Effect of Mixed-Solvent Environments on the Selectivity of Acid-Catalyzed Dehydration Reactions
The composition of the liquid phase can alter the rates of individual reaction steps and thus alter the selectivity of acid-catalyzed reactions, but these solvent effects are difficult to anticipate for design purposes. Herein, we report the kinetics and selectivity of Brønsted acid-catalyzed 1,2-pr...
Saved in:
Published in | ACS catalysis Vol. 10; no. 3; pp. 1679 - 1691 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
07.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The composition of the liquid phase can alter the rates of individual reaction steps and thus alter the selectivity of acid-catalyzed reactions, but these solvent effects are difficult to anticipate for design purposes. Herein, we report the kinetics and selectivity of Brønsted acid-catalyzed 1,2-propanediol dehydration in pure water and in aqueous mixtures of the polar aprotic cosolvents γ-valerolactone, 1,4-dioxane, tetrahydrofuran, N-methyl-2-pyrrolidone, tetramethylene sulfoxide, and dimethyl sulfoxide at 433 K. We find that the major product of 1,2-propanediol dehydration is propanal in most mixed-solvent environments with selectivities between 1 and 68 mol %. In contrast, 1,2-propanediol dehydration in aqueous mixtures of dimethyl sulfoxide affords acetone as the major product with up to 48% selectivity with minimal propanal formation. We use classical molecular dynamics simulations to probe these solvent effects by computing the difference between the solvation free energies of 1,2-propanediol and propanal in aqueous mixtures of polar aprotic cosolvents and in pure water. We find that the difference in the solvation free energies is correlated with the rates of propanal formation in all mixed-solvent environments, indicating that the solvent-mediated stabilization of the product state relative to the reactant state translates to increased selectivity toward the same product. Similar agreement between simulated solvation free energies and experimental reaction rates/selectivities is established for the acid-catalyzed dehydration of cis- and trans-1,2-cyclohexanediol and 1,3-cyclohexanediol. Finally, analysis of the solvation environment around 1,2-propanediol shows that dimethyl sulfoxide uniquely competes against water to solvate reactive hydroxyl groups, which causes a change in reaction mechanism in this solvent system that leads to the formation of acetone rather than propanal. These results represent a step toward the computationally efficient screening of solvent systems for acid-catalyzed, liquid-phase processes. |
---|---|
AbstractList | The composition of the liquid phase can alter the rates of individual reaction steps and thus alter the selectivity of acid-catalyzed reactions, but these solvent effects are difficult to anticipate for design purposes. Herein, we report the kinetics and selectivity of Brønsted acid-catalyzed 1,2-propanediol dehydration in pure water and in aqueous mixtures of the polar aprotic cosolvents γ-valerolactone, 1,4-dioxane, tetrahydrofuran, N-methyl-2-pyrrolidone, tetramethylene sulfoxide, and dimethyl sulfoxide at 433 K. We find that the major product of 1,2-propanediol dehydration is propanal in most mixed-solvent environments