A simple method for obtaining heat capacity coefficients of minerals
Heat capacity data are unavailable or incomplete for many minerals at geologically relevant temperatures. Despite the availability of entropy and enthalpy values in numerous thermodynamic tables (even sometimes at elevated temperatures), there remains need for extrapolation beyond, or interpolation...
Saved in:
Published in | The American mineralogist Vol. 109; no. 3; pp. 624 - 627 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington
Mineralogical Society of America
01.03.2024
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heat capacity data are unavailable or incomplete for many minerals at geologically relevant temperatures. Despite the availability of entropy and enthalpy values in numerous thermodynamic tables (even sometimes at elevated temperatures), there remains need for extrapolation beyond, or interpolation between, temperatures. This approach inevitably results in estimates for entropy and enthalpy values because the heat capacity coefficients required for optimal thermodynamic treatment are less frequently available. Here we propose a simple method for obtaining heat capacity coeficients of minerals. This method requires only the empirically measured temperature-specific heat capacity for calculation via a matrix algorithm. The system of equations solver is written in the Python computing language and has been made accessible in an online repository. Thermodynamically, the solution to a system of equations represents the heat capacity coefficients that satisfy the mineral-specific polynomial. Direct coefficient calculation will result in more robust thermodynamic data, which are not subject to fitting uncertainties. Using hematite as an example, this method provides results that are comparable to conventional means and is applicable to any solid material. Coeficients vary within the traditional large 950 K temperature interval, indicating that best results should instead utilize a smaller 400 K temperature interval. Examples of large-scale implications include the refinement of geothermal gradient estimation in rapidly subsiding sedimentary basins or metamorphic and hydrothermal evolution. |
---|---|
AbstractList | Heat capacity data are unavailable or incomplete for many minerals at geologically relevant temperatures. Despite the availability of entropy and enthalpy values in numerous thermodynamic tables (even sometimes at elevated temperatures), there remains need for extrapolation beyond, or interpolation between, temperatures. This approach inevitably results in estimates for entropy and enthalpy values because the heat capacity coefficients required for optimal thermodynamic treatment are less frequently available. Here we propose a simple method for obtaining heat capacity coeficients of minerals. This method requires only the empirically measured temperature-specific heat capacity for calculation via a matrix algorithm. The system of equations solver is written in the Python computing language and has been made accessible in an online repository. Thermodynamically, the solution to a system of equations represents the heat capacity coefficients that satisfy the mineral-specific polynomial. Direct coefficient calculation will result in more robust thermodynamic data, which are not subject to fitting uncertainties. Using hematite as an example, this method provides results that are comparable to conventional means and is applicable to any solid material. Coeficients vary within the traditional large 