBID | .~1 |
ISSN | 0169-1317 |
IngestDate | Tue Jul 01 02:29:17 EDT 2025 Thu Apr 24 22:52:01 EDT 2025 Fri Feb 23 02:44:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multi-scale imaging Clay-hosted pore Gas storage and migration Shale gas reservoirs |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a323t-f7324fda6e9a777697433b3ffe2d17dca98fb6112161dd678cfa00fa1295a8d43 |
ParticipantIDs | crossref_primary_10_1016_j_clay_2021_106239 crossref_citationtrail_10_1016_j_clay_2021_106239 elsevier_sciencedirect_doi_10_1016_j_clay_2021_106239 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 2021-11-00 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Applied clay science |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Cuadros (bb0120) 2006; 70 Schieber, Southard, Thaisen (bb0380) 2007; 318 Keller, Holzer, Wepf (bb0250) 2011; 52 Backeberg, Iacoviello, Rittner (bb0020) 2017; 7 Zhang, Niu, Du (bb0465) 2020; 195 Nelson (bb0325) 2009; 93 Ashrafi, Mousavi-Kamazani, Zinatloo-Ajabshir (bb0015) 2020; 45 Chen, Zhang, Lu (bb0090) 2016; 30 Curtis, Sondergeld, Ambrose (bb0130) 2012; 96 Zinatloo-Ajabshir, Salehi, Salavati-Niasari (bb0520) 2019; 215 Loucks, Reed, Ruppel (bb0300) 2012; 96 Ahn, Peacor (bb0005) 1986; 34 Li, Kong, Xia (bb0275) 2020; 4 Jarvie, Hill, Ruble (bb0235) 2007; 91 Philipp, Amann-Hildenbrand, Laurich (bb0330) 2017 Berthonneau, Grauby, Jolivet (bb0025) 2021; 37 Keller, Schuetz, Erni (bb0255) 2013; 170 Chen, Lu, Liu (bb0100) 2018; 224 Xiong, Liu, Liu (bb0440) 2016; 6 Bu, Liu, Yuan (bb0055) 2019; 168 Deirieh, Casey, Germaine (bb0135) 2018; 154 Chen, Han, Fu (bb0085) 2016; 342 Yang, Shang, Shi (bb0450) 2018; 158 Schieber (bb0360) 2010 Richard, O’Brien (bb0345) 1991 Cai, Lin, Singh (bb0065) 2018; 98 Bu, Liu, Yuan (bb0050) 2019; 180 Sposito, Skipper, Soper (bb0400) 1999; 96 Liu, Tian, Yuan (bb0290) 2019; 171 Chamley (bb0080) 1989 Zou, Zhao, Dong (bb0525) 2017; 11 Zhu, Ju, Huang (bb0490) 2019; 110 Slatt, O’Brien (bb0390) 2011; 95 Ambrose, Hartman, Campos (bb0010) 2010; 131772 Houben, Desbois, Urai (bb0220) 2013; 71 Keller, Holzer, Schuetz (bb0260) 2013; 118 Zhu, Ju, Qi (bb0480) 2018; 228 Gaboreau, Robinet, Dimitri (bb0175) 2016; 224 Montgomery, Jarvie, Bowker (bb0310) 2005; 89 Wu, Tuo, Zhang (bb0435) 2017; 178 Erkoyun, Kadir, Külah (bb0165) 2017; 172 Ju, Huang, Sun (bb0245) 2017; 17 Du, Cai, Chen (bb0160) 2019; 168 Mousavi-Kamazani, Zinatloo-Ajabshir, Ghodrati (bb0315) 2020; 31 Saif, Lin, Butcher (bib526) 2017 sep 15; 202 Zhang, Tang, He (bb0470) 2020; 196 Zhang, Clennell, Liu (bb0455) 2016; 30 Schieber, Southard (bb0375) 2009; 37 Zhang, Liu, Li (bb0460) 2020; 260 Chalmers, Bustin, Power (bb0075) 2012; 96 Hemes, Desbois, Klaver (bb0215) 2016; 1 Li, Zhang, Rezaee (bb0280) 2021; 201 Cai, Wei, Hu (bb0060) 2017; 171 Slatt, O’Brien (bb0395) 2013; vol. 102 Bobko, Ulm (bb0030) 2008; 40 Feng, Li, Wang (bb0170) 2018; 155 Zhu, Ju, Huang (bb0485) 2019; 241 Bu, Ju, Tan (bb0040) 2015; 24 Rheams, Neathery (bb0340) 1984; 4 Zinatloo-Ajabshir, Mousavi-Kamazani (bb0500) 2020; 46 Warr, Wojatschke, Carpenter (bb0420) 2014; 69 Bu, Yuan, Liu (bb0045) 2017; 212 Huang, Ju, Zhu (bb0230) 2020; 120 Schieber, Lazar, Bohacs (bb0385) 2016 Zinatloo-Ajabshir, Salehi, Amiri (bb0515) 2019; 44 Zinatloo-Ajabshir, Salehi, Amiri (bb0505) 2019; 791 Cherfallot, Levitz, Michel (bb0110) 2020; 34 Johnston (bb0240) 2010; 45 Tang, Li, Zhang (bb0410) 2020; 10 Boles, Franks (bb0035) 1979; 49 Tang, Jiang, Jiang (bb0405) 2016; 78 Nadeau, Peacor, Yan (bb0320) 2002; 87 Ross, Bustin (bb0350) 2009; 26 Loucks, Reed, Ruppel, Jarvie (bb0295) 2009; 79 Liu, Ding, Wang (bb0285) 2018; 163 Wilson, Wilson (bb0425) 2014; 49 Desbois, Urai, Hemes (bb0145) 2014; 179 Kwon, Kronenberg, Gangi (bb0265) 2004; 109 Goral, Panja, Deo (bb0185) 2020; 10 Yang, Zhang (bb0445) 2005; 407 Zhu, Ju, Huang (bb0495) 2020; 197 Wang, Ju, Yan (bb0415) 2015; 62 Houben, Desbois, Urai (bb0225) 2014; 49 Renard (bb0335) 2012; 60 Li, Chen, Song (bb0270) 2020; 186 Gou, Xu (bb0190) 2019; 3 Cai, Lin, Singh (bb0070) 2019; 252 Chen, Jiang, Liu (bb0095) 2017; 1 Ghodrati, Mousavi-Kamazani, Zinatloo-Ajabshir (bb0180) 2020; 46 Dong, Cheng, Wang (bb0155) 2010; 31 Gu, Zhang, Hu (bb0195) 2018; 303 Schieber (bb0365) 2011 Zhou, Yan, Xue (bb0475) 2016; 73 Hemes, Desbois, Urai (bb0205) 2013; 92 Desbois, Hemes, Laurich (bb0150) 2016; 21 Heath, Dewers, McPherson (bb0200) 2011; 7 Schieber (bb0370) 2013; 102 Zinatloo-Ajabshir, Morassaei, Salavati-Niasari (bb0510) 2019; 222 Milner, McLin, Petriello (bb0305) 2010 Wilson, Shaldybin, Wilson (bb0430) 2016; 158 Desbois, Urai, Kukla (bb0140) 2009; 4 Hemes, Desbois, Urai (bb0210) 2015; 208 Chen (10.1016/j.clay.2021.106239_bb0090) 2016; 30 Wilson (10.1016/j.clay.2021.106239_bb0425) 2014; 49 Zhou (10.1016/j.clay.2021.106239_bb0475) 2016; 73 Tang (10.1016/j.clay.2021.106239_bb0405) 2016; 78 Chalmers (10.1016/j.clay.2021.106239_bb0075) 2012; 96 Johnston (10.1016/j.clay.2021.106239_bb0240) 2010; 45 Loucks (10.1016/j.clay.2021.106239_bb0300) 2012; 96 Goral (10.1016/j.clay.2021.106239_bb0185) 2020; 10 Richard (10.1016/j.clay.2021.106239_bb0345) 1991 Wilson (10.1016/j.clay.2021.106239_bb0430) 2016; 158 Schieber (10.1016/j.clay.2021.106239_bb0370) 2013; 102 Mousavi-Kamazani (10.1016/j.clay.2021.106239_bb0315) 2020; 31 Zou (10.1016/j.clay.2021.106239_bb0525) 2017; 11 Nelson (10.1016/j.clay.2021.106239_bb0325) 2009; 93 Bobko (10.1016/j.clay.2021.106239_bb0030) 2008; 40 Li (10.1016/j.clay.2021.106239_bb0280) 2021; 201 Hemes (10.1016/j.clay.2021.106239_bb0210) 2015; 208 Ju (10.1016/j.clay.2021.106239_bb0245) 2017; 17 Berthonneau (10.1016/j.clay.2021.106239_bb0025) 2021; 37 Bu (10.1016/j.clay.2021.106239_bb0055) 2019; 168 Backeberg (10.1016/j.clay.2021.106239_bb0020) 2017; 7 Houben (10.1016/j.clay.2021.106239_bb0220) 2013; 71 Ahn (10.1016/j.clay.2021.106239_bb0005) 1986; 34 Liu (10.1016/j.clay.2021.106239_bb0285) 2018; 163 Jarvie (10.1016/j.clay.2021.106239_bb0235) 2007; 91 Boles (10.1016/j.clay.2021.106239_bb0035) 1979; 49 Zhang (10.1016/j.clay.2021.106239_bb0470) 2020; 196 Li (10.1016/j.clay.2021.106239_bb0270) 2020; 186 Warr (10.1016/j.clay.2021.106239_bb0420) 2014; 69 Zhu (10.1016/j.clay.2021.106239_bb0490) 2019; 110 Ashrafi (10.1016/j.clay.2021.106239_bb0015) 2020; 45 Huang (10.1016/j.clay.2021.106239_bb0230) 2020; 120 Dong (10.1016/j.clay.2021.106239_bb0155) 2010; 31 Montgomery (10.1016/j.clay.2021.106239_bb0310) 2005; 89 Deirieh (10.1016/j.clay.2021.106239_bb0135) 2018; 154 Keller (10.1016/j.clay.2021.106239_bb0250) 2011; 52 Schieber (10.1016/j.clay.2021.106239_bb0375) 2009; 37 Cai (10.1016/j.clay.2021.106239_bb0065) 2018; 98 Bu (10.1016/j.clay.2021.106239_bb0040) 2015; 24 Saif (10.1016/j.clay.2021.106239_bib526) 2017; 202 Bu (10.1016/j.clay.2021.106239_bb0050) 2019; 180 Zinatloo-Ajabshir (10.1016/j.clay.2021.106239_bb0500) 2020; 46 Li (10.1016/j.clay.2021.106239_bb0275) 2020; 4 Tang (10.1016/j.clay.2021.106239_bb0410) 2020; 10 Liu (10.1016/j.clay.2021.106239_bb0290) 2019; 171 Renard (10.1016/j.clay.2021.106239_bb0335) 2012; 60 Zinatloo-Ajabshir (10.1016/j.clay.2021.106239_bb0515) 2019; 44 Schieber (10.1016/j.clay.2021.106239_bb0385) 2016 Philipp (10.1016/j.clay.2021.106239_bb0330) 2017 Erkoyun (10.1016/j.clay.2021.106239_bb0165) 2017; 172 Zinatloo-Ajabshir (10.1016/j.clay.2021.106239_bb0510) 2019; 222 Yang (10.1016/j.clay.2021.106239_bb0450) 2018; 158 Zinatloo-Ajabshir (10.1016/j.clay.2021.106239_bb0505) 2019; 791 Cai (10.1016/j.clay.2021.106239_bb0060) 2017; 171 Wang (10.1016/j.clay.2021.106239_bb0415) 2015; 62 Chen (10.1016/j.clay.2021.106239_bb0100) 2018; 224 Yang (10.1016/j.clay.2021.106239_bb0445) 2005; 407 Zhang (10.1016/j.clay.2021.106239_bb0455) 2016; 30 Xiong (10.1016/j.clay.2021.106239_bb0440) 2016; 6 Bu (10.1016/j.clay.2021.106239_bb0045) 2017; 212 Hemes (10.1016/j.clay.2021.106239_bb0215) 2016; 1 Milner (10.1016/j.clay.2021.106239_bb0305) 2010 Schieber (10.1016/j.clay.2021.106239_bb0360) 2010 Curtis (10.1016/j.clay.2021.106239_bb0130) 2012; 96 Rheams (10.1016/j.clay.2021.106239_bb0340) 1984; 4 Zinatloo-Ajabshir (10.1016/j.clay.2021.106239_bb0520) 2019; 215 Desbois (10.1016/j.clay.2021.106239_bb0140) 2009; 4 Keller (10.1016/j.clay.2021.106239_bb0255) 2013; 170 Slatt (10.1016/j.clay.2021.106239_bb0395) 2013; vol. 102 Slatt (10.1016/j.clay.2021.106239_bb0390) 2011; 95 Chamley (10.1016/j.clay.2021.106239_bb0080) 1989 Du (10.1016/j.clay.2021.106239_bb0160) 2019; 168 Ghodrati (10.1016/j.clay.2021.106239_bb0180) 2020; 46 Gaboreau (10.1016/j.clay.2021.106239_bb0175) 2016; 224 Desbois (10.1016/j.clay.2021.106239_bb0150) 2016; 21 Wu (10.1016/j.clay.2021.106239_bb0435) 2017; 178 Keller (10.1016/j.clay.2021.106239_bb0260) 2013; 118 Zhu (10.1016/j.clay.2021.106239_bb0485) 2019; 241 Zhu (10.1016/j.clay.2021.106239_bb0480) 2018; 228 Desbois (10.1016/j.clay.2021.106239_bb0145) 2014; 179 Ross (10.1016/j.clay.2021.106239_bb0350) 2009; 26 Zhang (10.1016/j.clay.2021.106239_bb0465) 2020; 195 Zhu (10.1016/j.clay.2021.106239_bb0495) 2020; 197 Cherfallot (10.1016/j.clay.2021.106239_bb0110) 2020; 34 Sposito (10.1016/j.clay.2021.106239_bb0400) 1999; 96 Chen (10.1016/j.clay.2021.106239_bb0085) 2016; 342 Feng (10.1016/j.clay.2021.106239_bb0170) 2018; 155 Nadeau (10.1016/j.clay.2021.106239_bb0320) 2002; 87 Hemes (10.1016/j.clay.2021.106239_bb0205) 2013; 92 Gou (10.1016/j.clay.2021.106239_bb0190) 2019; 3 Schieber (10.1016/j.clay.2021.106239_bb0365) 2011 Kwon (10.1016/j.clay.2021.106239_bb0265) 2004; 109 Heath (10.1016/j.clay.2021.106239_bb0200) 2011; 7 Zhang (10.1016/j.clay.2021.106239_bb0460) 2020; 260 Cai (10.1016/j.clay.2021.106239_bb0070) 2019; 252 Chen (10.1016/j.clay.2021.106239_bb0095) 2017; 1 Gu (10.1016/j.clay.2021.106239_bb0195) 2018; 303 Houben (10.1016/j.clay.2021.106239_bb0225) 2014; 49 Schieber (10.1016/j.clay.2021.106239_bb0380) 2007; 318 Loucks (10.1016/j.clay.2021.106239_bb0295) 2009; 79 Ambrose (10.1016/j.clay.2021.106239_bb0010) 2010; 131772 Cuadros (10.1016/j.clay.2021.106239_bb0120) 2006; 70 |
References_xml | – volume: 45 start-page: 245 year: 2010 end-page: 279 ident: bb0240 article-title: Probing the nanoscale architecture of clay minerals publication-title: Clay Miner. – volume: 52 start-page: 85 year: 2011 end-page: 95 ident: bb0250 article-title: 3D geometry and topology of pore pathways in Opalinus clay: implications for mass transport publication-title: Appl. Clay Sci. – volume: 31 start-page: 288 year: 2010 end-page: 300 ident: bb0155 article-title: Forming conditions and characteristics of shale gas in the Lower Paleozoic of the Upper Yangtze region, China publication-title: Oil Gas Geol. – volume: 1 start-page: 1 year: 2016 end-page: 21 ident: bb0215 article-title: Microstructural characterisation of the Ypresian clays (Kallo-1) at nanometre resolution, using broad-ion beam milling and scanning electron microscopy publication-title: Neth. J. Geosci. – volume: 131772 year: 2010 ident: bb0010 article-title: New pore-scale considerations for shale gas in place calculations publication-title: Soc. Petrol. Eng. – year: 2017 ident: bb0330 article-title: The effect of microstructural heterogeneity on pore size distribution and permeability in Opalinus Clay (Mont Terri, Switzerland): insights from an integrated study of laboratory fluid flow and pore morphology from BIB-SEM images publication-title: Geol. Soc. Lond. Spec. Publ. – volume: 202 start-page: 628 year: 2017 sep 15 end-page: 647 ident: bib526 article-title: Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro-tomography, automated ultra-high resolution SEM, MAPS Mineralogy and FIB-SEM[J] publication-title: Appl. Energy – volume: 10 start-page: 504 year: 2020 ident: bb0410 article-title: The Chemical State and Occupancy of Radiogenic Pb, and Crystallinity of RW-1 Monazite Revealed by XPS and TEM publication-title: Minerals. – year: 2010 ident: bb0360 article-title: Common Themes in the Formation and Preservation of Intrinsic Porosity in Shales and Mudstones - Illustrated with Examples across the Phanerozoic – volume: 44 start-page: 20110 year: 2019 end-page: 20120 ident: bb0515 article-title: Green synthesis, characterization and investigation of the electrochemical hydrogen storage properties of Dy publication-title: Int. J. Hydrog. Energy – volume: 89 start-page: 155 year: 2005 end-page: 175 ident: bb0310 article-title: Mississippian Barnett Shale, Fort Worth Basin, north-Central Texas: gas-shale play with multi-trillion cubic foot potential publication-title: AAPG Bull. – volume: 49 start-page: 127 year: 2014 end-page: 145 ident: bb0425 article-title: Clay mineralogy and shale instability: an alternative conceptual analysis publication-title: Clay Miner. – volume: 34 start-page: 9339 year: 2020 end-page: 9354 ident: bb0110 article-title: Probing multiscale structure of mineral and nanoporous kerogen phase in organic-rich source and neutron scattering publication-title: Energy Fuel – volume: 37 start-page: 483 year: 2009 end-page: 486 ident: bb0375 article-title: Bedload Transport of Mud by Floccule Ripples-Direct Observation of Ripple Migration Processes and their Implications publication-title: Geology. – volume: 4 start-page: 8 year: 1984 end-page: 13 ident: bb0340 article-title: Characterization and geochemistry of Devonian oil shale north Alabama-south central Tennessee publication-title: Symposium on Characterization and Chemistry of Oil Shales. Division of Fuel Chemistry and Petroleum Chemistry – year: 1991 ident: bb0345 article-title: The Signatures of Clay Microstructure—Overview[M] – volume: 179 start-page: 117 year: 2014 end-page: 131 ident: bb0145 article-title: Nanometer-scale pore fluid distribution and drying damage in preserved clay cores from Belgian clay formations inferred by BIB-cryo-SEM publication-title: Eng. Geol. – volume: 93 start-page: 329 year: 2009 end-page: 340 ident: bb0325 article-title: Pore-throat sizes in sandstones, tight sandstones, and shales publication-title: AAPG Bull. – volume: 180 start-page: 105190 year: 2019 ident: bb0050 article-title: Ethylene glycol monoethyl ether adsorption by interlayer montmorilonite-organic matter complexes: Dependence on the organic matter content and its alkyl chain length publication-title: Appl. Clay Sci. – volume: 96 start-page: 665 year: 2012 end-page: 677 ident: bb0130 article-title: Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging publication-title: AAPG Bull. – volume: 215 start-page: 480 year: 2019 end-page: 487 ident: bb0520 article-title: Synthesis of dysprosium cerate nanostructures using Phoenix dactylifera extract as novel green fuel and investigation of their electrochemical hydrogen storage and Coulombic efficiency publication-title: J. Clean. Prod. – volume: 98 start-page: 437 year: 2018 end-page: 447 ident: bb0065 article-title: Shale gas transport model in 3D fractal porous media with variable pore sizes publication-title: Mar. Pet. Geol. – volume: 208 start-page: 1 year: 2015 end-page: 20 ident: bb0210 article-title: Multi-scale characterization of porosity in Boom Clay (HADES-level, Mol, Belgium) using a combination of X-ray μ-CT, 2D BIB-SEM and FIB-SEM tomography publication-title: Microporous Mesoporous Mater. – volume: 252 start-page: 210 year: 2019 end-page: 219 ident: bb0070 article-title: A simple permeability model for shale gas and key insights on relative importance of various transport mechanisms publication-title: Fuel. – volume: 118 start-page: 2799 year: 2013 end-page: 2812 ident: bb0260 article-title: Pore space relevant for gas permeability in Opalinus clay: statistical analysis of homogeneity, percolation, and representative volume element publication-title: J. Geophys. Res. Solid Earth – volume: 96 start-page: 1071 year: 2012 end-page: 1098 ident: bb0300 article-title: Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores publication-title: AAPG Bull. – year: 2016 ident: bb0385 article-title: Chapter 3: An SEM Study of Porosity in the Eagle Ford Shale of Texas—Pore Types and Porosity Distribution in a Depositional and Sequence-Stratigraphic Context – volume: 62 start-page: 1 year: 2015 end-page: 13 ident: bb0415 article-title: Pore structure characteristics of coal-bearing shale using fluid invasion methods: a case study in the Huainan–Huaibei Coalfield in China publication-title: Mar. Pet. Geol. – volume: 78 start-page: 99 year: 2016 end-page: 109 ident: bb0405 article-title: Heterogeneous nanoporosity of the Silurian Longmaxi Formation shale gas reservoir in the Sichuan Basin using the QEMSCAN, FIB-SEM, and nano-CT methods publication-title: Mar. Pet. Geol. – volume: 73 start-page: 174 year: 2016 end-page: 180 ident: bb0475 article-title: 2D and 3D nanopore characterization of gas shale in Longmaxi formation based on FIB-SEM publication-title: Mar. Pet. Geol. – volume: 91 start-page: 475 year: 2007 end-page: 499 ident: bb0235 article-title: Unconventional shale-gas systems: the Mississippian Barnett shale of north-Central Texas as one model for thermogenic shale-gas assessment publication-title: AAPG Bull. – volume: 30 start-page: 10643 year: 2016 end-page: 10652 ident: bb0455 article-title: Methane and Carbon Dioxide Adsorption on Illite publication-title: Energy Fuel – volume: 96 start-page: 1099 year: 2012 end-page: 1119 ident: bb0075 article-title: Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig unit publication-title: AAPG Bull. – volume: 172 start-page: 112 year: 2017 end-page: 133 ident: bb0165 article-title: Mineralogy, geochemistry and genesis of clays interlayered coal seams succession in the Neogene lacustrine Seyitmer coal deposit, Kütahya, western Turkey publication-title: Int. J. Coal Geol. – volume: 60 start-page: 367 year: 2012 end-page: 369 ident: bb0335 article-title: Microfracturation in rocks: from microtomography images to processes publication-title: Eur. Phys. J. Appl. Phys. – start-page: 5 year: 2010 ident: bb0305 article-title: Imaging texture and porosity in mudstones and shales: Comparison of secondary and ion-milled backscatter SEM methods: Canadian Society for Unconventional Gas/Society of Petroleum Engineers Canadian Unconventional Resources and International Petroleum Conference. October 19–21, Calgary, Alberta, SPE Paper 138975 – volume: 158 start-page: 31 year: 2016 end-page: 50 ident: bb0430 article-title: Clay mineralogy and unconventional hydrocarbon shale reservoirs in the USA. I. Occurrence and interpretation of mixed-layer R3 ordered illite/smectite publication-title: Earth Sci. Rev. – volume: 4 start-page: 372 year: 2020 end-page: 391 ident: bb0275 article-title: Microstructural characterization of organic matter pores in coal-measure shale publication-title: Adv. Geo-Energy Res. – volume: 102 start-page: 153 year: 2013 end-page: 171 ident: bb0370 article-title: SEM observations on ion-milled samples of devonian black shales from Indiana and New YorkThe petrographic context of multiple pore types publication-title: AAPG Mem. – volume: 195 start-page: 107585 year: 2020 ident: bb0465 article-title: Dynamic fracture evolution of tight sandstone under uniaxial compression in high resolution 3D X-ray microscopy publication-title: J. Pet. Sci. Eng. – volume: 228 start-page: 272 year: 2018 end-page: 289 ident: bb0480 article-title: Impact of tectonism on pore type and pore structure evolution in organic-rich shale: Implications for gas storage and migration pathways in naturally deformed rocks publication-title: Fuel. – volume: 30 start-page: 9114 year: 2016 end-page: 9121 ident: bb0090 article-title: Adsorption Behavior of Hydrocarbon on Illite publication-title: Energy Fuel – volume: 96 start-page: 3358 year: 1999 end-page: 3364 ident: bb0400 article-title: Surface geochemistry of the clay minerals publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 10 start-page: 49 year: 2020 ident: bb0185 article-title: Confinement effect on Porosity and Permeability of Shales publication-title: Sci. Rep. – volume: 11 start-page: 1 year: 2017 end-page: 16 ident: bb0525 article-title: Geological characteristics, main challenges and future prospect of shale gas publication-title: J. Nat. Gas Geosci. – volume: 154 start-page: 73 year: 2018 end-page: 82 ident: bb0135 article-title: The integration of magnifications: a novel approach to obtain representative information about the pore space of mudrocks from SEM images publication-title: Appl. Clay Sci. – volume: 224 start-page: 521 year: 2018 end-page: 528 ident: bb0100 article-title: GCMC simulations on the adsorption mechanisms of CH publication-title: Fuel. – volume: 3 start-page: 258 year: 2019 end-page: 267 ident: bb0190 article-title: Quantitative evaluation of free gas and adsorbed gas content of Wufeng-Longmaxi shales in the Jiaoshiba area, Sichuan Basin, China publication-title: Adv. Geo-Energy Res. – volume: 171 start-page: 1 year: 2019 end-page: 5 ident: bb0290 article-title: Facile sample preparation method allowing TEM characterization of the stacking structures and interlayer spaces of clay minerals publication-title: Appl. Clay Sci. 2019 – volume: 120 start-page: 104550 year: 2020 ident: bb0230 article-title: Investigation of formation and evolution of organic matter pores in marine shale by helium ion microscope: an example from the Lower Silurian Longmaxi Shale, South China publication-title: Marine and Petroleum Geology. – volume: 222 start-page: 103 year: 2019 end-page: 110 ident: bb0510 article-title: Simple approach for the synthesis of Dy publication-title: J. Clean. Prod. – volume: 17 start-page: 5930 year: 2017 end-page: 5965 ident: bb0245 article-title: Nanogeosciences: research history, current status, and development trends publication-title: J. Nanosci. Nanotechnol. – year: 2011 ident: bb0365 article-title: Shale Microfabrics and Pore Development - an Overview with Emphasis on the Importance of Depositional Processes – volume: 170 start-page: 83 year: 2013 end-page: 94 ident: bb0255 article-title: Characterization of multi-scale microstructural features in Opalinus Clay publication-title: Microporous Mesoporous Mater. – volume: 40 start-page: 318 year: 2008 end-page: 337 ident: bb0030 article-title: The nano-mechanical morphology of shale publication-title: Mech. Mater. – volume: 171 start-page: 419 year: 2017 end-page: 433 ident: bb0060 article-title: Electrical conductivity models in saturated porous media: a review publication-title: Earth Sci. Rev. – volume: 7 start-page: 14838 year: 2017 ident: bb0020 article-title: Quantifying the anisotropy and tortuosity of permeable pathways in clay-rich mudstones using models based on X-ray tomography publication-title: Sci. Rep. – volume: 46 start-page: 26548 year: 2020 end-page: 26556 ident: bb0500 article-title: Effect of copper on improving the electrochemical storage of hydrogen in CeO publication-title: Ceram. Int. – volume: 158 start-page: 83 year: 2018 end-page: 93 ident: bb0450 article-title: Influence of salt solutions on the permeability, membrane efficiency and wettability of the lower Silurian Longmaxi shale in Xiushan, Southwest China publication-title: Appl. Clay Sci. – volume: 70 start-page: 4181 year: 2006 end-page: 4195 ident: bb0120 article-title: Modeling of smectite illitization in burial diagenesis environments publication-title: Geochem. Cosmochim. Acta. – volume: 7 start-page: 429 year: 2011 end-page: 454 ident: bb0200 article-title: Pore networks in continental and marine mudstones: Characteristics and controls on sealing behavior publication-title: Geosphere. – volume: 186 start-page: 105439 year: 2020 ident: bb0270 article-title: Methane hydrate formation in the stacking of kaolinite particles with different surface contacts as nanoreactors: a molecular dynamics simulation study publication-title: Appl. Clay Sci. – volume: 318 start-page: 1760 year: 2007 end-page: 1763 ident: bb0380 article-title: Accretion of mudstone beds from migrating floccule ripples publication-title: Science. – volume: 31 year: 2020 ident: bb0315 article-title: One-step sonochemical synthesis of Zn(OH)2/ZnV3O8 nanostructures as a potent material in electrochemical hydrogen storage publication-title: J. Mater. Sci. Mater. Electron. – volume: 224 start-page: 116 year: 2016 end-page: 128 ident: bb0175 article-title: Optimization of pore-network characterization of a compacted clay material by TEM and FIB/SEM imaging publication-title: Microporous Mesoporous Mater. – volume: 49 start-page: 55 year: 1979 end-page: 70 ident: bb0035 article-title: Clay diagenesis in Wilcox sandstones of Southwest Texas; implications of smectite diagenesis on sandstone cementation publication-title: J. Sediment. Res. – volume: 109 year: 2004 ident: bb0265 article-title: Permeability of illite-bearing shale: 1. Anisotropy and effects of clay content and loading publication-title: J. Geophys. Res. – volume: 178 start-page: 13 year: 2017 end-page: 25 ident: bb0435 article-title: Pore characteristics differences between clay-rich and clay-poor shales of the Lower Cambrian Niutitang Formation in the Northern Guizhou area, and insights into shale gas storage mechanisms publication-title: Int. J. Coal Geol. – volume: 37 start-page: 5464 year: 2021 end-page: 5474 ident: bb0025 article-title: Nanoscale accessible porosity as a key parameter depicting the topological evolution of organic porous networks publication-title: Langmuir – volume: 46 start-page: 28894 year: 2020 end-page: 28902 ident: bb0180 article-title: Zn publication-title: Ceram. Int. – volume: 4 start-page: 15 year: 2009 end-page: 22 ident: bb0140 article-title: Morphology of the pore space in claystones – evidence from BIB/FIB ion beam sectioning and cryo-SEM observations publication-title: eEarth. – year: 1989 ident: bb0080 article-title: Clay Sedimentology – volume: 342 start-page: 180 year: 2016 end-page: 190 ident: bb0085 article-title: Micro and nano-size pores of clay minerals in shale reservoirs: implication for the accumulation of shale gas publication-title: Sediment. Geol. – volume: 92 start-page: 275 year: 2013 end-page: 300 ident: bb0205 article-title: Variations in the morphology of porosity in the Boom Clay Formation: insights from 2D high resolution BIB-SEM imaging and Mercury injection Porosimetry publication-title: Neth. J. Geosci. – volume: 49 start-page: 143 year: 2014 end-page: 161 ident: bb0225 article-title: A comparative study of representative 2D microstructures in Shaly and Sandy facies of Opalinus Clay (Mont Terri, Switzerland) inferred form BIB-SEM and MIP methods publication-title: Mar. Pet. Geol. – volume: 791 start-page: 792 year: 2019 end-page: 799 ident: bb0505 article-title: Simple fabrication of Pr publication-title: J. Alloys Comp. – volume: 24 start-page: 166 year: 2015 end-page: 177 ident: bb0040 article-title: Fractal characteristics of pores in non-marine shales from the Huainan coalfield, eastern China publication-title: J. Nat. Gas Sci. Eng. – volume: 110 start-page: 768 year: 2019 end-page: 786 ident: bb0490 article-title: Petrophysical properties of the major marine shales in the Upper Yangtze Block, South China: a function of structural deformation publication-title: Mar. Pet. Geol. – volume: 303 start-page: 47 year: 2018 end-page: 52 ident: bb0195 article-title: The discovery of silicon oxide nanoparticles in space-weathered of Apollo 15 lunar soil grains publication-title: Icarus. – volume: 6 start-page: 110808 year: 2016 ident: bb0440 article-title: Molecular simulation of methane adsorption in slit-like quartz pores publication-title: RSC Adv. – volume: 21 start-page: 1 year: 2016 end-page: 14 ident: bb0150 article-title: Investigation of microstructures in naturally and experimentally deformed reference clay rocks using innovative methods in scanning electron microscopy publication-title: Clay Min. Soc. Workshop Lectures Series. – volume: 155 start-page: 126 year: 2018 end-page: 138 ident: bb0170 article-title: Water adsorption and its impact on the pore structure characteristics of shale clay publication-title: Appl. Clay Sci. – volume: 45 start-page: 21611 year: 2020 end-page: 21624 ident: bb0015 article-title: Novel sonochemical synthesis of Zn2V2O7 nanostructures for electrochemical hydrogen storage publication-title: Int. J. Hydrog. Energy – volume: 407 start-page: 427 year: 2005 end-page: 432 ident: bb0445 article-title: Structure and diffusion behavior of dense carbon dioxide fluid in clay-like slit pores by molecular dynamics simulation publication-title: Chem. Phys. Lett. – volume: 196 start-page: 105758 year: 2020 ident: bb0470 article-title: Full-scale nanopore system and fractal characteristics of clay-rich lacustrine shale combining FE-SEM, nano-CT, gas adsorption and mercury intrusion porosimetry publication-title: Appl. Clay Sci. – volume: 79 start-page: 848 year: 2009 end-page: 861 ident: bb0295 article-title: Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the mississippian Barnett shale publication-title: J. Sediment. Res. – volume: 212 start-page: 1 year: 2017 end-page: 15 ident: bb0045 article-title: Effects of complexation between organic matter (OM) and clay mineral on OM pyrolysis publication-title: Geochim. Cosmochim. Acta – volume: 71 start-page: 82 year: 2013 end-page: 97 ident: bb0220 article-title: Pore morphology and distribution in the Shaly facies of Opalinus Clay (Mont Terri, Switzerland): Insights from representative 2D BIB–SEM investigations on mm to nm scale publication-title: Appl. Clay Sci. – volume: 26 start-page: 916 year: 2009 end-page: 927 ident: bb0350 article-title: The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs publication-title: Mar. Pet. Geol. – volume: 168 start-page: 340 year: 2019 end-page: 347 ident: bb0055 article-title: Ethylene glycol monoethyl ether (EGME) adsorption by organic matter (OM)-clay complexes: Dependence on the OM Type publication-title: Appl. Clay Sci. – volume: 69 start-page: 234 year: 2014 end-page: 244 ident: bb0420 article-title: A “slice-and-view” (FIB–SEM) study of clay gouge from the SAFOD creeping section of the San Andreas Fault at ~2.7km depth publication-title: J. Struct. Geol. – volume: 197 start-page: 117256 year: 2020 ident: bb0495 article-title: Microcosmic gas adsorption mechanism on clay-organic nanocomposites in a marine shale publication-title: Energy. – volume: 34 start-page: 165 year: 1986 end-page: 179 ident: bb0005 article-title: Transmission and analytical electron microscopy of the smectite-to-illite transition publication-title: Clay Clay Miner. – volume: 95 start-page: 2017 year: 2011 end-page: 2030 ident: bb0390 article-title: Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks publication-title: AAPG Bull. – volume: 201 start-page: 105926 year: 2021 ident: bb0280 article-title: Effect of adsorbed moisture on the pore size distribution of marine-continental transitional shales: Insights from lithofacies differences and clay swelling publication-title: Appl. Clay Sci. – volume: 163 start-page: 100 year: 2018 end-page: 107 ident: bb0285 article-title: Quartz types in shale and their effect on geomechanical properties: an example from the lower Cambrian Niutitang Formation in the Cen’gong block, South China publication-title: Appl. Clay Sci. – volume: vol. 102 start-page: 37 year: 2013 end-page: 44 ident: bb0395 article-title: Microfabrics related to porosity development, sedimentary and diagenetic processes, and composition of unconventional resource shale reservoirs as determined by conventional scanning electron microscopy publication-title: Electron Microscopy of Shale Hydrocarbon Reservoirs: AAPG Memoir – volume: 168 start-page: 249 year: 2019 end-page: 259 ident: bb0160 article-title: A contrastive study of effects of different organic matter on the smectite illitization in hydrothermal experiments publication-title: Appl. Clay Sci. – volume: 260 start-page: 116358 year: 2020 ident: bb0460 article-title: Molecular simulations of competitive adsorption behavior between CH4-C2H6 in K-illite clay at supercritical conditions publication-title: Fuel – volume: 1 start-page: 112 year: 2017 end-page: 123 ident: bb0095 article-title: Quantitative characterization of micropore structure for organic-rich Lower Silurian shale in the Upper Yangtze Platform, South China: Implications for shale gas adsorption capacity publication-title: Adv. Geo-Energy Res. – volume: 241 start-page: 914 year: 2019 end-page: 932 ident: bb0485 article-title: Pore structure variations across structural deformation of Silurian Longmaxi shale: an example from the Chuandong Thrust-Fold belt publication-title: Fuel. – volume: 87 start-page: 1580 year: 2002 end-page: 1589 ident: bb0320 article-title: I-S precipitation in pore space as the cause of geopressuring in Mesozoic mudstones, Egersund Basin, Norwegian continental shelf publication-title: Am. Mineral. – volume: 109 year: 2004 ident: 10.1016/j.clay.2021.106239_bb0265 article-title: Permeability of illite-bearing shale: 1. Anisotropy and effects of clay content and loading publication-title: J. Geophys. Res. – volume: 120 start-page: 104550 year: 2020 ident: 10.1016/j.clay.2021.106239_bb0230 article-title: Investigation of formation and evolution of organic matter pores in marine shale by helium ion microscope: an example from the Lower Silurian Longmaxi Shale, South China publication-title: Marine and Petroleum Geology. doi: 10.1016/j.marpetgeo.2020.104550 – volume: 131772 year: 2010 ident: 10.1016/j.clay.2021.106239_bb0010 article-title: New pore-scale considerations for shale gas in place calculations publication-title: Soc. Petrol. Eng. – volume: 34 start-page: 165 issue: 2 year: 1986 ident: 10.1016/j.clay.2021.106239_bb0005 article-title: Transmission and analytical electron microscopy of the smectite-to-illite transition publication-title: Clay Clay Miner. doi: 10.1346/CCMN.1986.0340207 – volume: 171 start-page: 1 issue: 4 year: 2019 ident: 10.1016/j.clay.2021.106239_bb0290 article-title: Facile sample preparation method allowing TEM characterization of the stacking structures and interlayer spaces of clay minerals publication-title: Appl. Clay Sci. 2019 – volume: 96 start-page: 1071 issue: 6 year: 2012 ident: 10.1016/j.clay.2021.106239_bb0300 article-title: Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores publication-title: AAPG Bull. doi: 10.1306/08171111061 – volume: 179 start-page: 117 year: 2014 ident: 10.1016/j.clay.2021.106239_bb0145 article-title: Nanometer-scale pore fluid distribution and drying damage in preserved clay cores from Belgian clay formations inferred by BIB-cryo-SEM publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2014.07.004 – volume: 40 start-page: 318 issue: 4–5 year: 2008 ident: 10.1016/j.clay.2021.106239_bb0030 article-title: The nano-mechanical morphology of shale publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2007.09.006 – volume: 1 start-page: 112 issue: 2 year: 2017 ident: 10.1016/j.clay.2021.106239_bb0095 article-title: Quantitative characterization of micropore structure for organic-rich Lower Silurian shale in the Upper Yangtze Platform, South China: Implications for shale gas adsorption capacity publication-title: Adv. Geo-Energy Res. doi: 10.26804/ager.2017.02.07 – volume: 222 start-page: 103 year: 2019 ident: 10.1016/j.clay.2021.106239_bb0510 article-title: Simple approach for the synthesis of Dy2Sn2O7 nanostructures as a hydrogen storage material from banana juice publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.03.023 – volume: 70 start-page: 4181 issue: 16 year: 2006 ident: 10.1016/j.clay.2021.106239_bb0120 article-title: Modeling of smectite illitization in burial diagenesis environments publication-title: Geochem. Cosmochim. Acta. doi: 10.1016/j.gca.2006.06.1372 – volume: 21 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.clay.2021.106239_bb0150 article-title: Investigation of microstructures in naturally and experimentally deformed reference clay rocks using innovative methods in scanning electron microscopy publication-title: Clay Min. Soc. Workshop Lectures Series. – volume: 78 start-page: 99 year: 2016 ident: 10.1016/j.clay.2021.106239_bb0405 article-title: Heterogeneous nanoporosity of the Silurian Longmaxi Formation shale gas reservoir in the Sichuan Basin using the QEMSCAN, FIB-SEM, and nano-CT methods publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2016.09.010 – volume: 155 start-page: 126 issue: 4 year: 2018 ident: 10.1016/j.clay.2021.106239_bb0170 article-title: Water adsorption and its impact on the pore structure characteristics of shale clay publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2018.01.017 – volume: 10 start-page: 49 year: 2020 ident: 10.1016/j.clay.2021.106239_bb0185 article-title: Confinement effect on Porosity and Permeability of Shales publication-title: Sci. Rep. doi: 10.1038/s41598-019-56885-y – year: 2016 ident: 10.1016/j.clay.2021.106239_bb0385 – volume: 46 start-page: 28894 year: 2020 ident: 10.1016/j.clay.2021.106239_bb0180 article-title: Zn3V3O8 nanostructures: Facile hydrothermal/solvothermal synthesis, characterization, and electrochemical hydrogen storage publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.08.057 – volume: 95 start-page: 2017 issue: 12 year: 2011 ident: 10.1016/j.clay.2021.106239_bb0390 article-title: Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks publication-title: AAPG Bull. doi: 10.1306/03301110145 – volume: 7 start-page: 14838 issue: 1 year: 2017 ident: 10.1016/j.clay.2021.106239_bb0020 article-title: Quantifying the anisotropy and tortuosity of permeable pathways in clay-rich mudstones using models based on X-ray tomography publication-title: Sci. Rep. doi: 10.1038/s41598-017-14810-1 – volume: 195 start-page: 107585 year: 2020 ident: 10.1016/j.clay.2021.106239_bb0465 article-title: Dynamic fracture evolution of tight sandstone under uniaxial compression in high resolution 3D X-ray microscopy publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.107585 – volume: 1 start-page: 1 issue: 03 year: 2016 ident: 10.1016/j.clay.2021.106239_bb0215 article-title: Microstructural characterisation of the Ypresian clays (Kallo-1) at nanometre resolution, using broad-ion beam milling and scanning electron microscopy publication-title: Neth. J. Geosci. – volume: 52 start-page: 85 issue: 1–2 year: 2011 ident: 10.1016/j.clay.2021.106239_bb0250 article-title: 3D geometry and topology of pore pathways in Opalinus clay: implications for mass transport publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2011.02.003 – volume: 24 start-page: 166 year: 2015 ident: 10.1016/j.clay.2021.106239_bb0040 article-title: Fractal characteristics of pores in non-marine shales from the Huainan coalfield, eastern China publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2015.03.021 – volume: 252 start-page: 210 year: 2019 ident: 10.1016/j.clay.2021.106239_bb0070 article-title: A simple permeability model for shale gas and key insights on relative importance of various transport mechanisms publication-title: Fuel. doi: 10.1016/j.fuel.2019.04.054 – volume: 34 start-page: 9339 year: 2020 ident: 10.1016/j.clay.2021.106239_bb0110 article-title: Probing multiscale structure of mineral and nanoporous kerogen phase in organic-rich source and neutron scattering publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.0c01146 – volume: 208 start-page: 1 year: 2015 ident: 10.1016/j.clay.2021.106239_bb0210 article-title: Multi-scale characterization of porosity in Boom Clay (HADES-level, Mol, Belgium) using a combination of X-ray μ-CT, 2D BIB-SEM and FIB-SEM tomography publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2015.01.022 – volume: 224 start-page: 116 year: 2016 ident: 10.1016/j.clay.2021.106239_bb0175 article-title: Optimization of pore-network characterization of a compacted clay material by TEM and FIB/SEM imaging publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2015.11.035 – volume: 7 start-page: 429 issue: 2 year: 2011 ident: 10.1016/j.clay.2021.106239_bb0200 article-title: Pore networks in continental and marine mudstones: Characteristics and controls on sealing behavior publication-title: Geosphere. doi: 10.1130/GES00619.1 – volume: 31 issue: 20 year: 2020 ident: 10.1016/j.clay.2021.106239_bb0315 article-title: One-step sonochemical synthesis of Zn(OH)2/ZnV3O8 nanostructures as a potent material in electrochemical hydrogen storage publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-020-04289-4 – volume: 45 start-page: 245 issue: 3 year: 2010 ident: 10.1016/j.clay.2021.106239_bb0240 article-title: Probing the nanoscale architecture of clay minerals publication-title: Clay Miner. doi: 10.1180/claymin.2010.045.3.245 – volume: 303 start-page: 47 year: 2018 ident: 10.1016/j.clay.2021.106239_bb0195 article-title: The discovery of silicon oxide nanoparticles in space-weathered of Apollo 15 lunar soil grains publication-title: Icarus. doi: 10.1016/j.icarus.2017.12.028 – volume: 118 start-page: 2799 issue: 6 year: 2013 ident: 10.1016/j.clay.2021.106239_bb0260 article-title: Pore space relevant for gas permeability in Opalinus clay: statistical analysis of homogeneity, percolation, and representative volume element publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/jgrb.50228 – volume: 93 start-page: 329 year: 2009 ident: 10.1016/j.clay.2021.106239_bb0325 article-title: Pore-throat sizes in sandstones, tight sandstones, and shales publication-title: AAPG Bull. doi: 10.1306/10240808059 – volume: 96 start-page: 3358 issue: 7 year: 1999 ident: 10.1016/j.clay.2021.106239_bb0400 article-title: Surface geochemistry of the clay minerals publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.96.7.3358 – volume: 260 start-page: 116358 year: 2020 ident: 10.1016/j.clay.2021.106239_bb0460 article-title: Molecular simulations of competitive adsorption behavior between CH4-C2H6 in K-illite clay at supercritical conditions publication-title: Fuel doi: 10.1016/j.fuel.2019.116358 – volume: 168 start-page: 249 year: 2019 ident: 10.1016/j.clay.2021.106239_bb0160 article-title: A contrastive study of effects of different organic matter on the smectite illitization in hydrothermal experiments publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2018.11.016 – volume: 17 start-page: 5930 issue: 9 year: 2017 ident: 10.1016/j.clay.2021.106239_bb0245 article-title: Nanogeosciences: research history, current status, and development trends publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2017.14436 – volume: 168 start-page: 340 year: 2019 ident: 10.1016/j.clay.2021.106239_bb0055 article-title: Ethylene glycol monoethyl ether (EGME) adsorption by organic matter (OM)-clay complexes: Dependence on the OM Type publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2018.11.026 – volume: 96 start-page: 665 issue: 4 year: 2012 ident: 10.1016/j.clay.2021.106239_bb0130 article-title: Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging publication-title: AAPG Bull. doi: 10.1306/08151110188 – volume: vol. 102 start-page: 37 year: 2013 ident: 10.1016/j.clay.2021.106239_bb0395 article-title: Microfabrics related to porosity development, sedimentary and diagenetic processes, and composition of unconventional resource shale reservoirs as determined by conventional scanning electron microscopy – volume: 30 start-page: 9114 issue: 11 year: 2016 ident: 10.1016/j.clay.2021.106239_bb0090 article-title: Adsorption Behavior of Hydrocarbon on Illite publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.6b01777 – year: 2011 ident: 10.1016/j.clay.2021.106239_bb0365 – volume: 241 start-page: 914 year: 2019 ident: 10.1016/j.clay.2021.106239_bb0485 article-title: Pore structure variations across structural deformation of Silurian Longmaxi shale: an example from the Chuandong Thrust-Fold belt publication-title: Fuel. doi: 10.1016/j.fuel.2018.12.108 – volume: 318 start-page: 1760 year: 2007 ident: 10.1016/j.clay.2021.106239_bb0380 article-title: Accretion of mudstone beds from migrating floccule ripples publication-title: Science. doi: 10.1126/science.1147001 – volume: 170 start-page: 83 year: 2013 ident: 10.1016/j.clay.2021.106239_bb0255 article-title: Characterization of multi-scale microstructural features in Opalinus Clay publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2012.11.029 – volume: 11 start-page: 1 year: 2017 ident: 10.1016/j.clay.2021.106239_bb0525 article-title: Geological characteristics, main challenges and future prospect of shale gas publication-title: J. Nat. Gas Geosci. – volume: 158 start-page: 83 issue: 6 year: 2018 ident: 10.1016/j.clay.2021.106239_bb0450 article-title: Influence of salt solutions on the permeability, membrane efficiency and wettability of the lower Silurian Longmaxi shale in Xiushan, Southwest China publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2018.02.006 – volume: 37 start-page: 5464 year: 2021 ident: 10.1016/j.clay.2021.106239_bb0025 article-title: Nanoscale accessible porosity as a key parameter depicting the topological evolution of organic porous networks publication-title: Langmuir doi: 10.1021/acs.langmuir.0c03519 – year: 1991 ident: 10.1016/j.clay.2021.106239_bb0345 – volume: 49 start-page: 143 year: 2014 ident: 10.1016/j.clay.2021.106239_bb0225 article-title: A comparative study of representative 2D microstructures in Shaly and Sandy facies of Opalinus Clay (Mont Terri, Switzerland) inferred form BIB-SEM and MIP methods publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2013.10.009 – volume: 92 start-page: 275 issue: 4 year: 2013 ident: 10.1016/j.clay.2021.106239_bb0205 article-title: Variations in the morphology of porosity in the Boom Clay Formation: insights from 2D high resolution BIB-SEM imaging and Mercury injection Porosimetry publication-title: Neth. J. Geosci. – volume: 180 start-page: 105190 year: 2019 ident: 10.1016/j.clay.2021.106239_bb0050 article-title: Ethylene glycol monoethyl ether adsorption by interlayer montmorilonite-organic matter complexes: Dependence on the organic matter content and its alkyl chain length publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2019.105190 – year: 1989 ident: 10.1016/j.clay.2021.106239_bb0080 – volume: 46 start-page: 26548 issue: 17 year: 2020 ident: 10.1016/j.clay.2021.106239_bb0500 article-title: Effect of copper on improving the electrochemical storage of hydrogen in CeO2 nanostructure fabricated by a simple and surfactant-free sonochemical pathway publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.07.121 – start-page: 5 year: 2010 ident: 10.1016/j.clay.2021.106239_bb0305 – volume: 212 start-page: 1 year: 2017 ident: 10.1016/j.clay.2021.106239_bb0045 article-title: Effects of complexation between organic matter (OM) and clay mineral on OM pyrolysis publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2017.04.045 – volume: 4 start-page: 372 issue: 4 year: 2020 ident: 10.1016/j.clay.2021.106239_bb0275 article-title: Microstructural characterization of organic matter pores in coal-measure shale publication-title: Adv. Geo-Energy Res. doi: 10.46690/ager.2020.04.04 – volume: 6 start-page: 110808 year: 2016 ident: 10.1016/j.clay.2021.106239_bb0440 article-title: Molecular simulation of methane adsorption in slit-like quartz pores publication-title: RSC Adv. doi: 10.1039/C6RA22803H – volume: 154 start-page: 73 year: 2018 ident: 10.1016/j.clay.2021.106239_bb0135 article-title: The integration of magnifications: a novel approach to obtain representative information about the pore space of mudrocks from SEM images publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2017.12.046 – volume: 44 start-page: 20110 issue: 36 year: 2019 ident: 10.1016/j.clay.2021.106239_bb0515 article-title: Green synthesis, characterization and investigation of the electrochemical hydrogen storage properties of Dy2Ce2O7 nanostructures with fig extract publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.05.137 – volume: 45 start-page: 21611 year: 2020 ident: 10.1016/j.clay.2021.106239_bb0015 article-title: Novel sonochemical synthesis of Zn2V2O7 nanostructures for electrochemical hydrogen storage publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2020.05.166 – volume: 3 start-page: 258 issue: 3 year: 2019 ident: 10.1016/j.clay.2021.106239_bb0190 article-title: Quantitative evaluation of free gas and adsorbed gas content of Wufeng-Longmaxi shales in the Jiaoshiba area, Sichuan Basin, China publication-title: Adv. Geo-Energy Res. doi: 10.26804/ager.2019.03.04 – volume: 62 start-page: 1 year: 2015 ident: 10.1016/j.clay.2021.106239_bb0415 article-title: Pore structure characteristics of coal-bearing shale using fluid invasion methods: a case study in the Huainan–Huaibei Coalfield in China publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2015.01.001 – volume: 49 start-page: 127 issue: 2 year: 2014 ident: 10.1016/j.clay.2021.106239_bb0425 article-title: Clay mineralogy and shale instability: an alternative conceptual analysis publication-title: Clay Miner. doi: 10.1180/claymin.2014.049.2.01 – volume: 91 start-page: 475 year: 2007 ident: 10.1016/j.clay.2021.106239_bb0235 article-title: Unconventional shale-gas systems: the Mississippian Barnett shale of north-Central Texas as one model for thermogenic shale-gas assessment publication-title: AAPG Bull. doi: 10.1306/12190606068 – volume: 202 start-page: 628 year: 2017 ident: 10.1016/j.clay.2021.106239_bib526 article-title: Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro-tomography, automated ultra-high resolution SEM, MAPS Mineralogy and FIB-SEM[J] publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.05.039 – volume: 197 start-page: 117256 year: 2020 ident: 10.1016/j.clay.2021.106239_bb0495 article-title: Microcosmic gas adsorption mechanism on clay-organic nanocomposites in a marine shale publication-title: Energy. doi: 10.1016/j.energy.2020.117256 – volume: 201 start-page: 105926 year: 2021 ident: 10.1016/j.clay.2021.106239_bb0280 article-title: Effect of adsorbed moisture on the pore size distribution of marine-continental transitional shales: Insights from lithofacies differences and clay swelling publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2020.105926 – year: 2010 ident: 10.1016/j.clay.2021.106239_bb0360 – volume: 178 start-page: 13 year: 2017 ident: 10.1016/j.clay.2021.106239_bb0435 article-title: Pore characteristics differences between clay-rich and clay-poor shales of the Lower Cambrian Niutitang Formation in the Northern Guizhou area, and insights into shale gas storage mechanisms publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2017.04.009 – volume: 158 start-page: 31 year: 2016 ident: 10.1016/j.clay.2021.106239_bb0430 article-title: Clay mineralogy and unconventional hydrocarbon shale reservoirs in the USA. I. Occurrence and interpretation of mixed-layer R3 ordered illite/smectite publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2016.04.004 – volume: 87 start-page: 1580 issue: 11−12 year: 2002 ident: 10.1016/j.clay.2021.106239_bb0320 article-title: I-S precipitation in pore space as the cause of geopressuring in Mesozoic mudstones, Egersund Basin, Norwegian continental shelf publication-title: Am. Mineral. doi: 10.2138/am-2002-11-1208 – volume: 342 start-page: 180 year: 2016 ident: 10.1016/j.clay.2021.106239_bb0085 article-title: Micro and nano-size pores of clay minerals in shale reservoirs: implication for the accumulation of shale gas publication-title: Sediment. Geol. doi: 10.1016/j.sedgeo.2016.06.022 – volume: 407 start-page: 427 issue: 4–6 year: 2005 ident: 10.1016/j.clay.2021.106239_bb0445 article-title: Structure and diffusion behavior of dense carbon dioxide fluid in clay-like slit pores by molecular dynamics simulation publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2005.03.118 – volume: 79 start-page: 848 issue: 12 year: 2009 ident: 10.1016/j.clay.2021.106239_bb0295 article-title: Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the mississippian Barnett shale publication-title: J. Sediment. Res. doi: 10.2110/jsr.2009.092 – volume: 37 start-page: 483 year: 2009 ident: 10.1016/j.clay.2021.106239_bb0375 article-title: Bedload Transport of Mud by Floccule Ripples-Direct Observation of Ripple Migration Processes and their Implications publication-title: Geology. doi: 10.1130/G25319A.1 – volume: 172 start-page: 112 year: 2017 ident: 10.1016/j.clay.2021.106239_bb0165 article-title: Mineralogy, geochemistry and genesis of clays interlayered coal seams succession in the Neogene lacustrine Seyitmer coal deposit, Kütahya, western Turkey publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2017.01.014 – volume: 163 start-page: 100 year: 2018 ident: 10.1016/j.clay.2021.106239_bb0285 article-title: Quartz types in shale and their effect on geomechanical properties: an example from the lower Cambrian Niutitang Formation in the Cen’gong block, South China publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2018.07.019 – volume: 4 start-page: 8 year: 1984 ident: 10.1016/j.clay.2021.106239_bb0340 article-title: Characterization and geochemistry of Devonian oil shale north Alabama-south central Tennessee – volume: 102 start-page: 153 year: 2013 ident: 10.1016/j.clay.2021.106239_bb0370 article-title: SEM observations on ion-milled samples of devonian black shales from Indiana and New YorkThe petrographic context of multiple pore types publication-title: AAPG Mem. – volume: 60 start-page: 367 issue: 2 year: 2012 ident: 10.1016/j.clay.2021.106239_bb0335 article-title: Microfracturation in rocks: from microtomography images to processes publication-title: Eur. Phys. J. Appl. Phys. doi: 10.1051/epjap/2012120093 – volume: 89 start-page: 155 year: 2005 ident: 10.1016/j.clay.2021.106239_bb0310 article-title: Mississippian Barnett Shale, Fort Worth Basin, north-Central Texas: gas-shale play with multi-trillion cubic foot potential publication-title: AAPG Bull. doi: 10.1306/09170404042 – volume: 171 start-page: 419 year: 2017 ident: 10.1016/j.clay.2021.106239_bb0060 article-title: Electrical conductivity models in saturated porous media: a review publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2017.06.013 – volume: 30 start-page: 10643 issue: 12 year: 2016 ident: 10.1016/j.clay.2021.106239_bb0455 article-title: Methane and Carbon Dioxide Adsorption on Illite publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.6b01776 – volume: 224 start-page: 521 year: 2018 ident: 10.1016/j.clay.2021.106239_bb0100 article-title: GCMC simulations on the adsorption mechanisms of CH4 and CO2 in K-illite and their implications for shale gas exploration and development publication-title: Fuel. doi: 10.1016/j.fuel.2018.03.061 – volume: 96 start-page: 1099 issue: 6 year: 2012 ident: 10.1016/j.clay.2021.106239_bb0075 article-title: Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig unit publication-title: AAPG Bull. doi: 10.1306/10171111052 – volume: 69 start-page: 234 year: 2014 ident: 10.1016/j.clay.2021.106239_bb0420 article-title: A “slice-and-view” (FIB–SEM) study of clay gouge from the SAFOD creeping section of the San Andreas Fault at ~2.7km depth publication-title: J. Struct. Geol. doi: 10.1016/j.jsg.2014.10.006 – volume: 791 start-page: 792 year: 2019 ident: 10.1016/j.clay.2021.106239_bb0505 article-title: Simple fabrication of Pr2Ce2O7 nanostructures via a new and eco-friendly route; a potential electrochemical hydrogen storage material publication-title: J. Alloys Comp. doi: 10.1016/j.jallcom.2019.04.005 – year: 2017 ident: 10.1016/j.clay.2021.106239_bb0330 article-title: The effect of microstructural heterogeneity on pore size distribution and permeability in Opalinus Clay (Mont Terri, Switzerland): insights from an integrated study of laboratory fluid flow and pore morphology from BIB-SEM images publication-title: Geol. Soc. Lond. Spec. Publ. doi: 10.1144/SP454.3 – volume: 49 start-page: 55 issue: 1 year: 1979 ident: 10.1016/j.clay.2021.106239_bb0035 article-title: Clay diagenesis in Wilcox sandstones of Southwest Texas; implications of smectite diagenesis on sandstone cementation publication-title: J. Sediment. Res. – volume: 196 start-page: 105758 year: 2020 ident: 10.1016/j.clay.2021.106239_bb0470 article-title: Full-scale nanopore system and fractal characteristics of clay-rich lacustrine shale combining FE-SEM, nano-CT, gas adsorption and mercury intrusion porosimetry publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2020.105758 – volume: 4 start-page: 15 issue: 1 year: 2009 ident: 10.1016/j.clay.2021.106239_bb0140 article-title: Morphology of the pore space in claystones – evidence from BIB/FIB ion beam sectioning and cryo-SEM observations publication-title: eEarth. doi: 10.5194/ee-4-15-2009 – volume: 26 start-page: 916 issue: 6 year: 2009 ident: 10.1016/j.clay.2021.106239_bb0350 article-title: The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2008.06.004 – volume: 73 start-page: 174 year: 2016 ident: 10.1016/j.clay.2021.106239_bb0475 article-title: 2D and 3D nanopore characterization of gas shale in Longmaxi formation based on FIB-SEM publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2016.02.033 – volume: 98 start-page: 437 year: 2018 ident: 10.1016/j.clay.2021.106239_bb0065 article-title: Shale gas transport model in 3D fractal porous media with variable pore sizes publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2018.08.040 – volume: 228 start-page: 272 year: 2018 ident: 10.1016/j.clay.2021.106239_bb0480 article-title: Impact of tectonism on pore type and pore structure evolution in organic-rich shale: Implications for gas storage and migration pathways in naturally deformed rocks publication-title: Fuel. doi: 10.1016/j.fuel.2018.04.137 – volume: 215 start-page: 480 issue: 1 year: 2019 ident: 10.1016/j.clay.2021.106239_bb0520 article-title: Synthesis of dysprosium cerate nanostructures using Phoenix dactylifera extract as novel green fuel and investigation of their electrochemical hydrogen storage and Coulombic efficiency publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.01.026 – volume: 31 start-page: 288 year: 2010 ident: 10.1016/j.clay.2021.106239_bb0155 article-title: Forming conditions and characteristics of shale gas in the Lower Paleozoic of the Upper Yangtze region, China publication-title: Oil Gas Geol. – volume: 10 start-page: 504 year: 2020 ident: 10.1016/j.clay.2021.106239_bb0410 article-title: The Chemical State and Occupancy of Radiogenic Pb, and Crystallinity of RW-1 Monazite Revealed by XPS and TEM publication-title: Minerals. doi: 10.3390/min10060504 – volume: 71 start-page: 82 issue: 1 year: 2013 ident: 10.1016/j.clay.2021.106239_bb0220 article-title: Pore morphology and distribution in the Shaly facies of Opalinus Clay (Mont Terri, Switzerland): Insights from representative 2D BIB–SEM investigations on mm to nm scale publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2012.11.006 – volume: 186 start-page: 105439 year: 2020 ident: 10.1016/j.clay.2021.106239_bb0270 article-title: Methane hydrate formation in the stacking of kaolinite particles with different surface contacts as nanoreactors: a molecular dynamics simulation study publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2020.105439 – volume: 110 start-page: 768 year: 2019 ident: 10.1016/j.clay.2021.106239_bb0490 article-title: Petrophysical properties of the major marine shales in the Upper Yangtze Block, South China: a function of structural deformation publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2019.08.003 |
SSID | ssj0012859 |
Score | 2.5643258 |
Snippet | Gas shales contain a variety of clay-rich materials with multifarious pore networks. Clay-hosted porosity is an essential component and considered to play a... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106239 |
SubjectTerms | Clay-hosted pore Gas storage and migration Multi-scale imaging Shale gas reservoirs |
Title | Multi-scale multi-dimensional characterization of clay-hosted pore networks of shale using FIBSEM, TEM, and X-ray micro-tomography: Implications for methane storage and migration |
URI | https://dx.doi.org/10.1016/j.clay.2021.106239 |
Volume | 213 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFH6ahpDggKAwMRiTD9zAtImduNltm1pa0HbZhnqL7NjeitZ0WrpDL_tR-4V7L3ZLkdAOXCIl8bOi-Nn-nvR9nwE-K-ltIo3nQijBcSbmXPeN5Sazpt9zPSEFiZNPTvPRhfwxySZbcLzSwhCtMq79YU1vV-v4pBv_ZvdmOu2ekY9IIqiEoUJCkNBcSkVZ_u1-TfNIyKAt-HsXnFpH4UzgeFXXeok1YprgA8QBxb83p40NZ_gaXkWkyA7Dx7yBLVd34OWGf2AHdgZ_ZGrYNM7TpgPPv7cH9i4x4Ne0uQvdNG_hodXb8gYHxrGWS8gt2fsHaw5Wrd2bgziTzT2jj-dBCsIQqztWB-J4Qy-bK-qIuPOXbDg-OhucfGXndNG1ZRN-q5dsRow_vpjPojf2ARtvkNgZYmZGp1jr2jEiauLy1gbPppchN9_BxXBwfjzi8dQGrkUqFtwrxGje6twVWimVY8EihBHeu9Qmyla66HuTI8xDrGkt7pWV172e1wg8Mt23UuzAdj2v3XtgRpJmOscKKC-ktImx2NanWZrbVBWF34VkNVxlFS3N6WSN63LFXftd0l8qaYjLMMS78GUdcxMMPZ5sna2yoPwrLUvccZ6I-_CfcR_hBd0FseMebC9u79wnRD0Ls9-m9T48Oxz_HJ0-AksTA44 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH4amxBwQKMwMX5sPnAD0yZ2koYbTO1aWHdZh3qL7NgeRWs6Ld2hF_4o_kLei92uk6YduOSQ-FlW_Ot70vd9D-BDJp2JpHZciExw3IkpV11tuE6M7nZsR0hB4uTRaTo4l98nyWQLjlZaGKJVhrPfn-nNaR3etMPfbF9Np-0z8hGJBKUwlEiI5BHsSNy-VMbg8581zyMihzZv8J1zah6UM57kVV6qJSaJcYQvEAjk999OGzdOfxeeB6jIvvrRvIAtW7Xg2YaBYAv2erc6NWwaNmrdgsfHTcXeJQb8nNY3vpv6JfxtBLe8xpmxrCETckP-_t6bg5Vr-2avzmRzx2jw3GtBGIJ1yyrPHK_pY_2LOiLy_AXrD7-d9Uaf2JgeqjJswq_Vks2I8scX81kwx_7ChhssdoagmVEZa1VZRkxNPN-a4Nn0wi_OV3De742PBjyUbeBKxGLBXYYgzRmV2lxlWZZixiKEFs7Z2ESZKVXedTpFnIdg0xi8LEunOh2nEHkkqmuk2IPtal7Z18C0JNF0iilQmktpIm2wrYuTODVxluduH6LVdBVl8DSn0hqXxYq89rugv1TQFBd-ivfh4zrmyjt6PNg6Wa2C4s66LPDKeSDuzX_GHcKTwXh0UpwMT3-8haf0xSsf38H24vrGvkcItNAHzRL_ByS7BRw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-scale+multi-dimensional+characterization+of+clay-hosted+pore+networks+of+shale+using+FIBSEM%2C+TEM%2C+and+X-ray+micro-tomography%3A+Implications+for+methane+storage+and+migration&rft.jtitle=Applied+clay+science&rft.au=Zhu%2C+Hongjian&rft.au=Huang%2C+Cheng&rft.au=Ju%2C+Yiwen&rft.au=Bu%2C+Hongling&rft.date=2021-11-01&rft.issn=0169-1317&rft.volume=213&rft.spage=106239&rft_id=info:doi/10.1016%2Fj.clay.2021.106239&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_clay_2021_106239 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-1317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-1317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-1317&client=summon |