Effect of Mixed-Solvent Environments on the Selectivity of Acid-Catalyzed Dehydration Reactions

The composition of the liquid phase can alter the rates of individual reaction steps and thus alter the selectivity of acid-catalyzed reactions, but these solvent effects are difficult to anticipate for design purposes. Herein, we report the kinetics and selectivity of Brønsted acid-catalyzed 1,2-pr...

Full description

Saved in:
Bibliographic Details
Published inACS catalysis Vol. 10; no. 3; pp. 1679 - 1691
Main Authors Chew, Alex K, Walker, Theodore W, Shen, Zhizhang, Demir, Benginur, Witteman, Liam, Euclide, Jack, Huber, George W, Dumesic, James A, Van Lehn, Reid C
Format Journal Article
LanguageEnglish
Published American Chemical Society 07.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The composition of the liquid phase can alter the rates of individual reaction steps and thus alter the selectivity of acid-catalyzed reactions, but these solvent effects are difficult to anticipate for design purposes. Herein, we report the kinetics and selectivity of Brønsted acid-catalyzed 1,2-propanediol dehydration in pure water and in aqueous mixtures of the polar aprotic cosolvents γ-valerolactone, 1,4-dioxane, tetrahydrofuran, N-methyl-2-pyrrolidone, tetramethylene sulfoxide, and dimethyl sulfoxide at 433 K. We find that the major product of 1,2-propanediol dehydration is propanal in most mixed-solvent environments with selectivities between 1 and 68 mol %. In contrast, 1,2-propanediol dehydration in aqueous mixtures of dimethyl sulfoxide affords acetone as the major product with up to 48% selectivity with minimal propanal formation. We use classical molecular dynamics simulations to probe these solvent effects by computing the difference between the solvation free energies of 1,2-propanediol and propanal in aqueous mixtures of polar aprotic cosolvents and in pure water. We find that the difference in the solvation free energies is correlated with the rates of propanal formation in all mixed-solvent environments, indicating that the solvent-mediated stabilization of the product state relative to the reactant state translates to increased selectivity toward the same product. Similar agreement between simulated solvation free energies and experimental reaction rates/selectivities is established for the acid-catalyzed dehydration of cis- and trans-1,2-cyclohexanediol and 1,3-cyclohexanediol. Finally, analysis of the solvation environment around 1,2-propanediol shows that dimethyl sulfoxide uniquely competes against water to solvate reactive hydroxyl groups, which causes a change in reaction mechanism in this solvent system that leads to the formation of acetone rather than propanal. These results represent a step toward the computationally efficient screening of solvent systems for acid-catalyzed, liquid-phase processes.
AbstractList The composition of the liquid phase can alter the rates of individual reaction steps and thus alter the selectivity of acid-catalyzed reactions, but these solvent effects are difficult to anticipate for design purposes. Herein, we report the kinetics and selectivity of Brønsted acid-catalyzed 1,2-propanediol dehydration in pure water and in aqueous mixtures of the polar aprotic cosolvents γ-valerolactone, 1,4-dioxane, tetrahydrofuran, N-methyl-2-pyrrolidone, tetramethylene sulfoxide, and dimethyl sulfoxide at 433 K. We find that the major product of 1,2-propanediol dehydration is propanal in most mixed-solvent environments with selectivities between 1 and 68 mol %. In contrast, 1,2-propanediol dehydration in aqueous mixtures of dimethyl sulfoxide affords acetone as the major product with up to 48% selectivity with minimal propanal formation. We use classical molecular dynamics simulations to probe these solvent effects by computing the difference between the solvation free energies of 1,2-propanediol and propanal in aqueous mixtures of polar aprotic cosolvents and in pure water. We find that the difference in the solvation free energies is correlated with the rates of propanal formation in all mixed-solvent environments, indicating that the solvent-mediated stabilization of the product state relative to the reactant state translates to increased selectivity toward the same product. Similar agreement between simulated solvation free energies and experimental reaction rates/selectivities is established for the acid-catalyzed dehydration of cis- and trans-1,2-cyclohexanediol and 1,3-cyclohexanediol. Finally, analysis of the solvation environment around 1,2-propanediol shows that dimethyl sulfoxide uniquely competes against water to solvate reactive hydroxyl groups, which causes a change in reaction mechanism in this solvent system that leads to the formation of acetone rather than propanal. These results represent a step toward the computationally efficient screening of solvent systems for acid-catalyzed, liquid-phase processes.
Author Shen, Zhizhang
Witteman, Liam
Euclide, Jack
Chew, Alex K
Walker, Theodore W
Huber, George W
Demir, Benginur
Dumesic, James A
Van Lehn, Reid C
AuthorAffiliation University of Wisconsin−Madison
Department of Chemical and Biological Engineering
DOE Great Lakes Bioenergy Research Center
AuthorAffiliation_xml – name: DOE Great Lakes Bioenergy Research Center
– name:
– name: Department of Chemical and Biological Engineering
– name: University of Wisconsin−Madison
Author_xml – sequence: 1
  givenname: Alex K
  surname: Chew
  fullname: Chew, Alex K
– sequence: 2
  givenname: Theodore W
  surname: Walker
  fullname: Walker, Theodore W
– sequence: 3
  givenname: Zhizhang
  orcidid: 0000-0002-8837-5573
  surname: Shen
  fullname: Shen, Zhizhang
– sequence: 4
  givenname: Benginur
  orcidid: 0000-0003-3469-906X
  surname: Demir
  fullname: Demir, Benginur
– sequence: 5
  givenname: Liam
  surname: Witteman
  fullname: Witteman, Liam
– sequence: 6
  givenname: Jack
  surname: Euclide
  fullname: Euclide, Jack
– sequence: 7
  givenname: George W
  surname: Huber
  fullname: Huber, George W
– sequence: 8
  givenname: James A
  orcidid: 0000-0001-6542-0856
  surname: Dumesic
  fullname: Dumesic, James A
– sequence: 9
  givenname: Reid C
  orcidid: 0000-0003-4885-6599
  surname: Van Lehn
  fullname: Van Lehn, Reid C
  email: vanlehn@wisc.edu
BookMark eNp1UE1LAzEQDVLBWnv3uD_ArfnY7bbHUusHVASr5yU7mdCUbSJJLK6_3iyt4MWBYR7Me2-Gd0kG1lkk5JrRCaOc3UoIIKNsJ_OGimJKz8iQs7LMy0KUgz_4goxD2NFURTmdVXRI6pXWCDFzOns2X6jyjWsPaGO2sgfjnd0nHDJns7jFbINt4pqDiV0vWIBR-bK_232jyu5w2ykvo0nsV5TQg3BFzrVsA45Pc0Te71dvy8d8_fLwtFyscyk4j3lTStCIlM-gmdHUFROqBI5YFYwhMNAFmxaiUkxVFDhnINhcFNBAI7kWYkTo0Re8C8Gjrj-82Uvf1YzWfUb1b0b1KaMkuTlK0qbeuU9v04P_038A3GBuOA
CitedBy_id crossref_primary_10_1016_j_psep_2020_07_017
crossref_primary_10_1016_j_surfrep_2021_100541
crossref_primary_10_1021_acs_chemrev_0c01060
crossref_primary_10_1016_j_molliq_2024_125116
crossref_primary_10_1016_j_fuel_2023_128792
crossref_primary_10_1039_D4AY00060A
crossref_primary_10_1039_D3RE00464C
crossref_primary_10_1016_j_checat_2023_100602
crossref_primary_10_1021_acscatal_1c02866
crossref_primary_10_1039_D1SE01572A
crossref_primary_10_1016_j_apcatb_2023_123379
crossref_primary_10_1016_j_dyepig_2021_109377
crossref_primary_10_1016_j_coche_2022_100796
crossref_primary_10_1016_j_jcat_2022_06_007
crossref_primary_10_1039_D0SC03261A
crossref_primary_10_1039_D2CS01068B
crossref_primary_10_1039_D2SC06473A
crossref_primary_10_2139_ssrn_4056131
crossref_primary_10_1039_D3GC00864A
crossref_primary_10_1039_D3RE00340J
crossref_primary_10_1016_j_ces_2020_116315
crossref_primary_10_1021_acscatal_3c00894
crossref_primary_10_1016_S1872_2067_22_64119_6
crossref_primary_10_1021_acs_jctc_2c00766
crossref_primary_10_1016_j_apcata_2022_118509
crossref_primary_10_1360_SSV_2023_0067
crossref_primary_10_1021_acscatal_3c01440
crossref_primary_10_1002_cctc_202101170
crossref_primary_10_1021_acs_iecr_3c01033
crossref_primary_10_1016_j_psep_2023_01_025
crossref_primary_10_1039_D3GC04901A
crossref_primary_10_1021_acsestengg_1c00047
crossref_primary_10_1039_D2RA08180F
crossref_primary_10_1021_acssuschemeng_2c01375
crossref_primary_10_1021_acssuschemeng_2c05199
crossref_primary_10_1007_s11244_020_01260_9
crossref_primary_10_1016_j_cej_2021_133053
crossref_primary_10_1016_S1872_2067_21_64032_9
crossref_primary_10_1002_cssc_202001600
crossref_primary_10_1039_D0SC02589E
crossref_primary_10_1039_D1GC03836B
crossref_primary_10_1021_acsengineeringau_2c00010
crossref_primary_10_1039_D0SC05213B
crossref_primary_10_1016_j_micromeso_2023_112743
crossref_primary_10_3390_en17122814
crossref_primary_10_1039_D1CS00539A
Cites_doi 10.1002/jcc.10189
10.1103/physrevlett.77.3865
10.1039/c6ra11697c
10.1002/anie.196703181
10.1021/je960236b
10.1007/978-3-319-15976-8_1
10.1021/acscatal.5b00274
10.1039/cs9811000345
10.1021/jp9716997
10.1039/c6ra22303f
10.1021/jp203436e
10.1021/ol016103j
10.1016/s0010-8545(00)82100-1
10.1103/physrevb.37.785
10.1016/j.carres.2011.01.029
10.1016/0009-2614(89)87442-1
10.1002/cssc.201501148
10.1039/c4ra15123b
10.1021/jp960488j
10.1021/acssuschemeng.8b03101
10.3389/fchem.2019.00439
10.1021/cs3003269
10.1039/c7gc01688c
10.1063/1.2978177
10.1038/s41929-018-0027-3
10.1016/j.carres.2014.02.010
10.1002/anie.200604274
10.1021/j100308a038
10.1021/jo00165a018
10.1021/jp802665d
10.1103/physreva.38.3098
10.1021/acs.jpca.6b02253
10.1016/0009-2614(90)80030-h
10.1021/ja00222a014
10.1063/1.3081142
10.1039/c1cp20547a
10.1016/j.bpj.2015.08.015
10.1016/s1381-1169(00)00386-1
10.1002/jcc.23067
10.1002/jcc.21367
10.1016/j.jcat.2018.11.028
10.1021/cr050989d
10.1016/j.apcata.2009.09.029
10.1039/c7ee03432f
10.1007/978-3-662-48168-4_90
10.1021/acs.jpca.6b05040
10.1126/science.1126337
10.1002/anie.200801476
10.1038/nature05923
10.1021/ar0000556
10.1021/cr068360d
10.1063/1.5036689
10.1021/ja00073a029
10.1039/c2ee02663e
10.1016/0009-2614(88)85250-3
10.1016/j.apcata.2011.04.028
10.1021/acs.jpca.7b03907
10.1103/physrevlett.78.1396
10.1016/0009-2614(94)00116-2
10.1002/poc.2946
10.1016/j.biombioe.2010.07.018
10.1016/j.jcat.2006.06.021
10.1073/pnas.1704652114
10.1021/ct300400x
10.1021/acs.jpcc.8b00250
10.1021/cr9001808
10.1016/j.jtice.2010.10.004
10.1021/cr200055g
10.1039/c2cp22694d
10.1039/c4cp05063k
10.1063/1.4942771
10.1002/anie.201408359
10.1021/jp3056703
10.1016/0009-2614(89)87234-3
10.1007/s10822-015-9840-9
10.1021/ct900587b
10.1039/j29710000460
10.1021/cs300192z
10.1039/c8re00226f
10.1016/0009-2614(90)80029-d
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1021/acscatal.9b03460
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2155-5435
EndPage 1691
ExternalDocumentID 10_1021_acscatal_9b03460
b494500914
GroupedDBID 53G
55A
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
GNL
IH9
JG
JG~
RNS
ROL
UI2
VF5
VG9
W1F
.K2
AAHBH
AAYXX
ABJNI
ABQRX
ACGFO
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a322t-b5acfee028cb80cb8713d5c2ee7411ec1cf416437d1d70c221c31934cbcba2f33
IEDL.DBID ACS
ISSN 2155-5435
IngestDate Fri Aug 23 01:49:13 EDT 2024
Tue Dec 22 07:15:14 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords acid catalysis
selectivity
biomass conversion
classical molecular dynamics
solvent effects
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a322t-b5acfee028cb80cb8713d5c2ee7411ec1cf416437d1d70c221c31934cbcba2f33
ORCID 0000-0003-4885-6599
0000-0001-6542-0856
0000-0002-8837-5573
0000-0003-3469-906X
OpenAccessLink https://www.osti.gov/biblio/1637444
PageCount 13
ParticipantIDs crossref_primary_10_1021_acscatal_9b03460
acs_journals_10_1021_acscatal_9b03460
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20200207
2020-02-07
PublicationDateYYYYMMDD 2020-02-07
PublicationDate_xml – month: 02
  year: 2020
  text: 20200207
  day: 07
PublicationDecade 2020
PublicationTitle ACS catalysis
PublicationTitleAlternate ACS Catal
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref3/cit3
ref27/cit27
ref81/cit81
Best R. B. (ref62/cit62) 2013; 8
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
Lowry T. H. (ref38/cit38) 1987
ref20/cit20
ref48/cit48
Reichardt C. (ref9/cit9) 2011
ref60/cit60
ref74/cit74
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
Bornstein L. (ref42/cit42) 2008
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref80/cit80
ref28/cit28
Klein D. R. (ref45/cit45) 2017
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
Wohlfarth C. (ref43/cit43) 2015
ref69/cit69
ref12/cit12
ref15/cit15
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref85/cit85
  doi: 10.1002/jcc.10189
– ident: ref77/cit77
  doi: 10.1103/physrevlett.77.3865
– ident: ref29/cit29
  doi: 10.1039/c6ra11697c
– ident: ref53/cit53
  doi: 10.1002/anie.196703181
– ident: ref44/cit44
  doi: 10.1021/je960236b
– ident: ref61/cit61
  doi: 10.1007/978-3-319-15976-8_1
– ident: ref20/cit20
  doi: 10.1021/acscatal.5b00274
– ident: ref39/cit39
  doi: 10.1039/cs9811000345
– ident: ref84/cit84
  doi: 10.1021/jp9716997
– ident: ref30/cit30
  doi: 10.1039/c6ra22303f
– ident: ref27/cit27
  doi: 10.1021/jp203436e
– ident: ref40/cit40
  doi: 10.1021/ol016103j
– volume-title: Organic Chemistry
  year: 2017
  ident: ref45/cit45
  contributor:
    fullname: Klein D. R.
– ident: ref14/cit14
  doi: 10.1016/s0010-8545(00)82100-1
– ident: ref75/cit75
  doi: 10.1103/physrevb.37.785
– ident: ref31/cit31
  doi: 10.1016/j.carres.2011.01.029
– ident: ref83/cit83
  doi: 10.1016/0009-2614(89)87442-1
– ident: ref1/cit1
  doi: 10.1002/cssc.201501148
– ident: ref34/cit34
  doi: 10.1039/c4ra15123b
– ident: ref8/cit8
  doi: 10.1021/jp960488j
– ident: ref28/cit28
  doi: 10.1021/acssuschemeng.8b03101
– ident: ref66/cit66
  doi: 10.3389/fchem.2019.00439
– ident: ref49/cit49
  doi: 10.1021/cs3003269
– ident: ref11/cit11
  doi: 10.1039/c7gc01688c
– ident: ref70/cit70
  doi: 10.1063/1.2978177
– ident: ref73/cit73
– ident: ref16/cit16
  doi: 10.1038/s41929-018-0027-3
– ident: ref52/cit52
  doi: 10.1016/j.carres.2014.02.010
– ident: ref17/cit17
  doi: 10.1002/anie.200604274
– volume-title: Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures. New Series IV/17
  year: 2008
  ident: ref42/cit42
  contributor:
    fullname: Bornstein L.
– ident: ref65/cit65
  doi: 10.1021/j100308a038
– ident: ref48/cit48
  doi: 10.1021/jo00165a018
– ident: ref56/cit56
  doi: 10.1021/jp802665d
– ident: ref74/cit74
  doi: 10.1103/physreva.38.3098
– ident: ref59/cit59
  doi: 10.1021/acs.jpca.6b02253
– ident: ref80/cit80
  doi: 10.1016/0009-2614(90)80030-h
– ident: ref46/cit46
  doi: 10.1021/ja00222a014
– ident: ref68/cit68
  doi: 10.1063/1.3081142
– ident: ref51/cit51
  doi: 10.1039/c1cp20547a
– ident: ref72/cit72
  doi: 10.1016/j.bpj.2015.08.015
– ident: ref13/cit13
  doi: 10.1016/s1381-1169(00)00386-1
– ident: ref64/cit64
  doi: 10.1002/jcc.23067
– ident: ref63/cit63
  doi: 10.1002/jcc.21367
– ident: ref2/cit2
  doi: 10.1016/j.jcat.2018.11.028
– ident: ref18/cit18
  doi: 10.1021/cr050989d
– ident: ref37/cit37
  doi: 10.1016/j.apcata.2009.09.029
– ident: ref15/cit15
  doi: 10.1039/c7ee03432f
– volume-title: Solvents and solvent effects in organic chemistry
  year: 2011
  ident: ref9/cit9
  contributor:
    fullname: Reichardt C.
– start-page: 91
  volume-title: Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures: Supplement to Volume IV/17
  year: 2015
  ident: ref43/cit43
  doi: 10.1007/978-3-662-48168-4_90
  contributor:
    fullname: Wohlfarth C.
– ident: ref57/cit57
  doi: 10.1021/acs.jpca.6b05040
– ident: ref22/cit22
  doi: 10.1126/science.1126337
– ident: ref4/cit4
  doi: 10.1002/anie.200801476
– ident: ref19/cit19
  doi: 10.1038/nature05923
– ident: ref54/cit54
  doi: 10.1021/ar0000556
– ident: ref3/cit3
  doi: 10.1021/cr068360d
– ident: ref35/cit35
  doi: 10.1063/1.5036689
– ident: ref47/cit47
  doi: 10.1021/ja00073a029
– ident: ref26/cit26
  doi: 10.1039/c2ee02663e
– ident: ref82/cit82
  doi: 10.1016/0009-2614(88)85250-3
– ident: ref36/cit36
  doi: 10.1016/j.apcata.2011.04.028
– ident: ref58/cit58
  doi: 10.1021/acs.jpca.7b03907
– ident: ref78/cit78
  doi: 10.1103/physrevlett.78.1396
– ident: ref81/cit81
  doi: 10.1016/0009-2614(94)00116-2
– ident: ref60/cit60
  doi: 10.1002/poc.2946
– ident: ref5/cit5
  doi: 10.1016/j.biombioe.2010.07.018
– ident: ref7/cit7
  doi: 10.1016/j.jcat.2006.06.021
– ident: ref6/cit6
  doi: 10.1073/pnas.1704652114
– volume: 8
  start-page: 3257
  year: 2013
  ident: ref62/cit62
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300400x
  contributor:
    fullname: Best R. B.
– ident: ref25/cit25
  doi: 10.1021/acs.jpcc.8b00250
– ident: ref50/cit50
  doi: 10.1021/cr9001808
– ident: ref12/cit12
  doi: 10.1016/j.jtice.2010.10.004
– ident: ref55/cit55
  doi: 10.1021/cr200055g
– ident: ref23/cit23
  doi: 10.1039/c2cp22694d
– ident: ref32/cit32
  doi: 10.1039/c4cp05063k
– ident: ref69/cit69
  doi: 10.1063/1.4942771
– ident: ref10/cit10
  doi: 10.1002/anie.201408359
– ident: ref33/cit33
  doi: 10.1021/jp3056703
– ident: ref76/cit76
  doi: 10.1016/0009-2614(89)87234-3
– ident: ref71/cit71
  doi: 10.1007/s10822-015-9840-9
– volume-title: Mechanism and theory in organic chemistry
  year: 1987
  ident: ref38/cit38
  contributor:
    fullname: Lowry T. H.
– ident: ref67/cit67
  doi: 10.1021/ct900587b
– ident: ref41/cit41
  doi: 10.1039/j29710000460
– ident: ref21/cit21
  doi: 10.1021/cs300192z
– ident: ref24/cit24
  doi: 10.1039/c8re00226f
– ident: ref79/cit79
  doi: 10.1016/0009-2614(90)80029-d
SSID ssj0000456870
Score 2.522364
Snippet The composition of the liquid phase can alter the rates of individual reaction steps and thus alter the selectivity of acid-catalyzed reactions, but these...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 1679
Title Effect of Mixed-Solvent Environments on the Selectivity of Acid-Catalyzed Dehydration Reactions
URI http://dx.doi.org/10.1021/acscatal.9b03460
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGWDhjSgveYCBwcV2Xs1YlVYVUhkolbpF9tkRFShBJJVofz22k0LFQ-qQLXGiy53uO9_5-xC6ohwEB-YRFZpw8-PUI7EMKaEiDISgPtOOdnH4EA7G_v0kmHzT5Pzs4HN2K6BwOxmtWFLPD015vskjExsWBnVHX_spFpq0nTacSWIBCQwMqLuSfy1icxEUK7loJan0dyt1osJxEdpZkpfWrJQtWPxmalzje_fQTo0tcadyhn20obMDtNVdSrodoqTiKsZ5iofTD63IKH-18464t3LcDecZNqgQj5xCjtOWsA90YKpI175yvtAK3-nnuaq8Bz_q6nREcYTG_d5Td0BqhQUiTCCXRAYCUq0NxgDZpuYyJasKgGttgAbTwCA1gM33IsVURIFzBiZkPR8kSMFTzztGjSzP9AnCICSNubb8bdyPPGgLoLZYCrUEHYVBE10byyR1hBSJa35zlizNldTmaqKb5T9J3irCjX_vPV1zzTO0zW2ZbIeto3PUKN9n-sJgiVJeOif6BM8mxP4
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQDLDwRpSnBxgYXGzn1Y6otCqPMvQhdYvsiyMqUINIK1F-PWcnhQqBBEOWKLmcLne673wvQs64BCVBeCwJ0dz8euqxug454yoMlOK-MG7sYuchbA_822EwXCJi3guDTORIKXdJ_K_pAuIS77kDjWpdc88PMUpfCSL0lxYNNXqfxyoWodTcijj0ZQELEA2UycmfiFiXBPmCS1rwLa0N0v3kypWUPFWnE12F928DG__F9iZZL5EmvSpUY4ssmfE2WW3MF7ztkLiYXEyzlHZGbyZhvezZVj_S5kLzG83GFDEi7bl9OW7ThH3hCkYJa9hPzt5NQq_N4ywpdIl2TdErke-SQavZb7RZuW-BKTTrCdOBgtQYRBygaxwvDGCTAKQxCDuEAQEpwjffixKRRBykFIAG7PmgQSuZet4eWR5nY7NPKCjN69LYaW7SjzyoKeA2dAqNBhOFQYWco2Ti0l7y2KXCpYjn4opLcVXIxfzXxC_F-I1fnz34I81Tstrud-7j-5uHu0OyJm0AbcuwoyOyPHmdmmNEGRN94vTqAzvyzWM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6ioF58i29z0IOHrEnatLvHZXXxjbgq3koySVGUXbEruPvrnaRdWURBD72UdjpMZ5hvMi9C9rgELUFEzCZobnEjj1jDJJxxnSiteSxcGLt4eZWc3MVnD-phgqhRLwwyUSClIiTxvVW_2ryaMCAO8X441Kg1DI_iBCP1KZWKkJ1ttjpfRysepdTDmjj0Z4opRARVgvInIt4tQTHmlsb8S3ue3H9xFspKnmvvfVOD4behjf9mfYHMVYiTNksVWSQTrrtEZlqjRW_LJCsnGNNeTi-fPpxlnd6Lr4Kkx2NNcLTXpYgVaSfszQkbJ_wLTXiyrOU_ORg6S4_c48CWOkVvXNkzUayQu_bxbeuEVXsXmEbz7jOjNOTOIfIAU-d4YSBrFUjnEH4IBwJyhHFxlFphUw5SCkBDjmIwYLTMo2iVTHZ7XbdGKGjDG9L5qW4yTiOoa-A-hEqcAZcmap3so2Syym6KLKTEpchG4soqca2Tg9HvyV7LMRy_PrvxR5q7ZPr6qJ1dnF6db5JZ6eNoX42dbpHJ_tu720aw0Tc7QbU-AemEz90
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Mixed-Solvent+Environments+on+the+Selectivity+of+Acid-Catalyzed+Dehydration+Reactions&rft.jtitle=ACS+catalysis&rft.au=Chew%2C+Alex+K.&rft.au=Walker%2C+Theodore+W.&rft.au=Shen%2C+Zhizhang&rft.au=Demir%2C+Benginur&rft.date=2020-02-07&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=10&rft.issue=3&rft.spage=1679&rft.epage=1691&rft_id=info:doi/10.1021%2Facscatal.9b03460&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acscatal_9b03460
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon