The Wax–Liquid Transition Modulates Hydrocarbon Respiration Rates in Alcanivorax borkumensis SK2
Marine hydrocarbon biodegradation is an important environmental process conducted by microbes and modulated by oceanographic conditions. Following up on the patterns of petroleum hydrocarbon biodegradation observed after the Deepwater Horizon disaster, we measured respiration rates for the obligate...
Saved in:
Published in | Environmental science & technology letters Vol. 5; no. 5; pp. 277 - 282 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
08.05.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2328-8930 2328-8930 |
DOI | 10.1021/acs.estlett.8b00143 |
Cover
Loading…
Abstract | Marine hydrocarbon biodegradation is an important environmental process conducted by microbes and modulated by oceanographic conditions. Following up on the patterns of petroleum hydrocarbon biodegradation observed after the Deepwater Horizon disaster, we measured respiration rates for the obligate alkane-degrading bacterium, Alcanivorax borkumensis SK2, to assess the relationship between hydrocarbon respiration rates and the phase, wax versus liquid, of the substrate. Using a matrix of temperatures (20, 25, 30, 35, and 40 °C) and n-alkanes (n-C14, n-C15, n-C16, n-C17, n-C18, n-C19, and n-C20) for which each temperature gap spans the phase transition point of an n-alkane, we demonstrate that the n-alkane respiration rate decreases substantially when the substrate is in the wax versus liquid phase. The observed effect spans the full experimental temperature range. Subsequent experimentation with only wax-phase n-C19 indicates that the availability of surface area modulates the n-alkane respiration rate and is likely a factor contributing to the observed respiration rates being lower for wax-phase than for liquid-phase hydrocarbons. These results demonstrate that wax-phase hydrocarbons are subject to biodegradation by A. borkumensis SK2 but that rates are suppressed relative to those of liquid-phase hydrocarbons. The results are consistent with interpretations of hydrocarbon biodegradation patterns from Deepwater Horizon with broader relevance to the behavior of hydrocarbons in the ocean. |
---|---|
AbstractList | Marine hydrocarbon biodegradation is an important environmental process conducted by microbes and modulated by oceanographic conditions. Following up on the patterns of petroleum hydrocarbon biodegradation observed after the Deepwater Horizon disaster, we measured respiration rates for the obligate alkane-degrading bacterium, Alcanivorax borkumensis SK2, to assess the relationship between hydrocarbon respiration rates and the phase, wax versus liquid, of the substrate. Using a matrix of temperatures (20, 25, 30, 35, and 40 °C) and n-alkanes (n-C14, n-C15, n-C16, n-C17, n-C18, n-C19, and n-C20) for which each temperature gap spans the phase transition point of an n-alkane, we demonstrate that the n-alkane respiration rate decreases substantially when the substrate is in the wax versus liquid phase. The observed effect spans the full experimental temperature range. Subsequent experimentation with only wax-phase n-C19 indicates that the availability of surface area modulates the n-alkane respiration rate and is likely a factor contributing to the observed respiration rates being lower for wax-phase than for liquid-phase hydrocarbons. These results demonstrate that wax-phase hydrocarbons are subject to biodegradation by A. borkumensis SK2 but that rates are suppressed relative to those of liquid-phase hydrocarbons. The results are consistent with interpretations of hydrocarbon biodegradation patterns from Deepwater Horizon with broader relevance to the behavior of hydrocarbons in the ocean. Marine hydrocarbon biodegradation is an important environmental process conducted by microbes and modulated by oceanographic conditions. Following up on the patterns of petroleum hydrocarbon biodegradation observed after the Deepwater Horizon disaster, we measured respiration rates for the obligate alkane-degrading bacterium, Alcanivorax borkumensis SK2, to assess the relationship between hydrocarbon respiration rates and the phase, wax versus liquid, of the substrate. Using a matrix of temperatures (20, 25, 30, 35, and 40 °C) and n-alkanes (n-C₁₄, n-C₁₅, n-C₁₆, n-C₁₇, n-C₁₈, n-C₁₉, and n-C₂₀) for which each temperature gap spans the phase transition point of an n-alkane, we demonstrate that the n-alkane respiration rate decreases substantially when the substrate is in the wax versus liquid phase. The observed effect spans the full experimental temperature range. Subsequent experimentation with only wax-phase n-C₁₉ indicates that the availability of surface area modulates the n-alkane respiration rate and is likely a factor contributing to the observed respiration rates being lower for wax-phase than for liquid-phase hydrocarbons. These results demonstrate that wax-phase hydrocarbons are subject to biodegradation by A. borkumensis SK2 but that rates are suppressed relative to those of liquid-phase hydrocarbons. The results are consistent with interpretations of hydrocarbon biodegradation patterns from Deepwater Horizon with broader relevance to the behavior of hydrocarbons in the ocean. |
Author | Valentine, David L Lyu, Li-Na Cui, Zhisong Ding, Haibing |
AuthorAffiliation | Marine Ecology Research Center, First Institute of Oceanography State Oceanic Administration of China Ocean University of China Department of Earth Science College of Chemistry and Chemical Engineering Marine Science Institute State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry University of California at Santa Barbara Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education Chinese Academy of Science |
AuthorAffiliation_xml | – name: Ocean University of China – name: State Oceanic Administration of China – name: University of California at Santa Barbara – name: Department of Earth Science – name: College of Chemistry and Chemical Engineering – name: Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education – name: State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry – name: Marine Ecology Research Center, First Institute of Oceanography – name: Marine Science Institute – name: Chinese Academy of Science |
Author_xml | – sequence: 1 givenname: Li-Na surname: Lyu fullname: Lyu, Li-Na organization: Chinese Academy of Science – sequence: 2 givenname: Haibing surname: Ding fullname: Ding, Haibing organization: Ocean University of China – sequence: 3 givenname: Zhisong surname: Cui fullname: Cui, Zhisong organization: State Oceanic Administration of China – sequence: 4 givenname: David L orcidid: 0000-0001-5914-9107 surname: Valentine fullname: Valentine, David L email: valentine@ucsb.edu organization: University of California at Santa Barbara |
BookMark | eNqFkMtOAjEUhhuDiYg8gZtZuhnoZWCmS0JUjBgTxLhsTjudWBym0M4Y2PkOvqFPYrksjAvtpk3P_52c852jVmUrjdAlwT2CKemD8j3t61LXdS-TGJOEnaA2ZTSLM85w68f7DHW9X-BweIoTzNpIzl919AKbr4_PqVk3Jo_mDipvamOr6MHmTQm19tFkmzurwMnwO9N-ZRzsE7N91VTRqFRQmXfrYBNJ696apQ5dfPR0Ty_QaQGl193j3UHPN9fz8SSePt7ejUfTGBildZyD4lSmLIypOeY5QMIHMik005ADwTzBQ5ZrClBIOchwoRSVCnOS5WEZqVkHXR36rpxdN8GIWBqvdFlCpW3jBSWYsBSnbBii_BBVznrvdCGUqfcb1Q5MKQgWO7UiqBVHteKoNrDsF7tyZglu-w_VP1C74sI2rgoq_iS-AYFjlp4 |
CitedBy_id | crossref_primary_10_1016_j_jhazmat_2021_128129 |
Cites_doi | 10.1073/pnas.1108820109 10.1016/j.orggeochem.2008.02.023 10.1073/pnas.1610110114 10.1128/AEM.00694-13 10.1016/j.orggeochem.2011.03.029 10.1007/978-1-4684-7609-5_6 10.1038/nbt1232 10.1128/JB.00072-06 10.1073/pnas.1101242108 10.1111/j.1462-2920.2010.02416.x 10.1021/es500825q 10.1038/ngeo1067 10.1029/2011GL046726 10.1073/pnas.1110564109 10.1007/s00253-008-1809-3 10.1038/ncomms6755 10.1016/S0958-1669(02)00316-6 10.1016/j.marpolbul.2016.02.044 10.1006/jcht.2002.0978 10.1016/j.jbiotec.2003.07.013 10.1099/00207713-48-2-339 10.1046/j.1365-2672.2000.01104.x 10.1007/BF01607793 10.1126/science.1196830 10.1016/B978-0-12-803832-1.00019-2 10.1099/00207713-45-1-116 10.1021/es00050a019 10.1073/pnas.1414873111 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acs.estlett.8b00143 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2328-8930 |
EndPage | 282 |
ExternalDocumentID | 10_1021_acs_estlett_8b00143 a42347962 |
GroupedDBID | ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD GNL IH9 JG JG~ UI2 VF5 VG9 W1F AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK 7S9 L.6 |
ID | FETCH-LOGICAL-a322t-dac92b73930e909daa495b4fe3eada1094063de2aafbb580fcc2bc0918d970be3 |
IEDL.DBID | ACS |
ISSN | 2328-8930 |
IngestDate | Fri Jul 11 15:42:00 EDT 2025 Tue Jul 01 03:01:16 EDT 2025 Thu Apr 24 23:05:57 EDT 2025 Thu Aug 27 13:41:55 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a322t-dac92b73930e909daa495b4fe3eada1094063de2aafbb580fcc2bc0918d970be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5914-9107 |
PQID | 2101370736 |
PQPubID | 24069 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2101370736 crossref_citationtrail_10_1021_acs_estlett_8b00143 crossref_primary_10_1021_acs_estlett_8b00143 acs_journals_10_1021_acs_estlett_8b00143 |
ProviderPackageCode | JG~ GNL VF5 VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-08 |
PublicationDateYYYYMMDD | 2018-05-08 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-08 day: 08 |
PublicationDecade | 2010 |
PublicationTitle | Environmental science & technology letters |
PublicationTitleAlternate | Environ. Sci. Technol. Lett |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref2/cit2 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 Butler E. L. (ref4/cit4) 1991 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref17/cit17 doi: 10.1073/pnas.1108820109 – ident: ref6/cit6 doi: 10.1016/j.orggeochem.2008.02.023 – ident: ref11/cit11 doi: 10.1073/pnas.1610110114 – ident: ref22/cit22 doi: 10.1128/AEM.00694-13 – ident: ref2/cit2 doi: 10.1016/j.orggeochem.2011.03.029 – ident: ref5/cit5 doi: 10.1007/978-1-4684-7609-5_6 – ident: ref19/cit19 doi: 10.1038/nbt1232 – ident: ref28/cit28 doi: 10.1128/JB.00072-06 – ident: ref15/cit15 doi: 10.1073/pnas.1101242108 – ident: ref23/cit23 doi: 10.1111/j.1462-2920.2010.02416.x – ident: ref9/cit9 doi: 10.1021/es500825q – ident: ref13/cit13 doi: 10.1038/ngeo1067 – volume-title: On-site bioreclamation year: 1991 ident: ref4/cit4 – ident: ref14/cit14 doi: 10.1029/2011GL046726 – ident: ref16/cit16 doi: 10.1073/pnas.1110564109 – ident: ref1/cit1 – ident: ref29/cit29 doi: 10.1007/s00253-008-1809-3 – ident: ref24/cit24 doi: 10.1038/ncomms6755 – ident: ref26/cit26 doi: 10.1016/S0958-1669(02)00316-6 – ident: ref10/cit10 doi: 10.1016/j.marpolbul.2016.02.044 – ident: ref21/cit21 doi: 10.1006/jcht.2002.0978 – ident: ref27/cit27 doi: 10.1016/j.jbiotec.2003.07.013 – ident: ref18/cit18 doi: 10.1099/00207713-48-2-339 – ident: ref25/cit25 doi: 10.1046/j.1365-2672.2000.01104.x – ident: ref3/cit3 doi: 10.1007/BF01607793 – ident: ref12/cit12 doi: 10.1126/science.1196830 – ident: ref8/cit8 doi: 10.1016/B978-0-12-803832-1.00019-2 – ident: ref20/cit20 doi: 10.1099/00207713-45-1-116 – ident: ref7/cit7 doi: 10.1021/es00050a019 – ident: ref30/cit30 doi: 10.1073/pnas.1414873111 |
SSID | ssj0000970403 |
Score | 2.0511665 |
Snippet | Marine hydrocarbon biodegradation is an important environmental process conducted by microbes and modulated by oceanographic conditions. Following up on the... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 277 |
SubjectTerms | Alcanivorax borkumensis alkanes bacteria biodegradation cell respiration environmental science liquids petroleum phase transition surface area temperature |
Title | The Wax–Liquid Transition Modulates Hydrocarbon Respiration Rates in Alcanivorax borkumensis SK2 |
URI | http://dx.doi.org/10.1021/acs.estlett.8b00143 https://www.proquest.com/docview/2101370736 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFJ0obnTh24ivjIkLFxY70ydLQiREhQVIZNfMi6SBFKWtQVf-g3_ol3inFAJqCNvpzKS9c-5jemfOReiKeIT0lATrJ6hj2I4AlWK2prsjlsMdiNCJvpzcaLr1jn3fdbpzl9V_ZfApuWUiLimd8kySkq99vG2tow3qghrrSKjanv1SMcseQNLKyslR3wBPbE55hv6fR3skES96pEWDnHmZ2g5qTu_qTA6X9Etpwkvi4y9142ofsIu283gTVyYA2UNrKtpHW3MshAeIA1TwMxt_f349hq9pKHHmwLKzXLgxlLrAl4px_V2Cs2MjDq2tPEGve7Syp2GEKwNYpvANMDXGgKw-WD2YJcbtB3qIOrW7p2rdyEsvGAw0PDEkE2XKNVueqcpmWTIGGylu95QFyGNEk-65llSUsR7njm_2hKBcQOzhS1gErqwjVIiGkTpGmNjCVjYEAkInZU3H98AECNhXSuL5UsgiugYJBbnqxEGWFack0I252IJcbEVEpysViJzCXFfSGCwfdDMb9DJh8Fje_XIKgQA0TadPWKSGaRzA5phYHphE92T1Vz5FmxBi-dkRSf8MFZJRqs4hjEn4RQbeH7nd8Rw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgHIADO2LHSBw4kBI7SZMeK0QV6HLoInqLvEWqQCmQFBVO_AN_yJcwNmmhCCG4Orbl2G8We-w3CB0Tn5BYSdB-gnqW6wkQKeZqujvieNwDD53ox8mNZinsulc9r5c_CtNvYWAQKfSUmiD-J7sAOdNlSkc-s6wYaFPvOrNoDtwRqnFdOW9PTlbssg_IdExWORpYYJDtMd3Qz_1owyTSacM0rZeNsakuo-5kmOaOyU1xmPGieP7G4Pjf_1hBS7n3iSsfcFlFMypZQ4tfOAnXEQfg4Gs2ent5rffvh32JjTkzN7twYyB1ui-V4vBJguljDxxKW3m4Xtdoma_9BFduYdH6j4CwEQac3YAOhF5S3K7RDdStXnTOQytPxGAxkPfMkkyUKdfcebYq22XJGGyruBsrB3DIiKbgKzlSUcZizr3AjoWgXIAnEkhYC66cTVRIBonaQpi4wlUuuAVCh2htL_BBIQjYZUriB1LIbXQCMxTlgpRGJkZOSaQL82mL8mnbRnS8YJHICc11Xo3b3xudThrdffB5_F79aIyECOROB1NYogbDNIKtMnF8UJClnb8P-RDNh51GPapfNmu7aAGcr8Bcngz2UCF7GKp9cHAyfmDw_A7F1vl9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6FICF64NWipjxqJA4c2LDeR9Y5RoEoJUmFWqqmp5VfK0WtNml2gwIn_kP_YX8JM-4moqiKKq5e2_La3zzssb8BeM8TzjNrUPvpIPaiWKNIyYjo7ngYqxg9dE6Pk0eHrf5J9HUcj2sgVm9hcBAF9lS4ID5J9cxkFcMA_0TllqKfZdkUZO6j8AE8pMAdYbvTPV6frvjtBNEZusxygfDQKPsryqG7-yHjpIvbxum2bnYGp_cUztZDdfdMzpuLUjX1r39YHP_nX57Bk8oLZZ0b2DyHms1fwNZf3ITboBBA7FQur39fDSeXi4lhzqy5G15sNDWU9ssWrP_ToAmUc4WlR1XYnmocua-TnHUucPEmPxBpS4Z4O0ddiL0U7HgQ7MBJ78v3bt-rEjJ4EuW-9IzU7UARh55v237bSInbKxVlNkQ8Sk5UfK3Q2EDKTKlY-JnWgdLokQiD66Fs-BLq-TS3u8B4pCMboXugKVTrxyJBxaBxt2l4Iow2DfiAM5RWAlWkLlYe8JQKq2lLq2lrQLBatFRXxOaUX-Nic6OP60azG16PzdXfrdCQovxRUEXmdrooUtwy8zBBRdnau_-Q9-HRt8-9dHhwOHgFj9EHE-4OpXgN9XK-sG_QzynVWwfpP7tq_AA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Wax%E2%80%93Liquid+Transition+Modulates+Hydrocarbon+Respiration+Rates+in+Alcanivorax+borkumensis+SK2&rft.jtitle=Environmental+science+%26+technology+letters&rft.au=Lyu%2C+Li-Na&rft.au=Ding%2C+Haibing&rft.au=Cui%2C+Zhisong&rft.au=Valentine%2C+David+L&rft.date=2018-05-08&rft.pub=American+Chemical+Society&rft.issn=2328-8930&rft.eissn=2328-8930&rft.volume=5&rft.issue=5&rft.spage=277&rft.epage=282&rft_id=info:doi/10.1021%2Facs.estlett.8b00143&rft.externalDocID=a42347962 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2328-8930&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2328-8930&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2328-8930&client=summon |