950 K temperature interval, indicating that best results should instead utilize a smaller 400 K temperature interval. Examples of large-scale implications include the refinement of geothermal gradient estimation in rapidly subsiding sedimentary basins or metamorphic and hydrothermal evolution. Abstract Heat capacity data are unavailable or incomplete for many minerals at geologically relevant temperatures. Despite the availability of entropy and enthalpy values in numerous thermodynamic tables (even sometimes at elevated temperatures), there remains need for extrapolation beyond, or interpolation between, temperatures. This approach inevitably results in estimates for entropy and enthalpy values because the heat capacity coefficients required for optimal thermodynamic treatment are less frequently available. Here we propose a simple method for obtaining heat capacity coefficients of minerals. This method requires only the empirically measured temperature-specific heat capacity for calculation via a matrix algorithm. The system of equations solver is written in the Python computing language and has been made accessible in an online repository. Thermodynamically, the solution to a system of equations represents the heat capacity coefficients that satisfy the mineral-specific polynomial. Direct coefficient calculation will result in more robust thermodynamic data, which are not subject to fitting uncertainties. Using hematite as an example, this method provides results that are comparable to conventional means and is applicable to any solid material. Coefficients vary within the traditional large 950 K temperature interval, indicating that best results should instead utilize a smaller 400 K temperature interval. Examples of large-scale implications include the refinement of geothermal gradient estimation in rapidly subsiding sedimentary basins or metamorphic and hydrothermal evolution. Heat capacity data are unavailable or incomplete for many minerals at geologically relevant temperatures. Despite the availability of entropy and enthalpy values in numerous thermodynamic tables (even sometimes at elevated temperatures), there remains need for extrapolation beyond, or interpolation between, temperatures. This approach inevitably results in estimates for entropy and enthalpy values because the heat capacity coefficients required for optimal thermodynamic treatment are less frequently available. Here we propose a simple method for obtaining heat capacity coefficients of minerals. This method requires only the empirically measured temperature-specific heat capacity for calculation via a matrix algorithm. The system of equations solver is written in the Python computing language and has been made accessible in an online repository. Thermodynamically, the solution to a system of equations represents the heat capacity coefficients that satisfy the mineral-specific polynomial. Direct coefficient calculation will result in more robust thermodynamic data, which are not subject to fitting uncertainties. Using hematite as an example, this method provides results that are comparable to conventional means and is applicable to any solid material. Coefficients vary within the traditional large 950 K temperature interval, indicating that best results should instead utilize a smaller 400 K temperature interval. Examples of large-scale implications include the refinement of geothermal gradient estimation in rapidly subsiding sedimentary basins or metamorphic and hydrothermal evolution. |
Author | Pathak, Arkajyoti Sharma, Shikha Bowman, Samuel Agrawal, Vikas |
Author_xml | – sequence: 1 givenname: Samuel orcidid: 0000-0002-1510-174X surname: Bowman fullname: Bowman, Samuel email: sabowman@mix.wvu.edu organization: Department of Geology and Geography, West Virginia University, Morgantown, West Virginia 26506, U.S.A – sequence: 2 givenname: Arkajyoti surname: Pathak fullname: Pathak, Arkajyoti organization: Department of Geology and Geography, West Virginia University, Morgantown, West Virginia 26506, U.S.A – sequence: 3 givenname: Vikas surname: Agrawal fullname: Agrawal, Vikas organization: Department of Geology and Geography, West Virginia University, Morgantown, West Virginia 26506, U.S.A – sequence: 4 givenname: Shikha surname: Sharma fullname: Sharma, Shikha organization: Department of Geology and Geography, West Virginia University, Morgantown, West Virginia 26506, U.S.A |
BackLink | https://www.osti.gov/biblio/2580238$$D View this record in Osti.gov |
BookMark | eNptkEtLAzEUhYMoWB87f0DQraN5TCYTXIlvKLjpwl1Ik5s20klqkiL9906p4MbVuYvvHM49J-gwpggIXVBywyjvb83QMMJ4oyhRB2hCVSsaTpg8RBNCCG8IaT-O0Ukpn4QwxoWaoMd7XMKwXgEeoC6Twz5lnObVhBjiAi_BVGzN2thQt9gm8D7YALEWnDweQoRsVuUMHflR4PxXT9Hs-Wn28NpM31_eHu6njeGM1cbRVhnhfT9vHXUdBSKkVcxQaYnjrXO9m1sAwRTprDVOCtlZ6fteKiOl4afoch-bSg26jJXALm2KEWzVTPTj6_0IXe2hdU5fGyhVf6ZNjmMtzWmnuOil4CN1vadsTqVk8Hqdw2DyVlOid1tqM-jdlnq35Yjf7fFvs6qQHSzyZjsef9n_2XbOjrX8B0sMe1I |
Cites_doi | 10.2138/rmg.2022.88.15 10.1007/s00706-017-2117-3 10.1023/B:NARR.0000032647.41046.e7 10.1029/2020JB020595 10.1007/BF00372150 10.1016/0009-2541(77)90006-7 10.2138/am-2016-5425 10.1016/0016-7037(64)90083-3 10.2138/am.2012.3924 10.1021/ja01347a029 10.1007/BF00200116 10.1130/0091-7613(1987)15<1057:TEOMFI>2.0.CO;2 10.2138/am-2020-7330 10.1016/0016-7037(78)90024-8 10.2138/am-2003-0108 10.1016/j.jallcom.2021.159682 |
ContentType | Journal Article |
Copyright | 2024 by Mineralogical Society of America |
Copyright_xml | – notice: 2024 by Mineralogical Society of America |
CorporateAuthor | West Virginia Univ., Morgantown, WV (United States) |
CorporateAuthor_xml | – name: West Virginia Univ., Morgantown, WV (United States) |
DBID | AAYXX CITATION 7TN F1W H96 L.G OTOTI |
DOI | 10.2138/am-2023-9109 |
DatabaseName | CrossRef Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional OSTI.GOV |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1945-3027 |
EndPage | 627 |
ExternalDocumentID | 2580238 10_2138_am_2023_9109 10_2138_am_2023_91091093624 |
Genre | Correspondence |
GroupedDBID | -DZ -~X .DC 0R~ 23M 4.4 5GY 6J9 7XC 8FE 8FH 8G5 AAAEU AAFPC AAGVJ AAKRG AALGR AAPJK AAQCX AASQH AAWFE AAXCG AAXMT ABABW ABAQN ABEFU ABFKT ABJNI ABPLS ABPPZ ABWLS ACDEB ACEFL ACGFS ACGOD ACNCT ACPMA ACUND ACZBO ADEQT ADFRT ADGQD ADGYE ADOZN AECWL AEGVQ AEICA AENEX AEQDQ AERZL AFBAA AFBDD AFCXV AFKRA AFRAH AFYRI AGBEV AGWTP AHVWV AHXUK AIWOI AKXKS ALMA_UNASSIGNED_HOLDINGS ASYPN ATCPS AZQEC BAKPI BBCWN BBDJO BCIFA BENPR BHPHI BPHCQ CS3 EBS EJD FRP GOHGZ GUQSH H13 HCIFZ HZ~ IY9 KDIRW LK5 M2O M2P M7R MV1 O9- OK1 PADUT PATMY PCBAR PQQKQ PROAC PYCSY QD8 R05 RGW RMN RNS SLJYH TAE TN5 UK5 WH7 WTRAM XJT ZCA ~02 AAYXX CITATION 7TN ADNPR F1W H96 L.G OTOTI |
ID | FETCH-LOGICAL-a322t-d149a5ff8b4d1d61e057c92a17c0d34dd8dbcee52906ccad7576c7f8879a77a3 |
ISSN | 0003-004X |
IngestDate | Mon Aug 25 02:20:45 EDT 2025 Sat Aug 16 21:23:26 EDT 2025 Tue Jul 01 03:21:07 EDT 2025 Thu Jul 10 10:27:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a322t-d149a5ff8b4d1d61e057c92a17c0d34dd8dbcee52906ccad7576c7f8879a77a3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Correspondence-1 content type line 14 None USDOE Office of Energy Efficiency and Renewable Energy (EERE) EE0009597 |
ORCID | 0000-0002-1510-174X 000000021510174X |
PQID | 3169358753 |
PQPubID | 4640 |
PageCount | 4 |
ParticipantIDs | osti_scitechconnect_2580238 proquest_journals_3169358753 crossref_primary_10_2138_am_2023_9109 walterdegruyter_journals_10_2138_am_2023_91091093624 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240301 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 20240301 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington – name: United States |
PublicationTitle | The American mineralogist |
PublicationYear | 2024 |
Publisher | Mineralogical Society of America Walter de Gruyter GmbH |
Publisher_xml | – name: Mineralogical Society of America – name: Walter de Gruyter GmbH |
References | Maier (2024030104435817800_B11) 1932; 54 Robie (2024030104435817800_B14) 1978; 63 Hoisch (2024030104435817800_B8) 1989; 74 Guyot (2024030104435817800_B5) 1993; 20 Vassiliev (2024030104435817800_B19) 2021; 872 Ulian (2024030104435817800_B18) 2020; 105 Stachel (2024030104435817800_B16) 2022; 88 Waples (2024030104435817800_B20) 2004; 13 Peacock (2024030104435817800_B12) 1987; 15 Ferry (2024030104435817800_B2) 1978; 66 Kong (2024030104435817800_B10) 2021 Fuchs (2024030104435817800_B3) 2021; 126 Gamsjäger (2024030104435817800_B4) 2018; 149 Hemingway (2024030104435817800_B7) 1978; 42 Hemingway (2024030104435817800_B6) 1990; 75 Benisek (2024030104435817800_B1) 2012; 97 Toulmin (2024030104435817800_B17) 1964; 28 Xiong (2024030104435817800_B21) 2016; 101 Smith (2024030104435817800_B15) 1977; 19 Klemme (2024030104435817800_B9) 2003; 88 Robie (2024030104435817800_B13) 1995 |
References_xml | – volume: 88 start-page: 809 year: 2022 ident: 2024030104435817800_B16 article-title: Carbon and nitrogen in mantle-derived diamonds publication-title: Reviews in Mineralogy and Geochemistry doi: 10.2138/rmg.2022.88.15 – volume: 149 start-page: 357 year: 2018 ident: 2024030104435817800_B4 article-title: Low temperature heat capacities and thermodynamic functions described by Debye-Einstein integrals publication-title: Monatshefte für Chemie—Chemical Monthly doi: 10.1007/s00706-017-2117-3 – volume: 13 start-page: 97 year: 2004 ident: 2024030104435817800_B20 article-title: A review and evaluation of specific heat capacities of rocks, minerals and subsurface fluids. Part 1: Minerals and nonporous rocks publication-title: Natural Resources Research doi: 10.1023/B:NARR.0000032647.41046.e7 – volume: 126 start-page: e2020JB020595 year: 2021 ident: 2024030104435817800_B3 article-title: The thermal diffusivity of sedimentary rocks: Empirical validation of a physically based α − φ relation publication-title: Journal of Geophysical Research: Solid Earth doi: 10.1029/2020JB020595 – volume: 66 start-page: 113 year: 1978 ident: 2024030104435817800_B2 article-title: Experimental calibration of the partitioning of Fe and Mg between biotite and garnet publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/BF00372150 – volume: 19 start-page: 83 year: 1977 ident: 2024030104435817800_B15 article-title: A sulfur isotope geothermometer for the trisulfide system galena-sphalerite-pyrite publication-title: Chemical Geology doi: 10.1016/0009-2541(77)90006-7 – volume: 101 start-page: 277 year: 2016 ident: 2024030104435817800_B21 article-title: Some thermodynamic properties of larnite (β-Ca2SiO4) constrained by high T/P experiment and/or theoretical simulation publication-title: American Mineralogist doi: 10.2138/am-2016-5425 – volume: 74 start-page: 565 year: 1989 ident: 2024030104435817800_B8 article-title: A muscovite-biotite geothermometer publication-title: American Mineralogist – volume: 63 start-page: 109 year: 1978 ident: 2024030104435817800_B14 article-title: Low-temperature heat capacities and entropies of feldspar glasses and of anorthite publication-title: American Mineralogist – volume: 28 start-page: 641 year: 1964 ident: 2024030104435817800_B17 article-title: A thermodynamic study of pyrite and pyrrhotite publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/0016-7037(64)90083-3 – volume: 97 start-page: 657 year: 2012 ident: 2024030104435817800_B1 article-title: The heat capacity of fayalite at high temperatures publication-title: American Mineralogist doi: 10.2138/am.2012.3924 – volume: 54 start-page: 3243 year: 1932 ident: 2024030104435817800_B11 article-title: An equation for the representation of high-temperature heat content data publication-title: Journal of the American Chemical Society doi: 10.1021/ja01347a029 – volume: 20 start-page: 141 year: 1993 ident: 2024030104435817800_B5 article-title: High-temperature heat capacity and phase transitions of CaTiO3 perovskite publication-title: Physics and Chemistry of Minerals doi: 10.1007/BF00200116 – start-page: 456 year: 2021 ident: 2024030104435817800_B10 article-title: Python Programming and Numerical Methods: A Guide for Engineers and Scientists – start-page: 461 volume-title: U.S. Geological Survey Bulletin year: 1995 ident: 2024030104435817800_B13 article-title: Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and at higher temperatures – volume: 15 start-page: 1057 year: 1987 ident: 2024030104435817800_B12 article-title: Thermal effects of metamorphic fluids in subduction zones publication-title: Geology doi: 10.1130/0091-7613(1987)15<1057:TEOMFI>2.0.CO;2 – volume: 75 start-page: 781 year: 1990 ident: 2024030104435817800_B6 article-title: Thermodynamic properties for bunsenite, NiO, magnetite, Fe3O4, and hematite, Fe2O3, with comments on selected oxygen buffer reactions publication-title: American Mineralogist – volume: 105 start-page: 1212 year: 2020 ident: 2024030104435817800_B18 article-title: Thermodynamic and thermoelastic properties of wurtzite-ZnS by density function theory publication-title: American Mineralogist doi: 10.2138/am-2020-7330 – volume: 42 start-page: 1533 year: 1978 ident: 2024030104435817800_B7 article-title: Revised values for the Gibbs free energy of formation of [Al(OH)4 aq–], diaspore, boehmite and bayerite at 298.15 K and 1 bar, the thermodynamic properties of kaolinite to 800 K and 1 bar, and the heats of solution of several gibbsite samples publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/0016-7037(78)90024-8 – volume: 88 start-page: 68 year: 2003 ident: 2024030104435817800_B9 article-title: Thermodynamic properties of hercynite (FeAl2O4) based on adiabatic calorimetry at low temperatures publication-title: American Mineralogist doi: 10.2138/am-2003-0108 – volume: 872 start-page: 159682 year: 2021 ident: 2024030104435817800_B19 article-title: Description of the heat capacity of solid phases by a multiparameter family of functions publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2021.159682 |
SSID | ssj0022359 |
Score | 2.4173315 |
Snippet | Heat capacity data are unavailable or incomplete for many minerals at geologically relevant temperatures. Despite the availability of entropy and enthalpy... Abstract Heat capacity data are unavailable or incomplete for many minerals at geologically relevant temperatures. Despite the availability of entropy and... |
SourceID | osti proquest crossref walterdegruyter |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 624 |
SubjectTerms | Algorithms Availability Coefficients Enthalpy Entropy Gaussian elimination Geochemistry & Geophysics Geothermal gradient Haematite Heat heat capacity Hematite High temperature Mathematical analysis Mineralogy Minerals Polynomials Sedimentary basins Specific heat system of equations Temperature Temperature requirements Thermodynamics |
Title | A simple method for obtaining heat capacity coefficients of minerals |
URI | https://www.degruyter.com/doi/10.2138/am-2023-9109 https://www.proquest.com/docview/3169358753 https://www.osti.gov/biblio/2580238 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BKiQuFU8RWqo9wCky-LV-HA0trZBASISqN2u9u27dKDFKHEXh1zOza6-dKkKFixVZ9tqa-Tz-xpn5hpC3rIxcmYrEAf9yJyxK10mUnzpcQNbDo1KFBTYnf_0WXfwMv1yxq34Yp-4uaYr34vfevpL_8SrsA79il-w_eNYuCjvgN_gXtuBh2N7Lx9lkVaG6bzsHWpcM1kVjhj4gB2wmAl6GApm2qJVWi1Bt3cu80nrTqyE7nfZtJovuANshZIoKN90XUz5fK1ud8R2_wOu4mi1n_HZbN5VF0vWSb_RUgcllNeOWwv_Qmtl6qZtqdsOHnx_8sK-_MiVI9l4QUl2lKZJoc7c7sRfOdE09po29bjoAWbAvpvueVnDncwcnvUNwbk_ZVcn2GSrZJQ_JgQ_5gj8iB9n5x7NLm3v7AUvt8ES4CdMDgWt_GK68w05GNUTZnczjcKNrGKS6Xq63TfefuaYi0yfksM0haGYA8ZQ8UItn5NG5ntG8fU5OM2pgQQ0sKMCCWlhQhAXtYEGHsKB1STtYvCDTz2fTTxdOOyzD4RCTG0dCqstZWSZFKD0ZeQqIuEh97sXClUEoZSILIEQM5f3hqZUxJJoiLuEdk_I45sFLMlrUC_WKUE9FBQR6LeIastjlrAAOncooSlkgUjUm7zob5b-MJEoOqSTaMufzHG2Zoy3H5AgNmAOVQz1igYVboslbT43JcWfXvH2kVnmA0kAMU-gxCe_Yuj9q38VQFS3yw9d_veYRedxD-JiMmuVavQFO2RQnLV7-AL_kegw |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JUttAEO0Kpii4QBKg4gBhDslRWMuMpDk6YTHryVC-Tc2mhCK2KCxXCr6ebsk2S3IiZ22j7unp96Se1wBfRZGGTto8QP_qgJsiDHIfy0BbZD06LTw3tDn5_CLtXfKTgRg828VPZZXO_7yb3FeNQmrHlXZCH8pmWgNxlOQdPQyo7zeGaig7v6rh7wVYzDmylRYsdo--H1zNSVecCDnvmhfyQVP8_tdNXqSlVonh9QJyrv6pf17PR_YsBx2ugZ6Nvik9udmbVGbPPrwSdvyf13sPq1OAyrrNjPoA7_zoIywd1Q2A79dhv8vG16QozJre0wxBLytN1TSaYLS0M4sJ2CK6Z7b0tUIFFWuwsmDD61rjerwB_cOD_o9eMO3EEGgM-CpwyKO0KIrccBe5NPKI8qyMdZTZ0CXcudwZzLaCtONxSrgMWYzNClzApM4ynWxCa1SO_CdgkU8NriK1QigXWaiFQYAmXZpKkVjp2_Bt5gd12-htKOQpZBWlh4qsosgqbdgiJynECSR2a6kqyFYqFiRol7dhe-Y7NY3JsUpId0YQP2sDf-XPp7P-9TCS3Epj_vltl-3Ccq9_fqbOji9Ot2AFD_OmiG0bWtXdxO8gqqnMl-nEfQR-BfHP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JUttAEO0CU6G4AAmhMEsyh-QorGVG0hzNYiALlQNJ-TbMphSVskVhuSj4erol2WHJKZy1T09Pvye13gP4JIo0dNLmAcZXB9wUYZD7WAbaIuvRaeG5oZ-Tv5-npz_5l6EYtj6nk7at0vnfN9O7qlFI7bnSTulF2UxrII6SvKdHAfl-Y6qGsnftikVYyjkymQ4s9U8Ojn_NOVecCDk3zQv5sOl9f3GOJ1WpU2J2PUGcq7f1t-v5jT0qQYM1uJzdfNN58md_Wpl9e_9M1_EVT7cOqy08Zf1mPr2FBT9-B29Oavvfuw046rPJFekJs8Z5miHkZaWpGpsJRgs7s1h-LWJ7Zktf61NQqwYrCza6qhWuJ-_hYnB8cXgatD4MgcZ0rwKHLEqLosgNd5FLI48Yz8pYR5kNXcKdy53BWitIOR4nhMuQw9iswOVL6izTySZ0xuXYbwGLfGpwDan1QbnIQi0MwjPp0lSKxErfhc-zMKjrRm1DIUuhQVF6pGhQFA1KF3YoRgpRAkndWuoJspWKBcnZ5V3YnYVOtRk5UQmpzghiZ13gz8L5d69_XYwEt9KYb__fYR9h-cfRQH07O_-6Ayu4lTcdbLvQqW6mfg8hTWU-tNP2AbDa8HY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+method+for+obtaining+heat+capacity+coefficients+of+minerals&rft.jtitle=The+American+mineralogist&rft.au=Bowman%2C+Samuel&rft.au=Pathak%2C+Arkajyoti&rft.au=Agrawal%2C+Vikas&rft.au=Sharma%2C+Shikha&rft.date=2024-03-01&rft.pub=Mineralogical+Society+of+America&rft.issn=0003-004X&rft.volume=109&rft.issue=3&rft_id=info:doi/10.2138%2Fam-2023-9109&rft.externalDocID=2580238 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-004X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-004X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-004X&client=summon |