with selectivities between 1 and 68 mol %. In contrast, 1,2-propanediol dehydration in aqueous mixtures of dimethyl sulfoxide affords acetone as the major product with up to 48% selectivity with minimal propanal formation. We use classical molecular dynamics simulations to probe these solvent effects by computing the difference between the solvation free energies of 1,2-propanediol and propanal in aqueous mixtures of polar aprotic cosolvents and in pure water. We find that the difference in the solvation free energies is correlated with the rates of propanal formation in all mixed-solvent environments, indicating that the solvent-mediated stabilization of the product state relative to the reactant state translates to increased selectivity toward the same product. Similar agreement between simulated solvation free energies and experimental reaction rates/selectivities is established for the acid-catalyzed dehydration of cis- and trans-1,2-cyclohexanediol and 1,3-cyclohexanediol. Finally, analysis of the solvation environment around 1,2-propanediol shows that dimethyl sulfoxide uniquely competes against water to solvate reactive hydroxyl groups, which causes a change in reaction mechanism in this solvent system that leads to the formation of acetone rather than propanal. These results represent a step toward the computationally efficient screening of solvent systems for acid-catalyzed, liquid-phase processes. |
Author | Shen, Zhizhang Witteman, Liam Euclide, Jack Chew, Alex K Walker, Theodore W Huber, George W Demir, Benginur Dumesic, James A Van Lehn, Reid C |
AuthorAffiliation | University of Wisconsin−Madison Department of Chemical and Biological Engineering DOE Great Lakes Bioenergy Research Center |
AuthorAffiliation_xml | – name: DOE Great Lakes Bioenergy Research Center – name: – name: Department of Chemical and Biological Engineering – name: University of Wisconsin−Madison |
Author_xml | – sequence: 1 givenname: Alex K surname: Chew fullname: Chew, Alex K – sequence: 2 givenname: Theodore W surname: Walker fullname: Walker, Theodore W – sequence: 3 givenname: Zhizhang orcidid: 0000-0002-8837-5573 surname: Shen fullname: Shen, Zhizhang – sequence: 4 givenname: Benginur orcidid: 0000-0003-3469-906X surname: Demir fullname: Demir, Benginur – sequence: 5 givenname: Liam surname: Witteman fullname: Witteman, Liam – sequence: 6 givenname: Jack surname: Euclide fullname: Euclide, Jack – sequence: 7 givenname: George W surname: Huber fullname: Huber, George W – sequence: 8 givenname: James A orcidid: 0000-0001-6542-0856 surname: Dumesic fullname: Dumesic, James A – sequence: 9 givenname: Reid C orcidid: 0000-0003-4885-6599 surname: Van Lehn fullname: Van Lehn, Reid C email: vanlehn@wisc.edu |
BookMark | eNp1UE1LAzEQDVLBWnv3uD_ArfnY7bbHUusHVASr5yU7mdCUbSJJLK6_3iyt4MWBYR7Me2-Gd0kG1lkk5JrRCaOc3UoIIKNsJ_OGimJKz8iQs7LMy0KUgz_4goxD2NFURTmdVXRI6pXWCDFzOns2X6jyjWsPaGO2sgfjnd0nHDJns7jFbINt4pqDiV0vWIBR-bK_232jyu5w2ykvo0nsV5TQg3BFzrVsA45Pc0Te71dvy8d8_fLwtFyscyk4j3lTStCIlM-gmdHUFROqBI5YFYwhMNAFmxaiUkxVFDhnINhcFNBAI7kWYkTo0Re8C8Gjrj-82Uvf1YzWfUb1b0b1KaMkuTlK0qbeuU9v04P_038A3GBuOA |
CitedBy_id | crossref_primary_10_1016_j_psep_2020_07_017 crossref_primary_10_1016_j_surfrep_2021_100541 crossref_primary_10_1021_acs_chemrev_0c01060 crossref_primary_10_1016_j_molliq_2024_125116 crossref_primary_10_1016_j_fuel_2023_128792 crossref_primary_10_1039_D4AY00060A crossref_primary_10_1039_D3RE00464C crossref_primary_10_1016_j_checat_2023_100602 crossref_primary_10_1021_acscatal_1c02866 crossref_primary_10_1039_D1SE01572A crossref_primary_10_1016_j_apcatb_2023_123379 crossref_primary_10_1016_j_dyepig_2021_109377 crossref_primary_10_1016_j_coche_2022_100796 crossref_primary_10_1016_j_jcat_2022_06_007 crossref_primary_10_1039_D0SC03261A crossref_primary_10_1039_D2CS01068B crossref_primary_10_1039_D2SC06473A crossref_primary_10_2139_ssrn_4056131 crossref_primary_10_1039_D3GC00864A crossref_primary_10_1039_D3RE00340J crossref_primary_10_1016_j_ces_2020_116315 crossref_primary_10_1021_acscatal_3c00894 crossref_primary_10_1016_S1872_2067_22_64119_6 crossref_primary_10_1021_acs_jctc_2c00766 crossref_primary_10_1016_j_apcata_2022_118509 crossref_primary_10_1360_SSV_2023_0067 crossref_primary_10_1021_acscatal_3c01440 crossref_primary_10_1002_cctc_202101170 crossref_primary_10_1021_acs_iecr_3c01033 crossref_primary_10_1016_j_psep_2023_01_025 crossref_primary_10_1039_D3GC04901A crossref_primary_10_1021_acsestengg_1c00047 crossref_primary_10_1039_D2RA08180F crossref_primary_10_1021_acssuschemeng_2c01375 crossref_primary_10_1021_acssuschemeng_2c05199 crossref_primary_10_1007_s11244_020_01260_9 crossref_primary_10_1016_j_cej_2021_133053 crossref_primary_10_1016_S1872_2067_21_64032_9 crossref_primary_10_1002_cssc_202001600 crossref_primary_10_1039_D0SC02589E crossref_primary_10_1039_D1GC03836B crossref_primary_10_1021_acsengineeringau_2c00010 crossref_primary_10_1039_D0SC05213B crossref_primary_10_1016_j_micromeso_2023_112743 crossref_primary_10_3390_en17122814 crossref_primary_10_1039_D1CS00539A |
Cites_doi | 10.1002/jcc.10189 10.1103/physrevlett.77.3865 10.1039/c6ra11697c 10.1002/anie.196703181 10.1021/je960236b 10.1007/978-3-319-15976-8_1 10.1021/acscatal.5b00274 10.1039/cs9811000345 10.1021/jp9716997 10.1039/c6ra22303f 10.1021/jp203436e 10.1021/ol016103j 10.1016/s0010-8545(00)82100-1 10.1103/physrevb.37.785 10.1016/j.carres.2011.01.029 10.1016/0009-2614(89)87442-1 10.1002/cssc.201501148 10.1039/c4ra15123b 10.1021/jp960488j 10.1021/acssuschemeng.8b03101 10.3389/fchem.2019.00439 10.1021/cs3003269 10.1039/c7gc01688c 10.1063/1.2978177 10.1038/s41929-018-0027-3 10.1016/j.carres.2014.02.010 10.1002/anie.200604274 10.1021/j100308a038 10.1021/jo00165a018 10.1021/jp802665d 10.1103/physreva.38.3098 10.1021/acs.jpca.6b02253 10.1016/0009-2614(90)80030-h 10.1021/ja00222a014 10.1063/1.3081142 10.1039/c1cp20547a 10.1016/j.bpj.2015.08.015 10.1016/s1381-1169(00)00386-1 10.1002/jcc.23067 10.1002/jcc.21367 10.1016/j.jcat.2018.11.028 10.1021/cr050989d 10.1016/j.apcata.2009.09.029 10.1039/c7ee03432f 10.1007/978-3-662-48168-4_90 10.1021/acs.jpca.6b05040 10.1126/science.1126337 10.1002/anie.200801476 10.1038/nature05923 10.1021/ar0000556 10.1021/cr068360d 10.1063/1.5036689 10.1021/ja00073a029 10.1039/c2ee02663e 10.1016/0009-2614(88)85250-3 10.1016/j.apcata.2011.04.028 10.1021/acs.jpca.7b03907 10.1103/physrevlett.78.1396 10.1016/0009-2614(94)00116-2 10.1002/poc.2946 10.1016/j.biombioe.2010.07.018 10.1016/j.jcat.2006.06.021 10.1073/pnas.1704652114 10.1021/ct300400x 10.1021/acs.jpcc.8b00250 10.1021/cr9001808 10.1016/j.jtice.2010.10.004 10.1021/cr200055g 10.1039/c2cp22694d 10.1039/c4cp05063k 10.1063/1.4942771 10.1002/anie.201408359 10.1021/jp3056703 10.1016/0009-2614(89)87234-3 10.1007/s10822-015-9840-9 10.1021/ct900587b 10.1039/j29710000460 10.1021/cs300192z 10.1039/c8re00226f 10.1016/0009-2614(90)80029-d |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1021/acscatal.9b03460 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2155-5435 |
EndPage | 1691 |
ExternalDocumentID | 10_1021_acscatal_9b03460 b494500914 |
GroupedDBID | 53G 55A 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ GNL IH9 JG JG~ RNS ROL UI2 VF5 VG9 W1F .K2 AAHBH AAYXX ABJNI ABQRX ACGFO ADHLV AHGAQ BAANH CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a322t-b5acfee028cb80cb8713d5c2ee7411ec1cf416437d1d70c221c31934cbcba2f33 |
IEDL.DBID | ACS |
ISSN | 2155-5435 |
IngestDate | Fri Aug 23 01:49:13 EDT 2024 Tue Dec 22 07:15:14 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | acid catalysis selectivity biomass conversion classical molecular dynamics solvent effects |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a322t-b5acfee028cb80cb8713d5c2ee7411ec1cf416437d1d70c221c31934cbcba2f33 |
ORCID | 0000-0003-4885-6599 0000-0001-6542-0856 0000-0002-8837-5573 0000-0003-3469-906X |
OpenAccessLink | https://www.osti.gov/biblio/1637444 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1021_acscatal_9b03460 acs_journals_10_1021_acscatal_9b03460 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 20200207 2020-02-07 |
PublicationDateYYYYMMDD | 2020-02-07 |
PublicationDate_xml | – month: 02 year: 2020 text: 20200207 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | ACS catalysis |
PublicationTitleAlternate | ACS Catal |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref3/cit3 ref27/cit27 ref81/cit81 Best R. B. (ref62/cit62) 2013; 8 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 Lowry T. H. (ref38/cit38) 1987 ref20/cit20 ref48/cit48 Reichardt C. (ref9/cit9) 2011 ref60/cit60 ref74/cit74 ref17/cit17 ref82/cit82 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref83/cit83 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 Bornstein L. (ref42/cit42) 2008 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref80/cit80 ref28/cit28 Klein D. R. (ref45/cit45) 2017 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 Wohlfarth C. (ref43/cit43) 2015 ref69/cit69 ref12/cit12 ref15/cit15 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref85/cit85 doi: 10.1002/jcc.10189 – ident: ref77/cit77 doi: 10.1103/physrevlett.77.3865 – ident: ref29/cit29 doi: 10.1039/c6ra11697c – ident: ref53/cit53 doi: 10.1002/anie.196703181 – ident: ref44/cit44 doi: 10.1021/je960236b – ident: ref61/cit61 doi: 10.1007/978-3-319-15976-8_1 – ident: ref20/cit20 doi: 10.1021/acscatal.5b00274 – ident: ref39/cit39 doi: 10.1039/cs9811000345 – ident: ref84/cit84 doi: 10.1021/jp9716997 – ident: ref30/cit30 doi: 10.1039/c6ra22303f – ident: ref27/cit27 doi: 10.1021/jp203436e – ident: ref40/cit40 doi: 10.1021/ol016103j – volume-title: Organic Chemistry year: 2017 ident: ref45/cit45 contributor: fullname: Klein D. R. – ident: ref14/cit14 doi: 10.1016/s0010-8545(00)82100-1 – ident: ref75/cit75 doi: 10.1103/physrevb.37.785 – ident: ref31/cit31 doi: 10.1016/j.carres.2011.01.029 – ident: ref83/cit83 doi: 10.1016/0009-2614(89)87442-1 – ident: ref1/cit1 doi: 10.1002/cssc.201501148 – ident: ref34/cit34 doi: 10.1039/c4ra15123b – ident: ref8/cit8 doi: 10.1021/jp960488j – ident: ref28/cit28 doi: 10.1021/acssuschemeng.8b03101 – ident: ref66/cit66 doi: 10.3389/fchem.2019.00439 – ident: ref49/cit49 doi: 10.1021/cs3003269 – ident: ref11/cit11 doi: 10.1039/c7gc01688c – ident: ref70/cit70 doi: 10.1063/1.2978177 – ident: ref73/cit73 – ident: ref16/cit16 doi: 10.1038/s41929-018-0027-3 – ident: ref52/cit52 doi: 10.1016/j.carres.2014.02.010 – ident: ref17/cit17 doi: 10.1002/anie.200604274 – volume-title: Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures. New Series IV/17 year: 2008 ident: ref42/cit42 contributor: fullname: Bornstein L. – ident: ref65/cit65 doi: 10.1021/j100308a038 – ident: ref48/cit48 doi: 10.1021/jo00165a018 – ident: ref56/cit56 doi: 10.1021/jp802665d – ident: ref74/cit74 doi: 10.1103/physreva.38.3098 – ident: ref59/cit59 doi: 10.1021/acs.jpca.6b02253 – ident: ref80/cit80 doi: 10.1016/0009-2614(90)80030-h – ident: ref46/cit46 doi: 10.1021/ja00222a014 – ident: ref68/cit68 doi: 10.1063/1.3081142 – ident: ref51/cit51 doi: 10.1039/c1cp20547a – ident: ref72/cit72 doi: 10.1016/j.bpj.2015.08.015 – ident: ref13/cit13 doi: 10.1016/s1381-1169(00)00386-1 – ident: ref64/cit64 doi: 10.1002/jcc.23067 – ident: ref63/cit63 doi: 10.1002/jcc.21367 – ident: ref2/cit2 doi: 10.1016/j.jcat.2018.11.028 – ident: ref18/cit18 doi: 10.1021/cr050989d – ident: ref37/cit37 doi: 10.1016/j.apcata.2009.09.029 – ident: ref15/cit15 doi: 10.1039/c7ee03432f – volume-title: Solvents and solvent effects in organic chemistry year: 2011 ident: ref9/cit9 contributor: fullname: Reichardt C. – start-page: 91 volume-title: Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures: Supplement to Volume IV/17 year: 2015 ident: ref43/cit43 doi: 10.1007/978-3-662-48168-4_90 contributor: fullname: Wohlfarth C. – ident: ref57/cit57 doi: 10.1021/acs.jpca.6b05040 – ident: ref22/cit22 doi: 10.1126/science.1126337 – ident: ref4/cit4 doi: 10.1002/anie.200801476 – ident: ref19/cit19 doi: 10.1038/nature05923 – ident: ref54/cit54 doi: 10.1021/ar0000556 – ident: ref3/cit3 doi: 10.1021/cr068360d – ident: ref35/cit35 doi: 10.1063/1.5036689 – ident: ref47/cit47 doi: 10.1021/ja00073a029 – ident: ref26/cit26 doi: 10.1039/c2ee02663e – ident: ref82/cit82 doi: 10.1016/0009-2614(88)85250-3 – ident: ref36/cit36 doi: 10.1016/j.apcata.2011.04.028 – ident: ref58/cit58 doi: 10.1021/acs.jpca.7b03907 – ident: ref78/cit78 doi: 10.1103/physrevlett.78.1396 – ident: ref81/cit81 doi: 10.1016/0009-2614(94)00116-2 – ident: ref60/cit60 doi: 10.1002/poc.2946 – ident: ref5/cit5 doi: 10.1016/j.biombioe.2010.07.018 – ident: ref7/cit7 doi: 10.1016/j.jcat.2006.06.021 – ident: ref6/cit6 doi: 10.1073/pnas.1704652114 – volume: 8 start-page: 3257 year: 2013 ident: ref62/cit62 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300400x contributor: fullname: Best R. B. – ident: ref25/cit25 doi: 10.1021/acs.jpcc.8b00250 – ident: ref50/cit50 doi: 10.1021/cr9001808 – ident: ref12/cit12 doi: 10.1016/j.jtice.2010.10.004 – ident: ref55/cit55 doi: 10.1021/cr200055g – ident: ref23/cit23 doi: 10.1039/c2cp22694d – ident: ref32/cit32 doi: 10.1039/c4cp05063k – ident: ref69/cit69 doi: 10.1063/1.4942771 – ident: ref10/cit10 doi: 10.1002/anie.201408359 – ident: ref33/cit33 doi: 10.1021/jp3056703 – ident: ref76/cit76 doi: 10.1016/0009-2614(89)87234-3 – ident: ref71/cit71 doi: 10.1007/s10822-015-9840-9 – volume-title: Mechanism and theory in organic chemistry year: 1987 ident: ref38/cit38 contributor: fullname: Lowry T. H. – ident: ref67/cit67 doi: 10.1021/ct900587b – ident: ref41/cit41 doi: 10.1039/j29710000460 – ident: ref21/cit21 doi: 10.1021/cs300192z – ident: ref24/cit24 doi: 10.1039/c8re00226f – ident: ref79/cit79 doi: 10.1016/0009-2614(90)80029-d |
SSID | ssj0000456870 |
Score | 2.522364 |
Snippet | The composition of the liquid phase can alter the rates of individual reaction steps and thus alter the selectivity of acid-catalyzed reactions, but these... |
SourceID | crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 1679 |
Title | Effect of Mixed-Solvent Environments on the Selectivity of Acid-Catalyzed Dehydration Reactions |
URI | http://dx.doi.org/10.1021/acscatal.9b03460 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGWDhjSgveYCBwcV2Xs1YlVYVUhkolbpF9tkRFShBJJVofz22k0LFQ-qQLXGiy53uO9_5-xC6ohwEB-YRFZpw8-PUI7EMKaEiDISgPtOOdnH4EA7G_v0kmHzT5Pzs4HN2K6BwOxmtWFLPD015vskjExsWBnVHX_spFpq0nTacSWIBCQwMqLuSfy1icxEUK7loJan0dyt1osJxEdpZkpfWrJQtWPxmalzje_fQTo0tcadyhn20obMDtNVdSrodoqTiKsZ5iofTD63IKH-18464t3LcDecZNqgQj5xCjtOWsA90YKpI175yvtAK3-nnuaq8Bz_q6nREcYTG_d5Td0BqhQUiTCCXRAYCUq0NxgDZpuYyJasKgGttgAbTwCA1gM33IsVURIFzBiZkPR8kSMFTzztGjSzP9AnCICSNubb8bdyPPGgLoLZYCrUEHYVBE10byyR1hBSJa35zlizNldTmaqKb5T9J3irCjX_vPV1zzTO0zW2ZbIeto3PUKN9n-sJgiVJeOif6BM8mxP4 |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQDLDwRpSnBxgYXGzn1Y6otCqPMvQhdYvsiyMqUINIK1F-PWcnhQqBBEOWKLmcLne673wvQs64BCVBeCwJ0dz8euqxug454yoMlOK-MG7sYuchbA_822EwXCJi3guDTORIKXdJ_K_pAuIS77kDjWpdc88PMUpfCSL0lxYNNXqfxyoWodTcijj0ZQELEA2UycmfiFiXBPmCS1rwLa0N0v3kypWUPFWnE12F928DG__F9iZZL5EmvSpUY4ssmfE2WW3MF7ztkLiYXEyzlHZGbyZhvezZVj_S5kLzG83GFDEi7bl9OW7ThH3hCkYJa9hPzt5NQq_N4ywpdIl2TdErke-SQavZb7RZuW-BKTTrCdOBgtQYRBygaxwvDGCTAKQxCDuEAQEpwjffixKRRBykFIAG7PmgQSuZet4eWR5nY7NPKCjN69LYaW7SjzyoKeA2dAqNBhOFQYWco2Ti0l7y2KXCpYjn4opLcVXIxfzXxC_F-I1fnz34I81Tstrud-7j-5uHu0OyJm0AbcuwoyOyPHmdmmNEGRN94vTqAzvyzWM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6ioF58i29z0IOHrEnatLvHZXXxjbgq3koySVGUXbEruPvrnaRdWURBD72UdjpMZ5hvMi9C9rgELUFEzCZobnEjj1jDJJxxnSiteSxcGLt4eZWc3MVnD-phgqhRLwwyUSClIiTxvVW_2ryaMCAO8X441Kg1DI_iBCP1KZWKkJ1ttjpfRysepdTDmjj0Z4opRARVgvInIt4tQTHmlsb8S3ue3H9xFspKnmvvfVOD4behjf9mfYHMVYiTNksVWSQTrrtEZlqjRW_LJCsnGNNeTi-fPpxlnd6Lr4Kkx2NNcLTXpYgVaSfszQkbJ_wLTXiyrOU_ORg6S4_c48CWOkVvXNkzUayQu_bxbeuEVXsXmEbz7jOjNOTOIfIAU-d4YSBrFUjnEH4IBwJyhHFxlFphUw5SCkBDjmIwYLTMo2iVTHZ7XbdGKGjDG9L5qW4yTiOoa-A-hEqcAZcmap3so2Syym6KLKTEpchG4soqca2Tg9HvyV7LMRy_PrvxR5q7ZPr6qJ1dnF6db5JZ6eNoX42dbpHJ_tu720aw0Tc7QbU-AemEz90 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Mixed-Solvent+Environments+on+the+Selectivity+of+Acid-Catalyzed+Dehydration+Reactions&rft.jtitle=ACS+catalysis&rft.au=Chew%2C+Alex+K.&rft.au=Walker%2C+Theodore+W.&rft.au=Shen%2C+Zhizhang&rft.au=Demir%2C+Benginur&rft.date=2020-02-07&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=10&rft.issue=3&rft.spage=1679&rft.epage=1691&rft_id=info:doi/10.1021%2Facscatal.9b03460&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acscatal_9b03460 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon |