A simple method for obtaining heat capacity coefficients of minerals

Heat capacity data are unavailable or incomplete for many minerals at geologically relevant temperatures. Despite the availability of entropy and enthalpy values in numerous thermodynamic tables (even sometimes at elevated temperatures), there remains need for extrapolation beyond, or interpolation...

Full description

Saved in:
Bibliographic Details
Published inThe American mineralogist Vol. 109; no. 3; pp. 624 - 627
Main Authors Bowman, Samuel, Pathak, Arkajyoti, Agrawal, Vikas, Sharma, Shikha
Format Journal Article
LanguageEnglish
Published Washington Mineralogical Society of America 01.03.2024
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heat capacity data are unavailable or incomplete for many minerals at geologically relevant temperatures. Despite the availability of entropy and enthalpy values in numerous thermodynamic tables (even sometimes at elevated temperatures), there remains need for extrapolation beyond, or interpolation between, temperatures. This approach inevitably results in estimates for entropy and enthalpy values because the heat capacity coefficients required for optimal thermodynamic treatment are less frequently available. Here we propose a simple method for obtaining heat capacity coeficients of minerals. This method requires only the empirically measured temperature-specific heat capacity for calculation via a matrix algorithm. The system of equations solver is written in the Python computing language and has been made accessible in an online repository. Thermodynamically, the solution to a system of equations represents the heat capacity coefficients that satisfy the mineral-specific polynomial. Direct coefficient calculation will result in more robust thermodynamic data, which are not subject to fitting uncertainties. Using hematite as an example, this method provides results that are comparable to conventional means and is applicable to any solid material. Coeficients vary within the traditional large 950 K temperature interval, indicating that best results should instead utilize a smaller 400 K temperature interval. Examples of large-scale implications include the refinement of geothermal gradient estimation in rapidly subsiding sedimentary basins or metamorphic and hydrothermal evolution.
AbstractList Heat capacity data are unavailable or incomplete for many minerals at geologically relevant temperatures. Despite the availability of entropy and enthalpy values in numerous thermodynamic tables (even sometimes at elevated temperatures), there remains need for extrapolation beyond, or interpolation between, temperatures. This approach inevitably results in estimates for entropy and enthalpy values because the heat capacity coefficients required for optimal thermodynamic treatment are less frequently available. Here we propose a simple method for obtaining heat capacity coeficients of minerals. This method requires only the empirically measured temperature-specific heat capacity for calculation via a matrix algorithm. The system of equations solver is written in the Python computing language and has been made accessible in an online repository. Thermodynamically, the solution to a system of equations represents the heat capacity coefficients that satisfy the mineral-specific polynomial. Direct coefficient calculation will result in more robust thermodynamic data, which are not subject to fitting uncertainties. Using hematite as an example, this method provides results that are comparable to conventional means and is applicable to any solid material. Coeficients vary within the traditional large 950 K temperature interval, indicating that best results should instead utilize a smaller 400 K temperature interval. Examples of large-scale implications include the refinement of geothermal gradient estimation in rapidly subsiding sedimentary basins or metamorphic and hydrothermal evolution.
Abstract Heat capacity data are unavailable or incomplete for many minerals at geologically relevant temperatures. Despite the availability of entropy and enthalpy values in numerous thermodynamic tables (even sometimes at elevated temperatures), there remains need for extrapolation beyond, or interpolation between, temperatures. This approach inevitably results in estimates for entropy and enthalpy values because the heat capacity coefficients required for optimal thermodynamic treatment are less frequently available. Here we propose a simple method for obtaining heat capacity coefficients of minerals. This method requires only the empirically measured temperature-specific heat capacity for calculation via a matrix algorithm. The system of equations solver is written in the Python computing language and has been made accessible in an online repository. Thermodynamically, the solution to a system of equations represents the heat capacity coefficients that satisfy the mineral-specific polynomial. Direct coefficient calculation will result in more robust thermodynamic data, which are not subject to fitting uncertainties. Using hematite as an example, this method provides results that are comparable to conventional means and is applicable to any solid material. Coefficients vary within the traditional large 950 K temperature interval, indicating that best results should instead utilize a smaller 400 K temperature interval. Examples of large-scale implications include the refinement of geothermal gradient estimation in rapidly subsiding sedimentary basins or metamorphic and hydrothermal evolution.
Heat capacity data are unavailable or incomplete for many minerals at geologically relevant temperatures. Despite the availability of entropy and enthalpy values in numerous thermodynamic tables (even sometimes at elevated temperatures), there remains need for extrapolation beyond, or interpolation between, temperatures. This approach inevitably results in estimates for entropy and enthalpy values because the heat capacity coefficients required for optimal thermodynamic treatment are less frequently available. Here we propose a simple method for obtaining heat capacity coefficients of minerals. This method requires only the empirically measured temperature-specific heat capacity for calculation via a matrix algorithm. The system of equations solver is written in the Python computing language and has been made accessible in an online repository. Thermodynamically, the solution to a system of equations represents the heat capacity coefficients that satisfy the mineral-specific polynomial. Direct coefficient calculation will result in more robust thermodynamic data, which are not subject to fitting uncertainties. Using hematite as an example, this method provides results that are comparable to conventional means and is applicable to any solid material. Coefficients vary within the traditional large 950 K temperature interval, indicating that best results should instead utilize a smaller 400 K temperature interval. Examples of large-scale implications include the refinement of geothermal gradient estimation in rapidly subsiding sedimentary basins or metamorphic and hydrothermal evolution.
Author Pathak, Arkajyoti
Sharma, Shikha
Bowman, Samuel
Agrawal, Vikas
Author_xml – sequence: 1
  givenname: Samuel
  orcidid: 0000-0002-1510-174X
  surname: Bowman
  fullname: Bowman, Samuel
  email: sabowman@mix.wvu.edu
  organization: Department of Geology and Geography, West Virginia University, Morgantown, West Virginia 26506, U.S.A
– sequence: 2
  givenname: Arkajyoti
  surname: Pathak
  fullname: Pathak, Arkajyoti
  organization: Department of Geology and Geography, West Virginia University, Morgantown, West Virginia 26506, U.S.A
– sequence: 3
  givenname: Vikas
  surname: Agrawal
  fullname: Agrawal, Vikas
  organization: Department of Geology and Geography, West Virginia University, Morgantown, West Virginia 26506, U.S.A
– sequence: 4
  givenname: Shikha
  surname: Sharma
  fullname: Sharma, Shikha
  organization: Department of Geology and Geography, West Virginia University, Morgantown, West Virginia 26506, U.S.A
BackLink https://www.osti.gov/biblio/2580238$$D View this record in Osti.gov
BookMark eNptkEtLAzEUhYMoWB87f0DQraN5TCYTXIlvKLjpwl1Ik5s20klqkiL9906p4MbVuYvvHM49J-gwpggIXVBywyjvb83QMMJ4oyhRB2hCVSsaTpg8RBNCCG8IaT-O0Ukpn4QwxoWaoMd7XMKwXgEeoC6Twz5lnObVhBjiAi_BVGzN2thQt9gm8D7YALEWnDweQoRsVuUMHflR4PxXT9Hs-Wn28NpM31_eHu6njeGM1cbRVhnhfT9vHXUdBSKkVcxQaYnjrXO9m1sAwRTprDVOCtlZ6fteKiOl4afoch-bSg26jJXALm2KEWzVTPTj6_0IXe2hdU5fGyhVf6ZNjmMtzWmnuOil4CN1vadsTqVk8Hqdw2DyVlOid1tqM-jdlnq35Yjf7fFvs6qQHSzyZjsef9n_2XbOjrX8B0sMe1I
Cites_doi 10.2138/rmg.2022.88.15
10.1007/s00706-017-2117-3
10.1023/B:NARR.0000032647.41046.e7
10.1029/2020JB020595
10.1007/BF00372150
10.1016/0009-2541(77)90006-7
10.2138/am-2016-5425
10.1016/0016-7037(64)90083-3
10.2138/am.2012.3924
10.1021/ja01347a029
10.1007/BF00200116
10.1130/0091-7613(1987)15<1057:TEOMFI>2.0.CO;2
10.2138/am-2020-7330
10.1016/0016-7037(78)90024-8
10.2138/am-2003-0108
10.1016/j.jallcom.2021.159682
ContentType Journal Article
Copyright 2024 by Mineralogical Society of America
Copyright_xml – notice: 2024 by Mineralogical Society of America
CorporateAuthor West Virginia Univ., Morgantown, WV (United States)
CorporateAuthor_xml – name: West Virginia Univ., Morgantown, WV (United States)
DBID AAYXX
CITATION
7TN
F1W
H96
L.G
OTOTI
DOI 10.2138/am-2023-9109
DatabaseName CrossRef
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
OSTI.GOV
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1945-3027
EndPage 627
ExternalDocumentID 2580238
10_2138_am_2023_9109
10_2138_am_2023_91091093624
Genre Correspondence
GroupedDBID -DZ
-~X
.DC
0R~
23M
4.4
5GY
6J9
7XC
8FE
8FH
8G5
AAAEU
AAFPC
AAGVJ
AAKRG
AALGR
AAPJK
AAQCX
AASQH
AAWFE
AAXCG
AAXMT
ABABW
ABAQN
ABEFU
ABFKT
ABJNI
ABPLS
ABPPZ
ABWLS
ACDEB
ACEFL
ACGFS
ACGOD
ACNCT
ACPMA
ACUND
ACZBO
ADEQT
ADFRT
ADGQD
ADGYE
ADOZN
AECWL
AEGVQ
AEICA
AENEX
AEQDQ
AERZL
AFBAA
AFBDD
AFCXV
AFKRA
AFRAH
AFYRI
AGBEV
AGWTP
AHVWV
AHXUK
AIWOI
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ASYPN
ATCPS
AZQEC
BAKPI
BBCWN
BBDJO
BCIFA
BENPR
BHPHI
BPHCQ
CS3
EBS
EJD
FRP
GOHGZ
GUQSH
H13
HCIFZ
HZ~
IY9
KDIRW
LK5
M2O
M2P
M7R
MV1
O9-
OK1
PADUT
PATMY
PCBAR
PQQKQ
PROAC
PYCSY
QD8
R05
RGW
RMN
RNS
SLJYH
TAE
TN5
UK5
WH7
WTRAM
XJT
ZCA
~02
AAYXX
CITATION
7TN
ADNPR
F1W
H96
L.G
OTOTI
ID FETCH-LOGICAL-a322t-d149a5ff8b4d1d61e057c92a17c0d34dd8dbcee52906ccad7576c7f8879a77a3
ISSN 0003-004X
IngestDate Mon Aug 25 02:20:45 EDT 2025
Sat Aug 16 21:23:26 EDT 2025
Tue Jul 01 03:21:07 EDT 2025
Thu Jul 10 10:27:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a322t-d149a5ff8b4d1d61e057c92a17c0d34dd8dbcee52906ccad7576c7f8879a77a3
Notes SourceType-Scholarly Journals-1
ObjectType-Correspondence-1
content type line 14
None
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
EE0009597
ORCID 0000-0002-1510-174X
000000021510174X
PQID 3169358753
PQPubID 4640
PageCount 4
ParticipantIDs osti_scitechconnect_2580238
proquest_journals_3169358753
crossref_primary_10_2138_am_2023_9109
walterdegruyter_journals_10_2138_am_2023_91091093624
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 20240301
  day: 01
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
– name: United States
PublicationTitle The American mineralogist
PublicationYear 2024
Publisher Mineralogical Society of America
Walter de Gruyter GmbH
Publisher_xml – name: Mineralogical Society of America
– name: Walter de Gruyter GmbH
References Maier (2024030104435817800_B11) 1932; 54
Robie (2024030104435817800_B14) 1978; 63
Hoisch (2024030104435817800_B8) 1989; 74
Guyot (2024030104435817800_B5) 1993; 20
Vassiliev (2024030104435817800_B19) 2021; 872
Ulian (2024030104435817800_B18) 2020; 105
Stachel (2024030104435817800_B16) 2022; 88
Waples (2024030104435817800_B20) 2004; 13
Peacock (2024030104435817800_B12) 1987; 15
Ferry (2024030104435817800_B2) 1978; 66
Kong (2024030104435817800_B10) 2021
Fuchs (2024030104435817800_B3) 2021; 126
Gamsjäger (2024030104435817800_B4) 2018; 149
Hemingway (2024030104435817800_B7) 1978; 42
Hemingway (2024030104435817800_B6) 1990; 75
Benisek (2024030104435817800_B1) 2012; 97
Toulmin (2024030104435817800_B17) 1964; 28
Xiong (2024030104435817800_B21) 2016; 101
Smith (2024030104435817800_B15) 1977; 19
Klemme (2024030104435817800_B9) 2003; 88
Robie (2024030104435817800_B13) 1995
References_xml – volume: 88
  start-page: 809
  year: 2022
  ident: 2024030104435817800_B16
  article-title: Carbon and nitrogen in mantle-derived diamonds
  publication-title: Reviews in Mineralogy and Geochemistry
  doi: 10.2138/rmg.2022.88.15
– volume: 149
  start-page: 357
  year: 2018
  ident: 2024030104435817800_B4
  article-title: Low temperature heat capacities and thermodynamic functions described by Debye-Einstein integrals
  publication-title: Monatshefte für Chemie—Chemical Monthly
  doi: 10.1007/s00706-017-2117-3
– volume: 13
  start-page: 97
  year: 2004
  ident: 2024030104435817800_B20
  article-title: A review and evaluation of specific heat capacities of rocks, minerals and subsurface fluids. Part 1: Minerals and nonporous rocks
  publication-title: Natural Resources Research
  doi: 10.1023/B:NARR.0000032647.41046.e7
– volume: 126
  start-page: e2020JB020595
  year: 2021
  ident: 2024030104435817800_B3
  article-title: The thermal diffusivity of sedimentary rocks: Empirical validation of a physically based α − φ relation
  publication-title: Journal of Geophysical Research: Solid Earth
  doi: 10.1029/2020JB020595
– volume: 66
  start-page: 113
  year: 1978
  ident: 2024030104435817800_B2
  article-title: Experimental calibration of the partitioning of Fe and Mg between biotite and garnet
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/BF00372150
– volume: 19
  start-page: 83
  year: 1977
  ident: 2024030104435817800_B15
  article-title: A sulfur isotope geothermometer for the trisulfide system galena-sphalerite-pyrite
  publication-title: Chemical Geology
  doi: 10.1016/0009-2541(77)90006-7
– volume: 101
  start-page: 277
  year: 2016
  ident: 2024030104435817800_B21
  article-title: Some thermodynamic properties of larnite (β-Ca2SiO4) constrained by high T/P experiment and/or theoretical simulation
  publication-title: American Mineralogist
  doi: 10.2138/am-2016-5425
– volume: 74
  start-page: 565
  year: 1989
  ident: 2024030104435817800_B8
  article-title: A muscovite-biotite geothermometer
  publication-title: American Mineralogist
– volume: 63
  start-page: 109
  year: 1978
  ident: 2024030104435817800_B14
  article-title: Low-temperature heat capacities and entropies of feldspar glasses and of anorthite
  publication-title: American Mineralogist
– volume: 28
  start-page: 641
  year: 1964
  ident: 2024030104435817800_B17
  article-title: A thermodynamic study of pyrite and pyrrhotite
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/0016-7037(64)90083-3
– volume: 97
  start-page: 657
  year: 2012
  ident: 2024030104435817800_B1
  article-title: The heat capacity of fayalite at high temperatures
  publication-title: American Mineralogist
  doi: 10.2138/am.2012.3924
– volume: 54
  start-page: 3243
  year: 1932
  ident: 2024030104435817800_B11
  article-title: An equation for the representation of high-temperature heat content data
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja01347a029
– volume: 20
  start-page: 141
  year: 1993
  ident: 2024030104435817800_B5
  article-title: High-temperature heat capacity and phase transitions of CaTiO3 perovskite
  publication-title: Physics and Chemistry of Minerals
  doi: 10.1007/BF00200116
– start-page: 456
  year: 2021
  ident: 2024030104435817800_B10
  article-title: Python Programming and Numerical Methods: A Guide for Engineers and Scientists
– start-page: 461
  volume-title: U.S. Geological Survey Bulletin
  year: 1995
  ident: 2024030104435817800_B13
  article-title: Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and at higher temperatures
– volume: 15
  start-page: 1057
  year: 1987
  ident: 2024030104435817800_B12
  article-title: Thermal effects of metamorphic fluids in subduction zones
  publication-title: Geology
  doi: 10.1130/0091-7613(1987)15<1057:TEOMFI>2.0.CO;2
– volume: 75
  start-page: 781
  year: 1990
  ident: 2024030104435817800_B6
  article-title: Thermodynamic properties for bunsenite, NiO, magnetite, Fe3O4, and hematite, Fe2O3, with comments on selected oxygen buffer reactions
  publication-title: American Mineralogist
– volume: 105
  start-page: 1212
  year: 2020
  ident: 2024030104435817800_B18
  article-title: Thermodynamic and thermoelastic properties of wurtzite-ZnS by density function theory
  publication-title: American Mineralogist
  doi: 10.2138/am-2020-7330
– volume: 42
  start-page: 1533
  year: 1978
  ident: 2024030104435817800_B7
  article-title: Revised values for the Gibbs free energy of formation of [Al(OH)4 aq–], diaspore, boehmite and bayerite at 298.15 K and 1 bar, the thermodynamic properties of kaolinite to 800 K and 1 bar, and the heats of solution of several gibbsite samples
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/0016-7037(78)90024-8
– volume: 88
  start-page: 68
  year: 2003
  ident: 2024030104435817800_B9
  article-title: Thermodynamic properties of hercynite (FeAl2O4) based on adiabatic calorimetry at low temperatures
  publication-title: American Mineralogist
  doi: 10.2138/am-2003-0108
– volume: 872
  start-page: 159682
  year: 2021
  ident: 2024030104435817800_B19
  article-title: Description of the heat capacity of solid phases by a multiparameter family of functions
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2021.159682
SSID ssj0022359
Score 2.4173315
Snippet Heat capacity data are unavailable or incomplete for many minerals at geologically relevant temperatures. Despite the availability of entropy and enthalpy...
Abstract Heat capacity data are unavailable or incomplete for many minerals at geologically relevant temperatures. Despite the availability of entropy and...
SourceID osti
proquest
crossref
walterdegruyter
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 624
SubjectTerms Algorithms
Availability
Coefficients
Enthalpy
Entropy
Gaussian elimination
Geochemistry & Geophysics
Geothermal gradient
Haematite
Heat
heat capacity
Hematite
High temperature
Mathematical analysis
Mineralogy
Minerals
Polynomials
Sedimentary basins
Specific heat
system of equations
Temperature
Temperature requirements
Thermodynamics
Title A simple method for obtaining heat capacity coefficients of minerals
URI https://www.degruyter.com/doi/10.2138/am-2023-9109
https://www.proquest.com/docview/3169358753
https://www.osti.gov/biblio/2580238
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BKiQuFU8RWqo9wCky-LV-HA0trZBASISqN2u9u27dKDFKHEXh1zOza6-dKkKFixVZ9tqa-Tz-xpn5hpC3rIxcmYrEAf9yJyxK10mUnzpcQNbDo1KFBTYnf_0WXfwMv1yxq34Yp-4uaYr34vfevpL_8SrsA79il-w_eNYuCjvgN_gXtuBh2N7Lx9lkVaG6bzsHWpcM1kVjhj4gB2wmAl6GApm2qJVWi1Bt3cu80nrTqyE7nfZtJovuANshZIoKN90XUz5fK1ud8R2_wOu4mi1n_HZbN5VF0vWSb_RUgcllNeOWwv_Qmtl6qZtqdsOHnx_8sK-_MiVI9l4QUl2lKZJoc7c7sRfOdE09po29bjoAWbAvpvueVnDncwcnvUNwbk_ZVcn2GSrZJQ_JgQ_5gj8iB9n5x7NLm3v7AUvt8ES4CdMDgWt_GK68w05GNUTZnczjcKNrGKS6Xq63TfefuaYi0yfksM0haGYA8ZQ8UItn5NG5ntG8fU5OM2pgQQ0sKMCCWlhQhAXtYEGHsKB1STtYvCDTz2fTTxdOOyzD4RCTG0dCqstZWSZFKD0ZeQqIuEh97sXClUEoZSILIEQM5f3hqZUxJJoiLuEdk_I45sFLMlrUC_WKUE9FBQR6LeIastjlrAAOncooSlkgUjUm7zob5b-MJEoOqSTaMufzHG2Zoy3H5AgNmAOVQz1igYVboslbT43JcWfXvH2kVnmA0kAMU-gxCe_Yuj9q38VQFS3yw9d_veYRedxD-JiMmuVavQFO2RQnLV7-AL_kegw
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JUttAEO0Kpii4QBKg4gBhDslRWMuMpDk6YTHryVC-Tc2mhCK2KCxXCr6ebsk2S3IiZ22j7unp96Se1wBfRZGGTto8QP_qgJsiDHIfy0BbZD06LTw3tDn5_CLtXfKTgRg828VPZZXO_7yb3FeNQmrHlXZCH8pmWgNxlOQdPQyo7zeGaig7v6rh7wVYzDmylRYsdo--H1zNSVecCDnvmhfyQVP8_tdNXqSlVonh9QJyrv6pf17PR_YsBx2ugZ6Nvik9udmbVGbPPrwSdvyf13sPq1OAyrrNjPoA7_zoIywd1Q2A79dhv8vG16QozJre0wxBLytN1TSaYLS0M4sJ2CK6Z7b0tUIFFWuwsmDD61rjerwB_cOD_o9eMO3EEGgM-CpwyKO0KIrccBe5NPKI8qyMdZTZ0CXcudwZzLaCtONxSrgMWYzNClzApM4ynWxCa1SO_CdgkU8NriK1QigXWaiFQYAmXZpKkVjp2_Bt5gd12-htKOQpZBWlh4qsosgqbdgiJynECSR2a6kqyFYqFiRol7dhe-Y7NY3JsUpId0YQP2sDf-XPp7P-9TCS3Epj_vltl-3Ccq9_fqbOji9Ot2AFD_OmiG0bWtXdxO8gqqnMl-nEfQR-BfHP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JUttAEO0CU6G4AAmhMEsyh-QorGVG0hzNYiALlQNJ-TbMphSVskVhuSj4erol2WHJKZy1T09Pvye13gP4JIo0dNLmAcZXB9wUYZD7WAbaIuvRaeG5oZ-Tv5-npz_5l6EYtj6nk7at0vnfN9O7qlFI7bnSTulF2UxrII6SvKdHAfl-Y6qGsnftikVYyjkymQ4s9U8Ojn_NOVecCDk3zQv5sOl9f3GOJ1WpU2J2PUGcq7f1t-v5jT0qQYM1uJzdfNN58md_Wpl9e_9M1_EVT7cOqy08Zf1mPr2FBT9-B29Oavvfuw046rPJFekJs8Z5miHkZaWpGpsJRgs7s1h-LWJ7Zktf61NQqwYrCza6qhWuJ-_hYnB8cXgatD4MgcZ0rwKHLEqLosgNd5FLI48Yz8pYR5kNXcKdy53BWitIOR4nhMuQw9iswOVL6izTySZ0xuXYbwGLfGpwDan1QbnIQi0MwjPp0lSKxErfhc-zMKjrRm1DIUuhQVF6pGhQFA1KF3YoRgpRAkndWuoJspWKBcnZ5V3YnYVOtRk5UQmpzghiZ13gz8L5d69_XYwEt9KYb__fYR9h-cfRQH07O_-6Ayu4lTcdbLvQqW6mfg8hTWU-tNP2AbDa8HY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+method+for+obtaining+heat+capacity+coefficients+of+minerals&rft.jtitle=The+American+mineralogist&rft.au=Bowman%2C+Samuel&rft.au=Pathak%2C+Arkajyoti&rft.au=Agrawal%2C+Vikas&rft.au=Sharma%2C+Shikha&rft.date=2024-03-01&rft.pub=Mineralogical+Society+of+America&rft.issn=0003-004X&rft.volume=109&rft.issue=3&rft_id=info:doi/10.2138%2Fam-2023-9109&rft.externalDocID=2580238
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-004X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-004X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-004X&client=summon