Light Trapped in a Photonic Dot:  Microspheres Act as a Cavity for Quantum Dot Emission

Optical microcavities that confine the propagation of light in all three dimensions (3D) are fascinating research objects to study 3D-confined photon states, low-threshold microlasers, or cavity quantum electrodynamics of quantum dots in 3D microcavities. A challenge is the combination of complete e...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 1; no. 6; pp. 309 - 314
Main Authors Artemyev, Mikhail V, Woggon, Ulrike, Wannemacher, Reinhold, Jaschinski, Heiko, Langbein, Wolfgang
Format Journal Article
LanguageEnglish
Published American Chemical Society 01.06.2001
Online AccessGet full text

Cover

Loading…
Abstract Optical microcavities that confine the propagation of light in all three dimensions (3D) are fascinating research objects to study 3D-confined photon states, low-threshold microlasers, or cavity quantum electrodynamics of quantum dots in 3D microcavities. A challenge is the combination of complete electronic confinement with photon confinement, e.g., by linking a single quantum dot to a single photonic dot. Here we report on the interplay of 3D-confined cavity modes of single microspheres (the photonic dot states) with photons emitted from quantized electronic levels of single semiconductor nanocrystals (the quantum dot states). We show how cavity modes of high cavity finesse are switched by single, blinking quantum dots. A concept for a quantum-dot microlaser operating at room temperature in the visible spectral range is demonstrated. We observe an enhancement in the spontaneous emission rate; i.e., the Purcell effect is found for quantum dots inside a photonic dot.
AbstractList Optical microcavities that confine the propagation of light in all three dimensions (3D) are fascinating research objects to study 3D-confined photon states, low-threshold microlasers, or cavity quantum electrodynamics of quantum dots in 3D microcavities. A challenge is the combination of complete electronic confinement with photon confinement, e.g., by linking a single quantum dot to a single photonic dot. Here we report on the interplay of 3D-confined cavity modes of single microspheres (the photonic dot states) with photons emitted from quantized electronic levels of single semiconductor nanocrystals (the quantum dot states). We show how cavity modes of high cavity finesse are switched by single, blinking quantum dots. A concept for a quantum-dot microlaser operating at room temperature in the visible spectral range is demonstrated. We observe an enhancement in the spontaneous emission rate; i.e., the Purcell effect is found for quantum dots inside a photonic dot.
Author Woggon, Ulrike
Jaschinski, Heiko
Langbein, Wolfgang
Artemyev, Mikhail V
Wannemacher, Reinhold
Author_xml – sequence: 1
  givenname: Mikhail V
  surname: Artemyev
  fullname: Artemyev, Mikhail V
– sequence: 2
  givenname: Ulrike
  surname: Woggon
  fullname: Woggon, Ulrike
– sequence: 3
  givenname: Reinhold
  surname: Wannemacher
  fullname: Wannemacher, Reinhold
– sequence: 4
  givenname: Heiko
  surname: Jaschinski
  fullname: Jaschinski, Heiko
– sequence: 5
  givenname: Wolfgang
  surname: Langbein
  fullname: Langbein, Wolfgang
BookMark eNptkL1OwzAcxC1UJNrCwBt4YWAI_G3H2GarSvmQigCpDEyRkzjUVWtHtlupGyuvyZPQqKgT093wu9PpBqjnvDMInRO4IkDJtVsC4TznyyPUJ5xBdqMU7R28zE_QIMYFACjGoY8-pvZznvAs6LY1NbYOa_w698k7W-E7n25_vr7xs62Cj-3cBBPxqEpYxx021hubtrjxAb-ttUvrVRfAk5WN0Xp3io4bvYzm7E-H6P1-Mhs_ZtOXh6fxaJppRlnKhFQAhORUMkE5MaaChjaiVGXeMEI151CxkteqrJViGmQuJKeQ69JIKYRgQ3S57-02xmCaog12pcO2IFB0nxSHT3bsxZ7VVSwWfh3cbtk_3C9yBGEb
CitedBy_id crossref_primary_10_1246_cl_2007_1144
crossref_primary_10_35848_1347_4065_ac3d19
crossref_primary_10_1021_la4028404
crossref_primary_10_1103_PhysRevB_73_155322
crossref_primary_10_3390_ma3010614
crossref_primary_10_1016_j_spmi_2009_05_004
crossref_primary_10_1016_j_solidstatesciences_2010_05_017
crossref_primary_10_1021_ja035096m
crossref_primary_10_1063_1_4752449
crossref_primary_10_1021_la900350s
crossref_primary_10_1103_PhysRevLett_89_257403
crossref_primary_10_1016_j_jallcom_2009_11_040
crossref_primary_10_35848_1347_4065_ac1129
crossref_primary_10_1002_adom_202400161
crossref_primary_10_1116_6_0001365
crossref_primary_10_1088_1367_2630_11_3_033025
crossref_primary_10_1088_2053_1591_aaf95a
crossref_primary_10_35848_1347_4065_acfb63
crossref_primary_10_1021_jp048071y
crossref_primary_10_1088_0268_1242_18_11_302
crossref_primary_10_1088_0953_8984_22_33_334218
crossref_primary_10_1016_j_jcis_2010_03_010
crossref_primary_10_1155_2013_526862
crossref_primary_10_1002_cphc_200400516
crossref_primary_10_1142_S1793292008000873
crossref_primary_10_1016_j_jlumin_2011_04_004
crossref_primary_10_1021_la061999s
crossref_primary_10_1038_ncomms3376
crossref_primary_10_1063_1_1841459
crossref_primary_10_1016_j_molliq_2016_07_088
crossref_primary_10_1143_JJAP_45_6917
crossref_primary_10_1002_adfm_200902076
crossref_primary_10_1103_PhysRevB_74_115321
crossref_primary_10_1007_s00289_016_1674_7
crossref_primary_10_1016_j_molstruc_2009_06_032
crossref_primary_10_1088_0268_1242_21_3_L01
crossref_primary_10_1021_cm0211251
crossref_primary_10_2478_s11772_009_0026_7
crossref_primary_10_1021_ja017002j
crossref_primary_10_1007_s11356_024_32479_8
crossref_primary_10_3390_photonics8020054
crossref_primary_10_1021_nl060003v
crossref_primary_10_5012_jkcs_2009_53_5_620
crossref_primary_10_1016_j_spmi_2004_09_033
crossref_primary_10_1103_PhysRevA_66_063804
crossref_primary_10_1021_ja0521730
crossref_primary_10_1016_S1631_0705_02_01290_2
crossref_primary_10_1016_j_matlet_2004_11_056
crossref_primary_10_3390_ma16247684
crossref_primary_10_1016_j_molliq_2017_08_120
crossref_primary_10_1002_app_34370
crossref_primary_10_1088_1464_4266_6_2_005
crossref_primary_10_1021_jp9098667
crossref_primary_10_1103_PhysRevA_68_013818
crossref_primary_10_1021_jp3100188
crossref_primary_10_1063_1_1475364
crossref_primary_10_1021_acsaelm_9b00338
crossref_primary_10_1134_S1063782618050172
crossref_primary_10_1016_j_snb_2018_04_128
crossref_primary_10_1021_jp064118z
crossref_primary_10_1021_jp805491b
crossref_primary_10_1364_OL_27_000080
crossref_primary_10_1021_acs_jpcc_5b07475
crossref_primary_10_1007_s11467_013_0360_6
crossref_primary_10_1016_j_mseb_2022_116058
crossref_primary_10_1088_0957_4484_18_38_385606
crossref_primary_10_1021_nl071729
crossref_primary_10_3390_polym10111217
crossref_primary_10_1002_sdtp_14850
crossref_primary_10_1007_s10895_011_0885_4
crossref_primary_10_1007_s10971_023_06102_0
crossref_primary_10_1103_PhysRevLett_111_203903
crossref_primary_10_1016_j_ica_2012_01_026
crossref_primary_10_1021_nl080661a
crossref_primary_10_1063_1_3485295
crossref_primary_10_1002_1521_3951_200201_229_1_423__AID_PSSB423_3_0_CO_2
crossref_primary_10_1016_j_physe_2004_08_017
crossref_primary_10_1002_adom_202001932
crossref_primary_10_1177_0021998311401101
crossref_primary_10_1039_c0cc00621a
crossref_primary_10_1364_OE_23_025854
crossref_primary_10_1007_s11671_006_9005_9
crossref_primary_10_1007_s11705_007_0068_7
crossref_primary_10_1016_j_jlumin_2018_02_025
crossref_primary_10_1021_jp801781s
crossref_primary_10_1109_JLT_2016_2522985
crossref_primary_10_1364_OE_22_023552
crossref_primary_10_1021_ja909483w
crossref_primary_10_1080_15421400701547920
crossref_primary_10_1002_smll_200400019
crossref_primary_10_1246_cl_2005_1284
crossref_primary_10_1002_adfm_200701441
crossref_primary_10_1049_mnl_2012_0800
crossref_primary_10_1364_OE_27_015399
crossref_primary_10_1021_la703655v
crossref_primary_10_1016_j_jcis_2008_02_009
crossref_primary_10_1038_nbt927
crossref_primary_10_1021_jp8018809
crossref_primary_10_1063_1_1615681
crossref_primary_10_1186_s43074_021_00043_z
crossref_primary_10_1088_0953_8984_14_25_308
crossref_primary_10_1016_j_cej_2012_09_049
crossref_primary_10_1364_OL_496276
crossref_primary_10_1063_1_1615316
crossref_primary_10_1021_jp067523z
crossref_primary_10_1155_2012_869284
crossref_primary_10_1103_PhysRevA_75_043820
crossref_primary_10_1063_1_1759386
crossref_primary_10_1016_j_ceramint_2023_10_223
crossref_primary_10_1016_j_jpcs_2013_01_019
crossref_primary_10_1080_02603590500538654
crossref_primary_10_1002_adma_200401571
crossref_primary_10_1007_s00396_007_1730_9
crossref_primary_10_1021_nl034206k
crossref_primary_10_1109_JSTQE_2002_804250
crossref_primary_10_1163_156856708783623456
crossref_primary_10_1016_j_radphyschem_2013_06_022
crossref_primary_10_1021_la702165u
crossref_primary_10_1016_j_optmat_2004_01_016
crossref_primary_10_1021_jp8045577
crossref_primary_10_1063_1_3126443
crossref_primary_10_1063_1_2437110
crossref_primary_10_1515_nanoph_2019_0520
crossref_primary_10_1021_ja0541377
crossref_primary_10_1103_PhysRevB_70_045320
crossref_primary_10_1364_OL_33_001987
crossref_primary_10_1016_j_optmat_2004_08_003
crossref_primary_10_1016_j_poly_2009_02_040
crossref_primary_10_1002_lpor_200910001
crossref_primary_10_3390_ma3042260
crossref_primary_10_1016_j_jcrysgro_2008_04_029
crossref_primary_10_1007_s12034_010_0084_y
crossref_primary_10_1364_JOSAB_22_001471
crossref_primary_10_1007_s10854_015_3334_3
crossref_primary_10_1021_acsnano_9b05730
crossref_primary_10_1016_j_eurpolymj_2007_08_008
crossref_primary_10_1002_adom_201901228
crossref_primary_10_3740_MRSK_2008_18_12_640
Cites_doi 10.1063/1.1350423
10.1103/PhysRevLett.81.1110
10.1103/PhysRev.69.37
10.1016/0022-2313(96)00060-9
10.1103/PhysRevB.54.1506
10.1021/jp9530562
10.1080/09500349808231908
10.1103/PhysRevA.57.R2293
10.1126/science.290.5490.314
10.1049/el:19991009
10.1021/ac00001a018
10.1002/(SICI)1521-4095(199910)11:15<1243::AID-ADMA1243>3.0.CO;2-2
10.1063/1.371064
10.1103/PhysRevA.59.2418
10.1063/1.126029
10.1016/S0022-2313(97)00175-0
10.1364/OL.22.001630
10.1007/BFb0104378
10.1364/OL.25.001600
10.1063/1.119374
10.1103/PhysRevLett.85.3301
10.1142/2828
10.1016/0301-0104(96)00193-0
ContentType Journal Article
Copyright Copyright © 2001 American Chemical Society
Copyright_xml – notice: Copyright © 2001 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/nl015545l
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 314
ExternalDocumentID 10_1021_nl015545l
c489977197
GroupedDBID -
.K2
123
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AFFNX
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
AAHBH
AAYXX
ABJNI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a323t-789001142837251eec0f2f7b9b4f312a550c3b5d9bd993a084785204abe887773
IEDL.DBID ACS
ISSN 1530-6984
IngestDate Fri Aug 23 00:52:46 EDT 2024
Thu Aug 27 13:42:35 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a323t-789001142837251eec0f2f7b9b4f312a550c3b5d9bd993a084785204abe887773
PageCount 6
ParticipantIDs crossref_primary_10_1021_nl015545l
acs_journals_10_1021_nl015545l
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2001-06-01
PublicationDateYYYYMMDD 2001-06-01
PublicationDate_xml – month: 06
  year: 2001
  text: 2001-06-01
  day: 01
PublicationDecade 2000
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2001
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Pelton M. (nl015545lb00020/nl015545lb00020_1) 1999; 59
Benisty H. (nl015545lb00002/nl015545lb00002_1) 1999
Artemyev M. (nl015545lb00008/nl015545lb00008_1) 2000; 76
Chang R. K. (nl015545lb00001/nl015545lb00001_1) 1996
Yamamoto Y. (nl015545lb00003/nl015545lb00003_1) 2000
Gindele F. (nl015545lb00017/nl015545lb00017_1) 1997; 71
Klimov V. I. (nl015545lb00019/nl015545lb00019_1) 2000; 290
Agarwal G. S. (nl015545lb00004/nl015545lb00004_1) 1998; 45
Giessen H. (nl015545lb00018/nl015545lb00018_1) 1996; 210
Goss C. A. (nl015545lb00011/nl015545lb00011_1) 1991; 63
Purcell E. M. (nl015545lb00025/nl015545lb00025_1) 1946; 69
Hines M. A. (nl015545lb00010/nl015545lb00010_1) 1996; 100
Gerard J. M. (nl015545lb00006/nl015545lb00006_1) 1998; 81
Briefly (nl015545lb00012/nl015545lb00012_1)
Nagai M. (nl015545lb00021/nl015545lb00021_1) 1997; 22
Vernooy D. W. (nl015545lb00005/nl015545lb00005_1) 1998; 57
Xudong F. (nl015545lb00007/nl015545lb00007_1) 2000; 25
Empedocles S. A. (nl015545lb00014/nl015545lb00014_1) 1999; 11
Treussart F. (nl015545lb00022/nl015545lb00022_1) 1998; 76
Woggon U. (nl015545lb00026/nl015545lb00026_1) 1996; 70
Woggon U. (nl015545lb00013/nl015545lb00013_1) 1997
Von Klitzing W. (nl015545lb00024/nl015545lb00024_1) 1999; 35
Woggon U. (nl015545lb00027/nl015545lb00027_1) 1996; 54
Artemyev M. (nl015545lb00009/nl015545lb00009_1) 2001; 78
Fujiwara H. (nl015545lb00023/nl015545lb00023_1) 1999; 86
Neuhauser R. (nl015545lb00015/nl015545lb00015_1) 2000; 85
References_xml – volume: 78
  start-page: 1032
  year: 2001
  ident: nl015545lb00009/nl015545lb00009_1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1350423
  contributor:
    fullname: Artemyev M.
– volume: 81
  start-page: 1110
  year: 1998
  ident: nl015545lb00006/nl015545lb00006_1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.1110
  contributor:
    fullname: Gerard J. M.
– volume: 69
  start-page: 681
  year: 1946
  ident: nl015545lb00025/nl015545lb00025_1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.69.37
  contributor:
    fullname: Purcell E. M.
– volume: 70
  start-page: 269
  year: 1996
  ident: nl015545lb00026/nl015545lb00026_1
  publication-title: J. Lumin.
  doi: 10.1016/0022-2313(96)00060-9
  contributor:
    fullname: Woggon U.
– volume: 54
  start-page: 1506
  year: 1996
  ident: nl015545lb00027/nl015545lb00027_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.1506
  contributor:
    fullname: Woggon U.
– volume: 100
  start-page: 468
  year: 1996
  ident: nl015545lb00010/nl015545lb00010_1
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp9530562
  contributor:
    fullname: Hines M. A.
– volume: 45
  start-page: 449
  year: 1998
  ident: nl015545lb00004/nl015545lb00004_1
  publication-title: J. Modern Opt.
  doi: 10.1080/09500349808231908
  contributor:
    fullname: Agarwal G. S.
– volume: 57
  start-page: R2293
  year: 1998
  ident: nl015545lb00005/nl015545lb00005_1
  publication-title: J. Phys. Rev. A
  doi: 10.1103/PhysRevA.57.R2293
  contributor:
    fullname: Vernooy D. W.
– volume: 290
  start-page: 314
  year: 2000
  ident: nl015545lb00019/nl015545lb00019_1
  publication-title: Science
  doi: 10.1126/science.290.5490.314
  contributor:
    fullname: Klimov V. I.
– volume: 35
  start-page: 1745
  year: 1999
  ident: nl015545lb00024/nl015545lb00024_1
  publication-title: Electron. Lett.
  doi: 10.1049/el:19991009
  contributor:
    fullname: Von Klitzing W.
– volume: 63
  start-page: 85
  year: 1991
  ident: nl015545lb00011/nl015545lb00011_1
  publication-title: Anal. Chem.
  doi: 10.1021/ac00001a018
  contributor:
    fullname: Goss C. A.
– volume-title: Optical Properties of Semiconductor Quantum Dots
  year: 1997
  ident: nl015545lb00013/nl015545lb00013_1
  contributor:
    fullname: Woggon U.
– volume: 11
  start-page: 1243
  year: 1999
  ident: nl015545lb00014/nl015545lb00014_1
  publication-title: Adv. Mater.
  doi: 10.1002/(SICI)1521-4095(199910)11:15<1243::AID-ADMA1243>3.0.CO;2-2
  contributor:
    fullname: Empedocles S. A.
– volume-title: Semiconductor Cavity Quantum Electrodynamics
  year: 2000
  ident: nl015545lb00003/nl015545lb00003_1
  contributor:
    fullname: Yamamoto Y.
– volume: 86
  start-page: 2385
  year: 1999
  ident: nl015545lb00023/nl015545lb00023_1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.371064
  contributor:
    fullname: Fujiwara H.
– volume: 59
  start-page: 2418
  year: 1999
  ident: nl015545lb00020/nl015545lb00020_1
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.59.2418
  contributor:
    fullname: Pelton M.
– volume: 76
  start-page: 1353
  year: 2000
  ident: nl015545lb00008/nl015545lb00008_1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.126029
  contributor:
    fullname: Artemyev M.
– volume: 76
  start-page: 670
  year: 1998
  ident: nl015545lb00022/nl015545lb00022_1
  publication-title: J. Luminescence
  doi: 10.1016/S0022-2313(97)00175-0
  contributor:
    fullname: Treussart F.
– volume: 22
  start-page: 1630
  year: 1997
  ident: nl015545lb00021/nl015545lb00021_1
  publication-title: Opt. Lett.
  doi: 10.1364/OL.22.001630
  contributor:
    fullname: Nagai M.
– volume-title: Confined Photon Systems
  year: 1999
  ident: nl015545lb00002/nl015545lb00002_1
  doi: 10.1007/BFb0104378
  contributor:
    fullname: Benisty H.
– volume: 25
  start-page: 1600
  year: 2000
  ident: nl015545lb00007/nl015545lb00007_1
  publication-title: Opt. Lett.
  doi: 10.1364/OL.25.001600
  contributor:
    fullname: Xudong F.
– volume: 71
  start-page: 2181
  year: 1997
  ident: nl015545lb00017/nl015545lb00017_1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.119374
  contributor:
    fullname: Gindele F.
– volume: 85
  start-page: 3301
  year: 2000
  ident: nl015545lb00015/nl015545lb00015_1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.3301
  contributor:
    fullname: Neuhauser R.
– volume-title: the preparation method comprises the following processes:  5 mg of glass spheres
  ident: nl015545lb00012/nl015545lb00012_1
  contributor:
    fullname: Briefly
– volume-title: Optical Processes in Microcavities
  year: 1996
  ident: nl015545lb00001/nl015545lb00001_1
  doi: 10.1142/2828
  contributor:
    fullname: Chang R. K.
– volume: 210
  start-page: 71
  year: 1996
  ident: nl015545lb00018/nl015545lb00018_1
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(96)00193-0
  contributor:
    fullname: Giessen H.
SSID ssj0009350
Score 2.1619968
Snippet Optical microcavities that confine the propagation of light in all three dimensions (3D) are fascinating research objects to study 3D-confined photon states,...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 309
Title Light Trapped in a Photonic Dot:  Microspheres Act as a Cavity for Quantum Dot Emission
URI http://dx.doi.org/10.1021/nl015545l
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEB5qvejBt1gfZVGvqUk20Y230gdFrChaqKewm2yoWNNikosnr_5Nf4kzSauBot53Q5jZ3W-e3wCcKo02vBSe4YbcNSgRZyhTUcI1FK7wHMkDikP2b857A-dq6A4rcPJLBt-2zuIxwbrjjpdg2UY8JA-r2br_Ydbl-RhWvLnoB3nCmdMHlbcS9ARJCXpKGNJdh_a8E6coHXluZKlqBG-LxIx__d4GrM1sSNYslL4JFR1vwWqJWXAbHq_J6WaIRNOpDtlTzCS7HU1SIsJl7Ul6-fn-wfpUjJcQr4BOWDNImUxwWUvSOAmGxiy7y1Du2QttYB08EBRZ24FBt_PQ6hmzKQqG5DZPDep0zTtm0RVFY0brwIzs6EJ5yom4ZUt0UQKu3NBTIdoq0kS4Eq5tOlJpQWSBfBeq8STWe8C4pbhwVKQkem2CS49zGq5JbwQqQcga1FHM_uwWJH6e4LYt_1tGNTiea8CfFmwai4v2__vKAawUlWAUCzmEavqa6SM0DVJVz4_GF3x1r94
link.rule.ids 315,786,790,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWgDMDAN6J8FAuxpjRxTB22qrQq0FYgWqlMkZ04AlHSiiQLEyt_k1_CXZLSCAbYbcvy2X7v7ux3hJwqDRxeCsfgPuMGJuIMVVOYcPUFF44tmYdxyF7_vDO0r0d8lMvk4F8YmEQEI0VpEn-uLmCehWNEd5uPF8kSrwPKIQ1q3s8FdllajRUOMLhDjrBnKkLFrohAXlRAoAKUtNezmkTpJNIXJM_VJFZV7-2HPuP_ZrlB1nJGSRvZFtgkCzrcIqsFncFt8tBFF5wCLk2n2qdPIZX09nESoywuvZzEF5_vH7SHT_MiVBnQEW14MZURNGtKLC5BgdrSuwSskLxgB9qC7YFxth0ybLcGzY6R11QwJLNYbOC_1_T_LDimQG209mqBFdSVo-yAmZYEh8VjivuO8oG5yBqAl-BWzZZKC5QOZLukFE5CvUcoMxUTtgqUBB9OMOkwhqU28cYAWwhZJhVYIjc_E5Gbprst0_1eozI5mRnCnWbaGr8b7f81yjFZ7gx6Xbd71b85ICvZGzGMkhySUvya6CMgDbGqpLvlC_KTuEk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagSAgG3ojyKBZiTUnihDpsVR8q0JYiqFSmyE4cgShpRJKFiZW_yS_hLk1LBAPstnXy-Xzv7wg5lQpseMEdzfaZrWEiTpO6xISrz23uWIJ5GIfs9c87Q-tqZI9yRxF7YYCIGE6KsyQ-SnXkBznCgHEWjlHDW_Z4kSzZNcNCQaw37r5Bdlk2kRWEGFwih1szJKHiVtRCXlzQQgV10l4nN3NCsiqS52qayKr39gOj8f-UbpC13LKk9elT2CQLKtwiqwW8wW3y0EVXnIJ-iiLl06eQCjp4nCQIj0ubk-Ti8_2D9rBEL0a0ARXTupdQEcOyhsAhExRMXHqbAjfSF9xAW_BMMN62Q4bt1n2jo-WzFTTBTJZo2P-a9dGCgwomjlKeHphBTTrSCphhCnBcPCZt35E-WDBCByXGbVO3hFQcIQTZLimFk1DtEcoMybglAynAl-NMOIzhyE38OYAfXJRJBa7JzWUjdrO0t2m48zsqk5MZM9xoirHxe9H-X6cck-VBs-12L_vXB2RlWiqGwZJDUkpeU3UEtkMiK9mD-QIrbrrD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light+Trapped+in+a+Photonic+Dot%3A%E2%80%89+Microspheres+Act+as+a+Cavity+for+Quantum+Dot+Emission&rft.jtitle=Nano+letters&rft.au=Artemyev%2C+Mikhail+V.&rft.au=Woggon%2C+Ulrike&rft.au=Wannemacher%2C+Reinhold&rft.au=Jaschinski%2C+Heiko&rft.date=2001-06-01&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=1&rft.issue=6&rft.spage=309&rft.epage=314&rft_id=info:doi/10.1021%2Fnl015545l&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_nl015545l
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon