Single Metal Site and Versatile Transfer Channel Merged into Covalent Organic Frameworks Facilitate High-Performance Li-CO2 Batteries

The sluggish kinetics and unclear mechanism have significantly hindered the development of Li-CO2 batteries. Here, a Li-CO2 battery cathode catalyst based on a porphyrin-based covalent organic framework (TTCOF-Mn) with single metal sites is reported to reveal intrinsic catalytic sites of aprotic CO2...

Full description

Saved in:
Bibliographic Details
Published inACS central science Vol. 7; no. 1; pp. 175 - 182
Main Authors Zhang, Yu, Zhong, Rong-Lin, Lu, Meng, Wang, Jian-Hui, Jiang, Cheng, Gao, Guang-Kuo, Dong, Long-Zhang, Chen, Yifa, Li, Shun-Li, Lan, Ya-Qian
Format Journal Article
LanguageEnglish
Published American Chemical Society 27.01.2021
Online AccessGet full text

Cover

Loading…
Abstract The sluggish kinetics and unclear mechanism have significantly hindered the development of Li-CO2 batteries. Here, a Li-CO2 battery cathode catalyst based on a porphyrin-based covalent organic framework (TTCOF-Mn) with single metal sites is reported to reveal intrinsic catalytic sites of aprotic CO2 conversion from the molecular level. The battery with TTCOF-Mn exhibits a low overpotential of 1.07 V at 100 mA/g as well as excellent stability at 300 mA/g, which is one of the best Li-CO2 battery cathode catalysts to date. The unique features of TTCOF-Mn including uniform single-Mn­(II)-sites, fast Li+ transfer pathways, and high electron transfer efficiency contribute to effective CO2 reduction and Li2CO3 decomposition in the Li-CO2 system. Density functional theory calculations reveal that different metalloporphyrin sites lead to different reaction pathways. The single-Mn­(II) sites in TTCOF-Mn can activate CO2 and achieve an efficient four-electron CO2 conversion pathway. It is the first example to reveal the catalytic active sites and clear reaction pathways in aprotic Li-CO2 batteries.
AbstractList The sluggish kinetics and unclear mechanism have significantly hindered the development of Li-CO2 batteries. Here, a Li-CO2 battery cathode catalyst based on a porphyrin-based covalent organic framework (TTCOF-Mn) with single metal sites is reported to reveal intrinsic catalytic sites of aprotic CO2 conversion from the molecular level. The battery with TTCOF-Mn exhibits a low overpotential of 1.07 V at 100 mA/g as well as excellent stability at 300 mA/g, which is one of the best Li-CO2 battery cathode catalysts to date. The unique features of TTCOF-Mn including uniform single-Mn­(II)-sites, fast Li+ transfer pathways, and high electron transfer efficiency contribute to effective CO2 reduction and Li2CO3 decomposition in the Li-CO2 system. Density functional theory calculations reveal that different metalloporphyrin sites lead to different reaction pathways. The single-Mn­(II) sites in TTCOF-Mn can activate CO2 and achieve an efficient four-electron CO2 conversion pathway. It is the first example to reveal the catalytic active sites and clear reaction pathways in aprotic Li-CO2 batteries.
The sluggish kinetics and unclear mechanism have significantly hindered the development of Li-CO2 batteries. Here, a Li-CO2 battery cathode catalyst based on a porphyrin-based covalent organic framework (TTCOF-Mn) with single metal sites is reported to reveal intrinsic catalytic sites of aprotic CO2 conversion from the molecular level. The battery with TTCOF-Mn exhibits a low overpotential of 1.07 V at 100 mA/g as well as excellent stability at 300 mA/g, which is one of the best Li-CO2 battery cathode catalysts to date. The unique features of TTCOF-Mn including uniform single-Mn(II)-sites, fast Li+ transfer pathways, and high electron transfer efficiency contribute to effective CO2 reduction and Li2CO3 decomposition in the Li-CO2 system. Density functional theory calculations reveal that different metalloporphyrin sites lead to different reaction pathways. The single-Mn(II) sites in TTCOF-Mn can activate CO2 and achieve an efficient four-electron CO2 conversion pathway. It is the first example to reveal the catalytic active sites and clear reaction pathways in aprotic Li-CO2 batteries.The sluggish kinetics and unclear mechanism have significantly hindered the development of Li-CO2 batteries. Here, a Li-CO2 battery cathode catalyst based on a porphyrin-based covalent organic framework (TTCOF-Mn) with single metal sites is reported to reveal intrinsic catalytic sites of aprotic CO2 conversion from the molecular level. The battery with TTCOF-Mn exhibits a low overpotential of 1.07 V at 100 mA/g as well as excellent stability at 300 mA/g, which is one of the best Li-CO2 battery cathode catalysts to date. The unique features of TTCOF-Mn including uniform single-Mn(II)-sites, fast Li+ transfer pathways, and high electron transfer efficiency contribute to effective CO2 reduction and Li2CO3 decomposition in the Li-CO2 system. Density functional theory calculations reveal that different metalloporphyrin sites lead to different reaction pathways. The single-Mn(II) sites in TTCOF-Mn can activate CO2 and achieve an efficient four-electron CO2 conversion pathway. It is the first example to reveal the catalytic active sites and clear reaction pathways in aprotic Li-CO2 batteries.
The sluggish kinetics and unclear mechanism have significantly hindered the development of Li-CO 2 batteries. Here, a Li-CO 2 battery cathode catalyst based on a porphyrin-based covalent organic framework (TTCOF-Mn) with single metal sites is reported to reveal intrinsic catalytic sites of aprotic CO 2 conversion from the molecular level. The battery with TTCOF-Mn exhibits a low overpotential of 1.07 V at 100 mA/g as well as excellent stability at 300 mA/g, which is one of the best Li-CO 2 battery cathode catalysts to date. The unique features of TTCOF-Mn including uniform single-Mn(II)-sites, fast Li + transfer pathways, and high electron transfer efficiency contribute to effective CO 2 reduction and Li 2 CO 3 decomposition in the Li-CO 2 system. Density functional theory calculations reveal that different metalloporphyrin sites lead to different reaction pathways. The single-Mn(II) sites in TTCOF-Mn can activate CO 2 and achieve an efficient four-electron CO 2 conversion pathway. It is the first example to reveal the catalytic active sites and clear reaction pathways in aprotic Li-CO 2 batteries. A porphyrin-based covalent organic framework with a single metal site and versatile transfer channel is designed as a Li-CO 2 battery cathode catalyst for exploration of an aprotic CO 2 conversion mechanism.
Author Lan, Ya-Qian
Lu, Meng
Chen, Yifa
Jiang, Cheng
Dong, Long-Zhang
Zhong, Rong-Lin
Zhang, Yu
Li, Shun-Li
Wang, Jian-Hui
Gao, Guang-Kuo
AuthorAffiliation Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry
Jilin University
Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science
South China Normal University
School of Chemistry
AuthorAffiliation_xml – name: Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science
– name: South China Normal University
– name: Jilin University
– name: Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry
– name: School of Chemistry
Author_xml – sequence: 1
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science
– sequence: 2
  givenname: Rong-Lin
  orcidid: 0000-0002-8896-1767
  surname: Zhong
  fullname: Zhong, Rong-Lin
  organization: Jilin University
– sequence: 3
  givenname: Meng
  surname: Lu
  fullname: Lu, Meng
  organization: Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science
– sequence: 4
  givenname: Jian-Hui
  surname: Wang
  fullname: Wang, Jian-Hui
  organization: Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science
– sequence: 5
  givenname: Cheng
  surname: Jiang
  fullname: Jiang, Cheng
  organization: Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science
– sequence: 6
  givenname: Guang-Kuo
  surname: Gao
  fullname: Gao, Guang-Kuo
  organization: Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science
– sequence: 7
  givenname: Long-Zhang
  orcidid: 0000-0002-9276-5101
  surname: Dong
  fullname: Dong, Long-Zhang
  organization: Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science
– sequence: 8
  givenname: Yifa
  orcidid: 0000-0002-1718-6871
  surname: Chen
  fullname: Chen, Yifa
  organization: Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science
– sequence: 9
  givenname: Shun-Li
  surname: Li
  fullname: Li, Shun-Li
  organization: Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science
– sequence: 10
  givenname: Ya-Qian
  orcidid: 0000-0002-2140-7980
  surname: Lan
  fullname: Lan, Ya-Qian
  email: yqlan@njnu.edu.cn
  organization: South China Normal University
BookMark eNpVkt1uEzEQhVeoiJbSF-DKl9xs8O_-3CBBRGiloCC1cGvN2rMbh1272E4RD9D37oZEoF7NaObo02jOeV2c-eCxKN4yumCUs_dgkkGfk3ELaigTLX1RXHBRy7JuFTv710txXlyltKOUMllVitevinMhlOCqbi6Kx1vnhxHJV8wwkluXkYC35AfGBNnNi7sIPvUYyXIL3uM4K-OAljifA1mGBxjnK8gmDuCdIasIE_4O8WciKzBudBlm4rUbtuU3jH2IE3iDZO3K5YaTT5AzRofpTfGyhzHh1aleFt9Xn--W1-V68-Vm-XFdguA8l_PNqgPZ2wbQ0k7ZhnFrGyGwYbYzhgtrWgayqbtedTXDFqRi1FjVGIEI4rK4OXJtgJ2-j26C-EcHcPrvIMRBQ8zOjKirurO9VX0rWiWxpx1nEmnb9Z2s25rzmfXhyLrfdxPagxkRxmfQ5xvvtnoID7pupKLsAHh3AsTwa48p68nNno4jeAz7pLlsKqYUb6tZujhKZ9f1Luyjn7-kGdWHKOj_UdCnKIgnce2swg
ContentType Journal Article
Copyright 2020 The Authors. Published by American Chemical Society
2020 The Authors. Published by American Chemical Society.
2020 The Authors. Published by American Chemical Society 2020 The Authors
Copyright_xml – notice: 2020 The Authors. Published by American Chemical Society
– notice: 2020 The Authors. Published by American Chemical Society.
– notice: 2020 The Authors. Published by American Chemical Society 2020 The Authors
DBID N~.
7X8
5PM
DOA
DOI 10.1021/acscentsci.0c01390
DatabaseName American Chemical Society (ACS) Open Access
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2374-7951
EndPage 182
ExternalDocumentID oai_doaj_org_article_67bdfd5f93954ef0b214e09bfb479722
PMC7845012
d100915797
GroupedDBID 53G
5VS
ABUCX
ACS
ADACO
ADBBV
AFEFF
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BCNDV
DIK
EBS
FRP
GROUPED_DOAJ
HYE
KQ8
N~.
OK1
RPM
VF5
XKZ
7X8
AAFWJ
ABBLG
ADHLV
ADUCK
AFPKN
AOIJS
M48
5PM
ID FETCH-LOGICAL-a322t-3255ba4fd8aed0b5d812dd833e81dbcc23dc91a487bf5b71e9a4510cd58c3eea3
IEDL.DBID M48
ISSN 2374-7943
IngestDate Wed Aug 27 01:32:11 EDT 2025
Thu Aug 21 18:11:37 EDT 2025
Fri Jul 11 03:46:49 EDT 2025
Fri Jan 29 03:15:39 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a322t-3255ba4fd8aed0b5d812dd833e81dbcc23dc91a487bf5b71e9a4510cd58c3eea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2140-7980
0000-0002-1718-6871
0000-0002-8896-1767
0000-0002-9276-5101
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1021/acscentsci.0c01390
PMID 33532578
PQID 2486155296
PQPubID 23479
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_67bdfd5f93954ef0b214e09bfb479722
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7845012
proquest_miscellaneous_2486155296
acs_journals_10_1021_acscentsci_0c01390
ProviderPackageCode ACS
ABUCX
AFEFF
VF5
XKZ
N~.
PublicationCentury 2000
PublicationDate 2021-01-27
PublicationDateYYYYMMDD 2021-01-27
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-27
  day: 27
PublicationDecade 2020
PublicationTitle ACS central science
PublicationTitleAlternate ACS Cent. Sci
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
SSID ssj0001466527
Score 2.4456763
Snippet The sluggish kinetics and unclear mechanism have significantly hindered the development of Li-CO2 batteries. Here, a Li-CO2 battery cathode catalyst based on a...
The sluggish kinetics and unclear mechanism have significantly hindered the development of Li-CO 2 batteries. Here, a Li-CO 2 battery cathode catalyst based on...
SourceID doaj
pubmedcentral
proquest
acs
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
StartPage 175
SummonAdditionalLinks – databaseName: American Chemical Society (ACS) Open Access
  dbid: N~.
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3faxQxEA6lPtgXqbbFs1oiFHwxdXeS3Wwe9ehRxKrQFvoW8mOiB2VP7q6vvvX_drK7x3VBwdfNkrA7M8w3mZlvGDsNKWmXVBCVBilU47TwBPOFcuBrQwZVdI20l1_rixv1-ba63WHv_5HBh_KDCz2tUZifFSEDFgrQn0BNepfHXP4-296oqLruZ7SCzEWGRsmhS-bv22R_FFYDV_8IYI7LIx_5m9k-ezYARf6xl-xztoPtC_Z0upnPdsAersjr3CG_RMLP_IqgI3dt5PkCjP42LXRuKOGS5w6CFu_ozeUPjHzerhd8uiAVo5N534wZ-GxTpbXiMxd67m7kuQxEfN82F_AvczH9Bryn5aQo-5DdzM6vpxdiGKogHNnuWkiKIbxTKTYOY-GrSB4-xkZKJOTqQwAZgykdxTE-VV6XaJwiuw2xaoJEdPKI7baLFl8yHkzMW8SicEFFj42DFAxqiJpgRHIT9o5-sB2MYmW7fDeUdisKO4hiwj5lIdhfPcOGzZzX3QNSBDuYkK21jylWyUhTKUyFh1JhYXzyShsNMGFvNyK0JIqc-HAtLu5XFlST069g6gnTI9mOThyvtPOfHdu2blRFXvzVf3_MMduDXPhSlAL0a7a7Xt7jG0Iua3_SKewf3hfwJg
  priority: 102
  providerName: American Chemical Society
– databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELZQLnBBLVCRliIjIXFy2fXa6_WxREQI8ZJCJG6WH-M2UrSpkvAT-N8d725E9sSFq72yLc_Mzjf2zGdCzn2MykbhmVS8YKKyijmE-UxY7kqNBpU1hbT3D-XNVNy-yJetp75STlhLD9xu3GWpXIhBRl1oKSBmjucCMu2iE0or3vx90edtBVPN6YooS8lVVyWDfuzS-pYdyc9-ZT7hnlTSho0dV38PYPbTI7f8zfgL2e-AIv3dLvAr2YH6gOyONu-zHZK3CXqdOdB7QPxMJwgdqa0DTQdguNvY0bihCEuaKghqmOOXyz8Q6KxeL-hogSqGM9O2GNPT8SZLa0XH1rfc3UBTGgh7ei8uoHczNnrktKXlxCj7iEzH18-jG9Y9qsAs2u6aFRhDOCtiqCyEzMmAHj6EqigAkavznhfB69xiHOOidCoHbQXarQ-y8gWALb6RQb2o4ZhQr0MaImSZ9SI4qCyPXoPiQSGMiHZILnCDTWcUK9Pcd_PcvIvCdKIYkqskBPOvZdgwifO6aUBNMJ0mmI80YUjONiI0KIp08WFrWLyuDBdVun7luhwS1ZNtb8Z-Tz3727Btq0pI9OLfP2OJP8geTzkxWc64OiGD9fIVfiKoWbvTRn__A4bv-4w
  priority: 102
  providerName: Directory of Open Access Journals
Title Single Metal Site and Versatile Transfer Channel Merged into Covalent Organic Frameworks Facilitate High-Performance Li-CO2 Batteries
URI http://dx.doi.org/10.1021/acscentsci.0c01390
https://www.proquest.com/docview/2486155296
https://pubmed.ncbi.nlm.nih.gov/PMC7845012
https://doaj.org/article/67bdfd5f93954ef0b214e09bfb479722
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LixQxEA7LCroX8YnjY4ggeMrYnUencxDRxmERZxXGgb2FPHcHhm7tmQW9ePN_W-kHa8OevPSh052QVBX1Jan6CqFXLkZpIndESMoIL40kFmA-4YbaQoFBZV0i7eqsON3wT-fi_AiN5Y6GBdzfuLVL9aQ27W7x88evd2Dwb3vigfyNcT3xkdsuMpcgDWzhb4FnkslQVwPc785ceFH0VVwpS2GIirMhj-bmbk7QbcYES1qdnJfbD8T-EzQ6jaX8xzkt76G7A6rE73s1uI-OQv0A3anGYm4P0Z81uKhdwKsA88RrwJnY1B6n0zIQDTR0PiuGFqd0gzrs4Mv2Ini8rQ8NrhrQRxgZ95mbDi_HkK49XhrXE30HnGJGyNfrTAT8eUuqLxT3HJ6wJX-ENsuP36pTMlRgIAYM_UBg6sIaHn1pgs-s8AAHvC8ZCwBzrXOUeadyA5seG4WVeVCGg5E7L0rHQjDsMTqumzo8Qdgpn7rwWWYc9zaUhkangqReAuaIZoZewwLrUQF0dzlOc30tFT1IZYY-JCHo7z0dh04E2d2Lpr3Qg73pQlofvYiKKcFDzCzNeciUjZZLJSmdoZejCDWIIt2SmDo0V3tNeZnuaqkqZkhOZDsZcdpSby87am5ZcgEu_-l___kMndAUNZPlhMrn6PjQXoUXAHsOdg6wv1rPu0ODeafX8Dz7vfgLz88KVg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbQclguvBHlaSQkTi6J7cTxcYmoCrQLUrvS3iw_oWKVoia9cOd_M3ZSShAHuMaRn2PPN56Zzwi9tCEIHbglhaCM8EoLYgDmE66pKSVsqCwl0i7Py_kFf39ZXA553DEXBjrRQk1tcuIf2QXy1_AtsRvZzTSzEbeAnX4d0AiNYn1Wr44XK7ws-6daKYuxhpKzIVnm79VEtWTbgbJ_hDPHUZK_qZ3ZLbT-1eEUbfJ1uu_M1H7_g8vxP0d0G90cYCg-6-XmDrrmm7votD68_nYP_ViBTrvyeOkBneMVAFOsG4fj9RqsJRQkJRf8Dsf8hMZfwZ-7z97hTdNtcb0FAYZWcZ_qafHsEAPW4pm2PTO4xzHIhHw6pi7gxYbUHynuST_Bhr-PLmZv1_WcDE82EA0nQ0cYWChG8-Aq7V1mCgf4wbmKMQ-42FhLmbMy12AlmVAYkXupOZwK1hWVZd5r9gCdNNvGP0TYShercFmmLXfGV5oGK72gTgBICXqCXsEMqmHLtSp502mujtOqhmmdoDdxbdW3nr9DRUbt9AFWRA0bVJXCuOCKIJksuA-ZoTn3mTTBcCEFpRP04iAZCpYiulV047f7VlFeReculeUEiZHIjFoclzSbL4nLW1S8AIzw6J8H8xydztfLhVq8O__wGN2gMcQmywkVT9BJt9v7p4CROvMs7Ymf52wSlg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQkYALojzE8jQSEieXxHbi-NgujQq0S6VSqTfLjzGsVGWrzfbKjf_NOPFqicSBaxzZicej-cYz8w0h732MykbpWaW4YLKxijmE-Uxa7mqNClUMhbRni_rkUn65qq7y1UWqhcGP6HGmfgjiJ62-CTEzDJQf8fnAcOSXB4VP2AV99buIR4rUs2Hx62B3uSLremzXykXKN9RS5IKZf0-TTJPvM23_BGtOMyX_Mj3tI_IwY0Z6OAp5n9yB7jG5P9-2antCfl-gAboGegYIpekFokhqu0DTXRhuPA4MFinCmqZigg6u8c31Dwh02W1WdL7C04Yr07Eu09N2m7DV09b6kcYbaMoIYee7OgN6umTzb5yODJ3ocD8ll-3x9_kJy_0VmEU13jCB7oSzMobGQihcFdDYh9AIAQhinfdcBK9Liy6Ni5VTJWgrUYV9qBovAKx4Rva6VQfPCfU6pClCUVgvg4PG8ug1KB4UIopoZ-QDbrDJ-tGbIfTNS7MThcmimJGjJARzM5JtmER_PTzAA2GyNplauRBDFbXQlYRYOF5KKLSLTiqtOJ-Rd1sRGhRFioHYDla3veGySZFYrusZURPZTlacjnTLnwPxtmpkhQb9xX__zFty7_xTa04_L76-JA94SocpSsbVK7K3Wd_Ca8QzG_dmOLt_ADJR9tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Metal+Site+and+Versatile+Transfer+Channel+Merged+into+Covalent+Organic+Frameworks+Facilitate+High-Performance+Li-CO2+Batteries&rft.jtitle=ACS+central+science&rft.au=Zhang%2C+Yu&rft.au=Zhong%2C+Rong-Lin&rft.au=Lu%2C+Meng&rft.au=Wang%2C+Jian-Hui&rft.date=2021-01-27&rft.pub=American+Chemical+Society&rft.issn=2374-7943&rft.eissn=2374-7951&rft.volume=7&rft.issue=1&rft.spage=175&rft.epage=182&rft_id=info:doi/10.1021%2Facscentsci.0c01390&rft_id=info%3Apmid%2F33532578&rft.externalDocID=PMC7845012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2374-7943&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2374-7943&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2374-7943&client=summon