DFT/MM Simulations for Cycloreversion Reaction of Cyclobutane Pyrimidine Dimer with Deprotonated and Protonated E283

DNA photolyase targets the primary ultraviolet (UV)-induced DNA lesioncyclobutane pyrimidine dimer (CPD), attaches to it, and catalyzes its dissociation. The catalytic mechanism of DNA photolyase and the role of the conserved residue E283 remain subjects of debate. This study employs two-dimensiona...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 128; no. 28; pp. 6670 - 6683
Main Authors Xue, Pei, Huang, Donglian, Pu, Jingzhi, Zhou, Yan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract DNA photolyase targets the primary ultraviolet (UV)-induced DNA lesioncyclobutane pyrimidine dimer (CPD), attaches to it, and catalyzes its dissociation. The catalytic mechanism of DNA photolyase and the role of the conserved residue E283 remain subjects of debate. This study employs two-dimensional potential energy surface maps and minimum free energy paths calculated at the ωB97XD/6-31G/MM level to elucidate these mechanisms. Results suggest that the catalytic process follows a sequential, stepwise reaction in which the C5–C5 and C6–C6 bonds are cleaved in order, facilitated by a protonated E283. Activation free energies for these cleavages are calculated at 4.4 and 4.2 kcal·mol–1, respectively. Protonation of E283 reduces electrostatic repulsion with CPD and forms dual hydrogen bonds with it and provides better solvation, stabilizing the CPD radical anion, particularly during intermediate state. This stabilization renders the initial splitting step exergonic, slows reverse reactions of the C5–C5 bond cleavage and electron transfer, and ensures a high quantum yield. Furthermore, the protonation state of E283 significantly affects the type of bond cleavage. Other residues in the active site were also investigated for their roles in the mechanism.
AbstractList DNA photolyase targets the primary ultraviolet (UV)-induced DNA lesion─cyclobutane pyrimidine dimer (CPD), attaches to it, and catalyzes its dissociation. The catalytic mechanism of DNA photolyase and the role of the conserved residue E283 remain subjects of debate. This study employs two-dimensional potential energy surface maps and minimum free energy paths calculated at the ωB97XD/6-31G/MM level to elucidate these mechanisms. Results suggest that the catalytic process follows a sequential, stepwise reaction in which the C5-C5 and C6-C6 bonds are cleaved in order, facilitated by a protonated E283. Activation free energies for these cleavages are calculated at 4.4 and 4.2 kcal·mol , respectively. Protonation of E283 reduces electrostatic repulsion with CPD and forms dual hydrogen bonds with it and provides better solvation, stabilizing the CPD radical anion, particularly during intermediate state. This stabilization renders the initial splitting step exergonic, slows reverse reactions of the C5-C5 bond cleavage and electron transfer, and ensures a high quantum yield. Furthermore, the protonation state of E283 significantly affects the type of bond cleavage. Other residues in the active site were also investigated for their roles in the mechanism.
DNA photolyase targets the primary ultraviolet (UV)-induced DNA lesion—cyclobutane pyrimidine dimer (CPD), attaches to it, and catalyzes its dissociation. The catalytic mechanism of DNA photolyase and the role of the conserved residue E283 remain subjects of debate. This study employs two-dimensional potential energy surface maps and minimum free energy paths calculated at the ωB97XD/6-31G/MM level to elucidate these mechanisms. Results suggest that the catalytic process follows a sequential, stepwise reaction in which the C5–C5 and C6–C6 bonds are cleaved in order, facilitated by a protonated E283. Activation free energies for these cleavages are calculated at 4.4 and 4.2 kcal·mol–¹, respectively. Protonation of E283 reduces electrostatic repulsion with CPD and forms dual hydrogen bonds with it and provides better solvation, stabilizing the CPD radical anion, particularly during intermediate state. This stabilization renders the initial splitting step exergonic, slows reverse reactions of the C5–C5 bond cleavage and electron transfer, and ensures a high quantum yield. Furthermore, the protonation state of E283 significantly affects the type of bond cleavage. Other residues in the active site were also investigated for their roles in the mechanism.
DNA photolyase targets the primary ultraviolet (UV)-induced DNA lesioncyclobutane pyrimidine dimer (CPD), attaches to it, and catalyzes its dissociation. The catalytic mechanism of DNA photolyase and the role of the conserved residue E283 remain subjects of debate. This study employs two-dimensional potential energy surface maps and minimum free energy paths calculated at the ωB97XD/6-31G/MM level to elucidate these mechanisms. Results suggest that the catalytic process follows a sequential, stepwise reaction in which the C5–C5 and C6–C6 bonds are cleaved in order, facilitated by a protonated E283. Activation free energies for these cleavages are calculated at 4.4 and 4.2 kcal·mol–1, respectively. Protonation of E283 reduces electrostatic repulsion with CPD and forms dual hydrogen bonds with it and provides better solvation, stabilizing the CPD radical anion, particularly during intermediate state. This stabilization renders the initial splitting step exergonic, slows reverse reactions of the C5–C5 bond cleavage and electron transfer, and ensures a high quantum yield. Furthermore, the protonation state of E283 significantly affects the type of bond cleavage. Other residues in the active site were also investigated for their roles in the mechanism.
DNA photolyase targets the primary ultraviolet (UV)-induced DNA lesion─cyclobutane pyrimidine dimer (CPD), attaches to it, and catalyzes its dissociation. The catalytic mechanism of DNA photolyase and the role of the conserved residue E283 remain subjects of debate. This study employs two-dimensional potential energy surface maps and minimum free energy paths calculated at the ωB97XD/6-31G/MM level to elucidate these mechanisms. Results suggest that the catalytic process follows a sequential, stepwise reaction in which the C5-C5 and C6-C6 bonds are cleaved in order, facilitated by a protonated E283. Activation free energies for these cleavages are calculated at 4.4 and 4.2 kcal·mol-1, respectively. Protonation of E283 reduces electrostatic repulsion with CPD and forms dual hydrogen bonds with it and provides better solvation, stabilizing the CPD radical anion, particularly during intermediate state. This stabilization renders the initial splitting step exergonic, slows reverse reactions of the C5-C5 bond cleavage and electron transfer, and ensures a high quantum yield. Furthermore, the protonation state of E283 significantly affects the type of bond cleavage. Other residues in the active site were also investigated for their roles in the mechanism.DNA photolyase targets the primary ultraviolet (UV)-induced DNA lesion─cyclobutane pyrimidine dimer (CPD), attaches to it, and catalyzes its dissociation. The catalytic mechanism of DNA photolyase and the role of the conserved residue E283 remain subjects of debate. This study employs two-dimensional potential energy surface maps and minimum free energy paths calculated at the ωB97XD/6-31G/MM level to elucidate these mechanisms. Results suggest that the catalytic process follows a sequential, stepwise reaction in which the C5-C5 and C6-C6 bonds are cleaved in order, facilitated by a protonated E283. Activation free energies for these cleavages are calculated at 4.4 and 4.2 kcal·mol-1, respectively. Protonation of E283 reduces electrostatic repulsion with CPD and forms dual hydrogen bonds with it and provides better solvation, stabilizing the CPD radical anion, particularly during intermediate state. This stabilization renders the initial splitting step exergonic, slows reverse reactions of the C5-C5 bond cleavage and electron transfer, and ensures a high quantum yield. Furthermore, the protonation state of E283 significantly affects the type of bond cleavage. Other residues in the active site were also investigated for their roles in the mechanism.
Author Zhou, Yan
Huang, Donglian
Pu, Jingzhi
Xue, Pei
AuthorAffiliation Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering
Department of Chemistry and Chemical Biology
AuthorAffiliation_xml – name: Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering
– name: Department of Chemistry and Chemical Biology
Author_xml – sequence: 1
  givenname: Pei
  surname: Xue
  fullname: Xue, Pei
  organization: Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering
– sequence: 2
  givenname: Donglian
  surname: Huang
  fullname: Huang, Donglian
  organization: Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering
– sequence: 3
  givenname: Jingzhi
  orcidid: 0000-0002-3042-335X
  surname: Pu
  fullname: Pu, Jingzhi
  organization: Department of Chemistry and Chemical Biology
– sequence: 4
  givenname: Yan
  orcidid: 0000-0002-7102-5710
  surname: Zhou
  fullname: Zhou, Yan
  email: zhouyan@gxmzu.edu.cn
  organization: Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38982772$$D View this record in MEDLINE/PubMed
BookMark eNqFkUlPwzAQhS0EYr9zQj5yoGVsJ3F8RG1ZJBCI5Rw59kQEJXGxE1D_PS4tcEIcRh77fWON3tsjm53rkJAjBmMGnJ1pE8avc1OOEwMMGNsguyzlMIolN9d9xiDbIXshvALwlOfZNtkRucq5lHyX9NOLp7PbW_pYt0Oj-9p1gVbO08nCNM7jO_oQ3-gDarMUqatWUjn0ukN6v_B1W9s6ttO6RU8_6v6FTnHuXe863aOlurP0_vc647k4IFuVbgIers998nwxe5pcjW7uLq8n5zcjLTjvR4nSUDKZJ5CqWAYwt5nNMq5kKSpjMc3ByhSE1bYUlumSV8ARFCaGKZWIfXKy-jeu8zZg6Iu2DgabJq7uhlAIloos5Smw_1GQUikmlYzo8RodyhZtMY8WaL8ovk2NAKwA410IHqsfhEGxzK2IuRXL3Ip1bnHkdDXypbjBd9GXv_FPR82afw
Cites_doi 10.1002/jcc.540110605
10.1021/acs.jpcb.7b10002
10.1021/ja076081h
10.1039/c3pp50099c
10.1021/ci300363c
10.1073/pnas.241371398
10.1371/journal.pbio.0040203
10.1021/ja00031a056
10.1021/jp9901545
10.1002/cphc.200800624
10.1104/pp.107.110189
10.1146/annurev-physchem-040513-103626
10.1073/pnas.0607993103
10.1021/ja00037a084
10.1021/ci3003649
10.1016/j.mrfmmm.2004.11.015
10.1021/ja961252w
10.1074/jbc.273.32.20276
10.1016/1011-1344(92)85007-H
10.1021/bi00167a001
10.1007/s00018-005-5447-y
10.1039/c1pp05219e
10.1007/128_2014_531
10.1002/cphc.201402302
10.1038/nchem.1625
10.1016/0263-7855(96)00018-5
10.1021/jp810292n
10.1021/jp051075y
10.1021/acs.jpca.8b12345
10.1126/science.1101598
10.1002/chem.200700807
10.1021/jacs.9b06064
10.1103/RevModPhys.15.1
10.1063/1.2212942
10.1021/ct100641a
10.1080/00268976.2014.952696
10.1038/ncomms8302
10.1073/pnas.1110927108
10.1016/j.mrrev.2008.09.001
10.1002/jcc.21367
10.1016/j.dib.2016.07.040
10.1039/c7pp00395a
10.1063/1.466711
10.1021/bi034015w
10.1021/ja005775m
10.3892/mmr.2011.673
10.1021/ja404279f
10.1039/b810189b
10.1021/jp107722z
10.1021/acs.jpclett.3c01128
10.1021/ja000929j
10.1021/ja963360o
10.1021/ja5063955
10.1073/pnas.1101026108
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/acs.jpcb.4c01011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5207
EndPage 6683
ExternalDocumentID 38982772
10_1021_acs_jpcb_4c01011
a840747236
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
.K2
123
29L
4.4
53G
55A
5VS
7~N
85S
AABXI
AAHBH
ABFRP
ABJNI
ABMVS
ABQRX
ABUCX
ACBEA
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
PZZ
RNS
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
ZGI
~02
AAYXX
ABBLG
ABLBI
CITATION
ROL
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a322t-49a0b1784059405c0e8d6d66297b3fcde580d7503dadb3d1ab2f02e09e4c19943
IEDL.DBID ACS
ISSN 1520-6106
1520-5207
IngestDate Fri Jul 11 09:59:32 EDT 2025
Thu Jul 10 18:58:24 EDT 2025
Thu Aug 28 04:41:47 EDT 2025
Tue Jul 01 04:29:19 EDT 2025
Fri Jul 19 10:19:41 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a322t-49a0b1784059405c0e8d6d66297b3fcde580d7503dadb3d1ab2f02e09e4c19943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3042-335X
0000-0002-7102-5710
PMID 38982772
PQID 3077991797
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_3153652501
proquest_miscellaneous_3077991797
pubmed_primary_38982772
crossref_primary_10_1021_acs_jpcb_4c01011
acs_journals_10_1021_acs_jpcb_4c01011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-18
PublicationDateYYYYMMDD 2024-07-18
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. B
PublicationTitleAlternate J. Phys. Chem. B
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
Richa R. P. S. (ref2/cit2) 2015; 356
ref23/cit23
ref8/cit8
ref31/cit31
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
Cadet J. (ref3/cit3) 1990
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref35/cit35
  doi: 10.1002/jcc.540110605
– ident: ref54/cit54
  doi: 10.1021/acs.jpcb.7b10002
– ident: ref19/cit19
  doi: 10.1021/ja076081h
– ident: ref5/cit5
  doi: 10.1039/c3pp50099c
– ident: ref39/cit39
  doi: 10.1021/ci300363c
– ident: ref15/cit15
  doi: 10.1073/pnas.241371398
– ident: ref9/cit9
  doi: 10.1371/journal.pbio.0040203
– ident: ref23/cit23
  doi: 10.1021/ja00031a056
– ident: ref25/cit25
  doi: 10.1021/jp9901545
– ident: ref20/cit20
  doi: 10.1002/cphc.200800624
– ident: ref11/cit11
  doi: 10.1104/pp.107.110189
– ident: ref1/cit1
  doi: 10.1146/annurev-physchem-040513-103626
– ident: ref12/cit12
  doi: 10.1073/pnas.0607993103
– ident: ref16/cit16
  doi: 10.1021/ja00037a084
– ident: ref40/cit40
  doi: 10.1021/ci3003649
– ident: ref7/cit7
  doi: 10.1016/j.mrfmmm.2004.11.015
– ident: ref24/cit24
  doi: 10.1021/ja961252w
– ident: ref30/cit30
  doi: 10.1074/jbc.273.32.20276
– ident: ref52/cit52
  doi: 10.1016/1011-1344(92)85007-H
– ident: ref10/cit10
  doi: 10.1021/bi00167a001
– ident: ref31/cit31
  doi: 10.1007/s00018-005-5447-y
– ident: ref8/cit8
  doi: 10.1039/c1pp05219e
– volume: 356
  start-page: 203
  volume-title: Photoinduced Phenomena in Nucleic Acids II
  year: 2015
  ident: ref2/cit2
  doi: 10.1007/128_2014_531
– volume-title: Bioorganic Photochemistry, volume 1: The Photochemistry of Nucleic Acids
  year: 1990
  ident: ref3/cit3
– ident: ref22/cit22
  doi: 10.1002/cphc.201402302
– ident: ref55/cit55
  doi: 10.1038/nchem.1625
– ident: ref46/cit46
  doi: 10.1016/0263-7855(96)00018-5
– ident: ref51/cit51
  doi: 10.1021/jp810292n
– ident: ref43/cit43
– ident: ref29/cit29
  doi: 10.1021/jp051075y
– ident: ref32/cit32
  doi: 10.1021/acs.jpca.8b12345
– ident: ref34/cit34
  doi: 10.1126/science.1101598
– ident: ref26/cit26
  doi: 10.1002/chem.200700807
– ident: ref48/cit48
  doi: 10.1021/jacs.9b06064
– ident: ref41/cit41
  doi: 10.1103/RevModPhys.15.1
– ident: ref44/cit44
  doi: 10.1063/1.2212942
– ident: ref45/cit45
  doi: 10.1021/ct100641a
– ident: ref36/cit36
  doi: 10.1080/00268976.2014.952696
– ident: ref53/cit53
  doi: 10.1038/ncomms8302
– ident: ref13/cit13
  doi: 10.1073/pnas.1110927108
– ident: ref6/cit6
  doi: 10.1016/j.mrrev.2008.09.001
– ident: ref38/cit38
  doi: 10.1002/jcc.21367
– ident: ref47/cit47
  doi: 10.1016/j.dib.2016.07.040
– ident: ref4/cit4
  doi: 10.1039/c7pp00395a
– ident: ref42/cit42
  doi: 10.1063/1.466711
– ident: ref17/cit17
  doi: 10.1021/bi034015w
– ident: ref28/cit28
  doi: 10.1021/ja005775m
– ident: ref14/cit14
  doi: 10.3892/mmr.2011.673
– ident: ref56/cit56
  doi: 10.1021/ja404279f
– ident: ref37/cit37
  doi: 10.1039/b810189b
– ident: ref21/cit21
  doi: 10.1021/jp107722z
– ident: ref33/cit33
  doi: 10.1021/acs.jpclett.3c01128
– ident: ref27/cit27
  doi: 10.1021/ja000929j
– ident: ref49/cit49
  doi: 10.1021/ja963360o
– ident: ref18/cit18
  doi: 10.1021/ja5063955
– ident: ref50/cit50
  doi: 10.1073/pnas.1101026108
SSID ssj0025286
Score 2.4552042
Snippet DNA photolyase targets the primary ultraviolet (UV)-induced DNA lesioncyclobutane pyrimidine dimer (CPD), attaches to it, and catalyzes its dissociation. The...
DNA photolyase targets the primary ultraviolet (UV)-induced DNA lesion─cyclobutane pyrimidine dimer (CPD), attaches to it, and catalyzes its dissociation. The...
DNA photolyase targets the primary ultraviolet (UV)-induced DNA lesion—cyclobutane pyrimidine dimer (CPD), attaches to it, and catalyzes its dissociation. The...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 6670
SubjectTerms active sites
B: Biophysical and Biochemical Systems and Processes
catalytic activity
cleavage (chemistry)
Cyclization
Density Functional Theory
deoxyribodipyrimidine photo-lyase
Deoxyribodipyrimidine Photo-Lyase - chemistry
Deoxyribodipyrimidine Photo-Lyase - metabolism
dissociation
DNA
electron transfer
electrostatic interactions
Gibbs free energy
hydrogen
Hydrogen Bonding
Molecular Dynamics Simulation
potential energy
protonation
Protons
Pyrimidine Dimers - chemistry
solvation
Thermodynamics
Title DFT/MM Simulations for Cycloreversion Reaction of Cyclobutane Pyrimidine Dimer with Deprotonated and Protonated E283
URI http://dx.doi.org/10.1021/acs.jpcb.4c01011
https://www.ncbi.nlm.nih.gov/pubmed/38982772
https://www.proquest.com/docview/3077991797
https://www.proquest.com/docview/3153652501
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6iB734fj-IoAcPXds0TZqj7AMRVhZ1wVtpJimouCu2K6y_3knbdfG1SOmhbUjayWO-mWm-IeQkhhAPBV5gQvC4lKmnAJinlBaGsTiTqduN3L0Wl31-dR_dT2lyvkfwWXCeQt54fAHd4OD40NDSWWAC57CDQc3bT-MqYmVWR1RHzhzyJyHJ32pwigjyr4roD3RZapnOSpWuKC_JCd3PJU-NUaEb8P6TuvEfH7BKlmuwSS-q0bFG5uxgnSw2JzneNkjR6tydd7v09uG5TuOVU0SxtDkGtOPtW-VMoze22v5Ah1n1SI8QU1raG7ukYKj9LG09PNtX6ry6tGUd-YPzyltD04GhvellG3HGJul32nfNS6_Ow-ClON0Lj6vU14FEUzBSeIJvYyOMEExJHWZgbBT7xsVDTWp0aIJUs8xn1leWg6MeDrfI_GA4sDuEZgbAcfCFgRBchkxnsY4494ELG-HisEtOUVxJPY_ypAyRsyApb6IMk1qGu-Rs0nnJS0XLMaPs8aR3ExSvC4igiIajPMH1TSI-lkrOKIMqQbjYL9azXQ2NzxYR7MUMzZO9f771PlliiImcaziID8h88Tqyh4hpCn1UDuYPnRvwag
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4QHODC-zGeQYIDh442TZPmiDam8RiaYEjcquZRaaBtiHZI8Otx-hgCwQSqemgaJanjxJ_txkboKFQ-XEI5nvaVQzmPHaEUcYSQTBMSJjy2p5E7N6x9Ty8fgocZ5FVnYWAQKbSU5k78z-gC3qkte3xWsk6VDYsGCs8cYBFimfqscTfRsQKSJ3cEqWS1IrfyTP7UgpVHKv0qj34BmbmwaS2h28kw839MnurjTNbV-7cIjv_6jmW0WEJPfFbwygqaMcNVNN-oMr6toazZ6p12OviuPyiTeqUYMC1uvCnQ6s1rYVrDt6Y4DIFHSfFKjgFhGtx9synCQBYa3OwPzAu2Nl7cNDYUhLXRG43jocbdz8dzQB3r6L513mu0nTIrgxPD4s8cKmJXehwUw0DArVwTaqYZI4JLP1HaBKGrrXdUx1r62oslSVxiXGGosoGI_Q00OxwNzRbCiVbKRuTzPcYo94lMQhlQ6irKTABbRQ0dA7miclWlUe4wJ16UFwINo5KGNXRSzWH0XATpmFL3sJrkCMhr3SNAotE4jWC344CWueBT6oCAYNYTDO1sFhwy6RGgX0hAWdn-46gP0Hy717mOri9urnbQAgG0ZI3GXriLZrOXsdkDtJPJ_Zy_PwDxQ_jL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELemToK9bDBgdHx50njgIV3iOHb8WLWrBqNTRTvUtyj-iNShfqhJkcpfz10-ikAwMUV5iGPZzvns-91dfEfIeWxCuJTxAhsaj0uZesoY5imlhWUszmSKp5GHN-Lqln-aRtM9EjVnYWAQObSUl058XNUrm9URBoILLL9bGd3hBkOjgdKzj147ZOxub7zTsyJWJngEyYSakd94J__WAsokk_8uk_4BNEuBMzgiX3dDLf8z-dbZFLpjfvwRxfHB3_KEHNYQlHYrnnlK9tzimDzuNZnfnpGiP5hcDId0PJvXyb1yCtiW9rYGtHv3vTKx0S-uOhRBl1n1Sm8AaTo62mKqMJCJjvZnc7emaOulfYchIdBW7yxNF5aOfj1eAvp4Tm4Hl5PelVdnZ_BS2AQKj6vU14EEBTFScBvfxVZYIZiSOsyMdVHsW_SS2tTq0AapZpnPnK8cNxiQOHxBWovlwr0kNLPGYGS-MBCCy5DpLNYR577hwkWwZbTJeyBXUq-uPCkd5yxIykKgYVLTsE0-NPOYrKpgHffUPWsmOgHyopsESLTc5AnsehJQs1TynjogKAR6hKGdk4pLdj0CBIwZKC2n_znqd-TRqD9IPn-8uX5FDhiAJrQdB_Fr0irWG_cGQE-h35Ys_hMSbvtO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DFT%2FMM+Simulations+for+Cycloreversion+Reaction+of+Cyclobutane+Pyrimidine+Dimer+with+Deprotonated+and+Protonated+E283&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Xue%2C+Pei&rft.au=Huang%2C+Donglian&rft.au=Pu%2C+Jingzhi&rft.au=Zhou%2C+Yan&rft.date=2024-07-18&rft.eissn=1520-5207&rft.volume=128&rft.issue=28&rft.spage=6670&rft_id=info:doi/10.1021%2Facs.jpcb.4c01011&rft_id=info%3Apmid%2F38982772&rft.externalDocID=38982772
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon