Design Principles for Two-Dimensional Molecular Aggregates Using Kasha’s Model: Tunable Photophysics in Near and Short-Wave Infrared

Technologies which utilize near-infrared (NIR) (700–1000 nm) and short-wave infrared (1000–2000 nm) electromagnetic radiation have applications in deep-tissue imaging, telecommunications, and satellite telemetry due to low scattering and decreased background signal in this spectral region. It is the...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 123; no. 30; pp. 18702 - 18710
Main Authors Deshmukh, Arundhati P, Koppel, Danielle, Chuang, Chern, Cadena, Danielle M, Cao, Jianshu, Caram, Justin R
Format Journal Article
LanguageEnglish
Published American Chemical Society 01.08.2019
Online AccessGet full text

Cover

Loading…
Abstract Technologies which utilize near-infrared (NIR) (700–1000 nm) and short-wave infrared (1000–2000 nm) electromagnetic radiation have applications in deep-tissue imaging, telecommunications, and satellite telemetry due to low scattering and decreased background signal in this spectral region. It is therefore necessary to develop materials that absorb light efficiently beyond 1000 nm. Transition dipole moment coupling (e.g., J-aggregation) allows for red-shifted excitonic states and provides a pathway to highly absorptive electronic states in the infrared. We present aggregates of two cyanine dyes whose absorption peaks red-shift dramatically upon aggregation in water from ∼800 to 1000 nm and 1050 nm, respectively, with sheet-like morphologies and high molar absorptivities (ε ≈ 105 M–1 cm–1). We use Frenkel exciton theory to extend Kasha’s model for J- and H-aggregations and describe the excitonic states of two-dimensional aggregates whose slip is controlled by steric hindrance in the assembled structure. A consequence of the increased dimensionality is the phenomenon of an intermediate “I-aggregate”, one which red-shifts yet displays spectral signatures of band-edge dark states akin to an H-aggregate. We distinguish between H-, I-, and J-aggregates by showing the relative position of the bright (absorptive) state within the density of states using temperature-dependent spectroscopy. I-aggregates hold potential for applications such as charge injection moieties for semiconductors and donors for energy transfer in NIR and short-wave infrared. Our results can be used to better design chromophores with predictable and tunable aggregation with new photophysical properties.
AbstractList Technologies which utilize near-infrared (NIR) (700–1000 nm) and short-wave infrared (1000–2000 nm) electromagnetic radiation have applications in deep-tissue imaging, telecommunications, and satellite telemetry due to low scattering and decreased background signal in this spectral region. It is therefore necessary to develop materials that absorb light efficiently beyond 1000 nm. Transition dipole moment coupling (e.g., J-aggregation) allows for red-shifted excitonic states and provides a pathway to highly absorptive electronic states in the infrared. We present aggregates of two cyanine dyes whose absorption peaks red-shift dramatically upon aggregation in water from ∼800 to 1000 nm and 1050 nm, respectively, with sheet-like morphologies and high molar absorptivities (ε ≈ 105 M–1 cm–1). We use Frenkel exciton theory to extend Kasha’s model for J- and H-aggregations and describe the excitonic states of two-dimensional aggregates whose slip is controlled by steric hindrance in the assembled structure. A consequence of the increased dimensionality is the phenomenon of an intermediate “I-aggregate”, one which red-shifts yet displays spectral signatures of band-edge dark states akin to an H-aggregate. We distinguish between H-, I-, and J-aggregates by showing the relative position of the bright (absorptive) state within the density of states using temperature-dependent spectroscopy. I-aggregates hold potential for applications such as charge injection moieties for semiconductors and donors for energy transfer in NIR and short-wave infrared. Our results can be used to better design chromophores with predictable and tunable aggregation with new photophysical properties.
Author Chuang, Chern
Deshmukh, Arundhati P
Caram, Justin R
Cao, Jianshu
Koppel, Danielle
Cadena, Danielle M
AuthorAffiliation Department of Chemistry
Department of Chemistry and Biochemistry
AuthorAffiliation_xml – name: Department of Chemistry
– name: Department of Chemistry and Biochemistry
Author_xml – sequence: 1
  givenname: Arundhati P
  surname: Deshmukh
  fullname: Deshmukh, Arundhati P
  organization: Department of Chemistry and Biochemistry
– sequence: 2
  givenname: Danielle
  surname: Koppel
  fullname: Koppel, Danielle
  organization: Department of Chemistry and Biochemistry
– sequence: 3
  givenname: Chern
  surname: Chuang
  fullname: Chuang, Chern
  organization: Department of Chemistry
– sequence: 4
  givenname: Danielle M
  surname: Cadena
  fullname: Cadena, Danielle M
  organization: Department of Chemistry and Biochemistry
– sequence: 5
  givenname: Jianshu
  surname: Cao
  fullname: Cao, Jianshu
  organization: Department of Chemistry
– sequence: 6
  givenname: Justin R
  orcidid: 0000-0001-5126-3829
  surname: Caram
  fullname: Caram, Justin R
  email: jcaram@chem.ucla.edu
  organization: Department of Chemistry and Biochemistry
BookMark eNp1kEtOwzAQQC0EEm1hz9IHIGXyj9lVLZ-KApVoxTJy_ElcpXZkp6DuWHEHrsdJSGnFjtWMNO_N4vXRsTZaIHThw9CHwL-izA1XDWNDUkAMCRyhnk_CwEujOD7-26P0FPWdWwHEIfhhD31OhFOlxnOrNFNNLRyWxuLFu_Emai20U0bTGj-aWrBNTS0elaUVJW07cOmULvEDdRX9_vhyHcRFfY0XG02LWuB5ZVrTVFunmMNK4yfR6VRz_FIZ23qv9E3gqZaWWsHP0ImktRPnhzlAy9ubxfjemz3fTcejmUfDIGg9zgLJgKdBFAZFJqDIZJSQiJGsSDMJBU8IyViWck4AGAcGIuWSxUkUS0LSKBwg2P9l1jhnhcwbq9bUbnMf8l3HvOuY7zrmh46dcrlXfi9mY7se7n_8BzjWe9Q
CitedBy_id crossref_primary_10_1002_adom_202201471
crossref_primary_10_1103_PhysRevB_109_L241303
crossref_primary_10_1134_S207511332104033X
crossref_primary_10_1002_adom_202002251
crossref_primary_10_1063_5_0094451
crossref_primary_10_1016_j_eja_2024_127228
crossref_primary_10_1007_s41061_021_00327_9
crossref_primary_10_1039_D0AN01468K
crossref_primary_10_1016_j_pdpdt_2021_102636
crossref_primary_10_1021_acs_jpclett_0c02204
crossref_primary_10_1021_acs_chemmater_1c00645
crossref_primary_10_1021_acs_jpcc_2c07014
crossref_primary_10_1021_jacs_3c03367
crossref_primary_10_1088_1367_2630_ac2852
crossref_primary_10_1021_acs_analchem_3c01958
crossref_primary_10_1021_acs_chemmater_3c02349
crossref_primary_10_1103_PhysRevLett_127_047402
crossref_primary_10_1016_j_chempr_2019_08_013
crossref_primary_10_1021_acs_jpca_0c07953
crossref_primary_10_1021_acs_jpclett_3c00812
crossref_primary_10_1039_D2NR05747F
crossref_primary_10_1039_D2SC03793A
crossref_primary_10_1039_D0CS01550D
crossref_primary_10_1063_5_0020788
crossref_primary_10_1021_jacs_9b05195
crossref_primary_10_1016_j_jcis_2021_04_131
crossref_primary_10_1021_acs_jpcc_1c09033
crossref_primary_10_1021_acsnanoscienceau_1c00038
crossref_primary_10_1016_j_orgel_2021_106416
crossref_primary_10_1002_ejoc_202000870
crossref_primary_10_1021_acsnano_3c05384
crossref_primary_10_1021_acs_jpclett_3c02286
crossref_primary_10_1021_acs_jpcc_9b09368
Cites_doi 10.1063/1.469236
10.1119/1.12937
10.1364/josab.6.000685
10.2307/3571331
10.1063/1.4908599
10.1021/acs.accounts.7b00155
10.1016/s0009-2614(99)01252-x
10.1021/acs.jpcc.8b11416
10.1038/srep20834
10.1063/1.2052591
10.1073/pnas.1718917115
10.1117/12.777776
10.1088/1361-6455/aa87cb
10.1021/ja806853v
10.1021/ja900684h
10.1021/jacs.7b11571
10.1021/jp004294m
10.1103/physrevlett.119.097402
10.1021/jp9537724
10.1063/1.342421
10.1063/1.4705272
10.1021/cm071557h
10.1073/pnas.1408342111
10.1016/0009-2614(70)80220-2
10.1021/jz500634f
10.26434/chemrxiv.7503506.v1
10.1021/jp905246r
10.1038/1381009a0
10.1021/jp048288s
10.1038/s41551-016-0010
10.1088/2050-6120/aa8d0d
10.1021/acsnano.8b00911
10.1515/nanoph-2017-0039
10.1038/nchem.1380
10.1021/jacs.6b04087
10.1002/9783527633791
10.1021/jp507435a
10.1021/ja907373h
10.1039/c8cp03378a
10.1021/acs.nanolett.7b02559
10.1063/1.109954
10.1021/acs.accounts.6b00576
10.1021/acsnano.7b06589
10.1021/acs.nanolett.6b02529
10.1021/jp994311b
10.1016/0009-2614(70)80062-8
10.1016/j.jphotochem.2010.05.025
10.1039/c8pp00218e
10.1063/1.1499958
10.1021/acs.jpcb.5b07821
10.1016/j.dyepig.2004.08.008
10.1063/1.3485293
10.1021/acs.chemrev.7b00581
10.1021/acs.jpclett.8b02482
10.1038/nmat1756
10.1016/j.dyepig.2015.05.016
10.1021/acs.nanolett.7b03735
10.1021/jacs.5b03644
10.1038/nchem.1145
10.1002/anie.201706974
10.1002/aenm.201700236
10.1515/nanoph-2012-0025
10.1021/jacs.7b01550
10.1021/acs.jpclett.8b02325
10.1016/s0022-2313(99)00294-x
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1021/acs.jpcc.9b05060
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 18710
ExternalDocumentID 10_1021_acs_jpcc_9b05060
a638453573
GroupedDBID .K2
53G
55A
5GY
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
4.4
AAYXX
ABJNI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a322t-dc2fc0d72432b8e0b8f4694c98b78f0bd6998c87dd900cd0c0e7dfc5645f99743
IEDL.DBID ACS
ISSN 1932-7447
IngestDate Fri Aug 23 01:44:30 EDT 2024
Thu Aug 27 13:43:49 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 30
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a322t-dc2fc0d72432b8e0b8f4694c98b78f0bd6998c87dd900cd0c0e7dfc5645f99743
ORCID 0000-0001-5126-3829
OpenAccessLink https://escholarship.org/content/qt1415n7v9/qt1415n7v9.pdf?t=q4gatg
PageCount 9
ParticipantIDs crossref_primary_10_1021_acs_jpcc_9b05060
acs_journals_10_1021_acs_jpcc_9b05060
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20190801
2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 20190801
  day: 01
PublicationDecade 2010
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref3/cit3
May V. (ref22/cit22) 2011
ref27/cit27
Anantharaman S. B. (ref45/cit45) 2018
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
Mukamel S. (ref53/cit53) 1995
ref68/cit68
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref23/cit23
  doi: 10.1063/1.469236
– ident: ref13/cit13
  doi: 10.1119/1.12937
– ident: ref11/cit11
  doi: 10.1364/josab.6.000685
– ident: ref19/cit19
  doi: 10.2307/3571331
– ident: ref55/cit55
  doi: 10.1063/1.4908599
– ident: ref17/cit17
  doi: 10.1021/acs.accounts.7b00155
– ident: ref44/cit44
  doi: 10.1016/s0009-2614(99)01252-x
– ident: ref33/cit33
  doi: 10.1021/acs.jpcc.8b11416
– ident: ref63/cit63
  doi: 10.1038/srep20834
– ident: ref54/cit54
  doi: 10.1063/1.2052591
– ident: ref4/cit4
  doi: 10.1073/pnas.1718917115
– ident: ref2/cit2
  doi: 10.1117/12.777776
– ident: ref28/cit28
  doi: 10.1088/1361-6455/aa87cb
– ident: ref56/cit56
  doi: 10.1021/ja806853v
– ident: ref21/cit21
  doi: 10.1021/ja900684h
– ident: ref29/cit29
  doi: 10.1021/jacs.7b11571
– ident: ref43/cit43
  doi: 10.1021/jp004294m
– ident: ref24/cit24
  doi: 10.1103/physrevlett.119.097402
– ident: ref65/cit65
  doi: 10.1021/jp9537724
– ident: ref26/cit26
  doi: 10.1063/1.342421
– ident: ref58/cit58
  doi: 10.1063/1.4705272
– ident: ref3/cit3
  doi: 10.1021/cm071557h
– ident: ref34/cit34
  doi: 10.1073/pnas.1408342111
– volume-title: Principles of Nonlinear Optical Spectroscopy
  year: 1995
  ident: ref53/cit53
  contributor:
    fullname: Mukamel S.
– ident: ref50/cit50
  doi: 10.1016/0009-2614(70)80220-2
– ident: ref38/cit38
  doi: 10.1021/jz500634f
– ident: ref1/cit1
  doi: 10.26434/chemrxiv.7503506.v1
– ident: ref60/cit60
  doi: 10.1021/jp905246r
– ident: ref20/cit20
  doi: 10.1038/1381009a0
– ident: ref49/cit49
  doi: 10.1021/jp048288s
– ident: ref6/cit6
  doi: 10.1038/s41551-016-0010
– ident: ref15/cit15
  doi: 10.1088/2050-6120/aa8d0d
– ident: ref16/cit16
  doi: 10.1021/acsnano.8b00911
– ident: ref5/cit5
  doi: 10.1515/nanoph-2017-0039
– ident: ref47/cit47
  doi: 10.1038/nchem.1380
– ident: ref8/cit8
  doi: 10.1021/jacs.6b04087
– volume-title: Charge and Energy Transfer Dynamics in Molecular Systems
  year: 2011
  ident: ref22/cit22
  doi: 10.1002/9783527633791
  contributor:
    fullname: May V.
– ident: ref31/cit31
  doi: 10.1021/jp507435a
– ident: ref41/cit41
  doi: 10.1021/ja907373h
– ident: ref35/cit35
  doi: 10.1039/c8cp03378a
– ident: ref40/cit40
  doi: 10.1021/acs.nanolett.7b02559
– ident: ref46/cit46
  doi: 10.1063/1.109954
– ident: ref32/cit32
  doi: 10.1021/acs.accounts.6b00576
– ident: ref59/cit59
– ident: ref12/cit12
  doi: 10.1021/acsnano.7b06589
– ident: ref39/cit39
  doi: 10.1021/acs.nanolett.6b02529
– ident: ref66/cit66
  doi: 10.1021/jp994311b
– start-page: 1806997
  volume-title: Advanced Functional Materials
  year: 2018
  ident: ref45/cit45
  contributor:
    fullname: Anantharaman S. B.
– ident: ref51/cit51
  doi: 10.1016/0009-2614(70)80062-8
– ident: ref36/cit36
  doi: 10.1016/j.jphotochem.2010.05.025
– ident: ref9/cit9
  doi: 10.1039/c8pp00218e
– ident: ref27/cit27
  doi: 10.1063/1.1499958
– ident: ref25/cit25
  doi: 10.1021/acs.jpcb.5b07821
– ident: ref48/cit48
  doi: 10.1016/j.dyepig.2004.08.008
– ident: ref62/cit62
  doi: 10.1063/1.3485293
– ident: ref57/cit57
  doi: 10.1021/acs.chemrev.7b00581
– ident: ref64/cit64
  doi: 10.1021/acs.jpclett.8b02482
– ident: ref18/cit18
  doi: 10.1038/nmat1756
– ident: ref10/cit10
  doi: 10.1016/j.dyepig.2015.05.016
– ident: ref42/cit42
  doi: 10.1021/acs.nanolett.7b03735
– ident: ref67/cit67
  doi: 10.1021/jacs.5b03644
– ident: ref61/cit61
  doi: 10.1038/nchem.1145
– ident: ref7/cit7
  doi: 10.1002/anie.201706974
– ident: ref14/cit14
  doi: 10.1002/aenm.201700236
– ident: ref68/cit68
  doi: 10.1515/nanoph-2012-0025
– ident: ref30/cit30
  doi: 10.1021/jacs.7b01550
– ident: ref52/cit52
  doi: 10.1021/acs.jpclett.8b02325
– ident: ref37/cit37
  doi: 10.1016/s0022-2313(99)00294-x
SSID ssj0053013
Score 2.507173
Snippet Technologies which utilize near-infrared (NIR) (700–1000 nm) and short-wave infrared (1000–2000 nm) electromagnetic radiation have applications in deep-tissue...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 18702
Title Design Principles for Two-Dimensional Molecular Aggregates Using Kasha’s Model: Tunable Photophysics in Near and Short-Wave Infrared
URI http://dx.doi.org/10.1021/acs.jpcc.9b05060
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JSgNBEG00HvTiLu7UQQ8eOnYms3oLUXFBCSTB3IZepo0LE0knCp48-Q_-nl9i9SwoLuB1GJqhumrqva7qV4TsIKLVmBkiGiLLoa6f1KhwA59yJQNVj4Sns5EsF5f-Sdc963m9T5mc7xV8p7bPpanePkhZjQSzaniTZMrBtGiJVqPZLv-6HjpqPa8gI2J03aAoSf62gk1E0nxJRF8yyvFcPprIZEKEtpHkrjoeiap8_inT-I-PnSezBbCERu4JC2QiSRfJdLOc57ZEXg-zZg1olcfrBhCwQudpQA-txH8uzwEX5bxcaFwjF7enbAayxgI456bP31_eDNgJavcH0BlnN6-g1R9YfQK74wZuUrjE8AGeKmj3Ed3TK_6YwGmqh7bZfZl0j486zRNaTGGgHIN9RJV0tGQqcNy6I8KEiVAjpXZlFIog1EwoHxmbDAOlIsakYpIlgdLSqtToCNlKfYVU0kGarBLQCA45D3joMe4mfi1UnrQQAgm6L7jnrZFdNGBcRJGJswK5U4uzh2jVuLDqGtkrty5-yEU5_nx3_Z9rbpAZxEJR3tu3SSqj4TjZQrwxEtuZo30AjDzR5w
link.rule.ids 315,786,790,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RONBLKX2IR1vmUA4cvHV2kzjpDS1FS2FXCBaVW-RH3O1DWYR3qdQTJ_5D_15_ScdOUhBqpfZqRaPR2JP5xjP-BuA1IVpLkSFnGWU5LE7LiKlYpEwaLUwvV4kNI1mGo3RwFr8_T84XIGrfwpASjiS5UMS_ZReI3vi1zxdad3LFPSneA1hKBAU7j4b6p-3PN6Hz2qsLyQQc41g0lck_SfDxSLs78ehOYNlfgZPfKoV-ki-d-Ux19Pd7bI3_pfNjeNTATNytz8UqLJTVE1jut9PdnsLNXmjdwOP2st0hwVccf5uyPU_4X5N14LCdnou7Hykz93duDkObAR5KN5E_r3849PPUvr7F8Ty8w8LjydSzFfj9d_ipwhE5E8rK4OmEsD77IK9KPKjspW99fwZn--_G_QFrZjIwSa4_Y0Z3reZGdONeV2UlV5mlBDvWeaZEZrkyKeVvOhPG5JxrwzUvhbHac9bYnHKX3nNYrKZVuQZoCSpKKWSWcBmXaZSZRHtAQel6qmSSrMM2GbBofMoVoVzejYqwSFYtGquuw067g8VFTdHx1283_lHmFiwPxsOj4uhgdLgJDwkl5XXX3wtYnF3Oy5eERGbqVTh7vwBogNpS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VIkEvvKu2vHwoBw4O3sRe73KLEqKWtlGkptDbyo9104c2UZ2AxIkT_4G_xy9h7N1FFQIJrtbKGs3OeL7xjL8B2EVE6zAy5DTDLIfytEyo5jKlyhppe7kWLo5kORqneyf8_ak4XQPRvoVBITzu5GMRP3j1wrqGYSB5E9YvFsZ0cs0CMd4tuC1kwoM_9gfH7QEs0GZ7dTEZwSPnsqlO_mmHEJOMvxGTbgSX0X348Eus2FNy2Vktdcd8-Y2x8b_lfgD3GrhJ-rV9PIS1snoEdwftlLfH8G0YWzjIpL109wRhLJl-ntNhIP6vSTvIUTtFl_TPMEMPd2-exHYDcqD8TP34-t2TMFft6i2ZruJ7LDKZzQNrQbADT84rMkanIqqy5HiGmJ9-VJ9Ksl-569AC_wRORu-mgz3azGagCo-AJbWm6wyzsst7XZ2VTGcOE21u8kzLzDFtU8zjTCatzRkzlhlWSutM4K5xOeYwvU1Yr-ZVuQXEIWRUSqpMMMXLNMmsMAFYYNqeaiXENrxCBRaNb_kils27SREXUatFo9VteN3-xWJRU3X89dudf9zzJdyZDEfF4f744ClsIFjK6-a_Z7C-vF6VzxGQLPWLaH4_AW9B3Mw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+Principles+for+Two-Dimensional+Molecular+Aggregates+Using+Kasha%E2%80%99s+Model%3A+Tunable+Photophysics+in+Near+and+Short-Wave+Infrared&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Deshmukh%2C+Arundhati+P&rft.au=Koppel%2C+Danielle&rft.au=Chuang%2C+Chern&rft.au=Cadena%2C+Danielle+M&rft.date=2019-08-01&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=123&rft.issue=30&rft.spage=18702&rft.epage=18710&rft_id=info:doi/10.1021%2Facs.jpcc.9b05060&rft.externalDocID=a638453573
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon